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ABSTRACT
Speaker extraction aims to selectively extract the target speaker
from the multi-talker environment under the guidance of auxiliary
reference. Recent studies have shown that the attended speaker’s
information can be decoded by the auditory attention decoding
from the listener’s brain activity. However, how to more effectively
utilize the common information about the target speaker contained
in both electroencephalography (EEG) and speech is still an un-
resolved problem. In this paper, we propose a multi-scale fusion
network (MSFNet) for brain-controlled speaker extraction, which
utilizes the EEG recorded from the listener to extract the target
speech. In order to make full use of the speech information, the
mixed speech is encoded with multiple time scales so that the multi-
scale embeddings are acquired. In addition, to effectively extract
the non-Euclidean data of EEG, the graph convolutional networks
are used as the EEG encoder. Finally, these multi-scale embeddings
are separately fused with the EEG features. To facilitate research
related to auditory attention decoding and further validate the ef-
fectiveness of the proposed method, we also construct the AVED
dataset, a new EEG-Audio dataset. Experimental results on both the
public Cocktail Party dataset and the newly proposed AVED dataset
in this paper show that our MSFNet model significantly outper-
forms the state-of-the-art method in certain objective evaluation
metrics.

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; •Human-
centered computing → Human computer interaction (HCI).

KEYWORDS
Speaker extraction, EEG signals, Multi-modal fusion, Graph convo-
lutional network, Multi-talker environment

1 INTRODUCTION
Sound is considered as the carrier of information. The human brain
has excellent selective auditory attention capabilities, enabling indi-
viduals to extract only target auditory information while simultane-
ously ignoring distracting speech in a multi-speaker environment
such as a cocktail party [1]. For listeners suffering from hearing
loss, this presents a significant challenge. In the past decade, the
rapid development of speech enhancement and speaker extraction
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algorithms has propelled advancements in hearing aids [2], and as
front-end speech processing techniques to extract clear attended
speech for various speech applications, including voice activity
detection [3], speaker diarization [4], and speech synthesis [5].
However, these methods still lack the effectiveness of human se-
lective attention neural mechanisms and may be constrained by
environmental limitations in practical applications.

In recent years, remarkable progress has been made in the field
of speech separation [6]. It is designed to separate the voice of a
single speaker from scenarios where multiple speakers are talk-
ing simultaneously, such as Conv-tasNet [7], Sepformer [8], and
TF-GridNet [9]. Most speech separation algorithms require prior
information of the number of speakers in the mixture and consider
label permutation problem, greatly limiting the practicality of these
methods. Furthermore, the separated speech source is independent
of the listener’s attention selection. Speech separation networks
separate all sound sources but cannot determine which speaker is
the target and which are interference. However, in certain acoustic
scenarios, listeners only pay attention to one speaker. This neces-
sitates a subsequent speaker verification system to utilize given
target speaker information, including neural signals [10] or visual
attention [11], for speech tracking, thereby further increasing com-
putational complexity.

The speaker extraction adopts a distinct strategy by employing
a speaker encoder that emulates the top-down intentional focus,
augmenting the acoustic signal with additional informative signals.
It selectively extracts the speech of the target speaker based on
the provided reference cues, thereby avoiding the aforementioned
issues. Common auxiliary reference cues include pre-registered
unseen target speech [12], observable lip movements [13], spatial
location information [14], or understanding of contextual relevance
[15]. However, these cues cannot automatically separate the de-
sired speaker based on individual subjective awareness. The use of
target speaker utterances is constrained by the necessity of prior
information about the identity of target speakers in the scene, and
listeners are also not able to keep their eyes fixed on the speaker
they are interested in.

In order to extract the target speech from the mixture speech of
multiple speakers without any registered prior information such
as the identity of target speaker, a proposed solution is to decode
the brain neural signals of listeners to determine the target speaker,
thereby endowing the system with active perceptual abilities. Ac-
cording to the latest research in neuroscience, it proves that au-
ditory attention of listeners can be decoded from recorded brain
activity [16]. EEG provides a non-invasive and effective method for
studying cortical neural activity, making it particularly suitable for
auditory attention detection (AAD) tasks [17]. Earlier studies [18]
were predominantly dedicated to enhancing the performance of the
cascaded approach involving blind source separation and AAD. Esti-
mating the speech envelope of the target speaker from the listener’s

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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EEG signals, the estimated envelope is then compared individually
with each separated source to identify the most closely matched
speaker. However, the performance of this method is heavily reliant
on the accuracy of AAD.

In this paper, we introduce amulti-scale fusion network (MSFNet)
for brain-controlled speaker extractionan, a end-to-end time-domain
model. The MSFNet method models the attention direction of lis-
teners directly through the recorded EEG signals to extract target
speech. It consists of four components: speech encoder, EEG en-
coder, speaker extraction network, and speech decoder. To fully
leverage speech information and more accurately capture the tem-
poral characteristics of speech, the speech encoder encodes a seg-
ment of mixed speech waveform into multi-scale speech embed-
dings with different time scales. In the EEG encoder, graph convo-
lutional networks (GCN) are used to effectively extract the non-
Euclidean data from EEG trials, obtaining a feature representa-
tion of target speaker information. Finally, in the speaker extrac-
tion network, these multi-scale speech embeddings are separately
fused with the EEG features and estimates corresponding receptive
masks for extracting the target speaker. Experimental results on the
main Cocktail Party dataset show that the proposed MSFNet model
achieves 11.5% and 13.6% relative improvements over the state-of-
the-art method in terms of scale-invariant signal-to-distortion ratio
(SI-SDR) and perceptual evaluation of speech quality (PESQ).

The main contributions of this paper can be summarized as
follows:

• We propose amulti-scale fusion network for brain-controlled
speaker extraction, where speech features with different time
scales are separately fused with EEG features to extract the
target speaker, thereby enhancing the perception and quality
of the speech.

• We propose a new Audio-Video EEG dataset, referred to as
AVED dataset, to facilitate research in auditory attention
decoding and brain-controlled speaker extraction. To simu-
late real-world perceptual environments, the AVED dataset
includes scenarios where both video and audio stimuli are
provided, as well as scenarios where only audio stimuli are
provided, offering richer modal information.

• Experimental results on the public Cocktail Party dataset
and our proposed AVED dataset both demonstrate that our
MSFNet model achieves significant improvements over the
baseline methods.

2 RELATEDWORK
This section primarily reviews the background of the speaker extrac-
tion task, briefly summarize the development of brain-controlled
speaker extraction and outline various current approaches.

2.1 Speaker Extraction
Emulating the human auditory system, speaker extraction tech-
nology incorporates an additional auxiliary network designed to
extract voiceprint embedding vectors, including i-vector [19], x-
vector [20], and d-vector [21], with distinct speaker identity char-
acteristics. When given an arbitrary-length speech segment, the
speaker encoder learns the speaker embedding of the speaker of
interest to the listeners and selects the corresponding speech signal

from a multi-talker speech. For example, in VoiceFilter [22] and
TseNet [23], a pre-trained speaker encoder is constructed to extract
d-vector and i-vector as features representing the target speaker.
But the pre-trained speaker encoder operates independently from
the overall speaker extraction network, leading to a loss of cru-
cial attended speaker information. Then in SpEx [24], the different
idea of the context of speaker extraction is introduced, involving
joint training and optimization of the speaker encoder and speaker
extraction network within a multi-task learning framework.

Visual information can also serve as a reference clue for the
target source, immune to the disruption caused by acoustic noise
and speech interference. In accordance with the actual scenario, it
is reasonable to assume that if there is a facial image, the person
visible in the image is likely the one being attended to. The Conver-
sation [25] and Time-domain Speaker Extraction Network (TDSE)
[26] are examples of audio-visual speech extraction that pretrain
a visual encoder to encode the lip image sequence of the target
speaker into visemes, ensuring temporal synchronization between
lip movements and speech. However, the challenge of extracting the
target speech from the multi-speaker environment without prior
information about speakers identity remains unresolved. Moreover,
for practical applications such as hearing aids, there is a lack of
direct connection with the human brain, preventing the detection
of attention-related information based on individual subjective con-
sciousness. To assist listeners with hearing impairments and to
promote the development of neuro-steered hearing aids devices, re-
searching how speaker extraction algorithms utilize EEG signals as
input for brain-computer interaction would be highly meaningful.

2.2 Brain-Controlled Speaker Extraction
Research in cognitive neuroscience suggests a mapping relationship
between attended speech stimuli and brain-evoked neural data. In
some approaches [27][28][29], taking advantage of the fact that
the target speaker can be decoded from brain activity, the speech
envelope of interested speaker is first estimated from listener’s EEG
signals, and then the estimated speech envelope is compared with
each separated sources, determining the one with the highest simi-
larity as the target speech and subsequently amplifying it. These
methods still do not circumvent the drawback of requiring knowl-
edge of the number of speakers in blind source separation, adding
unnecessary computational complexity as an additional concern.

For the optimization of different problems, the brain-controlled
speaker extraction method is constantly refined. The brain-inspired
speech separation (BISS) [30] model designs a brain decoder as
a guiding network to extract the speech envelope of the target
speaker from EEG recordings. Taking the speech mixture and the
decoded neural envelope as inputs, the target extraction network
jointly performs the speaker selection process of AAD and speaker
separation in the frequency domain. This may cause potential phase
errors. The approach of training the two networks separately also
imposes limitations on the algorithm’s performance. The brain-
enhanced speech denoiser (BESD) [31] model and U-shaped BESD
(UBESD) [32] model mainly investigate the problem of brain-driven
speech enhancement in multi-speaker environments, entirely exe-
cuted in the time domain, exhibiting superior performance. The use
of feature-wise linear modulation (FiLM) [33] between EEG signals
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Figure 1: The overall block diagram of the proposed MSFNet model. It consists of a speech encoder, an EEG encoder, a speaker
extraction network, and a speech decoder. The symbol ⊗ represents element-wise multiplication of features.

and the mixture dynamically adjusts feature mappings in the neural
network, aiding in extracting more comprehensive features of the
attended speaker. Currently, the brain-assisted speech enhance-
ment network (BASEN) [34] utilizes the Conv-TasNet backbone
to construct both the separation network and the EEG encoder,
and it proposes a convolutional multi-layer cross attention (CMCA)
module intricately fuse EEG with speech features, strengthening
the correlation between them.

3 THE PROPOSED MSFNET
3.1 Problem Formulation
Given a multi-speaker mixed speech signal 𝑥 , which includes the
target speech signal 𝑠 and interfering speech signals 𝑏𝑖 :

𝑥 = 𝑠 +
𝐼∑︁

𝑖=1
𝑏𝑖 ∈ R𝑇𝑠 (1)

where 𝐼 represents the number of interfering speakers in the sce-
nario, while𝑇𝑠 denotes the time length of mixture speech segments.
In this work, we do not consider the additional influence of back-
ground noise or room reverberation. In addition, using the EEG
signal 𝑒 ∈ R𝑁 ∗𝑇𝑟 as an auxiliary reference cue, 𝑁 is the number
of EEG channels, and 𝑇𝑟 is the time length of the EEG signal. EEG
data and speech stimuli are recorded synchronously for the same
duration, ensuring temporal alignment between the two. The dif-
ference between 𝑇𝑠 and 𝑇𝑟 reflects the disparity in sampling rates

between EEG and audio signals, which will be taken into account
during the data preprocessing stage.

By fusing the mixed speech signal 𝑥 with attentional informa-
tion about the target speaker from the EEG signal 𝑒 , enabling
multimodal training for complementary learning, the final goal
of brain-controlled speaker extraction is to reconstruct 𝑠 as closely
as possible to the true source 𝑠 in 𝑥 .

3.2 Overall Architecture
In Figure 1, we propose the MSFNet model, a new brain-controlled
speaker extraction network with audio-EEG fusion at multiple
scales, which includes speech encoder, EEG encoder, speaker ex-
traction network, and speech decoder.

Drawing inspiration from the concept of multi-modal speaker
extraction, we follow an end-to-end network of encoder-decoder to
comprehensively extract fused features from both EEG and speech,
filtering out the target speech based on listener’s attention informa-
tion. In this paper, we design a new brain-controlled speaker extrac-
tion system named MSFNet network, which includes a multiple-
branch network structure for extracting multi-scale speech feature
representations. In each branch, the same EEG features are sep-
arately incorporated for fusion to obtain combined information
about speech at different time scales and EEG signals, further en-
hancing the quality of the target speech. We adopt a network design
based on the time-domain, which avoids the phase estimation issues
associated with frequency-domain methods.
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Figure 2: The components of the ResNet Block in the EEG
encoder. The symbol ⊕ denotes element-wise addition.

Here, the introduction of each component is as follows: 1) The
multi-scale speech encoder transforms mixture speech samples 𝑥
into speech embeddings 𝑋1, 𝑋2, and 𝑋3 with different time reso-
lutions. 2) The EEG encoder encodes the N-channel EEG signal
𝑒 into a low-dimensional feature representation 𝐸, referred to as
EEG embedding, providing attentional selection capability for the
speaker extraction network. 3) For the three outputs (𝑋1, 𝑋2, 𝑋3) of
the multi-scale speech encoder, the network is designed with three
branching paths. In each speaker extraction network, dual-modal
features are first fused, followed by the individual estimation of
a corresponding mask 𝑀𝑖 (𝑖 = 1, 2, 3) that only allows the target
speech to pass in 𝑋𝑖 (𝑖 = 1, 2, 3). Finally, 𝑀1, 𝑀2, and 𝑀3 are con-
catenated to obtain a multi-scale mask 𝑀 . 4) The masked speech
embedding 𝑆 are converted by the speech decoder into time-domain
speech waveforms 𝑠 .

3.2.1 Speech Encoder. The speech encoder consists of three 1-
dimensional convolutional layers (conv1D) with different filter
lengths, which can learn the feature representation at various scales.
In most cases, the most crucial information is contained in the
frequency of a signal. However, during the process of using the
short-time Fourier transform (STFT), a trade-off must be made be-
tween temporal resolution and frequency resolution, requiring a
careful balance based on specific needs. Especially for time-varying
non-stationary signals, small windows are suitable for high fre-
quencies, while large windows are suitable for low frequencies.
Adopting a multi-resolution speech representation method allows
for comprehensive coverage of the time-frequency information in
speech and more accurately captures the temporal characteristics
of speech.

By using a couple of parallel conv1D with N filters, each dedi-
cated to a different temporal resolution, followed by a rectified linear
unit (ReLU) activation function, the input mixed speech 𝑥 ∈ R𝑇𝑠
can be encoded into three speech embeddings 𝑋𝑖 , which can be
defined as:

𝑋𝑖 = 𝑅𝑒𝐿𝑈 (𝑐𝑜𝑛𝑣1𝐷 (𝑥, 1, 𝑁 , 𝐿𝑖 )) ∈ R𝑇𝑡 , 𝑖 = 1, 2, 3 (2)

where conv1D has input channels 1, output channels 𝑁 , kernel
size 𝐿𝑖 . To fully capture features at multiple scales, we perform
concatenation operations on speech embeddings in the later part of
the network. Therefore, it is essential to ensure the same 𝐿1/2 stride
in parallel convolutions. A window of speech segments containing
𝐿𝑖 samples will shift by 𝐿1/2 samples each time.

In this paper, only three different time scales are studied. The
three branches of the network use convolutional kernels of three
sizes: 𝐿1-small, 𝐿2-medium, and 𝐿3-large, covering various window
lengths. This configuration shows good generality.

3.2.2 EEG Encoder. The EEG encoder is designed to learn EEG
embedding 𝐸 from the input EEG signal 𝑒 that exhibit temporal
correlations with the interested speech. We do not explicitly re-
construct the target speech envelope but instead extract feature
representations from the EEG signals that capture aspects relevant
to attentive listening in the brain.

In more detail, the first part of the EEG encoder comprises three
GCN layers. Modeling multi-channel EEG features using a graph,
each electrode in the EEG data is considered as a node. The method
dynamically learns intrinsic relationships between different EEG
channels, representing them with an 𝑁 × 𝑁 adjacency matrix to
extract more distinctive EEG signal features. Then, the adjacency
matrix, which captures distinctive features, is utilized to improve
the accuracy of attentional information for the target speaker.

In the EEG encoder, immediately following is a 1 × 1 CNN and
a set of three residual network (ResNet) blocks. The ResNet block
is shown in Figure 2, which consists of two 1 × 1 CNNs, a batch
normalization (BN) layer, parametric ReLU (PReLU) and a max-
pooling layerwith kernel size 1×3. After passing through the second
BN layer, the intermediate activation features must be further added
to the input of the first conv1D through a skip connection. At each
conv1D layer, normalizing the output is necessary to address the
issues of gradient vanishing and exploding. PReLU activation is
applied to the sum of the skip connection and the output of the
second convolutional layer. The use of a max-pooling layer has
reduced the temporal dimension of the input features by a factor
of 3, focusing on capturing the most crucial features. Finally, a
1 × 1 CNN is employed to map the features to a fixed dimension,
obtaining the downsampled EEG embedding 𝐸.

The entire process can be defined as follows:

𝐸 = 𝐸𝐸𝐺𝑒𝑛𝑐𝑜𝑑𝑒𝑟 (𝑒) ∈ R𝐶×𝑇𝑝 (3)

3.2.3 Speaker Extraction Network. The speaker extraction network
consists of three independent branching paths. It is worth noting
that the parameters of the speaker extraction network used for
processing speech features at three time scales are shared, so this
helps to control the model’s parameter number to some extent. In
each path, the fusion of speech features with distinct time scales and
EEG features is performed first. Subsequently, the fused embeddings
are fed into the dual-path recurrent neural network(DPRNN)[35] to
estimate target speaker masks𝑀𝑖 at different time scales, selectively
allowing the target speech to pass through in the multi-scale speech
embeddings 𝑋𝑖 . To further integrate attended speech information
across multiple time resolutions, it is necessary to concatenate the
three masks estimated by the speaker extraction network. This
results in an intermediate tensor of size 3𝑁 × 𝑇𝑡 . Following this,
channel-wise normalization and a conv1D layer is utilized to obtain
the final mask 𝑀 , which is used to filter out interfering speakers.
The same operation is applied to the three speech embeddings
𝑋𝑖 learned by the speech encoder simultaneously, resulting in the
multi-scale speech embedding 𝑋 . The masked speech embedding 𝑆
is calculated through element-wise multiplication between 𝑋 and
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𝑀 :
𝑆 = 𝑋 ⊗ 𝑀 ∈ R𝑁×𝑇𝑡 (4)

where

𝑋 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑋1, 𝑋2, 𝑋3), 𝑀 = 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑀1, 𝑀2, 𝑀3) (5)

For the fusion of dual-modal features, we use the CMCA-based
cross attention mechanism proposed in BASEN. Between two adja-
cent layers, there are multiple pairs of cross-attention blocks with
skip connections and group normalization. In CMCA, the left and
right branches handle the audio and EEG streams, respectively. The
features from both branches are added layer by layer. In the end,
the two features obtained through layer-wise addition, along with
the original audio embedding and the original EEG embedding, are
concatenated along the channel dimension to construct the fused
features.

Temporal convolutional network (TCN) and DPRNN are highly
popular speech separation networks. Considering the limitation of
one-dimensional convolution with a fixed receptive field, which
becomes inadequate for modeling longer global dependencies when
the receptive field is smaller than the length of the speech sequence,
we employ the DPRNN model in the mask estimation process to
efficiently capture long-sequence speech patterns. DPRNN opti-
mizes RNNs in deep models by segmenting long input sequences
into smaller chunks and iteratively applying intra-chunk model-
ing and inter-chunk modeling. The input length is proportional
to the square root of the original sequence length in each opera-
tion. The speaker extraction process mainly consists of three stages:
the segmentation of input speech embeddings, internal operations
within 4 repeated DPRNN blocks, and the overlapping summation
of sequence segments.

3.2.4 SpeechDecoder. The speech decoder reconstructs time-domain
speech samples 𝑠 from masked speech embeddings . In the speech
encoder, padding operations are applied to ensure uniform dimen-
sions for the three speech embeddings after convolutional layers.
Consequently, in the decoder, there is no need to address the prob-
lem of using filters with varying lengths in the encoder. It primarily
entails a deconvolution, in contrast to the encoder, with 𝑁 input
channels and 1 output channel, a kernel size of 𝐿1, and a stride size
of 𝐿1/2:

𝑠 = 𝑑𝑒𝑐𝑜𝑛𝑣1𝐷 ((𝑆, 𝑁 , 1, 𝐿1), 𝑠𝑡𝑟𝑖𝑑𝑒 = 𝐿1/2) ∈ R1×𝑇𝑠 (6)

3.3 Objective Loss Function
We employ a SI-SDR[36] loss as a measure of the error between
the reconstructed speech and the ground-truth. It has been demon-
strated to perform well in time-domain speech separation algo-
rithms and is widely used. SI-SDR can be formulated as follows:

𝑆𝐼 -𝑆𝐷𝑅 = 10𝑙𝑜𝑔10

𝑥𝑡𝑎𝑟𝑔𝑒𝑡 2
∥𝑥𝑟𝑒𝑠 ∥2

(7)

where

𝑥𝑡𝑎𝑟𝑔𝑒𝑡 =
𝑠𝑇 𝑠

∥𝑠 ∥2
𝑠 (8)

𝑥𝑟𝑒𝑠 = 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑠 (9)
in which 𝑠 and 𝑠 stand for the extracted and true signals of the target
speaker, respectively. To ensure the stability of model training,

Table 1: The summary of settings details for each dataset.

Cocktail Party Dataset

Number of subjects 33
Subjects gender 28 males and 5 females
Speakers gender males
EEG channels 128

EEG trials of each subject 30
Duration of each EEG trial 60s

Language of stimuli English

AVED Dataset

Number of subjects 20
Subjects gender 14 males and 6 females
Speakers gender male and female
EEG channels 32

EEG trials of each subject 16
Duration of each EEG trial 152s

Language of stimuli Mandarin

before calculating SI-SDR, the signals 𝑠 and 𝑠 need to be normalized
to zero mean. This is because the scale of the target speech may
change after processing. In general, a higher SI-SDR value indicates
better quality of the reconstructed speech. We aim to minimize the
negative SI-SDR as the training objective.

4 EXPERIMENTAL SETUP
4.1 Datasets
4.1.1 Cocktail Party Dataset. The first dataset used in this exper-
iment is obtained from the authors of [37]. The data collection
procedures are performed in accordance with the Declaration of
Helsinki and are approved by the Ethics Committees of Trinity
College Dublin. A total of 33 subjects (28 males and 5 females) with
normal hearing and no history of neurological disorders take part
in the experiment. The average age is 27.3±3.2 years. The EEG data
of the sixth subject is excluded due to recording noise interference.
Each subject undertakes 30 trials, with each trial lasting 60 seconds.
During the collection process, subjects simultaneously listen to two
different classic stories, one presented to the left ear and the other
to the right ear. Each story is narrated by a different male speaker.
The subjects are evenly divided into two groups, with one group
instructed to focus on the left ear (17 people) and the other on the
right ear (16 + 1 excluded subject).

All speech stimuli are presented monophonically at a sampling
rate of 44.1 kHz. The EEG data, collected from 128 channels, are
originally recorded at a sampling rate of 512 Hz and later reduced
to 128 Hz. For each subject, 5 trials are randomly chosen for the
test set, 2 trials for validation, with the remaining data serving as
the training set.

4.1.2 AVED: Audio-Video EEG Dataset. We propose the AVED
dataset, a new EEG-Audio dataset designed for tasks related to
auditory attention decoding, with all subjects signing informed
consent forms. On this dataset, we further validate the effective-
ness of the proposed method. Subsequently, we also ensure the
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Table 2: The comparison of various methods on the Cocktail Party dataset and AVED dataset. BASEN* is our re-implementation,
and UBESD on the AVED dataset is also our re-implementation.

Methods Cocktail Party AVED

SI-SDR(dB) SDR(dB) STOI ESTOI PESQ SI-SDR(dB) SDR(dB) STOI ESTOI PESQ

Mixture 0.45 0.47 0.71 0.55 1.61 1.72 1.73 0.76 0.63 1.58
BESD[31] 5.75 _ 0.79 _ 1.79 _ _ _ _ _
UBESD[32] 8.54 _ 0.83 _ 1.97 7.89 8.10 0.85 0.72 1.75
BASEN*[34] 11.56 11.66 0.86 0.72 2.21 8.46 8.68 0.86 0.75 1.91

MSFNet(ours) 12.89 13.03 0.88 0.77 2.51 9.65 9.84 0.89 0.79 2.07

accessibility and availability of this dataset to foster collaboration,
reproducibility and further advancements in the field. A total of
20 normal hearing subjects (14 males and 6 females) take part in
the data collection, with a mean age of 20 years. Each subject un-
dertakes 16 trials, with each trial lasting 152 seconds (including 2s
silence at the beginning of the experiment). All auditory stimuli
are derived from 16 stories selected from a collection of Chinese
short stories. In each trial, audio recordings of two different stories,
one read by a male and the other by a female, are simultaneously
presented to the subjects. Subjects determine the attentional direc-
tion based on instructions and ensure that the story they focus on
did not overlap. After each trial, three multiple-choice questions
related to the story the subject focused on are provided to ensure
their attention during the experimental process.

The audio signals are uniformly set to a sampling rate of 44.1kHz
and presented at the same volume level. We downsample the speech
stimuli from both the left and right ears to 14.7 kHz, and then
combine them to simulate a speech mixture. 32-channel EEG data
are recorded at a rate of 1kHz and further downsampled to 128 Hz.
For each subject, the trials focusing on the male talker are selected
for experimental evaluation to avoid instability caused by attention
switches. Then, we divide all trials of each subject into training,
validation, and test sets with proportions of 75%, 12.5%, and 12.5%,
respectively.

In Table 1, a summary of the settings details for each dataset is
provided.

4.2 EEG Preprocessing
For the Cocktail Party dataset, our preprocessing steps remain
consistent with UBESD. First, The original EEG data are band-pass
filtered from 0.1Hz to 45Hz to retain only the relevant frequency
bands. Identifying channels with excessive noise, we recalculate
those channels using spline interpolation based on the surrounding
channels. The EEG data are re-referenced using the average of
mastoid channels to avoid introducing noise and loss of information.
In EEGLAB [38], we perform independent component analysis
(ICA) to remove artifacts from eye movements and muscle activity.
Among them, trial data containing excessive noise interference are
being excluded from the experiment for each subject. Additionally,
considering potential sources of interference in EEG signals that
may not directly correlate with speech stimuli, it is preferable to
record activity that includes information more relevant to the target
speech stimuli, rather than directly using the raw EEG signals

as input for the proposed model. Therefore, we further employ
a frequency-band coupling model [39] to extract potential brain
neural activities more associated with the sound stimuli from the
EEG data, represented as cortical multiunit neural activity (MUA).

For the AVED dataset, we initially apply a notch filter to the
original EEG data to eliminate power frequency interference at 50
Hz. We use FIR filters for high-pass and low-pass filtering to remove
voltage drift and high-frequency noise. This series of filtering steps
contributes to extracting clean EEG signals. The ICA method is
similarly performed to remove potential mixed components. Finally,
the EEG signals from all channels are re-referenced using an average
reference to eliminate the error impact caused by changes in the
original reference electrodes.

4.3 Training Details
We implement the network configuration and conduct experiments
using the PyTorch framework on two NVIDIA GeForce RTX 3090
GPUs. All models are trained for 60 epochs with a batch size of 8.
We use Adam optimizer with a maximum learning rate of 0.00035
and a weight decay of 0.001. The learning rate adjustment strategy
involves linear warm-up followed by cosine annealing, where the
warm-up ratio is 4%. The periodicity of cosine annealing is deter-
mined by the total epochs and the divider, with a divider value set
to 25 in this experiment. To adapt to different datasets, we make
some modifications to the experimental parameters. On the AVED
dataset, we adjust the maximum learning rate for model training
to 0.001 and set the weight decay to 0.01.

For the MSFNet network, the values of𝑁 and𝐶 are set as 128 and
64. In the speech encoder, the three conv1D layers have different
kernel sizes, namely 𝐿1 = 0.0025s, 𝐿2 = 0.01s, and 𝐿3 = 0.02s. These
small, medium, and large windows cover 36, 147, and 294 samples,
respectively. For the training and validation sets, the data from each
trial is sliced into 2s segments. During inference, speech stimuli
and EEG data are divided into 20s segments. Without any overlap
of data between sets.

4.4 Evaluation Metrics
We mainly use three objective evaluation metrics to measure the
quality of the extracted speech in our proposed method, including
SI-SDR, PESQ [40], and short term objective intelligibility (STOI)
[41]. Among these, SI-SDR is the main metric as it is highly suitable
for single-channel speech separation or enhancement tasks and
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Figure 3: Visualization of experimental results on the Cocktail Party dataset, by (a) the baseline BASEN model, represented in
blue color; (b) our proposed MSFNet model, represented in red color.

possesses good robustness. PESQ and STOI can predict the human-
perceived quality and intelligibility of the speech, respectively. Ad-
ditionally, in order to comprehensively validate the efficacy of our
approach, we also use the signal-to-distortion ratio (SDR) and ex-
tended short-time objective intelligibility (ESTOI) metrics in our
comparative experiments with the baselines and some ablation
study. For all these objective metrics, a higher value indicates better
algorithm performance.

5 EXPERIMENTAL RESULTS
To validate the effectiveness of the proposed method, we conduct
several sets of experiments and mainly evaluate the SI-SDR, STOI,
and PESQ metrics. It can be summarized as: comparison of our
method with baselines, difference comparison between speaker
extraction module using DPRNN structure and TCN structure, and
ablation experiment. It is worth noting that we only conduct com-
parative experiments with the baseline on the AVED dataset; all
other experiments in this work are performed on the main Cocktail
Party dataset.

5.1 Comparison with Baseline Models
5.1.1 Experimental Results on Cocktail Party Dataset. The exper-
iments conducted on this dataset utilize data from all subjects,
and the network training process does not provide any prior in-
formation about the identity of the target speaker, achieving a
subject-independent configuration, i.e., unknown attended speaker
extracting. We compare the performance of the proposed method
with other baseline methods, namely three major time-domain ap-
proaches: BESD, UBESD, and BASEN. The results are drawn in
Table 2. The results indicate that our proposed MSFNet model has
a relative improvement of 1.33 dB, 0.02, and 0.3 in SI-SDR, STOI,
and PESQ, respectively, compared to the state-of-the-art BASEN
method.

In Figure 3, we further depict scatter plots of the SI-SDR values
for the extracted attended speech from both the proposedmodel and
the BASEN model. It can be readily observed that, for the BASEN
method, the average SI-SDR values of all samples are slightly lower

compared to those of the MSFNet method. Additionally, some sam-
ples even yield negative SI-SDR values, indicating that this model
makes some speaker confusion errors during the speaker extraction
process, consequently affecting the model performance. In contrast,
for our proposed method, all samples have positive SI-SDR values
and are concentrated in distribution. This implies that the proposed
MSFNet model consistently extracts the correct target speaker and
ensures high signal quality. It can be demonstrated that the MSFNet
network can more comprehensively fuse mixed audio and atten-
tional information about the target speaker learned from various
channels of EEG signals.

5.1.2 Experimental Results on AVED Dataset. As we only use trial
data where subjects pay attention to the same speaker in the AVED
dataset for network training and testing inference, we refer to this
experimental setup as speaker-dependent extraction, i.e., known
attended speaker extracting. In this setup, we similarly compare
the proposed method with UBESD and BASEN, and the results are
also presented in Table 2. The results on the AVED dataset also
demonstrate that our proposed MSFNet model achieves relative
improvements of 1.19 dB, 0.03, and 0.16 in terms of SI-SDR, STOI,
and PESQ compared to the BASEN method, respectively. Therefore,
we can conclude that, across different datasets and experimental
setups, the MSFNet model continues to exhibit competitive perfor-
mance compared to other existing audio-EEG multimodal speaker
extraction baselines.

5.2 The Impact of Different Speaker Extraction
Networks

In the speaker extraction network that using EEG signals and
speech for multi-modal fusion, we compare the performance of
using DPRNN architecture and TCN architecture. The MSFNet
network utilizes four repeated DPRNN blocks for estimating the
receptive masks, while employing a stack of TCN blocks, based
on Depth-wise conv1D layer, repeated four times, to estimate the
receptive mask, forming the network called MSFNet (TCN). As
shown in Table 4, we can clearly observe that the proposed MSFNet
significantly outperforms MSFNet (TCN) across all metrics. Here,



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Ablation study between single-scale and multi-scale. 𝐿1, 𝐿2 and 𝐿3 respectively represent the sample counts included in
the different filter lengths of the convolution in the speech encoder.

Single vs Multiple Scales L1 L2 L3 SI-SDR(dB) SDR(dB) STOI ESTOI PESQ

Single Scale 36 _ _ 12.21 12.37 0.88 0.74 2.34
Single Scale _ 147 _ 12.15 12.30 0.87 0.73 2.33
Single Scale _ _ 294 12.17 12.32 0.87 0.74 2.33

Dual Scales 36 147 _ 12.58 12.72 0.87 0.75 2.47
Dual Scales 36 _ 294 12.42 12.54 0.88 0.76 2.41
Dual Scales _ 147 294 12.58 12.75 0.88 0.73 2.38

Multiple Scales 36 147 294 12.89 13.03 0.88 0.77 2.51

Table 4: Comparative study of DPRNN and TCN in speaker extraction networks on the Cocktail Party dataset. All metrics are
higher the better.

Methods Speaker extraction SI-SDR(dB) SDR(dB) STOI ESTOI PESQ

Mixture _ 0.45 0.47 0.71 0.55 1.61
MSFNet(TCN) TCN 10.27 10.53 0.82 0.70 2.03

MSFNet(ours) DPRNN 12.89 13.03 0.88 0.77 2.51

to maintain consistency in the separation network, we only replace
the corresponding DPRNN blocks with TCN blocks stacked four
times, each with the same recursive depth as in the DPRNN blocks.
This may lead to the lower performance of MSFNet (TCN) using
the TCN structure in Table 4 compared to the BASEN model using
the same TCN structure.

5.3 Ablation Study
5.3.1 Effect of the GCN Layer in EEG Encoder. To illustrate that
incorporating GCN layers into the EEG encoder contributes to
learning the correlations between different brain regions and en-
hances speaker extraction performance, we compared the methods
with or without GCN in Table 5. We can see that the network with-
out using GCN achieves only 11.89 dB of SI-SDR, which is 0.11 dB
lower than when using only one layer of GCN. To fine-tune the
optimal number of GCN layers, we also assessed the impact of layer
numbers ranging from 1 to 4 on the experimental results. When
using 3-layer GCN, the model achieves the best performance across
all metrics.

5.3.2 Single-Scale versus Multi-Scale. Next, we will explore the
effectiveness of the idea of separately fusing multi-scale speech em-
beddings and EEG embedding. In Table 3, we can observe that the
combination of filters covering three different time-frequency reso-
lutions performs the best, with an SI-SDR of 12.89dB, STOI of 0.88,
and PESQ of 2.51. Furthermore, in the comparison of experimental
results under the single-scale speech encoder setting, it is indicated
that using filters with a length of 36 samples (about 0.0025s) to im-
plement a small window yields the best system performance. The
respective values for SI-SDR, STOI, and PESQ are 12.21dB, 0.88, and
2.34. With an increase in the number of filters, such as jointly using
filters with a length of 36 samples and filters with a length of 147
samples (0.01s), the experiments achieved even better results. This

Table 5: Ablation study on different GCN layer numbers in
the EEG encoder.

GCN layers SI-SDR(dB) STOI PESQ

0(without) 11.89 0.86 2.32

1 12.00 0.87 2.28
2 12.58 0.87 2.42
3 12.89 0.88 2.51
4 12.64 0.88 2.39

finding is similar to the speaker extraction task [24] and speech
recognition experiments [42]. Therefore, to benefit from different
time-frequency information, we adopt a multi-branch structure in
the network. In each branch, the speech encoder utilizes CNNs with
different filter lengths to represent small, medium, and large scales.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose a network that fuses audio and EEG
signals at multiple scales to effectively cover the time-frequency
resolutions of target speech. To better understand and investigate
the selective auditory attention mechanism in the human brain, we
propose a new EEG dataset for evaluating and improving brain-
controlled speech extraction techniques. We also propose the use
of GCN in the EEG encoder to endow the model with a certain level
of spatial understanding of the structure of EEG trials. Experiments
conducted on two datasets demonstrate the improvement of our
MSFNet method compared to existing techniques. In the future, we
plan to explore more effective fusion methods for speech and EEG
signals to enhance the accuracy of target speaker extraction and
improve the quality of the extracted speech.
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