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Abstract

Federated Graph Learning (FGL) proposes an ef-
fective approach to collaboratively training Graph
Neural Networks (GNNs) while maintaining pri-
vacy. Nevertheless, communication efficiency be-
comes a critical bottleneck in environments with
limited resources. In this context, one-shot FGL
emerges as a promising solution by restricting
communication to a single round. However, pre-
vailing FGL methods face two key challenges
in the one-shot setting: 1) They heavily rely
on gradual personalized optimization over mul-
tiple rounds, undermining the capability of the
global model to efficiently generalize across di-
verse graph structures. 2) They are prone to
overfitting to local data distributions due to ex-
treme structural bias, leading to catastrophic for-
getting. To address these issues, we introduce
GHOST, an innovative one-shot FGL framework.
In GHOST, we establish a proxy model for each
client to leverage diverse local knowledge and
integrate it to train the global model. During
training, we identify and consolidate parameters
essential for capturing topological knowledge,
thereby mitigating catastrophic forgetting. Ex-
tensive experiments on real-world tasks demon-
strate the superiority and generalization capabil-
ity of GHOST. The code is available at https:
//github.com/JiaruQian/GHOST .

1. Introduction
Federated Learning (FL) (Li et al., 2020a; Kairouz et al.,
2021; Konečnỳ, 2016; Hu et al., 2023) enables decentralized
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Figure 1. Problem Illustration. In environments with constrained
resources, one-shot FGL becomes a promising solution by limiting
communication to one round. We identify two key challenges in
the one-shot setting. (a) Poor Generalizable Ability: Traditional
FGL methods depend on gradual personalized updates. However,
pattern shifts in both feature and structure dimension and limited
communication rounds hinder the ability of the global model to
efficiently generalize across diverse graphs. (b) Catastrophic For-
getting: Structural biases across clients cause the model to overfit
to current local data distributions, leading to the loss of critical
topology knowledge acquired previously.

model training across multiple clients while ensuring data
privacy by avoiding the aggregation of raw data. However,
many real-world datasets are graph-structured (Xia et al.,
2021; Wang et al., 2021; Li et al., 2025b; Wan et al., 2025b;
2024b), where nodes represent entities and edges capture the
relationships or connections between them. In the context
of graph-structured data, the integration of Graph Neural
Networks (GNNs) (Wu et al., 2020; Scarselli et al., 2008;
Li et al., 2025a; Wan et al., 2025a; Huang et al., 2023a) has
given rise to Federated Graph Learning (FGL) . FGL has ap-
plications across various domains, including healthcare (Xu
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et al., 2021; Antunes et al., 2022), social networks (Khan
et al., 2021; He et al., 2019), and recommendation systems
(Gao et al., 2023; Wu et al., 2021). The primary challenge
in FGL lies in addressing the heterogeneity (Huang et al.,
2023c; Sun et al., 2024; Liao et al., 2024), of graph data, es-
pecially in topology dimension. Recent studies (Huang et al.,
2025; Tan et al., 2025) have proposed various strategies to
overcome the challenge. Approaches such as topology-
aware aggregation (Fu et al., 2025; Li et al., 2024d; Fu et al.,
2024), graph simplification techniques (Chen et al., 2021;
Lei et al., 2023), and knowledge distillation (Huang et al.,
2023b; Zhu et al., 2024b) have demonstrated their potential
to improve model alignment across clients.

Despite the effectiveness of these methods in traditional
FGL scenarios, they face significant challenges when ap-
plied to environments with constrained communication re-
sources, such as edge-computing systems or decentralized
networks with limited bandwidth (Zhou et al., 2021). In
such contexts, the efficiency of information exchange be-
comes a critical bottleneck, hindering the sharing and ex-
ploration of knowledge across clients during training. As
communication costs escalate, the ability to transfer mean-
ingful updates between clients is compromised, leading to
performance degradation and ultimately impeding the learn-
ing process (Yao et al., 2024). A promising solution to this
issue is one-shot FGL, which streamlines the communica-
tion process by reducing it to a single round. By minimizing
the need for repeated communication, one-shot FGL can
alleviate the strain on communication resources while still
enabling effective model training, potentially overcoming
the limitations of traditional multi-round methods.

However, existing FGL methods largely depend on person-
alized updates and multiple iterative communication rounds,
focusing primarily on optimizing local models tailored to
client data distributions (Chen et al., 2022; Zhang et al.,
2023). While effective, personalized approaches are prone
to overfit to local data, and the one-round communication
setting further limits opportunities for iterative knowledge
exchange. As a result, the chance to gradually capturing lo-
cal diverse knowledge across multiple rounds is constrained,
preventing models from efficiently refining generalizable
knowledge. Consequently, the aggregated global model
often struggles to generalize effectively to diverse graph
data. This raises the following question: I) How can we
efficiently capture diverse local knowledge to train a gener-
alized model in one communication round?

In addition, under conditions of extreme structural bias, ex-
isting FGL models face a significant challenge in retaining
previously learned structural knowledge while maintaining
generalization capacity. Structural bias (Kong et al., 2024;
Zhang et al., 2021), characterized by substantial differences
in graph topologies across clients, can cause the model to

overfit to the current data distributions encountered during
training. As a result, critical topology knowledge acquired
during previous training epochs are gradually forgotten, cul-
minating in catastrophic forgetting (Serra et al., 2018; Lee
et al., 2017; Kemker et al., 2018). This limitation not only
reduces effectiveness of the model on previously encoun-
tered data but also impairs its ability to generalize across
diverse graph structures. This leads to another crucial ques-
tion: II) how can we alleviate catastrophic forgetting while
ensuring generalization across diverse graph structures?

To address the aforementioned questions, we introduce
GHOST: Generalizable One-SHOt Federated Graph Learn-
ing with Proxy-BaSed Topology Knowledge Retention. To
address I) , we first adopt a one-shot generalized FGL ap-
proach. For each client, we establish a proxy model to ex-
tract diverse knowledge from its local data. Specifically, we
construct Dual-Level Alignment (DLA) to train the proxy
model, enabling it to fully explore both feature and structural
information. Each client uploads its proxy model parame-
ters to the central server only once. The acquired knowledge
is then integrated to collaboratively train a GNN, enhancing
its generalization capability while mitigating the negative
impact of inherent data heterogeneity.

Since topological information plays a crucial role during
training, we propose Topology-Conscious Knowledge Re-
tention (TCKR) to address II). Our approach explicitly ex-
plores partial structures within the input graph by computing
the Topology-Consistency Criterion, which identifies the pa-
rameters essential for capturing topological information. By
stabilizing these critical parameters from diverse graphs, we
enable the model to consolidate acquired knowledge while
balancing the integration of information under extreme struc-
tural bias, thereby alleviating catastrophic forgetting. Our
principal contributions are summarized as follows.

• We are the first to incorporate the one-shot setting into
generalized FGL. We identify that existing FGL methods
face challenges in constrained communication scenarios,
where they struggle to efficiently train a generalized global
model. Additionally, catastrophic forgetting hampers the
retention of topological knowledge across diverse graphs.

• We introduce GHOST, a generalized one-shot FGL ap-
proach. For each client, we introduce a proxy model to
fully explore dual-level knowledge. Furthermore, we em-
phasize the retention of acquired topological information
during global training to mitigate catastrophic forgetting.

• Extensive experiments validate the superiority and robust
generalization capability of GHOST, demonstrating its
adaptability across graphs of varying scales.

2. Related Work
Federated Graph Learning. Federated Graph Learning
(FGL) enables collaborative training among multiple clients
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via a trusted server without sharing graph data (He et al.,
2021; Liu et al., 2024; Li et al., 2024c; Huang et al., 2023b;
Wan et al., 2025c; Zhang et al., 2024a). FGL approaches
are categorized into two types: inter-graph and intra-graph
(Li et al., 2025c; Tan et al., 2025). Inter-graph methods
such as GCFL+ (Xie et al., 2021) and FedStar (Tan et al.,
2023) assume clients possess disjoint graphs, while intra-
graph methods like FedSSP (Tan et al., 2024b) and FGGP
(Wan et al., 2024a) handle clients that hold subgraphs of a
global graph. However, these methods rely on substantial
iterative communication, incurring significant costs. We are
the first to address this issue by establishing a proxy model
for each client to capture the knowledge from local data.
Furthermore, each client uploads the parameters of its proxy
model only once, enhancing both efficiency and security.

One-shot Federated Learning. One-shot Federated Learn-
ing (Guha et al., 2019; Zeng et al., 2024) has emerged as
an efficient solution by minimizing communication rounds
and enhancing security against eavesdropping attacks. Re-
cent methods (Zhang et al., 2022; Heinbaugh et al., 2023;
Jhunjhunwala et al., 2024; Yang et al., 2024) utilize knowl-
edge distillation or neuron-matching techniques to optimize
the global model. However, existing one-shot FL methods
are primarily limited to computer vision tasks, overlooking
graph structures, which results in significantly poorer perfor-
mance and slower convergence in graph-based applications.
In this study, we take an innovative approach by focusing on
the multifaceted topological characteristics (Li et al., 2024b;
Shi et al., 2024; Deng et al., 2025) of graphs, addressing
feature-structure dual heterogeneity across clients.

Catastrophic Forgetting. Catastrophic forgetting is a criti-
cal issue in continual learning, where models continuously
learn from a stream of data with the aim of gradually ex-
tending acquired knowledge for future learning (Kirkpatrick
et al., 2017; Wang et al., 2024). Existing approaches (Wang
et al., 2020b; Liu et al., 2021; Sun et al., 2023) to mitigate
catastrophic forgetting can be broadly categorized into three
paradigms: replay methods, regularization-based methods,
and parameter isolation methods. A persistent challenge
across these methodologies lies in balancing the integra-
tion of knowledge from varying data distributions (Huang
et al., 2022), particularly for graph data in non-Euclidean
spaces. To address this, our work stabilizes the key pa-
rameters involved in learning topological properties across
diverse graphs, thereby alleviating catastrophic forgetting.

3. Motivation
3.1. Preliminaries

Graph Neural Networks. Define the graph data as G =
(V, E) with V as the node-set encompassing N nodes and E
as the edge-set. The feature matrix X = {x1, x2, . . . , xN}⊤

compromises F -dimensional feature vectors xi correspond-
ing to node vi. The adjacency matrix of G is denoted as
A ∈ RN×N , where A(i, j) = 1 if there is an edge between
nodes i and j and A(i, j) = 0 otherwise. Then, Graph Neu-
ral Networks (GNN) obtains a representation of the node
by recursively aggregating and transforming the representa-
tions of its neighbors. Specifically, the hidden representation
hi of node vi at the l-th layer is computed as:

hl+1
i = UPD(hl

i,AGG({hl
j : vj ∈ N (vi)})), (1)

where hl
i is the representation of node vi at l-th layer, N (v)

denotes the neighbor nodes set of node vi, AGG(·) aggre-
gates the neighbor representations and UPD(·, ·) updates the
representation of node vi given its representation and the
aggregated neighbor representations at the previous layer.
Specifically, h0

i = xi.

One-shot Federated Graph Learning. In the federated
setting, there is one server and a set of clients C, with |C| =
K clients (indexed by k). Each client stores a local graph
dataset Gk = (Vk, Ek), and the adjacency matrix for the
k-th client’s graph Gk is denoted as Ak. Each node vi ∈ Vk

has a feature vector xk
i and a label yki . Within the system,

each client has a local differentiable model parameterized by
wk, and uploads its parameters wk to the server. In contrast
to traditional Federated Graph Learning (FGL), one-shot
FGL restricts the communication to a single round.

4. Methodology
4.1. Overview.

The proposed GHOST can be decomposed into two com-
ponents: Dual-Level Aligned Proxy Model and Topology-
Conscious Knowledge Retention, corresponding to Sec. 4.2
and Sec. 4.3, respectively. In Sec. 4.2, we introduce a proxy
model for each client that captures both feature-based and
topological knowledge. Each proxy model captures the di-
verse local knowledge and uploads its parameters to the
server only once, thereby enhancing communication effi-
ciency. In Sec. 4.3, we construct the Coherence Factor and
Topology-Consistency Criterion to evaluate the contribu-
tion of each parameter in preserving structural knowledge.
During the global training phase, we adopt the Knowledge
Retention Loss to stabilize those critical parameters, thus al-
leviating overfitting and catastrophic forgetting. The frame-
work illustration of our method is shown in Figure 2.

4.2. Dual-Level Aligned Proxy Model

Motivation. In one shot setting, existing FGL methods often
fail to efficiently leverage the underlying diverse knowledge
of all the clients, leading to the poor generalizable ability
of the global model. As a consequence, the inherent data
heterogeneity in both feature and structure dimension will
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Figure 2. Architecture illustration of GHOST. The upper part represents client-side steps, while the lower part illustrates the server-side
process. Upper left is the local training process where the proxy model of the client effectively captures local knowledge. Upper right
shows the specific implementation of Dual-Level Alignment, which is divided into feature-level and structure-level. Lower left illustrates
the server-side process of aggregating the knowledge learned by proxy models from all clients and generating an integrated knowledge set
for training the global model. Lower right shows the global model training on downstream tasks with crucial parameters stabilized to
alleviate catastrophic forgetting. The far-right section displays the legend. Zoom in for details.

inevitably undermine the model performance. To overcome
this, we aim to develop a proxy model that efficiently cap-
tures diverse local knowledge and align the model in both
feature and topological dual-level dimension with only one
communication round.

Local Proxy Model. To fully capture the specific pattern
of local graph data, we establish a proxy model P (·) for
each client. For each node vi ∈ V in the graph G, we
input random noise z sampled from a Gaussian distribution,
along with the label yi of the node. The proxy model then
generates a new feature vector x̂i ∈ RF :

x̂i = P (z; yi), (2)

In the same way, we can obtain the pseudo feature matrix
X̂ = [x̂1, x̂2, . . . , x̂N ]⊤ ∈ RN×F . Based on X̂, we utilize
the K-Nearest Neighbors strategy to construct the pseudo
adjacency matrix Â:

H = σ
(
X̂X̂⊤

)
, Â(i, j) =

{
1, if j ∈ TopK

(
H(i)

)
,

0, otherwise,
(3)

where σ(·) represents the sigmoid function, TopK(·) selects
the indices of the K largest values from a given input vector,
and H(i) denotes the i-th row vector of H. Subsequently,
we obtain the pseudo graph Ĝ with the pseudo feature matrix

X̂ and pseudo adjacency matrix Â, while their correspond-
ing labels y = [y1, y2, . . . , yN ]⊤ remain unchanged.

Dual-Level Alignment. For graph data residing in non-
Euclidean spaces, structure plays an indispensable role, en-
capsulating a wealth of unique information that is crucial
for understanding the relationships and dynamics within the
data. Thus, our objective is to ensure that the proxy model
of each client thoroughly captures both feature-based and
topological information from local data.

To facilitate the accurate representation of statistical proper-
ties in the proxy model, it is essential to align the probability
distributions between the local data and the pseudo graph.
To address this challenge, we introduce the Divergence Loss,
a novel loss function designed to minimize the discrepancy
between the probability distributions of the local data and
the pseudo graph. This loss ensures that the proxy model
maintains consistency with the underlying data distribution,
thereby improving its ability to capture both feature-based
and topological information.

Ldiv =
1

|V|

|V|∑
i=1

F∑
f=1

si(f) log
si(f)

ŝi(f)
, (4)

where si = softmax(xi), ŝi = softmax(x̂i) and f denotes
the f -th dimension of the vector. Moreover, to ensure that
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the proxy model effectively aligns the local feature represen-
tation while mitigating the risk of mode collapse, we apply
the Dispersion Loss to the proxy model:

Ldisp = 1− 1

|V|

|V|∑
i=1

x̂i · xi

||x̂i||2 · ||xi||2
. (5)

Meanwhile, capturing the topological essence of graph data
is equally important. To address this, we incorporate the
Fused Gromov-Wasserstein (FGW) Loss, which combines
both feature and structural alignment. This ensures that the
proxy model not only aligns with the statistical properties of
the local features but also preserves the intrinsic topological
relationships encoded in the graph structure. Specifically,
the FGW Loss is defined as:

Lfgw = min
Γ(µ,µ̂)

∑
i,j,u,v

(
a
(
A(i, j)− Â(u, v)

)2
+ (1− a)∥X(i)− X̂(u)∥22

)
Γi,uΓj,v,

(6)

where a ∈ [0, 1] and X(i) represents the i-th row vector
of X. The transport plan Γ ∈ RN×N is optimized to align
nodes between the local graph G and the pseudo graph Ĝ,
such that Γi,u quantifies the amount of mass transported
between node i in G and node u in Ĝ. The optimization is
constrained by the distributions µ and µ̂, which represent
the marginal distributions of nodes in G and Ĝ, respectively.
These are typically assumed to be uniform distributions,
reflecting the equal importance of all nodes:

∑N
j=1 Γi,j =

µ(i),
∑N

i=1 Γi,j = µ̂(j). Thus, we establish the Dual-
Level Alignment Loss as follows:

Ldual = Ldisp + λdLdiv + λfLfgw, (7)

where λd and λf are hyperparameters that balance the con-
tributions of each loss function. After local training with
the Dual-Level Alignment Loss, each client uploads the
parameters of its proxy model, restricting communication to
a single round. On the server side, the diverse information
gathered from all proxy models is aggregated to collabo-
ratively train a generalizable global GNN, enabling it to
effectively handle downstream tasks.

4.3. Topology-Conscious Knowledge Retention.

Motivation. Extreme structural bias in FGL models causes
them to overfit the current data distribution, leading to catas-
trophic forgetting and poor generalization ability. To ad-
dress this issue, we propose Topology-Conscious Knowl-
edge Retention, which explicitly leverages the topological
information in graphs. This approach helps the model con-
solidate acquired knowledge while balancing the integration
of diverse information from heterogeneous graph structures.

Knowledge Integration. After local training, the server
aggregates the proxy models to integrate diverse knowledge.
Specifically, for the proxy model P k(·) from client k, we
input random noise z sampled from a Gaussian distribu-
tion. To simulate real-world data diversity, we generate a
pseudo-label vector ŷk ∈ RN , where the distribution across
all classes is uniform, ensuring that all aspects of knowl-
edge are considered. Then, by applying Equation (2) and
Equation (3), we generate the pseudo graph Ĝk with fea-
ture matrix X̂k and adjacency matrix Âk through the proxy
model P k(·). The knowledge set for client k can be denoted
as GkS = {Ĝk1 , Ĝk2 , . . . , ĜkM}, where M is the number of gen-
erated graphs. Subsequently, the integrated knowledge set
is given by GS = G1S ∪ G2S ∪ . . . ∪ GKS , which is used to
jointly train the global model.

Topology-Consistency Criterion. Given the extensive
knowledge generated by all proxy models, the global model
faces the risk of overfitting to the current knowledge set
and catastrophic forgetting. Therefore, it is crucial to ex-
tract topological commonalities across diverse graphs and
consolidate the acquired information during the global train-
ing phase. Specifically, we aim to identify critical parame-
ters for capturing topological consensus among the diverse
knowledge in the integrated set.

For pseudo graph Ĝkm in knowledge set GkS , we denote the
hidden representation of node v̂i at the l-th layer as ĥl

i. Then,
we introduce Coherence Factor γij to measure the alignment
between the hidden representations of connected nodes vi
and vj , which is computed as:

γl
ij = (ĥl

i · θl
w)⊤ · tanh(ĥl

j · θl
w), (8)

where θ represents the parameters of the global GNN, and
θl
w denotes the weight matrix of the l-th layer. Then, we

obtain the vector γl
i = [γl

i1, γ
l
i2, . . . , γ

l
in] for node vi, where

n = |N (vi)|. The Coherence Factor γl
ij quantifies the

similarity between the acquired representations of two con-
nected nodes, thereby encouraging the model to maintain the
memory of consistent topological structures across different
graphs in the integrated knowledge set.

As demonstrated in (Zenke et al., 2017), the infinitesimal up-
date δ(θ) in the parameters θ during the training phase leads
to a corresponding change δ(γij) in the Coherence Factor.
Building on this relationship, we compute the Topology-
Consistency Criterion to assess the importance of each pa-
rameter in capturing the structural knowledge of the input
graphs. The Topology-Consistency Criterion T k

l for each
knowledge set GkS can be calculated as:

T k
l =

∥∥∥∥∥∥ ∂

∂θl
wi

 |V|∑
j=1

∥γl
j∥22

∥∥∥∥∥∥
W

i=1

, (9)

where W = |θl
w| denotes the number of weight parame-
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ters. The Criterion T k
l has the same shape as the weight

matrix θl
w, representing the importance of each parame-

ter in capturing the structural knowledge. We then define
T k = [T k

1 , T k
2 , . . . , T k

L−1] as the criterion for the entire
model with L layers (excluding the projection head).

Knowledge Retention. When the global model transitions
to a new training phase with the knowledge set Gk+1

S after
learning from GkS , it is crucial to stabilize the key parame-
ters identified by the previous Topology-Consistency Cri-
teria {T 1, T 2, . . . , T k}. To achieve this, we introduce the
Knowledge Retention Loss, which aims to consolidate the
acquired topological knowledge:

Lk+1
r =

k∑
i=1

L−1∑
l=1

T k
l ⊗ (θl − θl∗

i ), (10)

where ⊗ denotes element-wise multiplication, and θl∗
i rep-

resents the optimal parameters of the l-th layer after training
on the knowledge set GiS . However, some values in T may
become excessively large, reducing the flexibility of the
model and its ability to assimilate new knowledge. To ad-
dress this, we introduce the l2 norm as a regularization term
for T , thereby enhancing the robustness and plasticity of the
global model. Thus, we define the loss function for training
the global GNN with the knowledge set Gk+1

S as:

Lk+1
global = L

k+1
task + λrLk+1

r + λn||T k+1||2, (11)

where Ltask represents the task-specific loss function. For
instance, we can employ Cross-Entropy (CE) Loss or Nega-
tive Log-Likelihood (NLL) Loss. The hyperparameters λr

and λn control the relative importance of each loss term.

4.4. Discussions on Privacy.

Privacy security plays a crucial role in FGL systems. In
GHOST, we propose the Center-Shifting method to enhance
privacy security. Specifically, the proxy model generates
pseudo graphs using labels and random noise sampled from
a Gaussian distribution. For simplicity, a standard normal
distribution is typically used, where the center χ is set to 0.
However, we introduce a shift ϵ to the center of the distribu-
tion, χ, at the client side and communicate this shift ϵ to the
server either offline or through encryption methods (Hein-
baugh et al., 2023; Zhou et al., 2020). In our approach, each
client only uploads the parameters of its proxy model to the
server online once. We consider the worst-case scenario
where an eavesdropping attacker intercepts all the param-
eters. However, without knowledge of the specific shift ϵ,
the attacker can only randomly select a center χ̂, which is
likely to differ from the true center (χ+ ϵ). Alternatively,
the attacker might attempt to overlap the center using a wide
uniform distribution, trying to align with the original distri-
bution. Nevertheless, experiments conducted in Appendix G

prove that the attacker has no effective means to recover
meaningful data through such guessing attempts.

5. Experiment
In this section, we comprehensively evaluate our proposed
GHOST by addressing the following key questions.

• Q1: Superiority. Does GHOST maintain or surpass
baseline performance?

• Q2: Resilience How does GHOST perform under varying
degrees of data heterogeneity?

• Q3: Effectiveness. Do different modules of GHOST
contribute to its overall performance?

• Q4: Sensitivity. How does GHOST perform under differ-
ent hyper-parameter settings?

The answer of Q1–Q3 are illustrated in Sec. 5.2-Sec. 5.4,
and the analyses of Q4 can be found in Appendix F.

5.1. Experimental Setup

We perform experiments on node classification tasks in vari-
ous scenarios to validate the superiority of our framework.

Datasets. To effectively evaluate the performance of our
approach, we employed seven benchmark graph datasets
of various scales and features, including Cora (McCallum
et al., 2000), CiteSeer (Giles et al., 1998), PubMed (Canese
& Weis, 2013), Chameleon (Pei et al., 2020), Amazon-
Photo , Coauthor-CS (Shchur et al., 2018) and Ogbn-Arxiv
(Hu et al., 2020). Detailed descriptions and splits for these
datasets can be found in Appendix B.

Baselines. We compare our method with several tradi-
tional FL Approaches: (1) FedAvg [ASTAT17] (McMahan
et al., 2017), (2) FedProx [MLSys20] (Li et al., 2020b),
(3) FedNova [NeurIPS20] (Wang et al., 2020a), (4) Fe-
dRCL [CVPR24] (Seo et al., 2024); three popular FGL
approaches: (5) FedPub [ICML23] (Baek et al., 2023),
(6) FedTAD [IJCAI24] (Zhu et al., 2024b), (7) FedGTA
[VLDB24] (Li et al., 2024d); three One-shot FL methods:
(8) DENSE [NeurIPS22] (Zhang et al., 2022), (9) FedC-
VAE [ICLR23] (Heinbaugh et al., 2023), (10) FedSD2C
[NeurIPS24] (Zhang et al., 2024b). Detailed descriptions of
all the baselines can be found in Appendix C.

Implement Details. Following the mainstream research
practices, we utilize node classification as the downstream
task. We set |C| = 10 clients and draw pk ∼ Dir(α) from
a Dirichlet distribution and assign a fraction pck of class c
to client k. Ablation Study on varying numbers of clients
can be found in Appendix E. The parameter α governs
the degree of non-IIDness, and we set α = 0.05 to sim-
ulate the high heterogeneity senario. For the alignment
phase of each proxy model, we set the local training epoch
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Table 1. Comparison with the state-of-the-art methods on seven real-world datasets. We report node classification accuracies (%)
for downstream task performance. Green arrows ↑ denote advancements in accuracy metrics than FedAvg while red arrows ↓ indicate
regressions. OOM means out-of-memory error. The best and second results are highlighted with bold and underline, respectively.

Methods Cora CiteSeer PubMed Chameleon Amz-Photo Coauthor-CS Obgn-Arxiv
FedAvg [ASTAT17] 30.61 32.88 57.91 19.89 23.12 22.50 14.58

Traditional FL
FedProx [MLSys20] 30.98↑0.37 35.73↑2.85 50.56↓7.35 19.78↓0.11 24.16↑1.04 21.44↓1.06 13.99↓0.59

FedNova [NeurIPS20] 14.21↓16.40 18.58↓17.30 33.48↓24.43 21.30↑1.41 6.15↓16.97 18.83↓3.67 1.17↓13.41

FedRCL [CVPR24] 17.60↓13.01 12.73↓20.15 28.12↓29.79 18.48↓1.41 4.92↓18.20 14.75↓7.75 2.56↓12.02

Traditional FGL
FedPub [ICML23] 30.52↓0.09 34.91↑2.03 41.22↓16.69 17.61↓2.28 21.91↓1.21 26.75↑4.25 10.02↓4.56

FedTAD [IJCAI24] 30.43↓0.18 33.86↑0.98 39.32↓18.59 20.11↑0.22 22.01↓1.11 14.09↓8.41 OOM−

FedGTA [VLDB24] 14.02↓16.59 17.75↓15.13 31.45↓26.46 21.20↑1.31 4.10↓19.02 10.80↓11.70 1.15↓13.43

One-shot FL
DENSE [NeurIPS22] 12.92↓17.71 7.87↓25.01 20.84↓37.07 19.90↑0.01 4.93↓18.19 3.96↓18.54 0.33↓14.25

FedCVAE [ICLR23] 30.89↑0.28 34.76↑1.88 52.01↓5.90 21.74↑1.85 31.62↑8.50 14.60↓7.90 13.71↓0.87

FedSD2C [NeruIPS24] 17.78↓12.83 29.96↓2.92 26.12↓31.79 22.72↑2.83 8.73↓14.39 3.88↓18.62 0.76↓13.82

Ours 50.41↑19.80 37.75↑5.87 58.87↑0.96 25.22↑5.33 37.22↑14.10 29.91↑7.41 17.24↑2.66

(a) Label Distribution (b) Varying α in Dir(α)

Figure 3. Resilience Study of GHOST on the Cora dataset. In (a),
we illustrate the label distribution under high data heterogeneity. In
(b), we vary α within the range [0.05, 0.25] with a step size of 0.05
in Dir(α), representing different degrees of data heterogeneity.
Further details are provided in Sec. 5.3.

TL to 100. As for hyperparameters, λd and λf are deter-
mined through a grid search within {0.01, 0.05, 0.1, 0.5}
and {0.1, 0.2, 0.5, 1} respectively. More implement details
and parameter settings can be found in Appendix D.

5.2. Superiority

To address Q1, we analyze the superior performance of
GHOST. We conduct the generalization setting where one
global model is evaluated on test data of all clients. We
demonstrate the node classification performance with differ-
ent graph datasets and summarize the final test accuracy in
Tab. 1. Notably, three key observations emerge: ❶ GHOST
outperforms all other baselines in all datasets by fully cap-
turing shared patterns among clients and consolidating the
acquired knowledge. The dual-level knowledge obtained
from all proxy models ensures the global model perform
well across diverse data distributions. ❷ Algorithms tailored

(a) CiteSeer (b) Coauthor-CS

Figure 4. Hyperparameter Analysis on λd on datasets CiteSeer
and Coauthor-CS. The green dash denotes the baseline perfor-
mance. See details and more ablation results in Appendix F.

for FGL such as FedPub and FedTAD perform better in most
datasets than traditional FL methods due to their specific
designs for graph-structured data in non-Euclidean space.
However, they heavily rely on gradual personalized iterative
updates that optimize models tailored to local data distribu-
tions. This leads to severe performance degradation in the
generalized one-shot setting where they fail to efficiently
capture all the local knowledge. ❸ One-shot FL approaches
such as FedCVAE perform well in some small-scale graphs.
However, their generative models ignore unique structural
properties within the graph data, leading to poor perfor-
mance in large-scale graphs with complex structures.

5.3. Resilience

To address Q2, we evaluate the performance of GHOST
in comparison with other baselines under various degrees
of data heterogeneity. Specifically, we manipulate α in the
Dirichlet distribution Dir(α) with values in [0.05, 0.25] and
a step size as 0.05. A lower α corresponds to a more skewed
label distribution across clients. To better illustrate it, we

7
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(a) Center Guess Attempt (b) Overlapping Attempt

Figure 5. Security Analysis on Cora and CiteSeer. (a) shows the performance of the global model at varying distances from the shifted
distribution center (χ + ϵ). (b) presents the corresponding performance under different guesses based on the range of the uniform
distribution. Original refers to the performance of the global model trained by the server, where the specific ϵ is communicated offline or
via encryption methods securely. See Appendix G for more details.

Table 2. Ablation study of key modules (DLA, TCKR) in GHOST
on Cora, CiteSeer, Chameleon and Coathor-CS. Green arrows ↑
denote advancements in accuracy metrics. The best results are
highlighted with bold.

Dataset
DLA TCKR

Cora CiteSeer Chameleon Coauthor-CS

✗ ✗ 12.65 14.46 17.17 4.32

✗ ✓ 15.12↑2.57 16.18↑1.72 21.52↑4.35 7.86↑3.54

✓ ✗ 46.93↑34.28 36.40↑21.94 25.00↑7.83 27.80↑23.48

✓ ✓ 50.41↑37.76 37.75↑23.29 25.22↑8.05 29.91↑25.59

use the Cora dataset as an example and visualize the label
distribution across clients for α = 0.05 through a heatmap
in Figure 3(a). We compare GHOST with three strong
baselines (FedProx [FL] , FedPub [FGL] , and FedCVAE
[One-shot FL]) under different values of α. The experi-
mental results shown in Figure 3(b) indicate that GHOST
consistently outperforms the baselines in all settings, demon-
strating its strong resilience to data heterogeneity.

5.4. Effectiveness

To address Q3, we conduct an ablation study to evaluate
the contributions of different modules in GHOST respec-
tively. In GHOST, we first establish a proxy model for each
client and perform Dual-Level Alignment (DLA) to fully
explore local knowledge. During the global traing phase, we
apply Topology-Conscious Knowledge Retention (TCKR)
to consolidate previously acquired topological information.
In this section, we utilize Cora, Citeseer, Amazon-Photo,
and Coauthor-CS as example datasets, varying these com-
ponents to assess their effectiveness.

Effects of Modules in GHOST. First, we perform an ab-
lation study for DLA and TCKR in our framework. We
adopt node classification as the downstream task. The ex-
perimental results are shown in Tab. 2. We observe that
both DLA and TCKR significantly enhance model perfor-

Table 3. Ablation study of components {Ldisp,Ldiv,Lfgw} in
DLA module on Cora, CiteSeer, Chameleon and Coathor-CS.
Green arrows ↑ denote advancements in accuracy metrics. The
best results are highlighted with bold.

Dataset
Ldisp Ldiv Lfgw

Cora CiteSeer Chameleon Coauthor-CS

✗ ✗ ✗ 12.65 14.46 17.17 4.32

✓ ✗ ✗ 27.31↑14.66 16.63↑2.17 20.11↑2.94 12.19↑7.87

✓ ✓ ✗ 25.85↑13.20 28.31↑13.85 21.41↑4.24 13.85↑9.53

✓ ✓ ✓ 46.93↑34.28 36.40↑21.94 25.00↑7.83 27.80↑23.48

mance. Notably, the introduction of the DLA module leads
to substantial accuracy improvements across all settings.
This demonstrates that the DLA module effectively lever-
ages the embedded knowledge in data and aligns the proxy
model’s understanding with local data at both feature and
structural levels. Motivated by this, we further explore the
key components of the DLA module.

Effects of Components in DLA. To further investigate
the role of components within DLA, we conduct an abla-
tion study by varying the three alignment loss functions
{Ldisp,Ldiv,Lfgw}, excluding the TCKR module to iso-
late the effects of these components. The experimental
results are shown in Tab. 3. We observe that all three com-
ponents contribute to the alignment process. Ldisp and Ldiv

focus on feature-level consistency, while Lfgw provides sig-
nificant improvements by emphasizing structural alignment.
This underscores the importance of structure in Federated
Graph Learning systems.

6. Conclusion
In this paper, we are pioneers in addressing two key chal-
lenges of existing FGL approaches in the one-shot setting:
their poor generalizable capability and catastrophic forget-
ting. We introduce GHOST: Generalizable One-SHOt
Federated Graph Learning with Proxy-BaSed Topology
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Knowledge Retention. First, we propose a proxy model for
each client, enabling the capture local knowledge in both
feature and structural dimension. Then, the integration of
knowledge from all clients into a global model enhances
its ability to generalize across diverse graph structures. To
mitigate catastrophic forgetting, we compute the Topology-
Consistency Criterion to identify and consolidate parame-
ters crucial for extracting underlying topological knowledge.
Extensive experiments on real-world datasets demonstrate
the effectiveness and generalization capability of GHOST
in high data heterogeneity scenarios, offering a promising
direction for scalable FGL applications in practical setting.
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A. Notations.
We present a comprehensive review of the commonly used notations and their definitions in Tab. 4.

Table 4. Notation and Definitions

Notation Definition

G Graph data.
V The node set of G.
E The edge set of G.
X The feature matrix of G.
A The adjacency matrix of G.
P (·) The proxy model.
F The dimension of the node feature.
K The number of clients.
Ĝk The generated graph for client k.
X̂ The pseudo feature matrix.
H The activated similarity matrix.
Â The pseudo adjacency matrix.
vi Node i in V .
hl
i The representation of vi at the l-th layer of GNN.
N (vi) The set of neighbours of node vi.
Γ The transport plan in Fused Gromov-Wasserstein distance.
GkS The knowledge set for client k.
GS The integrated knowledge set.
γl
ij The Coherence Factor at the l-th layer between node vi and vj .
T k
l The Topology-Consistency Criterion of GkS at the l-th layer.

θl
w The weight matrix of the l-th layer.

B. Dataset Details
We evaluate GHOST on seven real-world graph datasets: Cora, CiteSeer, PubMed, Chameleon, Amazon-Photo, CoAuthor-
CS, and Ogbn-Arxiv. For all datasets, we use a common split of 20%/40%/40% for training/validation/testing sets. The
statistics for these datasets are provided in Tab. 5. The details are as follows:

• Cora, CiteSeer, and PubMed. These three datasets are widely used benchmarks in graph-based machine learning,
particularly for node classification and link prediction tasks. Each dataset consists of a citation network where nodes
represent scientific papers and edges represent citation relationships between them. The nodes are categorized into
multiple classes, and each paper is represented by a feature vector derived from its content (e.g., words from titles or
abstracts). These datasets are sparse, high-dimensional, and well-suited for testing models on real-world, graph-structured
data. They are especially popular for evaluating graph neural networks (GNNs) and other graph-based algorithms, given
their complex structure and scalability challenges.

• Chameleon. The Chameleon dataset represents a citation network of academic papers, where nodes correspond to papers
and edges indicate citation relationships. This dataset is notable for its heterogeneous and complex community structure,
containing densely connected subgraphs. These characteristics pose challenges for tasks such as community detection
and graph clustering. With sparse feature vectors derived from paper content, Chameleon is often used to evaluate the
performance, scalability, and robustness of graph-based models, particularly in large-scale and heterogeneous networks.

• Amazon-Photo. The Amazon-Photo dataset is used for node classification tasks, where nodes represent photos and edges
represent co-purchase relationships between them. This dataset consists of images from the Amazon product catalog, with
each photo labeled by category. Features are derived from image metadata, making the dataset suitable for evaluating
graph-based models in visual domains.

• CoAuthor-CS. The CoAuthor-CS dataset is a citation network of computer science research papers, where nodes represent
papers and edges represent co-authorship relationships. The papers are categorized into several topics, with features
derived from their titles and abstracts. This dataset serves as a challenging benchmark for node classification and
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community detection algorithms in academic citation networks.
• Ogbn-Arxiv. The Ogbn-Arxiv dataset is a large-scale citation network where nodes represent academic papers from

the arXiv repository, and edges represent citation relationships. It includes node features based on paper abstracts and
categorizes papers into a variety of subjects, including physics, computer science, and mathematics. Ogbn-Arxiv is
frequently used to benchmark GNNs and provides a real-world challenge with diverse categories.

Table 5. Statistics of datasets used in experiments.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,278 7 1,433

Citeseer 3,327 4,552 6 3,703
Pubmed 19,717 44,324 3 500

Chameleon 2277 36101 5 2325
Amz-Photo 7,650 287,326 8 745

Coauthor-CS 18,333 327,576 15 6,805
Obgn-Arxiv 169,343 1,166,243 40 128

C. Baseline Details
In this section, we make descriptions of all the baseline methods in our experiment.

• FedAvg [ASTAT17]. FedAvg is a widely-used baseline algorithm in Federated Learning, where local clients independently
train models on their local data and then aggregate their model updates on a central server. The server computes a weighted
average of the model parameters based on the clients’ updates and uses this to update the global model, which is then sent
back to the clients for further training. This method reduces communication overhead by transmitting only model updates
instead of raw data, making it suitable for privacy-preserving distributed learning (Li et al., 2019; Mehta & Aneja, 2024).
However, its performance can degrade in scenarios with heterogeneous data distributions across clients.

• FedProx [MLSys20]. FedProx is an enhanced version of the FedAvg algorithm, designed to address the challenges posed
by data heterogeneity (Non-IID data) in federated learning. In FedProx, each client optimizes its local model with an
additional regularization term that penalizes large deviations from the global model. This proximal term helps to mitigate
the negative effects of local data distributions that may differ significantly from the global data distribution, thus improving
the convergence of the global model (Yuan & Li, 2022; Li & Richtárik, 2024). By balancing the local training process
with the global model, FedProx ensures that each client’s updates are more consistent with the global model, resulting in
better model performance and stability, particularly in the presence of non-IID data across clients.

• FedNova [NeurIPS20]. FedNova is another extension of the FedAvg algorithm that aims to improve the performance of
federated learning under data heterogeneity. Unlike FedAvg, which averages model updates directly, FedNova normalizes
the local updates before aggregation. This normalization ensures that the contribution of each client to the global model is
proportional to the scale of its local data. By normalizing the local gradients or updates, FedNova addresses issues such
as the unequal influence of clients with varying amounts of data, leading to more stable and efficient convergence. This
approach is particularly useful in federated learning scenarios where clients’ data distributions are highly skewed, as it
ensures that the global model is better aligned with the diversity of the local data.

• FedRCL [CVPR24]. FedRCL is a novel approach designed to tackle data heterogeneity challenges in FL with contrastive
learning (You et al., 2020; Wan et al., 2024b). It begins by analyzing the inconsistencies in gradient updates across clients
during local training, which are found to be influenced by the distribution of feature representations. FedRCL introduces a
relaxed contrastive learning loss that applies a divergence penalty to excessively similar sample pairs within each class,
preventing collapsed representations. This strategy improves feature transferability and enhances collaborative learning
across clients. As a result, FedRCL leads to significant performance improvements over existing federated learning
methods, as demonstrated by extensive experimental results on standard benchmarks.

• FedPub [ICML23]. FedPub is designed to address the challenges of heterogeneity in subgraph-based graph learning.
Unlike traditional methods that focus on learning a single global model, FedPub emphasizes the joint improvement of
local GNN in a personalized manner. It utilizes functional embeddings to compute similarities between local GNNs,
enabling weighted averaging for server-side aggregation. Additionally, FedPub introduces a personalized sparse mask for
each client to select and update only the subgraph-relevant parameters. This approach effectively handles data privacy and
heterogeneity, outperforming existing methods on various subgraph datasets.
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• FedTAD [IJCAI24]. FedTAD is a novel approach designed to address the challenge of subgraph heterogeneity in subgraph
federated learning . In subgraph-FL, the variation in node attributes and graph topology across different clients can impair
the performance of the global GNN. FedTAD decouples these variations into label distribution differences and structure
homophily, revealing how they affect the reliability of knowledge from local models. This variation results in misguiding
model aggregation, as local models contribute differently depending on the class-wise knowledge reliability. FedTAD
enhances the knowledge transfer from local models to the global model by utilizing topology-aware data-free knowledge
distillation, which improves the reliability and efficiency of the aggregation process.

• FedGTA [VLDB24]. FedGTA is a personalized optimization strategy designed to address the challenges in FGL,
particularly in handling large-scale subgraphs and improving performance. While existing FGL approaches either focus
on optimization for multi-client training or complex local models, they often fall short due to slow convergence and
scalability issues, especially when applied to graph data. FedGTA optimizes FGL through topology-aware local smoothing
and mixed neighbor features, taking into account the graph structure for more efficient aggregation (Zhu et al., 2024a).
FedGTA is among the first to bridge large-scale graph learning with federated learning, contributing significantly to the
development of scalable FGL methods.

• DENSE [NeurIPS22]. DENSE is a novel framework designed to address the limitations of existing one-shot Federated
Learning (FL) methods, which typically require additional data or model information and often assume homogeneous
client models. DENSE overcomes these challenges by utilizing a two-stage process: a data generation stage and a model
distillation stage. This approach enables the global model to be trained in a single communication round, without requiring
extra data or model information to be transferred between clients and the server. Additionally, DENSE accommodates
model heterogeneity, allowing clients to use different model architectures.

• FedCVAE [ICLR23]. FedCVAE is a data-free one-shot FL method designed to handle high statistical heterogeneity
and improve security. It utilizes a Conditional Variational Autoencoder (CVAE) (Doersch, 2016; Kipf & Welling, 2016;
Kim et al., 2021) to reframe the local learning task, enabling effective model aggregation despite differences in local
data distributions. An extended version, FEDCVAE-KD, incorporates knowledge distillation (Gou et al., 2021; Bi
et al., 2025b;a) to compress local decoders into a single global decoder, further enhancing performance. FedCVAE
does not require additional data or auxiliary datasets, supports heterogeneous local models, and improves security by
shifting the CVAE prior distribution. It significantly outperforms traditional methods, especially under conditions of high
heterogeneity. In our experiment, we utilize FedCVAE-ENS as the baseline.

• FedSD2C [NeurIPS24]. FedSD2C is a novel one-shot FL framework designed to address the challenges of data
heterogeneity and scalability in federated settings. While one-shot FL offers advantages in communication efficiency and
privacy preservation, it often compromises model performance due to inconsistent local data distributions and information
loss during knowledge transfer. FedSD2C tackles these issues by introducing a distiller that synthesizes informative
distillates directly from local data, reducing the two-step information loss typically seen in traditional methods. Instead of
aggregating inconsistent local models, FedSD2C shares these synthetic distillates, ensuring better consistency and more
reliable knowledge transfer to the global model.

D. Implementation Details
The experiments are conducted using NVIDIA GeForce RTX 3090 GPUs as the hardware platform, coupled with Intel(R)
Xeon(R) CPU E5-2678 v3 @ 2.50GHz. The deep learning framework employed was Pytorch, version 2.3.1, alongside
CUDA version 12.1. We adopt a two-layer GCN as the backbone, with the hidden layer size as 128. Moreover, we utilize 3
hidden linear layers and a projection head as the proxy model which concats random noise and one-hot label as the input
and generates pseudo features as the output. We set draw pk ∼ Dir(α) from a Dirichlet distribution (Minka, 2000) and
assign a fraction pck of class c to client k. As for optimization of the proxy model, Adaptive Moment Estimation (Adam)
(Kingma, 2014) was chosen, featuring a learning rate of 5e− 3 and a weight decay of 4e− 4. For the alignment phase of
each proxy model of 10 clients, we set the local training epoch TL to 100. λd and λf are determined through a grid search
(Liashchynskyi & Liashchynskyi, 2019) within {0.01, 0.05, 0.1, 0.5} and {0.1, 0.2, 0.5, 1} respectively. To make sure that
Lfgw is on the same scale as other loss functions for Amz-Photo and Ogbn-Arxiv datasets, we set their λf scales to 1e− 4
and 1e − 7, respectively. We set a in Lfgw as 0.5 to balance the feature part and the structure part. The communication
round is limited to one. At the server side, we set M = 3 , TG = 5 and adopt Adam as the optimizer for the global model
with a learning rate of 1e− 2 and a weight decay of 4e− 4. As for λr and λn, we conduct a grid search within {0.1, 0.5, 1}
respectively. The pseudo graphs generated by the proxy model of each client have the same scale as the corresponding local
subgraph. Considering the huge amount of model parameters, we set the scale for λr and λn as 1e− 11 to balance each
loss function. As shown in Sec. 5.4, all the components and modules make significant contributions to the performance
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Algorithm 1 The framework of GHOST
Input: Initial Proxy model of the k-th client P k(·), random noise z , local training set Gk and labels yk, local training
epoch TL, initial global modelM(·), number of layers L, global training epoch TG, hyperparameters λd, λf , λr and λn.

1: for each client k do
2: for local epoch t← 1, . . . , TL do
3: Input z and yk to P k(·);
4: Generate pseudo graph Ĝk through Equation (2) and Equation (3);

/* Dual-Level Alignment for the proxy model */
5: Compute Ldisp,Ldiv,Lfgw between Ĝk and Gk;
6: Ldual = Ldisp + λdLdiv + λfLfgw;
7: Update local proxy model via ∇Ldual.
8: end for
9: end for

10: Each client uploads parameters of its proxy model to the server.
/* Knowledge Integration */

11: for each proxy model P k(·) do
12: Input z and uniform pseudo labels ŷk;
13: Generate knowledge set GkS of client k by P k(·).
14: end for
15: Generate the integrated knowledge set GS .

/* Global Training */
16: for pseudo graphs Ĝk1 , . . . , ĜkM in GkS ∈ GS do
17: for global epoch t← 1, . . . , TG do
18: Input Ĝk1 , . . . , ĜkM to global modelM(·);
19: Compute Lk

task.
/* Topology Knowledge Retention */

20: for l-th hidden layer do
21: Compute T k

l through Equation (9).
22: end for
23: Compute Lk

r through Equation (10);
24: Lk

global = Lk
task + λrLk

r + λn||T k||2;
25: Update global model via∇Lk

global.
26: end for
27: end for

enhancement. Furthermore, we provide the detailed description of our framework in Algorithm 1.

E. Ablation Study on Different Numbers of Clients.
In this section, we vary the number of clients in {5, 10, 20} and conduct the node classification task on CiteSeer, Chameleon,
Amazon-Photo and Coauthor-CS datasets. Experimental Results are shown in Tab. 6. From the table, we can observe that
our GHOST outperforms most baselines with different numbers of clients, demonstrating the stability of GHOST across
various data distributions and subgraph scales.

F. Sensitivity
To address Q4, we conduct analysis on hyperparameters of GHOST. Specifically, we compare the node classification
performance under different values of λd and λf . We take Cora, Coauthor-CS as example datasets. For both datasets, we
vary λd and λf in range [0.01, 0.09] and [0.05, 0.25] with 0.02 and 0.05 as step size respectively. Experimental results are
shown in Figure 4 and Figure 6. From the bar charts, we can observe that the performance is not influenced much at different
values. Moreover, all studies of λd and λf outperform the baseline, proving the robustness and stability of GHOST.
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Table 6. Comparison with the state-of-the-art methods with different numbers of clients. We report node classification accuracies
(%) for downstream task performance. Green arrows ↑ denote advancements in accuracy metrics than FedAvg while red arrows ↓ indicate
regressions. OOM means out-of-memory error. The best and second results are highlighted with bold and underline, respectively.

Datasets (→) CiteSeer Chameleon
Methods (↓) 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients
FedAvg [ASTAT17] 35.43 32.88 38.13 21.31 19.89 20.02

Traditional FL
FedProx [MLSys20] 40.82↑5.39 35.73↑2.85 39.39↑1.26 20.77↓0.54 19.78↓0.11 19.81↓0.21

FedNova [NeurIPS20] 18.43↓17.00 18.58↓14.30 16.17↓21.96 20.33↓1.01 21.30↑1.41 17.75↓2.27
FedRCL [CVPR24] 15.88↓19.55 12.73↓20.15 7.05↓31.08 26.89↑5.58 18.48↓1.41 20.13↑0.11

Traditional FGL
FedPub [ICML23] 20.07↓15.36 34.91↑2.03 32.27↓5.86 20.33↓0.98 17.61↓2.28 23.16↑3.14
FedTAD [IJCAI24] 19.25↓16.18 33.86↑0.98 28.34↓9.79 28.01↑6.70 20.11↑0.22 23.05↑3.03
FedGTA [VLDB24] 16.93↓18.50 17.75↓15.13 15.73↓22.40 20.32↓0.99 21.20↑1.31 19.81↓0.21

One-shot FL
DENSE [NeurIPS22] 7.64↓27.79 7.87↓25.01 7.06↓31.07 20.00↓1.31 19.90↑0.01 20.13↑0.11
FedCVAE [ICLR23] 42.64↑7.21 34.76↑1.88 18.10↓20.03 19.89↓1.42 21.74↑1.85 16.99↓3.03

FedSD2C [NeruIPS24] 20.97↓14.46 29.96↓2.92 23.66↓14.47 25.14↑3.83 22.72↑2.83 24.35↑4.33

GHOST 42.92↑7.49 37.75↑4.87 40.80↑2.67 28.42↑7.11 25.22↑5.33 23.59↑3.57
Datasets (→) Amazon-Photo Coauthor-CS
Methods (↓) 5 Clients 10 Clients 20 Clients 5 Clients 10 Clients 20 Clients
FedAvg [ASTAT17] 49.93 23.12 21.79 12.84 22.50 33.51

Traditional FL
FedProx [MLSys20] 46.54↓3.39 24.16↑1.04 23.58↑1.79 16.25↑3.41 21.44↓1.06 29.33↓4.18
FedNova [NeurIPS20] 9.69↓40.24 6.15↓16.97 8.57↓13.22 22.45↑1.14 18.83↓3.67 16.37↓17.14

FedRCL [CVPR24] 21.80↓28.13 4.92↓18.20 10.69↓11.10 8.33↓4.51 14.75↓7.75 7.02↓26.49

Traditional FGL
FedPub [ICML23] 42.00↓7.93 21.91↓1.21 21.76↓0.03 5.14↓7.70 26.75↑4.25 22.55↓10.96

FedTAD [IJCAI24] 25.29↓24.64 22.01↓1.11 21.57↓0.22 11.77↓1.07 14.09↓8.41 36.42↑2.91
FedGTA [VLDB24] 5.39↓44.54 4.10↓19.02 6.17↓15.62 10.16↓2.68 10.80↓11.70 9.43↓24.08

One-shot FL
DENSE [NeurIPS22] 4.96↓44.97 4.93↓18.19 4.90↓16.89 3.75↓9.09 3.96↓15.93 3.71↓29.80
FedCVAE [ICLR23] 52.39↑2.54 31.62↑8.50 24.87↑3.08 2.56↓10.28 14.60↓7.90 10.98↓22.53

FedSD2C [NeruIPS24] 11.75↓38.18 8.73↓14.39 23.38↑1.59 3.95↓8.89 3.88↓18.62 9.94↓23.57

GHOST 53.07↑3.14 37.22↑14.10 37.50↑15.71 24.99↑12.15 29.91↑7.41 40.84↑7.33

G. Privacy Security.
Privacy security plays a crucial role in FGL systems (Zeng et al., 2022; Liao et al., 2025). In this section, we conduct
experiments on two possible approaches for the eavesdropping attacker on datasets Cora and CiteSeer, assuming the worst
case where the attacker intercepts all the parameters (Li et al., 2021; Mothukuri et al., 2021). As illustrated in Sec. 4.4,
without knowing the specific shift ϵ, the attacker can only randomly select a center χ̂ away from (χ + ϵ), or make a
guess based on a uniform distribution with wide bounds. Firstly, we set the original noise distribution as standard normal
distribution (χ = 0) with shift ϵ varies in {10, 20, 30} while the attacker still takes χ̂ = 0 as an attempt. Experimental results
are shown in Figure 5(a). Then, we set (χ+ ϵ) as 0 and set several guesses of uniform distribution that attempt to overlap the
original distribution range: {U(−50, 50),U(−100, 100),U(−150, 150)}. Experimental results are shown in Figure 5(b), in
which we utilize bounds = 50 to denote the guess U(−50, 50). From the bar charts, we observe that regardless of whether
the attacker guesses the center or attempts to overlap the distribution over a wide range, the pseudo-graphs generated lead to
a performance drop of 50%-80%. This significant drop demonstrates that the generated pseudo-graphs differ drastically
from the real data held by clients, thereby preventing any leakage of private information. Consequently, the privacy security
of our GHOST framework is confirmed.
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(a) CiteSeer (b) Coauthor-CS

Figure 6. Hyperparameter Analysis on λf on datasets CiteSeer and Coauthor-CS. The green dash denotes the baseline performance.
See details in Appendix F.

H. Discussion on Limitations.
Although GHOST has demonstrated significant success in efficiently capturing diverse dual-level knowledge and mitigating
catastrophic forgetting in the one-shot setting, it still faces some limitations as a proxy-based approach (Tan et al., 2024a; Bi
et al., 2025c). Specifically, noise in local data (Kang et al., 2019) can interfere with the ability of the proxy model to mine
and learn local-specific knowledge, potentially hindering the training of the global model. Enhancing the robustness of
the proxy model against such interference (Lu et al., 2024; Li et al., 2024a) presents an interesting direction for our future
research.
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