
Generating Highly Designable Proteins with
Geometric Algebra Flow Matching

Simon Wagner∗ 1,2 Leif Seute∗ 1,2,3 Vsevolod Viliuga1,3,4 Nicolas Wolf1,2,3
Frauke Gräter1,2,3 Jan Stühmer1,5

1Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2IWR, Heidelberg University, Heidelberg, Germany

3Max Planck Institute for Polymer Research, Mainz, Germany
4SciLifeLab and DBB at Stockholm University, Stockholm, Sweden

5IAR, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

We introduce a generative model for protein backbone design utilizing geometric
products and higher order message passing. In particular, we propose Clifford
Frame Attention (CFA), an extension of the invariant point attention (IPA) archi-
tecture from AlphaFold2, in which the backbone residue frames and geometric
features are represented in the projective geometric algebra. This enables to con-
struct geometrically expressive messages between residues, including higher order
terms, using the bilinear operations of the algebra. We evaluate our architecture by
incorporating it into the framework of FrameFlow, a state-of-the-art flow matching
model for protein backbone generation. The proposed model achieves high des-
ignability, diversity and novelty, while also sampling protein backbones that follow
the statistical distribution of secondary structure elements found in naturally occur-
ring proteins, a property so far only insufficiently achieved by many state-of-the-art
generative models.

1 Introduction

Recent years have shown tremendous progress in applying deep learning to computational chemistry,
where applications of learning-based approaches have enabled unprecedented progress across a
broad range of problems, such as molecular property prediction [55, 28, 50, 11], protein-ligand
docking [22], protein structure prediction [32, 3, 38], and de novo protein design [63, 68, 10, 67, 37].
In case of protein design, state-of-the-art methods typically represent the structure of a protein of
N residues as an element of SE(3)N , i.e. as a collection of N frames, each of which describes the
position and orientation of an individual protein residue. Among the most successful methods are
those based on diffusion models [53, 54, 63, 68, 37, 1] and flow matching [39, 19, 56, 67], which
make use of architectures that incorporate the invariant point attention (IPA) of AlphaFold2 [32]. By
modeling a protein through the frames of its backbone, the task of protein structure generation is
reformulated as to model the distribution of a set of frames, an inherently geometric problem.

Advances in geometric deep learning have lead to architectures that are equivariant towards rotations
and translations [14, 21, 15], which can be regarded as a geometric inductive bias that enhances
performance and data efficiency. Most generative models for protein design achieve equivariance by
using geometric features that are expressed in the canonical local coordinate frames representing the
protein backbone. The coordinates of these features are thus invariant with respect to global rotations
and translations, which allows to apply general layers and non-linearities.

∗Equal contribution

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Figure 1: (A) Protein backbone residue with three backbone atoms represented by a coordinate frame.
(B) In PGA, a frame can be represented via the geometric product of four planes. Two of the planes
parameterize the frame’s rotation around their line of intersection, while the other two encode the
frame’s translation along the separation vector between them. (C) An exemplary protein backbone
structure containing an α-helix and a β-sheet. Lines (red), planes (violet) and Euclidean frames
(blue) can all be embedded as elements of PGA, facilitating a geometric inductive bias for learning
representations of the abstract geometry of the protein.

Another widely used approach to construct equivariant architectures is to embed internal features
in symmetry group representations and restrict neural network operations to equivariant functions
[55, 28, 50, 11, 7, 6, 36, 52]. Explicit equivariance in these models has usually been limited to the
orthogonal group O(3), which contains rotations and reflections, while most models are instead
invariant towards translations. Only recently, Brehmer et al. [13] proposed an architecture based on
the framework of Ruhe et al. [48] that enables explicit equivariance towards both translations and
rotations by utilizing the projective geometric algebra (PGA) [29, 25].

Inspired by their work, we demonstrate that apart from its use as E(3)-equivariant formalism, PGA
provides a powerful framework for representing the geometry of protein backbones when incorporated
into the local frame formulation of protein design architectures. While we utilize PGA to explicitly
represent the frames of the protein backbone as elements of the algebra, PGA additionally provides
a strong inductive bias as its elements can represent abstract geometric objects like points, lines
and planes, which are well suited to capture the geometry of secondary structure elements, such as
α-helices and β-sheets (Figure 1). Moreover, bilinear operations of the algebra enable to compute
many geometric relations between those objects, such as distances, angles, projections and incidences.

Main contributions: We introduce Clifford frame attention (CFA), an extension of the invariant
point attention (IPA) architecture of AlphaFold2 [32] by expressing geometric features as elements
of the projective geometric algebra and using its bilinear operations to construct geometrically
expressive, higher order messages. We incorporate CFA into an existing flow matching framework
for protein backbone generation, FrameFlow [67], and demonstrate in our experiments that the
proposed method achieves state-of-the-art performance in the combination of designability, diversity
and novelty of generated protein samples. While, especially for small proteins, other models with
high designability often over-represent α-helices, the proposed method captures the broad distribution
of secondary structures of naturally occurring proteins, which we believe is crucial for designing
proteins with vast functionalities. Notably, since IPA is widely used throughout the field, CFA may
be readily included in many other protein-related machine learning models.

1.1 Related Work

Geometric (Clifford) algebra in neural networks Neural networks that use the Clifford algebra
were first proposed by Pearson and Bisset [46], an extension of the multi layer perceptron (MLP) by
Clifford algebras, which was later studied further by Buchholz and Sommer [16]. More recently, Ruhe
et al. [49] propose Geometric Clifford Algebra Networks, using geometric (Clifford) algebras
based on their Clifford Neural Layers [12], and extend this framework in [48] to E(3)-equivariant

2

representations. Brehmer et al. [13] propose to use projective geometric algebra, which enables
SE(3)-equivariant feature representations, and the representation of frames as elements of the algebra.

Generative models for protein design Watson et al. [63] propose RFdifffusion, a generative
model for protein backbone design that utilizes the pre-trained protein structure prediction network
RoseTTAFold [2]. Yim et al. [68] propose FrameDiff, which defines a diffusion model over a set
of frames, SE(3)N , and extend this method within the flow matching framework [67]. Bose et al.
[10] propose FoldFlow and its variants, diffusion and flow matching models over SE(3)N . Lin and
AlQuraishi [37] propose an equivariant encoder and decoder architecture. Wu et al. [65] train a
transformer model to predict angles between adjacent residues. Mao et al. [42] propose vector field
networks, which is also an extension of IPA, and employ them in FrameDiff. The main difference
to our approach is that VFN uses virtual atoms as geometric features and vector field operators to
model interactions, whereas CFA use multivectors and the geometric bilinears of PGA respectively.

2 Background

This section provides an introduction to the mathematical frameworks that we refer to in this paper,
flow matching and Geometric algebra, and a brief introduction to protein design.

2.1 Geometric Algebra

A Clifford algebra over a real vector space, typically referred to as geometric algebra, is a power-
ful mathematical framework for describing geometric objects including points, lines, planes and
operations on these objects in an algebraically concise way [31, 26].

In more technical terms, given a vector space V and a quadratic form q : V −→ F from the vector
space to the underlying field F, we can construct a geometric algebra as the unitary, associative,
non-commutative algebra with the property v2 = q(v) for every v ∈ V [49]. v2 = vv denotes the
geometric product, the bilinear operation of the algebra, of the vector v with itself. In the geometric
context, q may be thought of as the metric of the vector space, meaning that for a vector v, q(v) is its
squared norm. Elements of the algebra are called multivectors. They can be constructed by forming
geometric products between basis vectors of V and linearly combining them.

In this paper we are mainly interested in the projective geometric algebra (PGA) [29, 25], which we
denote as G3,0,1. It is the geometric algebra over V = R4 with vector basis

e0, e1, e2, e3 and q(e1) = q(e2) = q(e3) = 1, q(e0) = 0 . (1)
The full algebra has 16 basis elements, which can be grouped in grades according to the number of
vector basis elements they are constructed from. Following Gunn [29], we can interpret elements
of different grades as geometric objects such as planes, lines and points in 3D space, as listed in
Table A.1 and visualized in Figure A.3. Working in a four dimensional space has the advantage that
we are able to represent lines and planes that do not necessarily include the origin, which is crucial
for the description of translations as shown below.

Central to the proposed method is the fact that PGA allows the representation of elements of the
Euclidean group E(3) as elements of the algebra. Given a plane p ∈ G3,0,1, an arbitrary geometric
object X ∈ G3,0,1 can be reflected across the plane via the sandwich product,

X′ = pX̂p , (2)

where X̂ is the grade involution that flips the sign of elements with odd grade. A vector in PGA may
thus be interpreted both as a plane and as a reflection operator. One can extend this idea using the
Cartan-Dieudonné theorem, which states that any E(3) transformation can be represented by repeated
reflections. Two consecutive reflections through intersecting planes result in a rotation around the line
of intersection and two reflections through two parallel planes correspond to a translation along the
separation vector of the planes. The associated elements of PGA are obtained by taking the geometric
product of the respective planes. We thus represent each residue frame of a protein by a multivector,
a so called motor, corresponding to a rotation followed by a translation as shown in Figure 1. Similar
to eq. 2, a motor M ∈ G3,0,1 can be applied to an arbitrary element X ∈ G3,0,1 according to

X′ = MXM−1 . (3)
We provide a more detailed introduction to geometric algebra in Appendix A.1.1

3

2.2 Flow Matching

Flow matching [39], as a generalization of diffusion models [53, 54], offers a framework for learning
continuous normalizing flows (CNFs) [20], ϕ : [0, 1] × Ω → Ω that transform a general prior
distribution p0, defined on the domain Ω, to a target distribution p1 by evaluating the probability path

pt = [ϕt]∗p0 (4)

at t = 1, where ∗ denotes the pushforward. The flow ϕt can be expressed in terms of a vector field vt
by solving the ordinary differential equation (ODE)

d

dt
ϕt(x) = vt(ϕt(x)), ϕ0(x) = x . (5)

If the vector field vt is known, one can generate samples from p1 by sampling from the prior and
integrating the flow ODE. Lipman et al. [39] showed that vt can be learned by regressing on a vector
field ut(x|x1) that is conditioned on a data sample x1 ∼ p1, i.e. by minimizing the loss function

L = Et∼U(0,1),x1∼p1,xt∼pt(·|x1)

[
∥vt(xt)− ut(xt|x1)∥2

]
. (6)

Here, pt(x|x1) is the conditional probability path induced by ut(xt|x1) , which is commonly chosen
as linear interpolation between the prior sample x0 and the target x1 by setting the conditional flow to

ψt(x0|x1) ≡ (1− t)x0 + tx1 , (7)

from which ut(x|x1) can be obtained by forming the time derivative. As shown by [39, 19], sampling
from pt(xt|x1) in eq. 6 can then be realized by transforming a sample x0 from the prior p0 to
xt ≡ ψt(x0|x1). This formulation in terms of conditional distributions allows to learn dynamic
optimal transport (OT) plans from prior to target using minibatch OT as shown by Tong et al. [56].

The framework of CNFs and flow matching can be generalized for sampling from distributions on
Riemannian manifolds M, such as SE(3)N , as described by Chen and Lipman [19]. Then, the
flow ϕ : [0, 1] × M → M is a diffeomorphism, and a vector field is learned as a smooth map
ut : [0, 1] × M → T M to the tangent space T M. A natural choice for the map ψt(x0|x1) on a
Riemannian manifold is the connecting path with minimal length, the geodesic.

2.3 Flow Matching for Protein Structures

For sampling from the distribution of protein backbones, we represent each protein residue by a
frame T = (r, x) ∈ SE(3) that corresponds to a translation x ∈ R3 and rotation r ∈ SO(3), thus
the domain for the flow matching process is M ≡ SE(3)N , as described in FrameDiff [68]. The
frame for a given residue is defined through the backbone atoms [N,Cα, C], where the translation x
is chosen as the displacement of the Cα atom relative to the origin, while the rotation r is constructed
using a Gram-Schmidt process [32] on the vectors [C − Cα, N − Cα].

Similar to [67], we define the conditional flow ψt(T0|T1) as the geodesic between T0 and T1,

ψt(T0|T1) = expT0
(t logT0

(T1)) . (8)

We calculate the time derivative of the flow as described in FrameFlow [67] and regress on it as
in eq. 6. As prior p0, we choose a 3N -dimensional normal distribution with unit variance N (0, I)
for translations and, for rotations, adopt the heuristic trick of using IGSO(3) during training and
U(SO(3)) for inference from Yim et al. [67]. Additionally, we use minibatch optimal transport [56]
with the equivariant cost function from [34, 10].

2.4 Designability of Proteins and Importance of their Structural Composition

Until recently, computational tools for protein design have relied on physics-based energy func-
tions [51, 35, 64], restricting protein design campaigns to pre-defined topologies, geometries, and
secondary structure elements. In contrast, deep generative models learn the probability distribution of
protein structures from the training set, enabling less constrained sampling of the structure space.

Ideally, the main goal of any generative model should be the creation of structurally diverse and
novel proteins, thereby maximizing the access to unseen structures and possibly functions. Since

4

the functionality of proteins is grounded in their structure, it is crucial to extensively cover the
broad range of secondary structure elements and topologies found in natural proteins. Typically, the
properties of generated proteins are assessed by the scores of diversity and novelty, indicating how
similar generated backbones are to each other, and to known native proteins, respectively. While
explicit analyses of secondary structure elements of generated proteins are often overlooked, [37, 65]
suggest that diffusion models commonly generate redundant protein structures composed mostly of
α-helices, which raises the question of how much functionality can be hypothetically encoded in
these proteins.

A key quality check for generated proteins is their biophysical consistency in the sense that their
sequence, indeed, folds into the intended structure [44]. In the case of backbone generation, this is
typically evaluated by predicting a sequence from the generated structure with the inverse folding
model ProteinMPNN [23]. The obtained sequence is re-folded with ESMFold [38] and if the resulting
structure aligns well with the original backbone, the latter is called designable [57, 63]. Thus, the
designability metric measures consistency between well-established sequence and structure prediction
models, which can be seen as a proxy for biophysical validity and practical realizability [47].

3 Geometric Algebra Flow Matching for Protein Backbone Generation

We propose a geometric algebra-based neural network architecture to predict the vector fields in a flow
matching process on SE(3)N and call this approach Geometric Algebra Flow Matching (GAFL). The
proposed neural network architecture is an extension of the one introduced in FrameDiff [68], where
we replace its central component, the invariant point attention (IPA) block from AlphaFold2 [32] by
Clifford Frame Attention (CFA), which we explain in more detail in the next paragraph.

Input features are the noised frames Tt, pairwise spatial distances, positional encodings of absolute
and relative sequence positions, and the flow matching time t. As FrameDiff, we use self-conditioning.
The network relies on a series of six blocks, in which the frames are updated consecutively to predict
the denoised backbone structure and from this the respective conditional vector fields. Each block
uses CFA to perform message passing between protein residues, in particular processing geometric
information as given by geometric node features and the current set of frames. The SE(3) invariant
output of CFA is fed through an MLP and a transformer [60] and then used to predict frame updates.
For a detailed explanation of the architecture, we refer to Appendix A.2.1.

Clifford Frame Attention

The original IPA mechanism uses geometric node features in the form of 3D points for the calculation
of attention scores and as queries, keys and values, as described in Appendix A.2.2. The features
are expressed in local coordinate frames, which allows the use of arbitrary layers without breaking
equivariance. Messages between nodes are constructed as a linear combination of attention values,
weighted by attention scores. While other generative models for protein design incorporate the
original version of IPA directly [68, 67, 10], we propose to enhance its geometric expressivity by
performing the following modifications.

PGA features: We replace the point-valued attention values by multivectors, which can encode
points, lines, planes and Euclidean frames as shown in Figure 1. At the same time we decrease the
number of channels to retain approximately the same number of parameters.

Geometric messages: Instead of linearly combining geometric features in the message passing
step, we construct messages utilizing the geometric bilinear layer that was introduced as part of the
Geometric Algebra Transformer in Brehmer et al. [13], effectively calculating geometric product and
join, another bilinear operation of PGA (see Definition A.10), between the node features Vi and Vj

(see Algorithm 4). These two operations are able to compute many geometric relations as detailed in
Appendix A.1.1 and [25]. The messages mh,p

ij from node i to node j can then be written as

mh,p
ij = GeometricBilinear

(
T−1

i

(
TjV

h,p
j T−1

j

)
Ti, V

h,p
i

)
, (9)

where Ti,Tj are the frame transformations of the corresponding node, which ensure that the bilinear
operations are performed in the same reference frame. When aggregating the messages we make use

5

of the bilinearity of the products to exchange the sum and the bilinear layer to obtain:
∑

j

ahijm
h,p
ij = GeometricBilinear

(
T−1

i

∑

j

ahij

(
TjV

h,p
j T−1

j

)
Ti, V

h,p
i

)
, (10)

The operation is thus performed on a node level and scales linearly with the number of nodes.

Higher order message passing: We also incorporate higher order messages into the proposed
architecture, that is, messages that depend on more than two nodes and are thus capable of describing
relationships beyond pairwise interaction. As in [6], we use bilinearity of geometric product and join
to construct higher order messages by multiplying aggregated two-body messages m and m′, e.g.


∑

j

mij



(∑

k

m′
ik

)
=
∑

jk

mijm
′
ik ≡

∑

jk

m
(3)
ijk (11)

can be seen as sum of three-body messages m(3)
ijk. In practice, we use a learnable linear combination

of versions of eq. 11 projected onto different multivector grades using the geometric product and the
join, as described in algorithm 5.

Frames as features: Since we embed both residue frames and geometric node features in G3,0,1,
it is a natural idea to combine them on a node level such that they can interact via the geometric
bilinears during message passing. To this end we compute relative frame transformations for all pairs
and aggregate them with the attention weights,

Trel
i ≡

∑

j

aijT
−1
i Tj . (12)

We concatenate these with the remaining geometric features before the construction of geometric
messages and also pass them directly to the backbone update block using a residual connection. The
full CFA algorithm is provided in Appendix A.2.3.

Although PGA would in principle allow to construct a fully equivariant architecture ([13]) without
using local frames, we decide to keep the local frame formulation of IPA, since it allows to use more
general layers and non-linearities. Moreover, the common problem of ambiguous local frame choices
that other architectures suffer from [62] is not apparent in our case since backbone residues provide
a canonical, geometrically meaningful choice for the local frames. We discuss the equivariance of
GAFL in Appendix A.2.4.

4 Experiments

We train GAFL2 on a subset of the Protein Data Bank (PDB) dataset [9] comprised of monomeric
protein structures with up to 512 residues and perform extensive ablations on the smaller, curated
SCOPe dataset [27, 18] filtered by proteins with length of up to 128 residues (SCOPe-128) as
in [67, 37]. A representative selection of designable protein backbones generated by GAFL trained
on the PDB dataset is illustrated in Figure 2.

4.1 Checkpoint Selection

With the aim of finding a good balance between designability and secondary structure content in
mind, we introduce a checkpointing criterion that takes secondary structure into account. We first
train the model for Ntrain epochs. Then, from epoch Ntrain to Ntrain +Nselect, we calculate the relative
occurrence of α-helices and β-strands rα and rβ of 100 generated proteins after each epoch. We
keep the top k checkpoints in terms of secondary structure content deviation, which we define as
dc ≡ |rα − r

(ref)
α | + |rβ − r

(ref)
β | , with the training set as reference. Among those k checkpoints,

we choose the checkpoint with the highest designability and filter by a threshold dc ≤ dmax. The
hyperparameters Ntrain, Nselect, dmax and k for the different training runs are listed in Appendix A.3.8.

2Source code and trained model weights are available at https://github.com/hits-mli/gafl

6

https://github.com/hits-mli/gafl

Figure 2: Representative examples of designable protein backbones generated with GAFL (white)
and the output of the refolding pipeline (colored), comprising ProteinMPNN and ESMFold.

4.2 Metrics

To assess the performance of a given model, we follow a well-established pipeline of self-consistency
evaluation [57, 63]. For each generated backbone, we design 8 candidate sequences with Protein-
MPNN [23], which are subsequently refolded with ESMfold [38], and define scRMSD as the smallest
RMSD between our generated backbone and the 8 refolded, aligned candidates. As in [63, 68], we
define designability as the fraction of generated samples with scRMSD < 2.0 Å . We also report
diversity and novelty of the designable backbones as average TM-similarity [70] scores within the set
of generated backbones and with respect to the PDB correspondingly (see Appendix A.3.1 and [67]).
To evaluate how well the secondary structure distribution of the training set is captured, we calculate
the average helix and strand content of all designable backbones using the DSSP algorithm [33].

4.3 Baselines

At the task of generating backbones of up to 300 residues, we compare GAFL trained on the PDB
to the diffusion models RFdiffusion [63] and FrameDiff [68] and to the flow matching models
FoldFlow [10] and FrameFlow [67, 69]. At the time of submitting the paper, FrameFlow had not
been trained on the PDB yet, however, we include it in our results as contemporary work. Further,
we perform an ablation study for generating smaller backbones, where we compare GAFL models
to the originally published FrameFlow [67] model, which was trained on the SCOPe dataset with
backbones of up to 128 residues. While all of the baselines above incorporate the original IPA [32]
architecture, we also compare GAFL with VFN [42], in which an alternative modification of IPA is
proposed. For all models considered, we generate backbones using published model weights and the
respective default inference settings (Appendix A.3.2).

4.4 Results

We train GAFL for 15 days on two NVIDIA A100-80GB GPUs on the dataset used in FrameDiff,
which comprises monomeric structures from the Protein Data Bank (PDB), filtered by a maximum
length of 512 and a maximum coil content of 50%, resulting in a total of around 25,000 backbones [68].
As in FoldFlow, we evaluate GAFL and the respective baselines on the task of generating backbones
of lengths {100, 150, 200, 250, 300}. For GAFL, we use 200 inference timesteps (Figure A.9). In
Table 1, we report the metrics described in Section 4.2 for each model together with the time needed
to generate a single backbone of length 100 on an NVIDIA A100 GPU without batching.

GAFL has state-of-the-art performance

We find that GAFL can reliably generate designable, diverse and novel backbones while capturing the
statistical distribution of secondary structure elements of natural proteins. In all metrics considered,
GAFL outperforms both variants of FoldFlow and is better or as good as FrameDiff. GAFL also
outperforms FrameFlow, which was trained on the same dataset, in terms of designability and, at
the same time, achieves better secondary structure content. GAFL’s designability is only matched
by RFdiffusion, which is not directly comparable since it relies on pre-trained model weights from
the folding model RoseTTAFold [2] and has around three times more parameters. For diversity,
novelty and helix content, GAFL performs better than RFdiffusion. We also observe that GAFL and
FrameFlow can generate backbones around three times faster than the other evaluated models.

7

Figure 3: (A) Performance of evaluated models in terms of designability and secondary structure
content as a function of backbone length. 200 backbones were generated for each model at each
length ∈ {60, 80, 100, 150, 200, 250, 300}. (B) Comparison of the secondary structure distributions
of backbones generated by GAFL and RFdiffusion from (A) to the PDB dataset filtered by the
respective protein lengths along with the Wasserstein distance (WD) between the distributions. (C)
Examples of designable backbones generated by GAFL for lengths 450 and 500. We also report TM
scores of the backbones to the closest hit in the PDB database computed with FoldSeek.

Table 1: Performance of GAFL and baseline models for the generation of 200 protein backbones for
each length in {100, 150, 200, 250, 300}. We report the metrics from Section 4.2, including standard
errors obtained by bootstrapping, and the time needed to generate a backbone of length 100. The best
values and values within the respective margin of error are bold.
Method Designability (↑) Diversity (↓) Novelty (↓) Helix Content Strand Content Time [s]

PDB Dataset (300) - - - 0.39 (0.00) 0.23 (0.00)

FrameDiff 0.54 (0.02) 0.45 (0.00) 0.71 (0.00) 0.53 (0.01) 0.20 (0.00) 24.3
FoldFlow-SFM 0.69 (0.01) 0.44 (0.00) 0.77 (0.00) 0.91 (0.00) 0.01 (0.00) 24.3
FoldFlow-OT 0.82 (0.01) 0.44 (0.00) 0.79 (0.00) 0.88 (0.00) 0.00 (0.00) 24.3
FrameFlow 0.85 (0.01) 0.35 (0.00) 0.70 (0.00) 0.56 (0.01) 0.20 (0.00) 6.6
RFdiffusion∗ 0.89 (0.01) 0.37 (0.00) 0.74 (0.00) 0.58 (0.02) 0.24 (0.02) 21.0

GAFL (ours) 0.88 (0.01) 0.36 (0.00) 0.71 (0.00) 0.53 (0.01) 0.25 (0.01) 8.8
*Pretrained weights from folding model trained on dataset larger than PDB.

GAFL generates proteins with diverse secondary structures at various lengths

Although protein design campaigns span a wide range of protein sizes [5, 17, 43, 8, 63], the primary
goal remains to encode maximum functionality into the smallest protein possible, driven by the
growing costs of synthesis as protein size increases. Thus, we further assess designability and
secondary structure content of generated backbones as a function of their length (Figure 3A). For
all lengths considered, backbones generated by GAFL, FrameFlow and RFdiffusion are highly
designable while FrameDiff and FoldFlow struggle with the generation of long proteins. The length
dependence of designability and secondary structure content for GAFL and FrameFlow is qualitatively
similar; however, GAFL achieves overall better results (Table 1, Figure A.8). Crucially, we find that
for generating proteins with less than 150 residues, GAFL is well suited as it is capable of generating

8

highly designable backbones with a similar amount of β-strands as naturally occurring proteins, while
RFdiffusion over-represents α-helices. This is also reflected by the Wasserstein distances between
the secondary structure distribution of naturally occurring backbones and those generated by GAFL
and RFdiffusion, respectively: Purely α-helical proteins are over-represented by RFdiffusion, leading
to a higher Wasserstein distance of 0.35 compared to 0.25 for GAFL (Figure 3B).

GAFL can generate large proteins

To compare GAFL with VFN [42], we evaluate it at generating five backbones for each length
in {100, 105, . . . , 500}, some of which are portrayed in Figure 3C. We find that, with a value of
0.74, GAFL outperforms not only VFN (0.44) but also FrameFlow (0.64) and RFdiffusion (0.71) in
designability. However, GAFL and FrameFlow over-represent helices for large proteins (Table A.3).

4.5 Ablation of CFA

In order to investigate the effect of the proposed architectural changes, we conduct an ablation study
on the semi-manually curated SCOPe dataset [27, 18], which clusters proteins by their sequence and
structural similarities ensuring that its entries are evolutionary and structurally non-redundant. We
further filter SCOPe by the length of up to 128 residues, which results in 3938 proteins.

Figure 4: Helix content and designabilities of
90 model checkpoints sampled during three train-
ing runs on the PDB dataset for GAFL and re-
trained FrameFlow, respectively. For each check-
point, we sample 40 backbones per length in
{100, 150, . . . , 300}.

We compare GAFL with FrameFlow and models
for which we leave out all proposed architectural
changes or only higher order message passing,
respectively, while scaling the width of the lay-
ers such that the number of parameters remains
the same. All models are trained with three dif-
ferent random seeds for 6500 epochs on one
NVIDIA A100-80GB GPU, which takes around
6 days, and evaluated by generating backbones
for lengths between 60 and 128 as in [67].

We find that GAFL’s designability of 90.5% is
8 percentage points higher than that of the pub-
lished FrameFlow model [67] trained on SCOPe
(81.2%) as depicted in Table 3. If retrained
with GAFL’s training procedure, FrameFlow’s
architecture with original IPA achieves a des-
ignability of 88.2%. Using PGA-valued features
and higher order message passing as proposed
in CFA increases the designability by 1.4 and
2.3 percentage points, respectively. While the
training procedure has a larger effect on the des-
ignability, the improvement due to CFA can be considered to be significant since it persists across
different random seeds. This can also be observed in the distribution of designabilities of 30 check-
points sampled during the training procedure (Figure A.10) described in Section 4.1.

Table 2: Ablation of GAFL and FrameFlow on the
PDB dataset. We report the results of three training
runs and the published FrameFlow model.

Method Designability (↑) Diversity (↓)

GAFL 87.8 87.9
84.3 0.35 0.36

0.34

FrameFlow 84.4 84.7
78.1 0.35 0.35

0.34

FrameFlow∗ 84.6 0.35
*Published model weights

For the much larger PDB dataset, we conduct a
small ablation study, in which we compare the
performance of GAFL with CFA and retrained
FrameFlow with original IPA across three differ-
ent training runs, respectively (Table 2). Since
GAFL consistently achieves higher designabil-
ities, we can validate that the trend observed on
SCOPe also holds true for training on the PDB.

Furthermore, we observe a correlation between
over-representing α-helices and achieving high
designability (Figure 4) for 90 checkpoints sam-
pled for each model during checkpoint selection
as described in Section 4.1. Crucially, GAFL checkpoints consistently show better designability in
the low helix-content regime, which we can attribute to using CFA instead of IPA.

9

Table 3: Ablation of GAFL models with different elements of the proposed CFA architecture, trained
on the SCOPe-128 dataset. For each model, we report the performance of three training runs with
different random seeds, evaluated by generating 10 backbones for each length in {60, 61, . . . , 128}.

PGA Higher Ord. Msg. Checkp. Selection Designability [%] (↑) Diversity (↓)

✓ ✓ ✓ 90.5 90.6
89.6 0.38 0.39

0.36

✓ ✓ 89.6 90.3
89.0 0.37 0.40

0.37

✓ 88.2 88.6
86.7 0.38 0.39

0.38

FrameFlow-SCOPe 81.2 0.37

4.6 Discussion

Our results suggest that GAFL is one of the current state-of-the-art models for unconditional protein
structure generation. GAFL outperforms the widely used, pre-trained model RFdiffusion in terms of
diversity, novelty and inference time and is on par at designability. Remarkably, GAFL can achieve
this performance without requiring pre-trained model weights while other non-pre-trained models
often lack designability or show a mode-collapse towards generating helical structures.

Especially for generating small, highly designable backbones with distinct secondary structures,
GAFL performs well, in particular better than RFdiffusion. Since in most protein design campaigns
the goal is to incorporate the desired functionality into the smallest protein possible while exploring
a large structural space, we consider this advantage of GAFL to be highly relevant for future
developments and real-world applications of generative models for proteins.

Our ablation studies provide evidence that achieving high designability without over-representing
α-helices can be attributed to the replacement of IPA by the proposed CFA architecture. Since IPA is
used in many current state-of-the-art architectures for backbone structure, CFA has the potential to
enable improvements in many protein-related tasks.

Limitations While the proposed method GAFL achieves state-of-the-art performance in protein
backbone generation, there is still room for improvement. We note that achieving high designability
without compromising the diversity of secondary structures remains a grand challenge. GAFL does
not perfectly capture the secondary structure distribution of natural proteins, especially for large
proteins. Further, unconditional protein generation can be regarded as suitable benchmarking task
for protein design models, however, most applications require conditional sampling. GAFL can be
readily incorporated into existing frameworks for conditioning, e.g. on motifs [69] or symmetry [63].

5 Conclusion

We introduced Geometric Algebra Flow Matching (GAFL), a flow matching model for protein
design based on FrameFlow [67]. GAFL relies on the proposed Clifford Frame Attention (CFA),
an extension of the invariant point attention block from AlphaFold2 [32], by representing residue
frames and geometric features of a protein in the projective geometric algebra. This enables the usage
of the bilinear operations in the algebra to construct geometrically expressive messages between
residues. The experiments demonstrate that the resulting model is state-of-the-art in the combination
of the established metrics designability, diversity and novelty and performs notably well at generating
designable small backbones with distinct secondary structures, containing β-strands in particular.
Given the promising results of the extension of invariant point attention with geometric algebra
presented in this work, we look forward to exploring its benefits for other protein-related tasks.

Acknowledgments This study received funding from the Klaus Tschira Stiftung gGmbH (HITS
Lab). We acknowledge the National Academic Infrastructure for Supercomputing in Sweden (NAISS),
partially funded by the Swedish Research Council through grant agreement no. 2021-29 for awarding
this project access to the Berzelius resource provided by the Knut and Alice Wallenberg Foundation
at the National Supercomputer Centre. The authors acknowledge support by the state of Baden-
Württemberg through bwHPC and the German Research Foundation (DFG) through grant INST
35/1597-1 FUGG.

10

References
[1] Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant

denoising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

[2] Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov,
Gyu Rie Lee, Jue Wang, Qian Cong, Lisa N Kinch, R Dustin Schaeffer, et al. Accurate
prediction of protein structures and interactions using a three-track neural network. Science,
373(6557):871–876, 2021.

[3] Minkyung Baek, Ivan Anishchenko, Ian Humphreys, Qian Cong, David Baker, and Frank
DiMaio. Efficient and accurate prediction of protein structure using rosettafold2. bioRxiv, pages
2023–05, 2023.

[4] David Baker and George Church. Protein design meets biosecurity. Science, 383(6681):
349–349, 2024.

[5] David Baker, Susana Vázquez Torres, Melisa Benard Valle, Stephen P. Mackessy, Stefanie Men-
zies, Nicholas R. Casewell, Shirin Ahmadi, Nick J. Burlet, Edin Muratspahić, Isaac Sappington,
Max Overath, Esperanza Rivera de Torre, Jann Ledergerber, Andreas Hougaard Laustsen, Kim
Boddum, Asim K. Bera, Alex Kang, Evans Brackenbrough, Iara Cardoso, Edouard Crittenden,
Rebecca Edge, Justin Decarreau, Robert J. Ragotte, Arvind Pillai, Mohamad H. Abedi, Hannah
Han, Stacey R. Gerben, Analisa Murray, Rebecca Skotheim, Lynda Stuart, Lance Stewart,
Thomas Fryer, and Timothy Patrick Jenkins. De novo designed proteins neutralize lethal snake
venom toxins. Research Square, 2024.

[6] Ilyes Batatia, David P Kovacs, Gregor Simm, Christoph Ortner, and Gábor Csányi. Mace:
Higher order equivariant message passing neural networks for fast and accurate force fields.
Advances in Neural Information Processing Systems, 35:11423–11436, 2022.

[7] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E (3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature communications, 13(1):
2453, 2022.

[8] Nathaniel R Bennett, Brian Coventry, Inna Goreshnik, Buwei Huang, Aza Allen, Dionne
Vafeados, Ying Po Peng, Justas Dauparas, Minkyung Baek, Lance Stewart, et al. Improving de
novo protein binder design with deep learning. Nature Communications, 14(1):2625, 2023.

[9] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge
Weissig, Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research,
28(1):235–242, 2000.

[10] Joey Bose, Tara Akhound-Sadegh, Guillaume Huguet, Kilian FATRAS, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael M. Bronstein, and Alexan-
der Tong. SE(3)-stochastic flow matching for protein backbone generation. In The Twelfth
International Conference on Learning Representations, 2024.

[11] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling.
Geometric and physical quantities improve e(3) equivariant message passing. In International
Conference on Learning Representations, 2022.

[12] Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford
neural layers for PDE modeling. In The Eleventh International Conference on Learning
Representations, 2023.

[13] Johann Brehmer, Pim de Haan, Sönke Behrends, and Taco Cohen. Geometric algebra trans-
former. In Advances in Neural Information Processing Systems, volume 37, 2023.

[14] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34
(4):18–42, 2017.

11

[15] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[16] Sven Buchholz and Gerald Sommer. On clifford neurons and clifford multi-layer perceptrons.
Neural Networks, 21(7):925–935, 2008.

[17] Longxing Cao, Inna Goreshnik, Brian Coventry, James Brett Case, Lauren Miller, Lisa Kozodoy,
Rita E Chen, Lauren Carter, Alexandra C Walls, Young-Jun Park, et al. De novo design of
picomolar sars-cov-2 miniprotein inhibitors. Science, 370(6515):426–431, 2020.

[18] John-Marc Chandonia, Lindsey Guan, Shiangyi Lin, Changhua Yu, Naomi K Fox, and Steven E
Brenner. Scope: improvements to the structural classification of proteins–extended database
to facilitate variant interpretation and machine learning. Nucleic acids research, 50(D1):
D553–D559, 2022.

[19] Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries. In The Twelfth
International Conference on Learning Representations, 2024.

[20] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

[21] Taco Cohen. Equivariant convolutional networks. PhD thesis, Taco Cohen, 2021.

[22] Gabriele Corso, Bowen Jing, Regina Barzilay, Tommi Jaakkola, et al. Diffdock: Diffusion
steps, twists, and turns for molecular docking. In International Conference on Learning
Representations (ICLR 2023), 2023.

[23] J. Dauparas, I. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte, L. F. Milles, B. I. M. Wicky,
A. Courbet, R. J. de Haas, N. Bethel, P. J. Y. Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan,
B. Koepnick, H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King, and D. Baker. Robust
deep learning-based protein sequence design using ProteinMPNN. Science, 378(6615):49–56,
2022.

[24] Chris Doran and Anthony Lasenby. Geometric algebra for physicists. Cambridge University
Press, 2003.

[25] Leo Dorst and Steven De Keninck. A guided tour to the plane-based geometric algebra pga.
2020. URL https://bivector.net/PGA4CS.html.

[26] Leo Dorst, Daniel Fontijne, and Stephen Mann. Geometric Algebra for Computer Science: An
Object-Oriented Approach to Geometry. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1st edition, 2007. ISBN 0123694655.

[27] Naomi K Fox, Steven E Brenner, and John-Marc Chandonia. Scope: Structural classification
of proteins—extended, integrating scop and astral data and classification of new structures.
Nucleic acids research, 42(D1):D304–D309, 2014.

[28] Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional message passing for
molecular graphs. In International Conference on Learning Representations, 2020.

[29] Charles G. Gunn. Projective geometric algebra: A new framework for doing euclidean geometry.
arXiv preprint arXiv:1901.05873, 2020.

[30] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen,
David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern,
Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fer-
nández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler
Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

[31] David Hestenes and Garret Sobczyk. Clifford algebra to geometric calculus: a unified language
for mathematics and physics, volume 5. Springer Science & Business Media, 2012.

12

https://bivector.net/PGA4CS.html

[32] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas
Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray
Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure predic-
tion with AlphaFold. Nature, 596(7873):583–589, August 2021.

[33] Wolfgang Kabsch and Christian Sander. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers: Original Research on
Biomolecules, 22(12):2577–2637, 1983.

[34] Leon Klein, Andreas Krämer, and Frank Noe. Equivariant flow matching. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in Neural Information
Processing Systems, volume 36, pages 59886–59910. Curran Associates, Inc., 2023.

[35] Andrew Leaver-Fay, Michael Tyka, Steven M Lewis, Oliver F Lange, James Thompson, Ron
Jacak, Kristian W Kaufman, P Douglas Renfrew, Colin A Smith, Will Sheffler, et al. Rosetta3:
an object-oriented software suite for the simulation and design of macromolecules. In Methods
in enzymology, volume 487, pages 545–574. Elsevier, 2011.

[36] Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d
atomistic graphs. In The Eleventh International Conference on Learning Representations, 2023.

[37] Yeqing Lin and Mohammed AlQuraishi. Generating novel, designable, and diverse protein
structures by equivariantly diffusing oriented residue clouds. arXiv preprint arXiv:2301.12485,
2023.

[38] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
protein structure with a language model. Science, 379(6637):1123–1130, 2023.

[39] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. International Conference on Learning Representations,
2023.

[40] Pertti Lounesto. Clifford algebras and spinors. In Clifford algebras and their applications in
mathematical physics, pages 25–37. Springer, 2001.

[41] Douglas Lundholm and Lars Svensson. Clifford algebra, geometric algebra, and applications.
arXiv preprint arXiv:0907.5356, 2009.

[42] Weian Mao, Muzhi Zhu, Hao Chen, and Chunhua Shen. Modeling protein structure using
geometric vector field networks. bioRxiv, pages 2023–05, 2023.

[43] Audrey Olshefsky, Christian Richardson, Suzie H Pun, and Neil P King. Engineering self-
assembling protein nanoparticles for therapeutic delivery. Bioconjugate chemistry, 33(11):
2018–2034, 2022.

[44] Sergey Ovchinnikov and Po-Ssu Huang. Structure-based protein design with deep learning.
Current opinion in chemical biology, 65:136–144, 2021.

[45] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems.
2019.

[46] J.K. Pearson and D.L. Bisset. Neural networks in the clifford domain. In Proceedings of 1994
IEEE International Conference on Neural Networks (ICNN’94), volume 3, pages 1465–1469
vol.3, 1994.

13

[47] James P Roney and Sergey Ovchinnikov. State-of-the-art estimation of protein model accuracy
using alphafold. Physical Review Letters, 129(23):238101, 2022.

[48] David Ruhe, Johannes Brandstetter, and Patrick Forré. Clifford group equivariant neural
networks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[49] David Ruhe, Jayesh K Gupta, Steven De Keninck, Max Welling, and Johannes Brandstetter.
Geometric clifford algebra networks. In International Conference on Machine Learning, pages
29306–29337. PMLR, 2023.

[50] Víctor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) equivariant graph neural
networks. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 9323–9332. PMLR, 18–24 Jul 2021.

[51] Joost Schymkowitz, Jesper Borg, Francois Stricher, Robby Nys, Frederic Rousseau, and Luis
Serrano. The foldx web server: an online force field. Nucleic acids research, 33(suppl_2):
W382–W388, 2005.

[52] Guillem Simeon and Gianni De Fabritiis. Tensornet: Cartesian tensor representations for
efficient learning of molecular potentials. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine, editors, Advances in Neural Information Processing Systems, vol-
ume 36, pages 37334–37353. Curran Associates, Inc., 2023.

[53] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[54] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[55] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick
Riley. Tensor field networks: Rotation- and translation-equivariant neural networks for 3d point
clouds. arXiv preprint arXiv:1802.08219, 2018.

[56] Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative
models with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2024.

[57] Brian L Trippe, Jason Yim, Doug Tischer, David Baker, Tamara Broderick, Regina Barzilay,
and Tommi Jaakkola. Diffusion probabilistic modeling of protein backbones in 3d for the
motif-scaffolding problem. arXiv preprint arXiv:2206.04119, 2022.

[58] Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee,
Cameron LM Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein
structure search with foldseek. Nature Biotechnology, 42(2):243–246, 2024.

[59] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

[60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[61] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David
Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J.
van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W.
Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul
van Mulbregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

14

[62] Xiyuan Wang and Muhan Zhang. Graph neural network with local frame for molecular potential
energy surface. In Learning on Graphs Conference, pages 19–1. PMLR, 2022.

[63] Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E
Eisenach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo
design of protein structure and function with rfdiffusion. Nature, pages 1–3, 2023.

[64] Benjamin Webb and Andrej Sali. Comparative protein structure modeling using modeller.
Current protocols in bioinformatics, 54(1):5–6, 2016.

[65] Kevin E Wu, Kevin K Yang, Rianne van den Berg, Sarah Alamdari, James Y Zou, Alex X Lu,
and Ava P Amini. Protein structure generation via folding diffusion. Nature Communications,
15(1):1059, 2024.

[66] Omry Yadan. Hydra - a framework for elegantly configuring complex applications. Github,
2019. URL https://github.com/facebookresearch/hydra.

[67] Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna,
Sarah Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al.
Fast protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297,
2023.

[68] Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina
Barzilay, and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone
generation. arXiv preprint arXiv:2302.02277, 2023.

[69] Jason Yim, Andrew Campbell, Emile Mathieu, Andrew Y. K. Foong, Michael Gastegger,
Jose Jimenez-Luna, Sarah Lewis, Victor Garcia Satorras, Bastiaan S. Veeling, Frank Noe,
Regina Barzilay, and Tommi Jaakkola. Improved motif-scaffolding with SE(3) flow matching.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

[70] Yang Zhang and Jeffrey Skolnick. Scoring function for automated assessment of protein
structure template quality. Proteins: Structure, Function, and Bioinformatics, 57(4):702–710,
2004.

15

https://github.com/facebookresearch/hydra

A Appendix

A.1 Background

A.1.1 Background on Geometric Algebra

In this section we give a short introduction to Clifford algebra, loosely following the presentation of
Dorst et al. [26], Dorst and De Keninck [25] and Doran and Lasenby [24].

General construction of Clifford algebras

A Clifford algebra can be constructed from a vector space V by extending it with an additional
bilinear operation called the geometric product. We write this algebra as G(V). Elements of the
algebra A ∈ G(V) are called multivectors and are written in bold. In cases where we want to
highlight that an algebra element coincides with a vector in V , we write it with a (bold) lower case
letter. Other algebra elements are generally denoted by upper case letters. The geometric product has
to fulfill the following properties [24]:

Definition A.1: Properties of the geometric product
1. Associativity: (AB)C = A(BC) A,B,C ∈ G(V)

2. Distributivity: A(B+C) = AB+AC

3. Vectors square to scalars: aa = a2 ∈ R

We denote the geometric product as juxtaposition of elements in order to distinguish it from other
products liker inner and outer product.

Algebra basis Given a basis of the underlying vector space V , {ei}ni=0, where n is the dimension
of the vector space, we can use the geometric product to construct a basis for the algebra.

{1, e1, . . . , en, e1e2, e1e3, . . . , e1 . . . en}

In general, a geometric algebra over an n dimensional vector space will have 2n basis vectors. A
general multivector can be written as a linear combination of these basis vectors. The basis elements
can be further categorized into so called grades according to the number of basis vectors they contain,
i.e. 1 will be of grade 0, ei of grade 1, eiej of grade 2 and so on. With this definition it is possible to
define the projection of an arbitrary multivector onto a specific grade [26].

Definition A.2: Grade projection
Let G[k](V) be the subspace of G(V) spanned by all multivectors of grade k. We then define
the grade projection operator

⟨·⟩k : G(V) −→ G[k](V) , (13)

which selects the k-th grade of a given multivector.

Multivectors that contain only elements of one grade receive specific names according to their grade.
Elements of grade 1 are vectors, elements of grade 2 are bivectors, elements of grade 3 are trivectors
and so on.

The metric So far we have only specified that the square of a vector should yield a scalar. In order
to uniquely define a geometric algebra it is important to specify the exact values of these scalars,
which will define a metric on the algebra. The choice of metric is crucial for the properties of the
algebra and the geometric interpretation of its elements. For an algebra over an n-dimensional vector
space we may choose n scalars, one for each basis vector. It is common to work with a metric that
assigns 1 or -1 to all non-zero values. This convention leaves {−1, 0, 1} as possible choices for the
scalars. One defines Gn,m,l as the geometric algebra with n basis vectors squaring to 1, m basis

16

vectors squaring to −1 and l basis vectors squaring to 0. Having fixed a metric for the vectors of the
algebra we can go on to discuss the construction of a norm for general multivectors. The definition of
the norm in geometric algebra uses the concept of reversion which is defined as follows:

Definition A.3: Reversion
Let a1,a2, . . .an ∈ G[1](V), n ∈ N be vectors and A =

n∏
i=1

ai the geometric product of

these vectors, then the reverse of A is defined as

Ã =

n∏

i=1

an−i+1, (14)

i.e. we reverse the order of the vector elements. For a general multivector, which may consist
of a sum of elements of the form of 14, we apply the reverse operation to each summand
individually.

A norm on general mutltivectors can then be defined as:

Definition A.4: Norm
Let A ∈ G(V) be a multivector, then the norm of A is defined as

∥A∥ =

√
⟨ÃA⟩0. (15)

The Euclidean geometric algebra G3

One of the most prominent examples for a geometric algebra is the Euclidean geometric algebra
G3, which is the geometric algebra over R3 with the standard Euclidean metric, i.e. a vector basis
{e1, e2, e3} fulfilling e21 = e22 = e23 = 1. Apart from the geometric product we can define two
additional operations that will be useful for further analysis.

Definition A.5: Inner and outer product
Given two arbitrary vectors a,b ∈ G[1]

3 we can separate their geometric product into a
symmetric and antisymmetric part

ab =
1

2
(ab+ ba) +

1

2
(ab− ba) . (16)

One typically refers to 1
2 (ab+ ba) =: a ·b as the inner product and 1

2 (ab− ba) =: a∧b
as the outer product of the two vectors. The geometric product of a and b can then be
written as

ab = a · b+ a ∧ b. (17)

This definition only holds for vectors. For an extension to arbitrary multivectors see [24]. To further
investigate the properties of these products we can look at the square of the sum of two vectors
(a+ b)

2. Expanding the product and rearranging the terms yields

1

2
(ab+ ba) =

1

2
(a+ b)

2 − a2 − b2 = a · b. (18)

Since all terms on the right side are scalars due to the third property in Definition A.1, we can
conclude that the inner product of two vectors is a scalar itself. In fact, 18 corresponds to the well
known polarization identity from linear algebra, and since we defined the norm of vectors to be
the standard Euclidean norm, the inner product from Definition A.5 is the standard Euclidean inner
product.

Using 17 we can also introduce the notion of an orthogonal basis. Just as in linear algebra a vector
basis {ei}i is called orthogonal if ei · ej = 0 for i ̸= j. In the following discussion we will

17

x
y

z

1

x
y

z

e1

e2

e3

x
y

z

e1e2

e2e3e3e1

x
y

z

e1e2e3

Figure A.1: Visualization of the different geometric primitives in G3. Vectors are directed line
segments, bivectors are oriented areas and trivectors are oriented volumes. Orientations are indicated
by arrows that have the same sense of rotation as the corresponding basis vectors when linked together
end to tip.

always assume an orthogonal basis. As a consequence of 17 for i ̸= j basis elements anticommute
eiej = −ejei and the geometric product is equal to the outer product eiej = ei ∧ ej .

Geometric interpretation of the algebra elements As the name geometric algebra suggests, it
is possible to assign geometric meaning to the algebra elements with grade greater than 0. Grade
one elements or vectors keep their usual geometric interpretation as directed line segments. To find
an interpretation for higher grade elements, one can observe that the outer product of two vectors
A = a ∧ b defines a homogeneous subspace in the sense that for every vector in the span of a and b
the following equation holds

x ∈ A = span {a,b} ⇐⇒ x ∧A = 0, (19)

as shown in [26]. Additionally A has a magnitude according to Definition A.4 and also an orientation
due to the antisymmetry of the outer product. For example e1 ∧ e2 has opposite orientation compared
to e2 ∧ e1 = −e1 ∧ e2 as indicated by the relative minus sign. 2-blades, that is multivectors which
can be written purely as the outer product of two vectors, can thus be interpreted as oriented areas,
which lie within the subspace spanned by their generating vectors and area equal to the norm of the
blade. Analogously 3-blades, multivectors equal to the outer product of three vectors, correspond to
oriented volumes. Notably like vectors, 2-blades and 3-blades neither have a position in space nor do
they have a specified shape. The only fixed properties are the magnitude of their area/volume as well
as their orientation. The geometric interpretation of algebra elements is visualized in A.1.

Grades of the same dimensionality are closely related by a relation called duality. Graphically
speaking, a plane in 3D space for example can be represented both as the plane itself or by the normal
vector that is orthogonal to it. In algebraic terms this translates to e.g. e3 representing the normal
vector of the plane described by the bivector e1e2. One says that these two elements are dual to
each other. In the same way, scalars are dual to trivectors since trivectors, like scalars, have only one
degree of freedom in three dimensions and are thus also sometimes called pseudoscalars. Formally
duality in G3 can be defined as follows:

Definition A.6: Duality
Let A ∈ G3 and I = e1e2e3. Then the dual of A is given by

A∗ = IA (20)

Finally, it is also insightful to calculate the magnitude of the area represented by a 2-blade. To this end
we notice that, using the Einstein sum convention, the outer product of two vectors a = aiei, b =
ajej can be written as

a ∧ b = aiajei ∧ ej = aiajeiej = ϵijkaibjIek = I (a× b) , (21)

where ϵijk is the Levi-Civita symbol and × denotes the usual vector cross product. This shows that
in G3 the outer product yields the 2-blade which is dual to the resulting vector of the cross product

18

a

a∥

a⊥

a′

Figure A.2: Visualization of the reflection of a vector a at a plane.

with the same magnitude. In fact, the outer product can be seen as generalization of the cross product
to arbitrary dimensions. The magnitude can be calculated from 15, yielding

∥a ∧ b∥ =

√
⟨∥a× b∥2ĨI⟩0 =

√
∥a× b∥2 = ∥a∥∥b∥| sin(α)|, (22)

where α is the angle enclosed by a and b. This is exactly the area of the parallelogram spanned by
the two vectors. Similar calculations can be performed for the case of 3-blades to show that their
magnitude is equal to the volume of the parallelepiped spanned by their three generating vectors.
These findings further support the idea of interpreting bivectors and trivectors as area and volume
elements respectively.

Orthogonal transformations Another important class of operations which geometric algebra can
describe in an efficient way are orthogonal transformations, that is transformations T : G3 → G3

which preserve the inner product between vectors. In group theoretic terms, these transformations
form the group O(3). In order to construct such transformations we first look at how reflections are
handled in G3.

Definition A.7: Reflection
Let a ∈ G[1]

3 be a vector and n ∈ G[1]
3 be the unit normal vector of a plane. The reflection of

a at that plane is then given by

a′ = −nan. (23)

To see why this indeed corresponds to a reflection, we decompose a into a parallel and orthogonal
part with respect to the normal vector n as shown in A.2. Algebraically this can be written as

a = n2a = n(na) = n(n · a+ n ∧ a) (24)
= n(n · a)︸ ︷︷ ︸

=a∥

+n(n ∧ a)︸ ︷︷ ︸
=a⊥

. (25)

The first summand corresponds to the usual projection formula from linear algebra and can thus be
identified as the parallel part. Since the whole expression equals a, the second summand must be the
orthogonal part. The reflected vector can now be obtained by reversing the sign of a∥.

a′ = −a∥ + a⊥ = −n(a · n) + n(n ∧ a) (26)

= −n(a · n)− n(a ∧ n) = −n(a · n+ a ∧ n) (27)
= −nan. (28)

19

From 26 to 27, we used the antisymmetry of the outer product. This construction of reflections shows
that elements of Euclidean geometric algebra can simultaneously be interpreted as geometric objects
as well as transformation operators, a concept which also translates to other geometric algebras.

To construct general orthogonal transformations we can make use of the following theorem.

Theorem A.1: Cartan-Dieudonné theorem
Let (V, q) be a nondegenerate space of dimension n, then any orthogonal transformation can
be written as a composition of at most n reflections.

For a proof see [41]. In the context of G3, this implies that any orthogonal transformation of a
vector, which in addition to reflections comprises rotations around lines through the origin as well as
compositions of both operations, can be written as

a′ = ±VaṼ, V ∈ G3, ∥V∥ = 1. (29)

The definition can be extended to higher grade blades, by transforming each of its vectors individually.
The transformation of a general blade can then be written as

k∧

i=1

ai →
k∧

i=1

(
±VaiṼ

)
= (±1)kV

(
k∧

i=1

ai

)
Ṽ. (30)

The property that the outer product of the transformed vectors is equal to the transformed outer product
makes any orthogonal transformation a so called outermorphism. As a consequence, orthogonal
transformations preserve the grade of blades, which geometrically translates to the fact that vectors
are transformed to vectors, bivectors to bivectors and so on, which is what we would expect from a
geometric transformation (a vector will not become a volume when rotated). A formal proof of this
property can be found in [26].

The multivector V in 29 is called a versor. Versors together with the geometric product form a group
on their own, the so called Pin(3) group. This group is said to be the double cover of O(3) (see
[40]). 30 is both a representation of O(3) and Pin(3). One can generalize this definition to arbitrary
geometric algebras in the following way:

Definition A.8: The Pin(n,m,l) and Spin(n,m,l) groups
Let V = {v ∈ Gn,m,l | ∥v∥ = 1} be the set of versors . Then V together with the geometric
product forms the group Pin(n,m, l).
Let V = {v ∈ G+

n,m,l | ∥v∥ = 1} be the set of even versors, i.e. versors that only involve
even grades. Then V together with the geometric product forms the group Spin(n,m, l).

The projective geometric algebra G3,0,1

The Euclidean geometric algebra G3 allows for a powerful description of geometric objects in 3D
space. However, it lacks the ability to describe absolute positions. For example, planes parametrized
by 2-blades are restricted to go through the origin, and vectors only describe a relative displacement,
not points in space. These problems are solved by the projective geometric algebra (PGA), which is
the geometric algebra G3,0,1 with three Euclidean basis vectors squaring to 1, e21 = e22 = e23 = 1
and one null vector squaring to 0, e20 = 0. We thus use an algebra based on a four dimensional
vector space to describe 3D space, similarly to what one does with homogeneous coordinates. In the
following we will denote PGA vectors which only contain a Euclidean part by a⃗.

There are multiple ways to interpret the different algebraic elements geometrically. Here, we will
focus on the plane-based approach as described in [25], since this yields the most useful description
of Euclidean motions as orthogonal transformations. Elements of grade 1 are interpreted not as points
but as planes, i.e. a vector of the form

n = n⃗+ δe0 (31)

20

Figure A.3: Visualization of the different geometric primitives in G3,0,1. Vectors represent planes,
2-blades represent lines resulting from the intersecting of its generating planes and 3-blades represent
points as the intersection of three planes.

Table A.1: Basis elements of the projective geometric algebra along with their geometric interpretation

Grade Basis Elements Geometric Interpretation

0 {1} scalar
1 {e0, e1, e2, e3} planes
2 {e0e1, e0e2, e0e3, e1e2, e1e3, e2e3} lines, vanishing lines
3 {e0e1e2, e0e1e3, e0e2e3, e1e2e3} points, vanishing points
4 {e0e1e2e3} pseudoscalar

corresponds to a plane with (Euclidean) normal vector n⃗ and a distance δ from the origin. In turn, the
Euclidean vectors e1, e2, e3 correspond to basis planes through the origin, whereas e0 is interpreted
as the plane at infinity. Notably any multiple of 31 of the form α(n⃗+ δe0), α ∈ R represents the
same plane.

Similarly to the case of G3, we can make use of 19 to obtain a geometric interpretation for blades of
higher grade. For 2-blades of the form L = a ∧ b, the subspace spanned by a and b corresponds to
all planes which contain the line of intersection between the two original planes. It is thus sensible
to take L as representation of this line. Similarly, a 3-blade X = a ∧ b ∧ c corresponds to the
subspace spanned by all planes which contain the point of intersection of a,b, and c, and thus
3-blades represent points in PGA. The logic behind this construction is visualized in A.3.

PGA also contains additional classes of geometric objects which e.g. result from taking the outer
product of parallel planes. For a further discussion of these, we refer to [25].

Meet and Join We have seen that the outer product in PGA can be used to calculate the intersection
of geometric objects. In this context it is thus also known as the so called meet. There is also an
opposite operation called the join3, which, as the name suggests, e.g. maps two points to the line
which passes through both of them. In order to properly define the join we first extend the concept of
duality from G3 to G3,0,1.

Definition A.9: Hodge duality
Let X ∈ G3,0,1 be a blade. Then its hodge dual ⋆X is defined via

X ⋆X =
(
XeX̃e

)
I, (32)

where Xe is the Euclidean part of X without e0. For general multivectors the hodge dual is
performed bladewise.

As explained in [25], this definition is slightly different compared to Definition A.6 since in PGA
e0 does not have a multiplicative inverse. However, the overall idea to map between the different

3In some literature the roles of meet and join are actually reversed, i.e. the outer product takes the role of the
join. This seeming contradiction can be explained by the fact that we follow the approach of interpreting vectors
as planes and not as points.

21

subspaces of equal dimensionality is still the same. In practice the hodge dual maps a basis element
simply to the element which contains all the basis vectors not present in the initial multivector (in
some situations with an additional minus sign), e.g. ⋆e0e3 = e1e2 (confer [25] for more details).
Using the hodge dual one can define the join as follows.

Definition A.10: Join
Let A,B ∈ G3,0,1, then the join between these multivectors is defined as

A ∨B = ⋆−1(⋆B ∧ ⋆A), (33)

where ⋆−1 is the inverse hodge dual, which differs from the usual hodge dual by a sign for
some elements.

As mentioned earlier, the join can be viewed as being dual to the meet, linking geometric objects
together instead of finding their incidence. In that way, the join of two points is the line connecting
both of them and the join of three points results in a plane containing all three points.

In PGA a norm for multivectors can be defined analogously to Definition A.4. However, since PGA
contains the null vector e0, only half of the components of a general multivector contribute to the
value of the norm. It is thus useful to define a second norm which depends on all of the components
which contain e0.

Definition A.11: Infinity norm
Let A ∈ G3,0,1, then its infinity norm is given by

∥A∥∞ = ∥⋆A∥. (34)

Euclidean transformations Similarly to the case of G3, one can write the reflection of a plane m
in another plane p as

m′ = −pmp, ∥p∥ = 1. (35)

Reflection of higher grade blades, e.g. lines and points, can again be achieved by reflecting each
vector in the blade individually and making use of the fact that the reflection is an outermorphism

k∧

i=1

ai →
k∧

i=1

(−paip) = (−1)kp

(
k∧

i=1

ai

)
p. (36)

The crucial difference in comparison to G3 is that the reflecting plane is no longer restricted to go
through the origin. This allows one to do consecutive reflections not only in intersecting planes, but
also in parallel planes. Two important special cases are the reflections in two intersecting planes and
the reflecions in two parallel planes as shwon in A.4. The first case corresponds to a rotation around
the line of intersection by an angle which is twice the angle enclosed by the planes. The second case
results in a translation along the distance vector by an amount equal to twice the distance between the
planes (see [25]).

Compositions of these two types of transformations make up the special Euclidean group SE(3),
which can be seen as the group of rigid body motions. This means that every Euclidean transformation
which does not involve reflections can be embedded as an element of the even subalgebra G+

3,0,1 =

{A ∈ G3,0,1 | ⟨A⟩k = 0, k odd}, as stated in the following theorem:

22

Figure A.4: Visualization of the different geometric transformations in G3,0,1

Theorem A.2: Euclidean motors
Let T ∈ SE(3) be an element of the special Euclidean group. Then there exists a multivector
called motor in the even subalgebra M ∈ G+

3,0,1 with ∥M∥ = 1 such that

X′ = MXM̃, (37)
with an arbitrary multivector X ∈ G3,0,1, is a representation of T on G3,0,1.

We emphasize that the expression in 37 can be applied to any geometric object which is representable
in the algebra, i.e. it does not matter if X is a point, a vector, or a plane; the correct equation to
transform it always takes the above form. This remarkable property can also be found for other
important operations in PGA. In fact, we have already mentioned the meet operation which allows to
calculate intersections of arbitrary geometric objects A,B ∈ G3,0,1 via the universal formula A∧B,
as well as the join which can likewise be applied to pairs of arbitrary objects.

Metric Relations We have already seen how to transform objects, find incidences between them,
and join them together. Furthermore the basic operations of PGA allow to calculate a host of different
metric relations between its elements. Below we provide a non-complete list of examples.

Theorem A.3: Metric relations
Let p1,p2 ∈ G[1]

3,0,1 be planes, L ∈ G[2]
3,0,1 be a line and P1,P2 ∈ G[3]

3,0,1be points, which are
all normalized, i.e.

∥p1∥ = ∥p2∥ = ∥L∥ = ∥P1∥ = ∥P2∥ = 1,

then we can calculate the following relations:

• Distance between points P1,P2

∥P1 ∨P2∥ (38)

• Distance between point P1 and line L

∥P1 ∨ L∥ (39)

• Distance between point P1 and plane p1

∥P1 ∧ p1∥∞ (40)

• Angle between planes p1,p2

sin−1 (∥p1 ∧ p2∥) (41)

• Angle between plane p1 and line L

sin−1 (∥ ⟨p1L⟩3 ∥) (42)

23

For an extensive list of operations see [25].

A.2 Methodology

A.2.1 GAFL architecture

zl

sl

Gl

Tl

zl+1

sl+1

Gl+1

Tl+1

Clifford Frame
Attention

⊕
Transformer

⊕
MLP

Node update

Backbone update

Edge Update

Figure A.5: High level overview over the GAFL architecture. The architecture was adapted from
FrameDiff/FrameFlow [68, 67]. We replaced invariant point attention (IPA) with Clifford frame
attention (CFA) and added geometric node features G.

We adapted the GAFL architecture from FrameDiff/FrameFlow [68, 67] and replaced invariant point
attention (IPA) with Clifford frame attention (CFA) (see Algorithm 3). Furthermore we introduced
geometric node features Gi that are used in the prediction of geometric attention values and backbone
frame updates. An overview over the architecture is shown in Figure A.5. The backbone update block
is presented in Algorithm 6. For details on the edge update we refer to [68].

A.2.2 Invariant Point Attention

In the following we provide a short overview over the IPA architecture.

Invariant point attention uses local frames to construct the messages between nodes, where the
coordinate frames are given by the frames of the individual residues. The full procedure is presented
in algorithm 1 and visualized in A.6. The part of IPA that processes geometric information (red nodes
in A.6) can be summarized as follows:

1. Learn a certain number of local vector valued queries, keys and values q⃗i, k⃗i, v⃗i.
2. In the calculation of attention scores, transform the local queries and keys into the global

frame via Ti ◦ q⃗i and calculate the squared distance between them. Importantly they should
be thought of as points in 3D space rather than vectors, meaning that they change under

si

zij

Ti

L
in
ea
r

L
in
ea
r

qhi

kh
i

q⃗ h,p
i

k⃗h,p
i

A
tt
en

ti
o
n

ah
ij

Linear

Linear vhi

v⃗ h,p
i

∑
j

∑
j

Norm

L
in
ea
r

s′i

Figure A.6: High level overview of invariant point attention [32]. Blue nodes represent layers which
process scalar information, while red nodes represent layers which process geometric information.

24

Algorithm 1 Invariant point attention (IPA) [32]

1: procedure IPA({si} , {zij} , {Ti} , Nhead = 8, c = 128, Nquery points = 8, Npoint values = 12)
2: qh

i ,k
h
i ,v

h
i = LinearNoBias (si) ▷ qh

i ,k
h
i ,v

h
i ∈ Rc, h ∈ {1, . . . , Nhead }

3: q⃗hp
i , k⃗hp

i = LinearNoBias (si) ▷ q⃗hp
i , k⃗hp

i ,∈ R3, p ∈ {1, . . . , Nquery points }
4: v⃗hp

i = LinearNoBias (si) ▷ v⃗hp
i ∈ R3, p ∈ {1, . . . , Npoint values }

5: bhij = LinearNoBias (zij)

6: wC =
√

2
9Nquery points

,

7: wL =
√

1
3

8: ahij = softmaxj

(
wL

(
1√
c
qh⊤
i kh

j + bhij −
γhwC

2

∑
p

∥∥∥Ti ◦ q⃗hp
i − Tj ◦ k⃗hp

j

∥∥∥
2
))

9: õh
i =

∑
j a

h
ijzij

10: oh
i =

∑
j a

h
ijv

h
j

11: o⃗hp
i = T−1

i ◦
∑

j a
h
ij

(
Tj ◦ v⃗hp

j

)

12: s̃i = Linear
(
concath,p

(
õh
i ,o

h
i , o⃗

hp
i ,
∥∥∥o⃗hp

i

∥∥∥
))

13: return {s̃i}
14: end procedure

Algorithm 2 Original backbone update [32]

1: procedure BACKBONEUPDATE({si}, {Ti})
2: bi, ci, di, t⃗i = Linear(si)

3: (ai, bi, ci, di) = (1, bi, ci, di)/
√
1 + b2i + c2i + d2i

4: Ri = QuaternionToMatrix(ai, bi, ci, di)

5: T̃i = (Ri, t⃗i)

6: return Ti ◦ T̃i
7: end procedure

translations, which vectors would not, and also making the L2-norm of their separation a
somewhat natural map to construct invariant attention scores.

3. In the message passing step, transform vector valued features from the neighboring frame j
to the node frame i via T−1

i ◦ Tj ◦ q⃗i and aggregate the vector valued information over all
neighbors.

4. Finally, concatenate the output vectors along with their norm with the remaining scalar
output features and put them through a final linear layer.

The update of the backbone frames, which is used in conjunction with IPA e.g. in [32, 67], is
accomplished by learning an SE(3) transformation per frame which is concatenated with the current
frame representation. To this end, the network predicts a quaternion for the rotation and a translation
vector from the scalar node features si as shown in algorithm 2

A.2.3 Clifford frame attention

An overview over the CFA architecture is given in Figure A.7. The proposed changes to the original
IPA and FrameDiff architecture are shown in algorithms 3 and 6, highlighted in blue. They can be
summarized as follows:

1. We replace point-valued attention values with multivectors Vhp
i and also introduce geometric

node features Gi ∈ G3,0,1.

2. We compute node features Trel containing aggregated relative transformations between
frames Ti and Tj as

25

si

zij

Ti

L
in
ea
r

L
in
ea
r

qhi

kh
i

q⃗ h,p
i

k⃗h,p
i

A
tt
en

ti
o
n

ah
ij

LinearGi

Linear vhi

V h,p
i

∑
j

∑
j Bilinear

ManyBody

Norm

Geometric MP

L
in
ea
r

s′iG′
i

Figure A.7: Overview of Clifford frame attention. Blue nodes represent layers which process scalar
information, red nodes represent layers which process point valued information and orange nodes
represent layers which process features in the PGA. The central innovation is the novel construction
of geometric messages, summarized in the grey box. To retain readability we omit the calculation of
relative frame transformations in the chart.

Trel
i ≡

∑

j

aijT
−1
i Tj (43)

These features are concatenated with the remaining geometric features and also passed
directly to the backbone update block via a residual connection.

3. Messages are formed by applying geometric bilinear layers from [13] to node features of
each node pair, as described in algorithm 4. The EquiLinear layer refers to the most general
equivariant linear layer in PGA, also introduced in [13], which for input features Xn can be
written as

EquiLinear(Xn) =
∑

m

[
4∑

k=0

wknm⟨Xm⟩k +

3∑

k=0

vknme0⟨Xm⟩k

]
. (44)

Although we do not need this property for enforcing equivariance, we use it for its parameter
efficiency and geometric inductive bias.

4. We construct implicit higher body messages inspired by MACE [6]. Bilinearity of the
geometric product and the join means that repeated products of aggregated two-body
messages correspond to a sum of N -body messages as shown in eq. 11. In algorithm 5, we
use the geometric product and the join to construct three-body messages from aggregated
two-body messages, stored in node features A.

5. In addition to the Euclidean norm we also compute the infinity norm (see Definition A.11)
of multivector features after message passing.

6. In the Backbone update step (Algorithm 6), we concatenate scalar and geometric features
along the feature dimension and pass them through an MLP to predict multivectors R and S
that parameterize a rotation and translation respectively. These are then multiplied with the
current frames to compute frame updates. The main difference to the backbone update as
used in [32, 67] is the inclusion of geometric features and the use of the MLP. The prediction
of rotor and translator instead of a rotation matrix and translation vector is just a matter of
representation.

A.2.4 Equivariance of GAFL

As in the original IPA formulation, SE(3) equivariance of the GAFL architecture is based on express-
ing geometric features in canonically induced local frames, as described in section 3.

More specifically, going through the architecture step by step, the attention scores are calculated
using the L2 norm of the difference of point features, which is E(3) invariant. Equivariance of the

26

Algorithm 3 Clifford frame attention

1: procedure CFA({si} , {Gi} , {zij} , {Ti} , Nhead = 8, c = 128, Nquery points = 8, Npoint values =
4)

2: qh
i ,k

h
i ,v

h
i = LinearNoBias (si) ▷ qh

i ,k
h
i ,v

h
i ∈ Rc, h ∈ {1, . . . , Nhead }

3: q⃗hp
i , k⃗hp

i = LinearNoBias (si) ▷ q⃗hp
i , k⃗hp

i ,∈ R3, p ∈ {1, . . . , Nquery points }
4: Vp

i = Linear (si) ▷Vp
i ∈ R16, p ∈ {1, . . . , Npoint values }

5: Vhp
i = EquiLinear (concatp (V

p
i ,G

p
i))

6: bhij = LinearNoBias (zij)

7: wC =
√

2
9Nquery points

,

8: wL =
√

1
3

9: ahij = softmaxj

(
wL

(
1√
c
qh⊤
i kh

j + bhij −
γhwC

2

∑
p

∥∥∥Ti ◦ q⃗hp
i − Tj ◦ k⃗hp

j

∥∥∥
2
))

10: õh
i =

∑
j a

h
ijzij

11: oh
i =

∑
j a

h
ijv

h
j

12: Trel h
i =

∑
j a

h
ijT

−1
i Tj

13: Ṽhp
i = EquiLinear

(
concat

(
Vhp

i ,Trel h
i

))

14: Ohp
i = GeometricBilinear

(
T-1

i

∑
j aij

(
TjṼ

hp
j T-1

j

)
Ti, V

hp
i

)

15: Ohp
i = GeometricManyBodyProduct(Ohp

i)

16: s̃i = Linear
(
concath,p

(
õh
i ,o

h
i ,O

hp
i ,
∥∥∥Ohp

i

∥∥∥ ,
∥∥∥Ohp

i

∥∥∥
∞
,Trel h

i

))

17: G̃i = EquiLinear(Ohp
i)

18: return
{
s̃i, G̃i,T

rel
i

}

19: end procedure

Algorithm 4 GeometricBilinear [13]

1: procedure GEOMETRICBILINEAR(A,B)
2: GL = EquiLinear (A)
3: GR = EquiLinear (B)
4: G = GeometricProduct(GL,GR)
5: JL = EquiLinear (A)
6: JR = EquiLinear (B)
7: J = Join(JL,JR)
8: return EquiLinear (concat (G,J))
9: end procedure

message aggregation step is guaranteed by the expression

T−1
i ◦ Tj ◦ v⃗hpj

in line 11 of algorithm 1, where v⃗hpj are SE(3) invariant point values and the frames {Ti} transform
according to Ti → Tglobal ◦ Ti such that the whole expression remains invariant:

T−1
i ◦ T−1

global ◦ Tglobal ◦ Tj ◦ v⃗
hp
j = T−1

i ◦ Tj ◦ v⃗hpj .

In GAFL, we do not modify the calculation of attention scores from IPA, which means that their
invariance remains ensured. During message passing, we use the same construction as above (see line
11 of Algorithm 3), but use a different representation of SE(3), namely multivector features instead
of point features. The choice of representation, however, does not influence the invariance of the
whole expression. Also the relative frame transformations T−1

i Tj we compute are invariant. All
subsequent layers including the GeometricBilinear layer and the ManyBodyProduct layer operate
exclusively on invariant node features, hence overall equivariance is retained throughout those layers.

27

Algorithm 5 GeometricManyBodyProduct

1: procedure GEOMETRICMANYBODYPRODUCT(A, Wnijk, W̃nijk)
2: X = EquiLinear(A) ▷A contains aggregated messages
3: Y = EquiLinear(A)

4: On =

[∑
ijk

(
Wnijk

〈
⟨Xn⟩j⟨Yn⟩k

〉

i

+ W̃nijk

〈
⟨Xn⟩j ∨ ⟨Yn⟩k

〉

i

)]
+Yn

5: return O
6: end procedure
7: ▷ n is a feature dimension, W , W̃ are learnable, ⟨X⟩i is the projection onto the i-th grade of X

Algorithm 6 Backbone update

1: procedure BACKBONEUPDATE({si}, {Gi}, {Trel
i }, {Ti})

2: bi, ci, di, t⃗i = MLP(concat
(
si,Gi,T

rel
i)
)

3: Ri = EmbedRotor(bi, ci,di)
4: Si = EmbedTranslator(t̃i)
5: return TiRiSi

6: end procedure

Finally, in the backbone update step, we predict an invariant frame update, just like in IPA, which
when concatenated with the original frame transforms equivariantly:

TiTupdate → TglobalTiTupdate.

Permutation equivariance is also maintained by the GAFL architecture, since we use message passing
on the fully connected graph. In the setting at hand, however, we break this permutation equivariance
intentionally by introducing positional encodings for the nodes, as done in models that rely on original
IPA such as RFdiffusion.

A.3 Experiments

A.3.1 Definition of novelty and diversity

For each sampled length, we compute the pairwise Template Modeling (TM) score between designable
backbones as a measure for similarity between folds [70] and report diversity as the TM score averaged
over all lengths,

Diversity =
1

N

N∑

l=1

1

nl(nl − 1)

nl∑

i=1

nl∑

j=1
j ̸=i

TM(xi,xj)

with the total number N of sampled lengths, the number of designable samples nl at a given length,
and the xi and xj being the i-th and j-th samples, respectively.

The resulting diversity score reports on how similar are sampled backbones to each other. We
compare the structures of designable samples to the natural proteins found in the PDB database using
FoldSeek [58] in TMalign mode, and define novelty as the average of the highest TM score calculated
over all designable samples:

Novelty =
1

n

n∑

i=1

max
j

TM(xi,xj)

with n the number of all designable samples and xj being the sample from the PDB database with
the highest TM score to the sample xi

Since diversity and novelty are defined as averaged similarity scores, small values are desirable for
the generation of structurally distinct and de novo proteins.

28

Table A.2: Performance of different models when generating 10 backbones for each length in
{60, 61, . . . , 128}. For strand and helix content, we choose the PDB dataset filtered for lengths 60 to
128 as reference. FrameFlow denotes the model trained on the PDB published in [69].

Method Designability (↑) Diversity (↓) Novelty (↓) Helix Content Strand Content

PDB (128) - - - 0.36 (0.00) 0.22 (0.00)

SCOPe(128) - - - 0.33 (0.00) 0.26 (0.00)

Genie-SCOPe 0.72 (0.02) 0.38 (0.00) 0.67 (0.00) 0.66 (0.01) 0.07 (0.01)
Genie-SwissProt 0.79 (0.02) 0.37 (0.00) 0.68 (0.00) 0.66 (0.01) 0.09 (0.01)
FoldFlow-OT 0.99 (0.00) 0.49 (0.01) 0.83 (0.01) 0.87 (0.00) 0.00 (0.00)
FrameDiff 0.81 (0.02) 0.44 (0.00) 0.72 (0.00) 0.39 (0.01) 0.30 (0.01)
FrameFlow 0.95 (0.01) 0.38 (0.00) 0.75 (0.00) 0.53 (0.01) 0.22 (0.01)
RFdiffusion 0.98 (0.01) 0.43 (0.01) 0.8 (0.00) 0.78 (0.00) 0.07 (0.00)

GAFL 0.96 (0.01) 0.38 (0.00) 0.78 (0.00) 0.49 (0.01) 0.27 (0.01)

A.3.2 Baselines used for comparison with GAFL

We generate backbones using RFdiffusion relying on publicly available weights with default settings
(noise_scale_ca: 1) (GitHub RFdiff). For Genie, we use the model with the published weights
trained either on the SCOPe or SwissProt datasets containing proteins of up to 128 or 256 residues
long(GitHub Genie), and generate backbones with sampling for 1000 time steps, as it has demon-
strated the best performance. FrameDiff was used with the newest published model weights
(best_weights.pth) with sampling for 500 timesteps (GitHub FrameDiff). FrameFlow was used
with the published weights trained on the same dataset as GAFL (GitHub FrameFlow). The originally
model, denoted as FrameFlow∗ can be found at (GitHub FrameFlow (legacy)). We note that the
GitHub repository supporting FrameFlow contains an implementation of minibatch OT [10], which
we use for retraining FrameFlow. For FoldFlow we use the optimal transport model (foldflow-ot.pth)
with inference annealing as suggested by [10] and sampling for 500 timesteps (GitHub FoldFlow).

A.3.3 Results for small proteins

In order to evaluate GAFL’s performance for small proteins in particular, we evaluate a range of
models in the setting from the original FrameFlow [67] paper, where 10 backbones per length in
{60, 61, . . . , 128} are generated. Apart form the models in Table 1, we also evaluate Genie [37],
which was trained on backbones smaller than 300 residues and were therefore excluded from the
evaluation in Table 1.

We find that GAFL and FrameFlow are the only models capable of generating highly designable
backbones with diverse secondary structures for the considered length range, where GAFL outper-
forms FrameFlow in designability and secondary structure content. While FoldFlow and RFdiffusion,
like GAFL, achieve designabilities over 90%, they generate backbones with 0% and 7% β-strand
content, respectively, indicating a mode-collapse towards generating α-helical structures. GAFL
also outperforms both RFdiffusion and FoldFlow in terms of diversity and novelty. All other models
considered have significantly lower designability. For Genie in particular, we observe good novelty
but it has the lowest designability among the models considered and also under-represents beta
strands.

A.3.4 Results for long proteins

We also evaluate the performance of GAFL for generating proteins up to length 500, which enables to
compare GAFL against vector field networks (VFN) [42], which at the time of writing have no pub-
lished model weights. We thus evaluate GAFL and other baselines trained on the PDB with the same
inference settings as in [42], sampling 5 protein backbones for each length in {100, 105, . . . , 500}.
We report the results in Table A.3. For VFN, we can only report on designability since [42] have
different definitions for diversity and novelty respectively and do not calculate the secondary structure
content of generated structures.

29

https://github.com/RosettaCommons/RFdiffusion
https://github.com/aqlaboratory/genie
https://github.com/jasonkyuyim/se3_diffusion
https://github.com/microsoft/protein-frame-flow
https://github.com/microsoft/protein-frame-flow/tree/legacy
https://github.com/DreamFold/FoldFlow

Table A.3: Comparison of GAFL with VFN, FrameDiff, and RFdiffusion for the generation of 5
protein backbones at each length ∈ {100, 105, . . . , 500}. Values for VFN from [42].
Method Designability (↑) Diversity (↓) Novelty (↓) Helix Content Strand Content

FrameDiff 0.28 (0.02) 0.44 (0.01) 0.70 (0.01) 0.57 0.17
VFN 0.44 - - - -
RFdiffusion 0.71 (0.01) 0.36 (0.00) 0.68 (0.00) 0.52 0.28
FrameFlow∗ 0.64 (0.02) 0.33 (0.00) 0.70 (0.01) 0.64 0.15
GAFL (Ours) 0.74 (0.01) 0.35 (0.00) 0.74 (0.00) 0.68 0.14
*Published model weights

We find that GAFL generates the highest fraction of designable backbones, while also yielding
the highest diversity. At the same time RFdiffusion has the best novelty and generates structures
with a secondary structure content which is closest to the PDB. The trend that GAFL outperforms
RFdiffusion with respect to secondary structure content on small proteins but performs worse on
longer proteins is also already apparent from Figure 3.

A.3.5 Ablation for CFA on the PDB

As described in Section 4.5, we retrained FrameFlow in the same setup as GAFL with default
hyperparameters from the repository in A.3.2. For both FrameFlow and GAFL, we performed
three training runs with the hyperparameters reported in Appendix A.3.8. For all runs we selected
checkpoints using our checkpointing criterion, described in Section 4.1. In Table 2, we report the
performance of the best checkpoints per run.

As extension of Figure 3, we directly compare the designability of GAFL and the published Frame-
Flow model by length in Figure A.8. We find that GAFL has higher designability for lengths smaller
than 200 and greater than 250. Since we only generate 200 backbones for each length, the margins of
error of the individual designabilities overlap, except for length 300. The total designability of GAFL,
averaged over all 1000 backbones, however, is significantly better than that of FrameFlow (Table 1).

Figure A.8: Designability of GAFL and the published FrameFlow model as a function of length with
standard errors obtained by bootstrapping the set of generated samples. 200 backbones are generated
for each length, as in Figure 3.

A.3.6 Timestep analysis of GAFL

We perform a timestep analysis, evaluating the best GAFL checkpoint with a different number of
timesteps taken during inference, in order to judge its impact on the designability metric. To this
end we generate 100 backbones for each length in {100, 150, . . . , 300}, for different numbers of
timesteps. We see that the performance beyond 200 timesteps stays almost constant, suggesting that
200 timesteps represents a good tradeoff between performance and inference speed.

30

Figure A.9: Designability as a function of timesteps used during inference. 100 backbones for each
length in {100, 150, . . . , 300} were sampled per each data point. Vertical lines denote the standard
deviation.

A.3.7 Inference Efficiency

We report the time needed for sampling protein backbones of length 100 on an NVIDIA A100 GPU
with published model weights and default settings as described in A.3.2.

Table A.4: Time needed for sampling protein backbones of length 100 on an NVIDIA A100 GPU.
Method Timesteps Time per Structure (s)

RFdiffusion 50 21.0
FrameDiff 500 24.3
FoldFlow 500 24.2
FrameFlow 200 6.6
GAFL 200 8.8

A.3.8 Training on PDB

On the PDB dataset, we train both GAFL and FrameFlow for 5200 epochs, where one epoch is
defined as one iteration over all 4776 clusters, which we define as in FrameDiff by 30% sequence
similarity. The learning rate is increased in 50 warmup steps to 0.0002 and then kept constant for
3500 epochs. From there we use a cosine-annealing schedule to decrease the learning rate to 0.0001
at epoch 5000. From epoch Ntrain = 5000 to Ntrain +Nselect = 5200 we employ our checkpointing
criterion described in Section 4.1 evaluating secondary structures and storing checkpoints every
second epoch. We keep the k = 30 best checkpoints and filter them for checkpoints with a secondary
structure content deviation of less than dmax < 0.2.
In order to select the best checkpoint we evaluate all filtered checkpoints by sampling 40 backbones for
each length in {100, 150, 200, 250, 300} and choosing the checkpoint with the highest designability.
We then run new and independent inference runs for all experiments we conduct on the selected
checkpoint.

A.3.9 Training on SCOPe (Ablation)

On SCOPe, we train both GAFL and FrameFlow for 6500 epochs. We use a constant learning
rate of 0.0001 for the whole procedure. From epoch Ntrain = 4000 to Ntrain + Nselect = 6500 we
use our ceckpointing criterion, storing checkpoints every 25 epochs. We keep the k = 10 best
checkpoints also filtering them for checkpoints with a secondary structure content deviation of less
than dmax < 0.2. We evaluate each filtered checkpoint by sampling 10 backbones for each length in
{60,61,. . . ,128} and visualize the resulting designability distribution in Figure A.10.

31

Figure A.10: Left: Total train loss averaged over flow matching times 0.5 to 0.75 on SCOPe for
GAFL and FrameFlow. Right: Designabilities of 30 checkpoints sampled during three training runs
on SCOPe for GAFL and retrained FrameFlow, respectively and filtered for a secondary structure
content deviation of less than dmax < 0.2. For each checkpoint, we sample 10 backbones per length
in {60,61,. . . ,128}.

A.3.10 Model hyperparameters

We report the most important hyperparameters of the CFA/IPA modules used in GAFL and FrameFlow
respectively in Table A.5. For an extensive list of hyperparameters we refer to the respective config
files on GitHub.

Parameter GAFL FrameFlow

Node embedding size 240 256
Edge embedding size 120 128
Number of attention heads 8 8
Number of query/key points 8 8
Number of geometric value channels 8 12
Number of IPA/CFA blocks 6 6

Table A.5: Comparison of the most important hyperparameters used for the CFA/IPA modules in
GAFL and FrameFlow

The model hyperparameters of GAFL are choosen such that its total number of trainable parameters
roughly equals that of FrameFlow as detailed in Table A.6.

Model component GAFL FrameFlow

Embedding 135 K 150 K
CFA/IPA 9.2 M 8.4 M
Seq transformer 4.5 M 5.1 M
Node update 1.0 M 1.2 M
Edge update 1.7 M 1.9 M
BB update 169 K 10 K

Total 16.7 M 16.7 M
Table A.6: Comparison between the number of parameters of GAFL and FrameFlow, broken down
into contributions from different components.

32

A.3.11 Memory consumption

Training on SCOPe with the model hyperparameters listed in A.3.10 and training hyperparameters
given in A.3.9, results in a GPU memory consumption of 48.2 GB for FrameFlow and 59.5 GB for
GAFL.

A.4 Miscellaneous

A.4.1 Societal Impact

Societal impact is considered mostly positive, as de novo protein design holds the promise to develop,
for example, drugs against diseases, personalized therapies against cancer or also new nanomaterials,
which out-weights potential risks, while of course security concerns remain, see e.g. Baker and
Church [4].

A.4.2 Implementation and Software Libraries

Our implementation is based on the implementation of FrameFlow [67, 69]4. We will publish
our code together with the camera ready version of this manuscript. The implementation is in the
Python [59] programming language and uses the PyTorch framework [45] and further dependencies
of FrameFlow: Numpy [30], Hydra [66], and SciPy [61].

4The implementation of FrameFlow is published under the MIT license at https://github.com/
microsoft/protein-frame-flow

33

https://github.com/microsoft/protein-frame-flow
https://github.com/microsoft/protein-frame-flow

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: In the abstract and introduction we made the following claims, which accurately
reflect the papers contributions and scope:
(a) Represent frames as elements of the projective geometric algebra
(b) Geometrically more expressive bilinear products of the geometric algebra
(c) Higher order message passing
(d) High designability and diversity of sampled protein backbones
(e) The proposed method closely captures the distribution of protein secondary structures,

while other models with high designability often over-represent alpha helices
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of the proposed method were discussed in a dedicated para-
graph at the end of Section 4
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

34

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not introduce any novel theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Full explanation of the experiments is provided in Section 4 and Ap-
pendix A.3.2. The source code of the implementation will be published together with
the camera ready version of the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

35

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The SCOPe dataset used for training the model is publicly available. The
source code of the implementation of the method proposed in this work will be published
together with the camera ready version of the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We use the standard data set split of the SCOPe data set. For the baselines, we
use the standard parameters defined in the respective publicly available official implementa-
tions. The source code of the implementation of the method proposed in this work will be
published together with the camera ready version of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

36

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: We report errors of the mean where applicable. Also we performed three
additional complete training runs of the proposed method and the baseline FrameFlow with
different seeds for verification. The results of this verification are provided in Table 3 and 2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided information on the hardware used for the experiments at the
beginning of Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No human subjects or data with privacy concerns was used. Training was only
performed on publicly available standard academic datasets. Societal impact is considered
mostly positive, as de novo protein design holds the promise to develop drugs against
diseases and personalized therapies against cancer, which out-weights potential risks, while
of course security concerns remain, see e.g. Baker and Church(2024). The presented
method does not enable the design of proteins with a certain function, so risk of misuse is
considerably low.

Guidelines:

37

https://neurips.cc/public/EthicsGuidelines

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Societal impact is briefly discussed in Appendix A.4.1, while we refer the
reader to e.g Baker and Church(2024) for recent discussions of potential risks. The presented
method does not enable the design of proteins with a certain function, so risk of misuse is
considerably low.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The presented method does not enable the design of proteins with a certain
function, so risk of misuse is considerably low.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

38

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our work is based on the implementation of FrameFlow, which was published
under the MIT license which allows to create derivative works. The license terms will be
followed when puiblishing our own implementations.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets have been introduced.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:No crowd sourcing or research with human subjects performed.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

39

paperswithcode.com/datasets

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No insitutional review board approval required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

References of NeurIPS Paper Checklist

David Baker and George Church. Protein design meets biosecurity. Science, 383(6681):349–349, 2024.

40

	Introduction
	Related Work

	Background
	Geometric Algebra
	Flow Matching
	Flow Matching for Protein Structures
	Designability of Proteins and Importance of their Structural Composition

	Geometric Algebra Flow Matching for Protein Backbone Generation
	Experiments
	Checkpoint Selection
	Metrics
	Baselines
	Results
	Ablation of CFA
	Discussion

	Conclusion
	Appendix
	Background
	Background on Geometric Algebra

	Methodology
	GAFL architecture
	Invariant Point Attention
	Clifford frame attention
	Equivariance of GAFL

	Experiments
	Definition of novelty and diversity
	Baselines used for comparison with GAFL
	Results for small proteins
	Results for long proteins
	Ablation for CFA on the PDB
	Timestep analysis of GAFL
	Inference Efficiency
	Training on PDB
	Training on SCOPe (Ablation)
	Model hyperparameters
	Memory consumption

	Miscellaneous
	Societal Impact
	Implementation and Software Libraries

