
Verifying message-passing neural networks via topology-based bounds tightening

Christopher Hojny * 1 Shiqiang Zhang * 2 Juan S. Campos 2 Ruth Misener 2

Abstract
Since graph neural networks (GNNs) are often
vulnerable to attack, we need to know when
we can trust them. We develop a computation-
ally effective approach towards providing robust
certificates for message-passing neural networks
(MPNNs) using a Rectified Linear Unit (ReLU)
activation function. Because our work builds on
mixed-integer optimization, it encodes a wide va-
riety of subproblems, for example it admits (i)
both adding and removing edges, (ii) both global
and local budgets, and (iii) both topological pertur-
bations and feature modifications. Our key tech-
nology, topology-based bounds tightening, uses
graph structure to tighten bounds. We also ex-
periment with aggressive bounds tightening to
dynamically change the optimization constraints
by tightening variable bounds. To demonstrate
the effectiveness of these strategies, we imple-
ment an extension to the open-source branch-and-
cut solver SCIP. We test on both node and graph
classification problems and consider topological
attacks that both add and remove edges.

1. Introduction
Graph neural networks (GNNs) may have incredible per-
formance in graph-based tasks, but researchers also raise
concerns about their vulnerability: small input changes
sometimes lead to wrong GNN predictions (Günnemann,
2022). To study these GNN vulnerabilities, prior works
roughly divide into two classes: adversarial attacks (Dai
et al., 2018; Zügner et al., 2018; Takahashi, 2019; Xu et al.,
2019; Zügner & Günnemann, 2019b; Chen et al., 2020; Ma
et al., 2020; Sun et al., 2020; Wang et al., 2020; Geisler et al.,
2021) and certifiable robustness (Bojchevski & Günnemann,
2019; Zügner & Günnemann, 2019a; 2020; Bojchevski et al.,

*Equal contribution 1Eindhoven University of Technology,
Eindhoven, The Netherlands 2Department of Computing, Impe-
rial College London, UK. Correspondence to: Christopher Hojny
<c.hojny@tue.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

2020; Jin et al., 2020; Sälzer & Lange, 2023). Beyond the
difficulties of developing adversarial robustness for dense
neural networks (Lomuscio & Maganti, 2017; Fischetti & Jo,
2018), incorporating graphs brings new challenges to both
adversarial attacks and certifiable robustness. The first diffi-
culty is defining graph perturbations because, beyond tuning
the features (Takahashi, 2019; Zügner et al., 2018; Zügner
& Günnemann, 2019a; Bojchevski et al., 2020; Ma et al.,
2020), an attacker may inject nodes (Sun et al., 2020; Wang
et al., 2020) or add/delete edges (Dai et al., 2018; Zügner
et al., 2018; Bojchevski & Günnemann, 2019; Zügner &
Günnemann, 2019b; 2020; Xu et al., 2019; Chen et al., 2020;
Jin et al., 2020; Geisler et al., 2021). Second, binary ele-
ments in the adjacency matrix create discrete optimization
problems. Finally, perturbations to a node may indirectly at-
tack other nodes via message passing or graph convolution.

Adversarial attacks aim to change the predictions of a GNN
with admissible perturbations. In graph classification, the
attacking goal is the prediction of a target graph (Dai et al.,
2018; Chen et al., 2020). In node classification, attacks
may be local (or targeted) and global (or untargeted). Local
attacks (Dai et al., 2018; Zügner et al., 2018; Takahashi,
2019; Wang et al., 2020) try to change the prediction of
a single node under perturbations, and global attacks (Xu
et al., 2019; Zügner & Günnemann, 2019b; Ma et al., 2020;
Sun et al., 2020; Geisler et al., 2021) allow perturbations to
a group of nodes. Except for the Q-learning approach and
genetic algorithm of Dai et al. (2018), most aforementioned
works are first-order methods which derive or approximate
gradients w.r.t. features and edges. Binary variables are
flipped when they are chosen to be updated.

Certifiable robustness tries to guarantee that the predic-
tion will not change under any admissible GNN pertur-
bation. The state-of-the-art (Bojchevski & Günnemann,
2019; Zügner & Günnemann, 2019a; 2020; Jin et al., 2020)
typically formulates certifiable robustness as a constrained
optimization problem, where the objective is the worst-case
margin between the correct class and other class(es), and the
constraints represent admissible perturbations (Günnemann,
2022). Given a GNN and a target node/graph, a certificate
requires proving that the objective is always positive. Any
feasible solution with a negative objective is an adversarial
attack. Most existing certificates (Zügner & Günnemann,
2019a; Jin et al., 2020) focus on graph convolutional net-

1

Verifying message-passing neural networks via topology-based bounds tightening

0 1 2 3 4 5

[1, 2] [2, 3] [3, 4] [−4,−3] [−3,−2] [−2,−1]

0

u ∈ N (0)

u ̸∈ N (0)

Au,0 = 0

Au,0 = 1

Au,0 ∈ {0, 1}

basic:

sbt :

abt :

lb = −4− 3− 2 = −9,

lb = 1 + 2− 4− 3 = −4,

lb = 1 + 3− 3− 2 = −1,

ub = 2 + 3 + 4 = 9.

ub = 2 + 3 + 4 = 9.

ub = 2 + 4− 2 = 4.

A1,0 = 0 A1,0 = 1

A2,0 = 0 A2,0 = 1

A3,0 = 0 A3,0 = 1

A4,0 = 0 A4,0 = 1

abt : [−4, 9], budget=3

abt : [−3, 6], budget=2

abt : [−3, 6], budget=2

abt : [−1, 6], budget=2

abt : [−1, 4], budget=1

Figure 1: (left) Consider a graph with 6 nodes u = 0, . . . , 5 and one feature. The neighbor set of node 0 is N (0) = {0, 1, 2}.
The input bounds are given above each node. Assume the budget, i.e., maximal number of modifications, for node 0 is 3.
The modifications could be removing neighbors from N (0) or adding new neighbors from {3, 4, 5}. Four decisions have
been made in the branch-and-bound tree, i.e., binary variables representing edges are set as A1,0 = 0, A2,0 = 1, A3,0 =
0, A4,0 = 1. Since node 2 is a neighbor of node 0 while node 3 is not, fixing A2,0 = 1 and A3,0 = 0 spends no budget. For
each method, we compute the bounds for node 0 in the next layer. To compute a lower bound, the plain strategy (basic)
chooses all negative lower bounds without considering either budgets or previous decisions in the branch-and-bound tree.
Static bounds tightening (sbt), the first topology-based bounds tightening routine, removes node 2 and adds node 3, 4 as
neighbors within 3 budgets, but ignores decisions in the branch-and-bound tree. Aggressive bounds tightening (abt) yields
tighter bounds by saving node 0 and adding node 5 as neighbors. (right) The branch-and-bound tree corresponding to the
left. We provide the bounds yielded from abt and budget left after each decision.

works (GCNs) (Kipf & Welling, 2017). The certificate on
personalized propagation of neural predictions (Gasteiger
et al., 2019) relies on local budget and yields looser guar-
antees in the presence of a global budget (Bojchevski &
Günnemann, 2019). Also, each certificate has specific re-
quirements on the perturbation type, e.g., changing node
features only (Zügner & Günnemann, 2019a), modifying
graph structure only (Bojchevski & Günnemann, 2019; Jin
et al., 2020), removing edges only (Zügner & Günnemann,
2020), and allowing only orthogonal Gromov-Wasserstein
threats (Jin et al., 2022). Instead of verifying GNNs directly,
several works (Bojchevski et al., 2020; Wang et al., 2021;
Xia et al., 2024) provide certified defenses based on the
randomized smoothing framework (Cohen et al., 2019).

This work develops certificates on the classic message pass-
ing framework, especially GraphSAGE (Hamilton et al.,
2017). Using a recently-proposed mixed-integer formula-
tion for GNNs (McDonald et al., 2024; Zhang et al., 2024;
2023), we directly encode a GNN into an optimization prob-
lem using linear constraints. Many perturbations are com-
patible with our formulation: (i) both adding and removing
edges, (ii) both global and local budgets, and (iii) both topo-
logical perturbations and feature modifications.

When verifying fully-dense, feed-forward neural networks
with ReLU activation, prior work shows that tightening vari-
able bounds in a big-M formulation (Anderson et al., 2020)
may lead to better computational performance (Tjeng et al.,
2019; Botoeva et al., 2020; Tsay et al., 2021; Badilla et al.,

2023; Zhao et al., 2024). Since tighter variable bounds may
improve the objective value of relaxations of the big-M for-
mulation, they may be useful when providing a certificate of
robustness. Because the optimization problems associated
with verifying MPNNs are so large, this work cannot use the
tighter, convex-hull based optimization formulations (Singh
et al., 2019a; Tjandraatmadja et al., 2020; Müller et al.,
2022). Instead, we use what we call topology-based bounds
tightening to enable a much stronger version of feasibility-
based bounds tightening: we extend SCIP (Bestuzheva et al.,
2023) to explicitly use the graph structures. We also develop
an aggressive bounds tightening (Belotti et al., 2016) rou-
tine to dynamically change the optimization constraints by
tightening variable bounds within SCIP. Key outcomes in-
clude: (i) solving literature node classification instances in a
fraction of a second, (ii) solving an extra 266 graph classifi-
cation instances after implementing topology-based bounds
tightening in SCIP, and (iii) making the open-source solver
SCIP nearly as performant as the commercial solver Gurobi,
e.g., improving the time penalty of the open-source solver
from a factor of 10 to a factor of 3 for robust instances.

The paper begins in Section 2 by defining a mixed-integer
encoding for MPNNs. Section 3 presents the verification
problem and develops our two topology-based bounds tight-
ening routines, static bounds tightening sbt and aggressive
bounds tightening abt. Section 4 presents the numerical
experiments and Section 5 concludes. Figure 1 represents a
toy example showing the basic approach in comparison to
our two topology-based approaches sbt and abt.

2

Verifying message-passing neural networks via topology-based bounds tightening

2. Definition & Encoding of MPNNs
We inherit the mixed-integer formulation of MPNNs from
Zhang et al. (2024) and formulate ReLU activation using
big-M (Anderson et al., 2020). Consider a trained GNN:

f : RN×d0 × {0, 1}N×N → RN×dL

(X,A) 7→ f(X,A)
(1)

whose l-th layer with weights w(l)
u→v and biases b(l)v is:

x(l)
v = σ

 ∑
u∈N (v)∪{v}

w(l)
u→vx

(l−1)
u + b(l)v

 (2)

where v ∈ V , V = {0, 1, . . . , N − 1} is the node set, N (v)
is the neighbor set of node v, and σ is activation. Given
input features {x(0)

v }v∈V and the graph structure, we can
derive the hidden features {x(l)

v }v∈V ,x
(l)
v ∈ Rdl . When

l = L, we obtain the node representation x
(L)
v of each node.

2.1. Big-M formulation for MPNNs

When the graph structure is not fixed, we need to include all
possible contributions from all nodes, i.e., the l-th layer is:

x(l)
v = σ

(∑
u∈V

Au,vw
(l)
u→vx

(l−1)
u + b(l)v

)
(3)

where Au,v ∈ {0, 1} controls the existence of edge u → v.

With fixed weights and biases, we still need to handle the
nonlinearities caused by (i) bilinear terms Au,vx

(l−1)
u , and

(ii) activation σ. Let x̄(l)
v =

∑
u∈V

Au,vw
(l)
u→vx

(l−1)
u + b

(l)
v ,

the Zhang et al. (2023) big-M formulation introduces
auxiliary variables x

(l−1)
u→v to replace the bilinear terms

Au,vx
(l−1)
u and linearly encodes x̄(l)

v :

x̄(l)
v =

∑
u∈V

w(l)
u→vx

(l−1)
u→v + b(l)v . (4)

Let Fl := {0, 1, . . . , dl − 1} and denote the f -th element
of x(l)

∗ by x
(l)
∗,f , f ∈ Fl. Use lb(·) and ub(·) to represent

the lower and upper bound of a variable, respectively. Then
x
(l−1)
u→v,f = Au,vx

(l−1)
u,f is equivalently formulated in the

following big-M constraints:

x
(l−1)
u→v,f ≥ lb(x

(l−1)
u,f) ·Au,v (5a)

x
(l−1)
u→v,f ≤ ub(x

(l−1)
u,f) ·Au,v (5b)

x
(l−1)
u→v,f ≤ x

(l−1)
u,f − lb(x

(l−1)
u,f) · (1−Au,v) (5c)

x
(l−1)
u→v,f ≥ x

(l−1)
u,f − ub(x

(l−1)
u,f) · (1−Au,v). (5d)

2.2. Big-M formulation for ReLU

When using ReLU as the activation, i.e.,

x
(l)
v,f = max{0, x̄(l)

v,f}, (6)

Anderson et al. (2020) proposed a big-M formulation:

x
(l)
v,f ≥ 0 (7a)

x
(l)
v,f ≥ x̄

(l)
v,f (7b)

x
(l)
v,f ≤ x̄

(l)
v,f − lb(x̄

(l)
v,f) · (1− σ

(l)
v,f) (7c)

x
(l)
v,f ≤ ub(x̄

(l)
v,f) · σ

(l)
v,f (7d)

where σ
(l)
v,f ∈ {0, 1} controls the on/off of the activation:

x
(l)
v,f =

{
0, σ

(l)
v,f = 0

x̄
(l)
v,f , σ

(l)
v,f = 1.

(8)

2.3. Bounds propagation

Eqs. (5) and (7) show the importance of variable bounds
lb(·) and ub(·) or big-M parameters. Given the input
feature bounds, we define bounds for auxiliary variables
x
(l−1)
u→v,f and post-activation variables x(l)

v,f . Using x
(l−1)
u→v,f =

Au,vx
(l−1)
u,f , the bounds of x(l−1)

u→v,f are:

lb(x
(l−1)
u→v,f) = min{0, lb(x(l−1)

u,f)} (9a)

ub(x
(l−1)
u→v,f) = max{0, ub(x(l−1)

u,f)} (9b)

with which we can use arithmetic propagation or feasibility-
based bounds tightening to obtain bounds of x̄(l)

v,f based on

Eq. (4). Then, we use Eq. (6) to bound x
(l)
v,f :

lb(x
(l)
v,f) = max{0, lb(x̄(l)

v,f)} (10a)

ub(x
(l)
v,f) = max{0, ub(x̄(l)

v,f)}. (10b)

Without extra information, bounds defined in Eqs. (9) and
(10) are the tightest possible which derive from interval
arithmetic. However, in a branch-and-bound tree, more and
more variables will be fixed, which provides the opportunity
to tighten the bounds. Additionally, in specific applications
such as verification, the graph domain is restricted, allowing
us to derive tighter bounds.
Remark 2.1. A MPNN with L message passing steps is
suitable for node-level tasks. For graph-level tasks, there
is usually a pooling layer after message passing to obtain a
global representation and several dense layers thereafter as
a final regressor/classifier. We omit these formulations since
(i) linear pooling, e.g., mean and sum, is easily incorporated
into our formulation, and (ii) dense layers are a special case
of Eq. (2) with a single node.

3

Verifying message-passing neural networks via topology-based bounds tightening

3. Verification of MPNNs
3.1. Problem definition

First, consider node classification. Given a trained MPNN
defined as Eq. (2), the number of classes is the num-
ber of output features, i.e., C = dL, and the predicted
label of node t corresponds to the maximal logit, i.e.,
c∗ = maxc∈C ft,c(X,A). Given an input (X∗, A∗) con-
sisting of features X∗ and adjacency matrix A∗, denote its
predictive label for a target node t as c∗. The worst case
margin between predictive label c∗ and attack label c under
perturbations P(·) is:

mt(c∗, c) := min
(X,A)

ft,c∗(X,A)− ft,c(X,A)

s.t. X ∈ P(X∗), A ∈ P(A∗).
(11)

A positive mt(c∗, c) means that the logit of class c∗ is al-
ways larger than class c. If mt(c∗, c) > 0,∀c ∈ C\{c∗},
then any admissible perturbation can not change the label
assigned to node t, that is, this MPNN is robust to node t.

For graph classification, instead of considering a single node,
we want to know the worst case margin between two classes
for a target graph, i.e.,

m(c∗, c) := min
(X,A)

fc∗(X,A)− fc(X,A)

s.t. X ∈ P(X∗), A ∈ P(A∗).
(12)

In both problems, the target graph (X∗, A∗) and predictive
label c∗ are fixed. For node classification, the target node t
is also given. Therefore, we omit t in Eq. (11) and reduce
both problems to one as shown in Eq. (12).

3.2. Admissible perturbations

The perturbations on features and edges can be described
similarly. Locally, we may only change features/edges for
each node with a given local budget. Also, there is typically
a global budget for the number of changes. The feature
perturbations are typically easier to implement since they
will not hurt the message passing scheme, i.e., the graph
structure is fixed. In such settings, there is no need to use
the mixed-integer formulations for MPNNs in Section 2.1
since a message passing step is actually simplified as a dense
layer. Since feature perturbations are well-studied (Zügner
& Günnemann, 2019a) and our proposed bounds tightening
techniques mainly focus on changeable graph structures,
our computational results only consider the perturbations
on the adjacency matrix.

We first define the admissible perturbations for undirected
graphs, which admits both adding and removing edges. De-
note the global budget by Q and local budget to node v by

Algorithm 1 Static bounds tightening (sbt)

Input: Input features x(0)
v , weights w(l)

u→v , biases b(l)v .
Initialize lb(x(0)) = ub(x(0)) = x(0).
for l = 1 to L do

Get lb(x̄(l)) using Eq. (17). {basic uses Eq. (20).}
Get lb(x(l)) using Eq. (10).
Get ub(x̄(l)) and ub(x(l)) in a similar way.

end for

qv , then the perturbations P1(A
∗) are defined as:

P1(A
∗) = {A ∈ {0, 1}N×N | A = AT ,

∥A−A∗∥0 ≤ 2Q,

∥Av −A∗
v∥0 ≤ qv, ∀v ∈ V }

(13)

where Av is the v-th column of A. P1(·) will be used
in graph classification since the graphs in benchmarks are
usually undirected and relatively small.

For node classification, literature benchmarks usually (i)
are large directed graphs, e.g., 3000 nodes, (ii) have many
node features, e.g., 3000 features, (iii) have small average
degree, e.g., 1 ∼ 3. If admitting adding edges, then the
graph domain is too large to optimize over. Therefore, the
state-of-the-art (Zügner & Günnemann, 2020) only consid-
ers removing edges, where a L-hop neighborhood around
the target node t is sufficient. For a MPNN with L mes-
sage passing steps without perturbations, nodes outside a
L-hop neighborhood cannot affect the prediction of t. Since
adding edges is not allowed, the L-hop neighborhood of
t after perturbations is always a subset of the unperturbed
neighborhood. Similar to the literature, we define a more
restrictive perturbation space for large graphs:

P2(A
∗) = {A ∈ {0, 1}N×N |

Au,v ≤ A∗
u,v, ∀u, v ∈ V,

∥A−A∗∥0 ≤ Q,

∥Av −A∗
v∥0 ≤ qv, ∀v ∈ V }

(14)

where global budget is replaced by Q since the graph is
directed. P2(·) will be used in node classification. For our
later analysis, however, we focus on P1(·) since P2(·) is
more like a special case without adding edges.

3.3. Static bounds tightening

Note that large budgets in Eq. (13) make the verification
problems meaningless since the perturbed graph could be
any graph. The very basic assumption is that the perturbed
graph is similar to the original one, which brings us to
propose the first bounds tightening approach. The rough
idea is to consider budgets when computing bounds of x̄(l)

v

based on bounds of x(l−1)
u→v in Eq. (4). Instead of considering

4

Verifying message-passing neural networks via topology-based bounds tightening

all contributions from all nodes, we first calculate the bounds
based on original neighbors and then maximally perturb the
bounds with given budgets. Mathematically, lb(x̄(l)

v,f ′) is
found by solving the following optimization problem:

min
A,x(l−1)

∑
u∈V

Au,v

∑
f∈Fl−1

w
(l)
u→v,f→f ′x

(l−1)
u,f + b

(l)
v,f ′

s.t. A ∈ P1(A
∗)

x(l−1) ∈ [lb(x(l−1)), ub(x(l−1))]

(15)

where x(l−1) := {x(l−1)
u,f }u∈V,f∈Fl−1

, w(l)
u→v,f→f ′ is the

(f, f ′)-th element in w
(l)
u→v .

Remark 3.1. For brevity, we omit the superscripts of layers
for all variables, and subscripts of edges in weights, i.e.,
rewriting Eq. (15) as:

lb(x̄v,f ′) = min
A,x

∑
u∈V

Au,v

∑
f∈Fl−1

wf,f ′xu,f + bv,f ′

s.t. A ∈ P1(A
∗)

x ∈ [lb(x), ub(x)].
(16)

Property 3.2. Eq. (16) is equivalent to:

lb(x̄v,f ′) =
∑

u∈N∗(v)

lbu→v + bv,f ′ + min
|Vlb|≤qv

∑
u∈Vlb

∆u→v

(17)
where N ∗(v) denotes the original neighbor set of node v,
lbu→v represents the contribution of node u to the lower
bound of node v when u is a neighbor of v, ∆u→v denotes
the change of lower bound of node v caused by modify-
ing edge u → v, Vlb is the set of nodes consisting of re-
moved/added neighbors of node v.

Calculating lbu→v is straightforward:

lbu→v =
∑

f∈Fl−1

wf,f ′ · Iwf,f′≥0 · lb(xu,f)

+
∑

f∈Fl−1

wf,f ′ · Iwf,f′<0 · ub(xu,f)
(18)

which is used to derive ∆u→v as:

∆u→v =

{
−lbu→v, u ∈ N ∗(v)

lbu→v, u /∈ N ∗(v)
(19)

where two cases correspond to removing neighbor u and
adding u as a neighbor, respectively. Furthermore, the last
minimal term in Eq. (17) is equivalent to choosing at most
qv smallest negative terms among {∆u→v}u∈V . The time
complexity to compute lower bounds following Eq. (17) for
each feature in l-th layer is O(N2dl−1dl+N logN). Upper
bounds could be defined similarly, which are not included
here due to space limitation.

Algorithm 2 Aggressive bounds tightening (abt)

Input: Input features x(0)
v , weights w(l)

u→v , biases b(l)v .
Initialize lb(x(0)) = ub(x(0)) = x(0).
for each node in branch-and-bound tree do

for l = 1 to L do
Update q′v using Eq. (23).
Update lb(x̄(l)) using Eq. (22).
Update lb(x(l)) using Eq. (10).
Update ub(x̄(l)) and ub(x(l)) in a similar way.

end for
end for

Remark 3.3. The plain strategy without considering graph
structure and budgets basic is:

lb(x̄v,f ′) =
∑
u∈V

min{0, lbu→v} (20)

and the time complexity is O(N2dl−1dl).

Algorithm 1 calculates sbt bounds (and basic bounds) in a
single forward pass of the model. As shown in the example
presented in the Figure 1 example, the bounds derived from
basic is [−9, 9], which is improved to [−4, 9] after applying
static bounds tightening sbt.

3.4. Aggressive bounds tightening

Consider any node in a branch-and-bound tree, values of
several Au,v are already decided during the path from root
to current node, with which we can further tighten bounds
in the subtree rooted by this node. Belotti et al. (2016)
refer to the idea of tightening bounds in the branch-and-
bound tree as aggressive bounds tightening. In MPNN
verification, there are three types of Au,v in Eq. (16): (i)
Au,v is fixed to 0, (ii) Au,v is fixed to 1, and (iii) Au,v is
not fixed yet. Denote V0 = {u ∈ V | Au,v = 0} and
V1 = {u ∈ V | Au,v = 1}, then Eq. (16) in the current
node is restricted as:

lb(x̄v,f ′) = min
A

∑
u∈V

Au,vlbu→v + bv,f ′

s.t. A ∈ P1(A
∗)

Au,v = 0, ∀u ∈ V0

Au,v = 1, ∀u ∈ V1.

(21)

Property 3.4. Eq. (21) is equivalent to:

lb(x̄v,f ′) =
∑

u∈(N∗(v)\V0)∪V1

lbu→v + bv,f ′

+ min
Vlb⊆V \(V0∪V1),|Vlb|≤q′v

∑
u∈Vlb

∆u→v

(22)

where q′v is the currently available budget for node v.

5

Verifying message-passing neural networks via topology-based bounds tightening

In Eq. (22), the first term sums over (N ∗(v)\V0) ∪ V1

to represent the contributions from current neighbors.
The last term excludes all fixed edges and only consid-
ers changeable neighbors. Similarly, this minimal term
equals to choose at most q′v smallest negative terms among
{∆u→v}u∈V \(V0∪V1)). q′v is derived from the remaining
local and global budgets:

q′v = min{qv − er(v)− ea(v),

Q− 1

2

∑
u∈V

er(u)−
1

2

∑
u∈V

ea(u)} (23)

where er(v) := |N ∗(v) ∩ V0| is the number of removed
edges around node v, ea(v) := |V1\N ∗(v)| is the number
of added edges around node v.

Algorithm 2 describes the abt steps. Since we derive abt
bounds within the branch-and-bound tree (when solvers will
not directly change variable bounds), we add local cutting
planes to implement abt bounds (see Appendix B example).
Remark 3.5. The bounds tightening inside the branch-and-
bound tree can be interpreted as applying the Section 3.3
bounds tightening to a modified target graph with a reduced
budget. The spent budget changes the neighbors of node v
from N ∗(v) to (N ∗(v)\V0) ∪ V1.

As shown in Figure 1, aggressive bounds tightening abt
gives tighter bounds [−1, 4] comparing to basic and sbt.
The branch-and-bound tree in Figure 1 shows abt in action.

Table 1: Information on benchmarks. For multiple graphs,
we compute the average number of nodes and edges.

benchmark #graphs #nodes #edges #features #classes

MUTAG 188 17.9 39.6 7 2
ENZYMES 600 32.6 124.3 3 6

Cora 1 2708 5429 1433 7
CiteSeer 1 3312 4715 3703 6

3.5. Bounds tightening for ReLU

Aggressive bounds tightening could also tighten ReLU in-
terval bounds in feed-forward neural networks (NNs). Al-
though we did not directly tighten ReLU bounds in MPNNs,
local cutting planes representing tighter big-M coefficients
lb(x̄

(l)
v,f), ub(x̄

(l)
v,f) in Eq. (7) are added after applying abt.

For each ReLU, if its pre-activation variable x(l)
v,f has a non-

negative lower bound or a non-positive upper bound, the
binary variable σ

(l)
v,f controlling on/off of this ReLU will

be fixed due to these local cutting planes. Therefore, abt
implies a dynamic tightening on ReLU interval bounds in
MPNNs. This idea could be applied to NNs since a NN is
an MPNN with a single node in the graph.

For ReLU NNs, bounds tightening techniques yielding
tighter bounds than interval arithmetic include: FastLin
(Weng et al., 2018), CROWN (Zhang et al., 2018), Deep-
Poly (Singh et al., 2018; 2019b), and optimization-based
bound tightening (OBBT) (Tjeng et al., 2019; Tsay et al.,
2021). But these techniques are rarely applied in GNN ver-
ification. Although a few works (Zügner & Günnemann,
2019a; Jin et al., 2020) involve convex relaxations for Re-
LUs, they do not tighten bounds for ReLUs.

OBBT is the only one of the existing advanced approaches
which could immediately apply to GNNs. OBBT yields
tighter bounds with high computational cost of solving
many linear programs (LPs) or mixed-integer programs
(MIPs). Incorporating computationally-effective methods
like FastLin, CROWN or DeepPoly is difficult for GNNs
because we lose the linearity between layers. Such linearity
is crucial to these approaches, e.g., the linear lower/upper
bounds in FastLin/CROWN, or the zonotopy abstraction of
DeepPoly. When the input graph structure is fixed, bounds
tightening on ReLUs in GNNs is equivalent to its counter-
part in NNs (Wu et al., 2022). But for non-fixed graphs, the
links between two adjacent layers in GNNs are controlled by
an adjacency matrix, whose elements are binary variables.
So it is considering topological perturbations that loses the
linearity between layers and inspires sbt and abt.

4. Experiments
This section empirically evaluates the impact of static and
aggressive bounds tightening on verifying MPNNs by solv-
ing a mixed-integer program (MIP) as shown in Section
2 and Section 3. All GNNs are built and trained using
PyG (PyTorch Geometric) 2.1.0 (Fey & Lenssen, 2019).
All MIPs are implemented in C/C++ using the open-source
MIP solver SCIP 8.0.4 (Bestuzheva et al., 2023); all LP
relaxations are solved using Soplex 6.0.4 (Gamrath et al.,
2020). We used the GNN pull request (Zhang et al., 2024)
in the Optimization and Machine Learning Toolkit OMLT
(Ceccon et al., 2022) to debug the implementation. Ob-
serve that we could have alternatively extended a similar
tool in SCIP (Turner et al., 2023). For each verification
problem, we apply the basic implementation (SCIPbasic),
static bounds tightening (SCIPabt), and aggressive bounds
tightening (SCIPsbt). Our experiments also include a ba-
sic and static bounds tightening implementation of Gurobi
10.0.3 (GRBbasic, GRBsbt) (Gurobi Optimization, LLC,
2023). The code is available at GitHub, also see Hojny &
Zhang (2024).

4.1. Implementation details

Our code models and solves the verification problem in
three stages (for basic and static bounds tightening) or four
stages (for aggressive bounds tightening). First, parameters

6

https://github.com/christopherhojny/SCIP-MPNN

Verifying message-passing neural networks via topology-based bounds tightening

Table 2: Summary of results for graph classification with local attack strength s = 2. The approaches tested are SCIP
basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic
(GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600 for
ENZYMES and 188 for MUTAG, but we only present comparisons when all methods give consistent results except for time
out, as shown in column “#”. We compare times with respect to both average (“avg-time”) and the shifted geometric mean
(“sgm-time”), as well as the number of solved instances within time limits 2 hours (“# solved”). Since robust instances
are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more
heuristic approaches), we also compare on the set of robust instances.

benchmark method all instances robust instances

avg-time(s) sgm-time(s) # solved # avg-time(s) sgm-time(s) # solved

ENZYMES

SCIPbasic 5915 605.97 37.81 5579 3549 278.58 12.51 3444
SCIPsbt 5915 230.59 21.26 5831 3549 82.89 6.65 3528
SCIPabt 5915 246.02 21.77 5817 3549 88.95 6.71 3522

GRBbasic 5915 86.03 7.59 5892 3549 32.80 2.82 3542
GRBsbt 5915 74.87 7.09 5895 3549 22.90 2.50 3548

MUTAG

SCIPbasic 1589 679.86 189.75 1575 44 798.47 202.93 40
SCIPsbt 1589 196.07 75.17 1589 44 336.41 100.86 44
SCIPabt 1589 207.50 82.43 1589 44 238.10 91.11 44

GRBbasic 1589 34.58 4.06 1589 44 162.25 12.11 44
GRBsbt 1589 59.93 22.40 1589 44 73.78 15.00 44

Figure 2: ENZYMES benchmark. (left) Number of instances solved by each method below different time costs. (middle)
Number of robust instances solved by each method below different time costs. (right) Consider ρ, the ratio of time cost
between SCIPabt and SCIPsbt on each robust instance. SCIPabt is at least 10% faster than SCIPsbt on 412 robust instances.

of a trained MPNN (weights, biases) and the verification
problem (predictive label c∗, attack label c, global budget
Q, local budget qv) are read. Second, lower and upper
bounds on the variables in Eqs. (5) and (7) are computed
for SCIPbasic and SCIPsbt. Third, a MIP model of the
verification problem is created and solved. We do not solve
the MIP models to global optimality as we only ask: Is this
instance robust or not? We interrupt the optimization once
a solution with negative objective value is found, i.e., the
instance is non-robust, or the dual bound of the branch-and-
bound tree is positive, i.e., the instance is robust.

In case of SCIPabt, the model is created as for static bounds
tightening. During the solving process, a fourth step takes
place. This step collects, at each node of the SCIP branch-
and-bound tree, the A-variables that have been fixed to 0 and
1. We then iterate through the layers of the MPNN and, for

each layer, we: (i) recompute the variable bounds as in the
second step for the current layer, taking the fixed variables
into account following Section 3.4; (ii) check if any inequal-
ity in Eqs. (5) and (7) using the newly computed bounds is
violated by the current linear programming solution; (iii)
if a violated inequality is detected, we add this inequality
as a local cutting plane to the model. That is, we inform
SCIP that the inequality is only valid at the current node
of the branch-and-bound tree and all its children, which is
necessary as the inequality is based on fixed variables at
the current node. The separation of local cutting planes has
been implemented via a separator callback in SCIP.

To compare with the interval arithmetic approaches, we im-
plemented an OBBT routine. For each variable, we changed
the objective to the variable’s lower or upper bound, relaxed
all binary variables, and solved the resulting LP.

7

Verifying message-passing neural networks via topology-based bounds tightening

(a) SCIPbasic (b) SCIPsbt (c) SCIPabt
Figure 3: For each SCIP-based method with local attack strength s = 2 on ENZYMES (the first row) and MUTAG (the
second row), we count the number of robust graphs (green), nonrobust graphs (red), and time out (white). The percentage δ
of the number of edges is the global budget.

Besides our implementation in SCIP, we also conducted ex-
periments using Gurobi 10.0.3 (Gurobi Optimization, LLC,
2023) to compare baseline (GRBbasic) and static bounds
tightening (GRBsbt). We used our SCIP implementation to
create the MIP models, store them on the hard drive, and
read them via Gurobi’s Python interface. We did not investi-
gate aggressive bounds tightening in Gurobi as Gurobi does
not support local cutting planes. As for SCIP, we interrupt
the solving process after deriving (non-) robustness.

4.2. Experimental setup

All experiments have been conducted on a Linux cluster
with 12 Intel Xeon Platinum 8260 2.40 GHz processors
each having 48 physical threads. Every model has been
solved (either by SCIP or Gurobi) using a single thread.
Due to the architecture of the cluster, the jobs have not
been run exclusively. The reported running time in the
following only consists of the time solving a model, but
not creating it. That is, the time for computing the initial
variable bounds for baseline and static bounds tightening are
not considered, whereas the time for computing bounds in
aggressive bounds tightening is considered since this takes
place dynamically during the solving process.

We evaluate the performance of various verification methods
on benchmarks including: (i) MUTAG and ENZYMES
(Morris et al., 2020) for graph classification, and (ii) Cora
and CiteSeer (Yang et al., 2023) for node classification.

All datasets are available in PyG and summarized in Table
1. The attack label for each graph/node is fixed as c =
(c∗ + 1) mod C, where c∗ is the predictive label.

For graph classification, we train a MPNN with L = 3
SAGEConv (Hamilton et al., 2017) layers with 16 hidden
channels, followed by an add pooling and a dense layer as
the final classifier. ReLU is used in the first 2 SAGEConv
layers. Following Jin et al. (2020), 30% of the graphs are
used to train the model. The local budget of each node is
qv = max{0, dv − max

u∈V
du + s}, where dv is the degree

of node v, s is the so-called local attack strength. In our
experiments, we choose s ∈ {2, 3, 4}, and use δ percentage
of the number of edges as the global budget Q, where 1 ≤
δ ≤ 10. We report results for s = 2 in the paper and results
for s ∈ {3, 4} in Appendix C.

For node classification, we train a MPNN with L = 2 SAGE-
Conv layers with 32 hidden channels. Similar to Zügner &
Günnemann (2020), 10% of the nodes are used for training.
We set 10 as the global budget and 5 as the local budget.
For each node, we extract its 2-hop neighborhood to build
the corresponding verification problem. It is noteworthy
that 2-hop neighborhood is sufficient for 2 message passing
steps in MPNN, but insufficient for 2 graph convolutional
steps in GCN. The reason is that removing an edge within
a 3-hop neighborhood may influence the degree of a node
within a 2-hop neighborhood.

8

Verifying message-passing neural networks via topology-based bounds tightening

All models are trained 200 epochs with learning rate 0.01,
weight decay 10−4, and dropout 0.5. We set 2 hours as the
time limit for verifying a graph in graph classification, and
30 minutes for verifying a node in node classification.

4.3. Numerical results

For each verification problem, we will get one of three
results: robust (objective has non-negative lower bound),
nonrobust (a feasible attack, i.e., solution with negative ob-
jective, is found), or time out (inconclusive within time
limit). For each benchmark, we consider three criteria for
each method: (i) average solving time (avg-time), (ii) shifted
geometric mean (sgm-time) of solving time, and (iii) num-
ber of solved instances within time limit. A commonly used
measure to compare MIP-based methods, the shifted geo-
metric mean of t1, · · · , tn is (

∏n
i=1 (ti + s))

1/n−s, where
shift s = 10. Since all approaches use the same model, we
ignore model creation time (∼ 0.036s). We also exclude
the negligible time (∼ 0.005s) spent computing variable
bounds for both basic and sbt. For abt, we include the time
calculating variable bounds since tightening happens at each
branch-and-bound tree node. We cannot know the ground
truth of a robust instance without complete enumeration
or relying on a solver’s numerical tolerances, so we clas-
sify an instance as robust if all methods claim it is robust
except for time out. Three criteria are evaluated for each
method on each benchmark over all instances and all robust
instances, respectively. We exclude all instances with incon-
sistencies, i.e., SCIP and Gurobi declares differently, for a
fair comparison. See the Appendix B for more details.

The results for node classification are reported in Table 3 in
Appendix C. Only removing edges results in simple verifica-
tion problems: all methods can solve all instances instantly.
Adding more cutting planes is not helpful as this could
hinder heuristics to find a feasible attack (in case of non-
robustness) or result in solving more (difficult) LPs due to
additional cutting planes (in case of robustness). Therefore,
we skip the comparison with GRBbasic and GRBsbt.

For graph classification, we analyze results with local at-
tack strength s = 2 in the main text and put results for
s ∈ {3, 4} in Appendix C. Our numerical analysis for s = 2
is consistent with the s ∈ {3, 4} results. Table 2 summa-
rizes the results for all instances. Figure 2 visualizes the
number of solved (robust) instances below different time
costs, and compares the time costs between SCIPabt and
SCIPsbt for ENZYMES. See Appendix C for similar plots
for MUTAG. Figure 3 plots the number of different types
of graphs (robust, nonrobust, time out) with various global
budgets 1 ≤ δ ≤ 10 for ENZYMES and MUTAG.

As shown in Table 2, SCIPsbt is around three times faster
than SCIPbasic and solves more instances within the same
time limit. From the comparison between GRBbasic and

GRBsbt, we can still notice the speed-up from static bounds
tightening. Considering all instances from MUTAG, it
seems like static bounds tightening slows down the solving
process. The reason is that most MUTAG instances are not
robust, i.e., finding good bounds on the objective value is
unnecessary, finding a feasible attack instead is sufficient.

Our numerical results reflect similar performance between
SCIPsbt and SCIPabt w.r.t. times in Table 2. SCIPabt might
even be slower than SCIPsbt in some instances. On the one
hand, we proposed abt as a general extension of sbt and
expect it outperforms sbt in harder verification problems.
One can easily create larger problems from different aspects,
e.g., increasing budgets, incorporating feature perturbations,
and enlarging size of models. However, larger problems do
not imply harder verification problems since the instance
could be nonrobust. Then the extra cutting planes added in
abt may slow down finding a feasible attack. On the other
hand, as shown in Appendix C, when comparing OBBT
and SCIPsbt over robust instances, OBBT bounds are in-
deed tighter but still perform similarly to SCIPsbt. The
phenomenon that tighter bounds can result in slower solving
times has been previously reported (Badilla et al., 2023).

Observe in Figure 2 that, of the 3549 robust instances from
the ENZYMES benchmark, 412 are significantly faster
when using SCIPabt and 512 are significantly faster when
using SCIPsbt. Similarly for the MUTAG benchmark, 19 of
the 44 robust instances are substantially faster using SCIPabt
rather than SCIPsbt (see Figure 7). This is also reflected
in Table 2 when considering the robust instances only. For
the MUTAG instances (which are harder to solve than EN-
ZYMES), SCIPabt is roughly 10% faster than SCIPsbt in
shifted geometric mean (29% in arithmetic mean). This ef-
fect is even more pronounced for the most difficult MUTAG
instances with a global budget of 2% and 3%, where SCI-
Pabt is 10.8% and 22.0%, respectively, faster than SCIPsbt
in shifted geometric mean (29.4% and 35.8% in arithmetic
mean), see Table 9 in Appendix C.

We therefore propose running SCIPsbt and SCIPabt in par-
allel, this idea corresponds to the common observation in
MIP that parallelizing multiple strategies (here: SCIPsbt
and SCIPabt) yields more benefits than parallelizing just
one algorithm (Carvajal et al., 2014).

5. Conclusion
We propose topology-based bounds tightening approaches
to verify message-passing neural networks. By exploiting
graph structures and available budgets, our techniques com-
pute tighter bounds for variables and thereby help certify
robustness. Numerical results show the improvement of
topology-based bounds tightening w.r.t. the solving time
and the number of solved instances.

9

Verifying message-passing neural networks via topology-based bounds tightening

Acknowledgements
This work was supported by the Engineering and Physical
Sciences Research Council [grant number EP/W003317/1],
an Imperial College Hans Rausing PhD Scholarship to SZ,
and a BASF/RAEng Research Chair in Data-Driven Op-
timisation to RM. This collaboration was initiated at the
Mittag-Leffler Institute seminar titled Learning from Both
Sides: Linear and Nonlinear Mixed-Integer Optimization.

Impact Statement
Despite the widespread use and outstanding performance of
GNNs in various fields, their vulnerabilities are frequently
detected, even with slight perturbations. In safety-critical ap-
plications such as drug design and autonomous driving, such
vulnerabilities could result in unacceptable consequences.
For safety considerations, two major directions are investi-
gated by many researchers: (i) verification: how to measure
the robustness of GNNs, and (ii) robust training: how to
train GNNs that are more robust. This work considers ver-
ification problems on MPNNs, a classic GNN framework
whose robustness is seldom studied in the literature. With
the proposed bounds tightening strategies, we hope that the
robustness of MPNNs deployed in real-world applications
could be verified efficiently to avoid unreliable predictions.

References
Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C.,

and Vielma, J. P. Strong mixed-integer programming
formulations for trained neural networks. Mathematical
Programming, 183(1-2):3–39, 2020.

Badilla, F., Goycoolea, M., Muñoz, G., and Serra, T. Compu-
tational tradeoffs of optimization-based bound tightening
in ReLU networks, 2023.

Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci,
M., Nogales-Gómez, A., and Salvagnin, D. On handling
indicator constraints in mixed integer programming. Com-
putational Optimization and Applications, 65:545–566,
2016.

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A.,
Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul,
O., Gamrath, G., Gleixner, A., et al. Enabling research
through the SCIP optimization suite 8.0. ACM Transac-
tions on Mathematical Software, 49(2):1–21, 2023.

Bojchevski, A. and Günnemann, S. Certifiable robustness
to graph perturbations. NeurIPS, 2019.

Bojchevski, A., Gasteiger, J., and Günnemann, S. Efficient
robustness certificates for discrete data: Sparsity-aware
randomized smoothing for graphs, images and more. In
ICML, 2020.

Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and
Misener, R. Efficient verification of ReLU-based neural
networks via dependency analysis. In AAAI, 2020.

Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel,
V., and Shao, Y. Using diversification, communication
and parallelism to solve mixed-integer linear programs.
Operations Research Letters, 42(2):186–189, 2014.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C.,
Laird, C. D., and Misener, R. OMLT: Optimization &
machine learning toolkit. Journal of Machine Learning
Research, 23(349):1–8, 2022.

Chen, J., Xu, H., Wang, J., Xuan, Q., and Zhang, X. Ad-
versarial detection on graph structured data. In PPMLP,
2020.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial
robustness via randomized smoothing. In ICML, 2019.

Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and
Song, L. Adversarial attack on graph structured data. In
ICML, 2018.

Fey, M. and Lenssen, J. E. Fast graph representation learning
with PyTorch Geometric. In ICLR 2019 Workshop on
Representation Learning on Graphs and Manifolds, 2019.

Fischetti, M. and Jo, J. Deep neural networks and mixed
integer linear optimization. Constraints, 23(3):296–309,
2018.

Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-
K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A.,
Gottwald, L., Halbig, K., et al. The SCIP optimization
suite 7.0. Technical Report 20-10, ZIB, Takustr. 7, 14195
Berlin, 2020.

Gasteiger, J., Bojchevski, A., and Günnemann, S. Predict
then propagate: Graph neural networks meet personalized
pagerank. In ICLR, 2019.

Geisler, S., Schmidt, T., Şirin, H., Zügner, D., Bojchevski,
A., and Günnemann, S. Robustness of graph neural net-
works at scale. NeurIPS, 2021.

Günnemann, S. Graph neural networks: Adversarial robust-
ness. Graph Neural Networks: Foundations, Frontiers,
and Applications, pp. 149–176, 2022.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Hamilton, W., Ying, Z., and Leskovec, J. Inductive repre-
sentation learning on large graphs. In NeurIPS, 2017.

10

https://www.gurobi.com

Verifying message-passing neural networks via topology-based bounds tightening

Hojny, C. and Zhang, S. SCIP-MPNN: Code for the paper
“Verifying message-passing neural networks via topology-
based bounds tightening”. https://doi.org/10.
5281/zenodo.11208355, 2024.

Jin, H., Shi, Z., Peruri, V. J. S. A., and Zhang, X. Certi-
fied robustness of graph convolution networks for graph
classification under topological attacks. NeurIPS, 2020.

Jin, H., Yu, Z., and Zhang, X. Certifying robust graph clas-
sification under orthogonal Gromov-Wasserstein threats.
NeurIPS, 2022.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In ICLR, 2017.

Lomuscio, A. and Maganti, L. An approach to reachability
analysis for feed-forward ReLU neural networks. arXiv
preprint arXiv:1706.07351, 2017.

Ma, J., Ding, S., and Mei, Q. Towards more practical
adversarial attacks on graph neural networks. NeurIPS,
2020.

McDonald, T., Tsay, C., Schweidtmann, A. M., and Yorke-
Smith, N. Mixed-integer optimisation of graph neural
networks for computer-aided molecular design. Comput-
ers & Chemical Engineering, 185:108660, 2024.

Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel,
P., and Neumann, M. Tudataset: A collection of bench-
mark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020), 2020.

Müller, M. N., Makarchuk, G., Singh, G., Püschel, M.,
and Vechev, M. PRIMA: general and precise neural
network certification via scalable convex hull approx-
imations. Proceedings of the ACM on Programming
Languages, 6(POPL):1–33, 2022.

Sälzer, M. and Lange, M. Fundamental limits in formal
verification of message-passing neural networks. In ICLR,
2023.

Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev,
M. Fast and effective robustness certification. NeurIPS,
2018.

Singh, G., Ganvir, R., Püschel, M., and Vechev, M. Be-
yond the single neuron convex barrier for neural network
certification. In NeurIPS, pp. 15098–15109, 2019a.

Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract
domain for certifying neural networks. Proceedings of
the ACM on Programming Languages, 3(POPL):1–30,
2019b.

Sun, Y., Wang, S., Tang, X., Hsieh, T.-Y., and Honavar,
V. Adversarial attacks on graph neural networks via
node injections: A hierarchical reinforcement learning
approach. In WWW, 2020.

Takahashi, T. Indirect adversarial attacks via poisoning
neighbors for graph convolutional networks. In IEEE Big
Data, 2019.

Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W.,
PATEL, K. K., and Vielma, J. P. The convex relaxation
barrier, revisited: Tightened single-neuron relaxations for
neural network verification. In NeurIPS, volume 33, pp.
21675–21686, 2020.

Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robust-
ness of neural networks with mixed integer programming.
In ICLR, 2019.

Tsay, C., Kronqvist, J., Thebelt, A., and Misener, R.
Partition-based formulations for mixed-integer optimiza-
tion of trained ReLU neural networks. In NeurIPS, 2021.

Turner, M., Chmiela, A., Koch, T., and Winkler, M.
PySCIPOpt-ML: Embedding trained machine learning
models into mixed-integer programs. arXiv preprint
arXiv:2312.08074, 2023.

Wang, B., Jia, J., Cao, X., and Gong, N. Z. Certified ro-
bustness of graph neural networks against adversarial
structural perturbation. In SIGKDD, 2021.

Wang, J., Luo, M., Suya, F., Li, J., Yang, Z., and Zheng, Q.
Scalable attack on graph data by injecting vicious nodes.
Data Mining and Knowledge Discovery, 34:1363–1389,
2020.

Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J.,
Daniel, L., Boning, D., and Dhillon, I. Towards fast
computation of certified robustness for ReLU networks.
In ICML, 2018.

Wu, H., Barrett, C., Sharif, M., Narodytska, N., and Singh,
G. Scalable verification of GNN-based job schedulers.
Proceedings of the ACM on Programming Languages, 6
(OOPSLA2):1036–1065, 2022.

Xia, Z., Yang, H., Wang, B., and Jia, J. GNNCert: Deter-
ministic certification of graph neural networks against
adversarial perturbations. In ICLR, 2024.

Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong,
M., and Lin, X. Topology attack and defense for graph
neural networks: An optimization perspective. IJCAI,
2019.

Yang, R., Shi, J., Xiao, X., Yang, Y., Bhowmick, S. S., and
Liu, J. PANE: scalable and effective attributed network
embedding. The VLDB Journal, pp. 1–26, 2023.

11

https://doi.org/10.5281/zenodo.11208355
https://doi.org/10.5281/zenodo.11208355

Verifying message-passing neural networks via topology-based bounds tightening

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and
Daniel, L. Efficient neural network robustness certifica-
tion with general activation functions. NeurIPS, 2018.

Zhang, S., Campos, J. S., Feldmann, C., Walz, D., Sandfort,
F., Mathea, M., Tsay, C., and Misener, R. Optimizing
over trained GNNs via symmetry breaking. In NeurIPS,
2023.

Zhang, S., Campos, J. S., Feldmann, C., Sandfort, F.,
Mathea, M., and Misener, R. Augmenting optimization-
based molecular design with graph neural networks. Com-
puters & Chemical Engineering, 186:108684, 2024.

Zhao, H., Hijazi, H., Jones, H., Moore, J., Tanneau, M.,
and Van Hentenryck, P. Bound tightening using rolling-
horizon decomposition for neural network verification.
arXiv preprint arXiv:2401.05280, 2024.

Zügner, D. and Günnemann, S. Certifiable robustness and
robust training for graph convolutional networks. In
SIGKDD, 2019a.

Zügner, D. and Günnemann, S. Adversarial attacks on graph
neural networks via meta learning. In ICLR, 2019b.

Zügner, D. and Günnemann, S. Certifiable robustness of
graph convolutional networks under structure perturba-
tions. In SIGKDD, 2020.

Zügner, D., Akbarnejad, A., and Günnemann, S. Adversarial
attacks on neural networks for graph data. In SIGKDD,
2018.

12

Verifying message-passing neural networks via topology-based bounds tightening

A. Proofs of Properties 3.2 & 3.4
Proof of Property 3.2. Since Au,v ≥ 0, we only need to consider the lower bound of

∑
f∈Fl−1

wf,f ′xu,f in Eq. (16), which

is denoted as lbu→v . Using bounds for xu,f gives lbu→v defined as Eq. (18). Then Eq. (16) becomes:

lb(x̄v,f ′) = min
A∈P1(A∗)

∑
u∈V

Au,vlbu→v + bv,f ′ . (24)

Recall the definition of P1(A
∗), we can remove/add at most qv neighbors of node v. Denote the set of removed/added

neighbors as Vlb. Then the summation u ∈ V can be divided into: u ∈ N ∗(v) (original neighbors), u ∈ Vlb\N ∗(v) (added
neighbors), u ∈ N ∗(v) ∩ Vlb (removed neighbors), and u ∈ V \(N ∗(v) ∪ Vlb) (nodes without contribution either before or
now), from which we obtain that:

∑
u∈V

Au,vlbu→v =

 ∑
u∈N∗(v)

+
∑

u∈Vlb\N∗(v)

−
∑

u∈N∗(v)∩Vlb

 lbu→v

=
∑

u∈N∗(v)

lbu→v +
∑
u∈Vlb

∆u→v

(25)

with ∆u→v defined as Eq. (19). Moving the minimization to the only changeable term
∑

u∈Vlb

∆u→v yields Eq. (17).

Proof of Property 3.4. This property can be proved similarly to Property 3.2. Here we give a simple way to prove it using
the conclusion of Property 3.2. As mentioned in Remark 3.5, we can modify the original graph with previous decisions, i.e.,
current neighborhood of node v is (N ∗(v)\V0) ∪ V1 and the remaining budget is q′v defined as Eq. (23). Since we already
decided the values of Au,v for u ∈ V0 ∪ V1, Vlb should not include any node in V0 ∪ V1. Applying Property 3.2 on the
current graph with budgets q′v gives Eq. (22) and finishes this proof.

B. Implementation details
B.1. Local cutting planes

A local cutting plane in SCIP is any inequality together with the first node where it is valid. As shown in the right side of
Figure 1, after branching variable A1,0 = 0, we can improve the bounds of node 0 from [−4, 9] to [−3, 6]. These improved
bounds can be incorporated into the model by adding inequalities x ≥ −3 and x ≤ 6 to the left branch. However, these
inequalities cannot be added to the root node as they are invalid unless A1,0 = 0. At each node in the branch-and-bound
tree, all local cutting planes associated with its ancestors are valid. Including all of these local cutting planes is correct but
inefficient. Therefore, SCIP will decide whether an inequality will be added. For example, if node 0 equals to 7 at the left
child of the root node, then SCIP only adds x ≤ 6 into the model since this inequality is violated.

B.2. Inconsistent instances

We exclude instances with inconsistent results from different solvers, which results in the numbers in column “#” of Table 6
– Table 11 being smaller than the total number of graphs from each benchmark. This is because we found and reported a
small bug in Gurobi wherein several instances were declared infeasible despite having a feasible solution found by SCIP.
This bug was easily fixed in Gurobi and is now incorporated into a recent minor release. We continued using the Gurobi
version with the bug after the ICML rebuttal period because there was insufficient time to redo all the experiments. So, in
fairness to the Gurobi solver, we slightly modified the optimization problems by increasing the right-hand side of Eq. (7c) by
10−11. This change eliminated the bug, but then meant that the Gurobi solver frequently returns solutions that are infeasible,
i.e., violating some constraints of the MIP model by more than tolerance 10−6. To compare on an equal footing, we only
report results on instances where all solvers return consistent answers. In other words, if one solver wrongly declares an
instance infeasible or returns an infeasible solution, we do not report results.

13

Verifying message-passing neural networks via topology-based bounds tightening

C. Full numerical results
Table 3 gives results for node classification. Tables 4 and 5 summarize the results for graph classification with local attack
strength s ∈ {2, 3, 4} on ENZYMES and MUTAG, respectively. Detailed results with different global budgets are reported
in Tables 6–11. Figures 6 and 7 plot the number of different types of graphs (robust, nonrobust, time out) with various
budgets. Figures 4 and 5 visualize the number of solved (robust) instances below different time costs, and compares the time
costs between SCIPabt and SCIPsbt. For graph classification, our numerical analysis in Section 4.3 for s = 2 is consistent
with results for s ∈ {3, 4}, as shown here.

Furthermore, we report some numerical results to show that applying OBBT in GNN verification is not recommended.
Our OBBT implementation is straight-forward: for each variable, change the objective in our verification problem to its
lower/upper bound and relax all binary variables into continuous variables. Due to the high time cost for solving each
instance, as well as our numerical observation that tighter bounds may slow down the process to find a feasible attack
for a non-robust instance, we only apply OBBT to the 44 robust instances for MUTAG with s = 2. The average time
spent on calculating OBBT bounds for all variables is 6045.02s (3.57s per LP), and the average solving time with OBBT
bounds is 331.60s. As shown in Table 2, the average solving time for SCIPsbt is 336.41s. Therefore, the improvement of
OBBT w.r.t. the solving time is quite limited, despite its high time cost on computing bounds. We also compare the bounds
derived from sbt and OBBT using the relative bound tightness (RBT) used in Badilla et al. (2023): RBT = SBT−OBBT

OBBT+10−10 ,
where SBT/OBBT represents the length of interval bounds derived from sbt/OBBT, respectively. For each MPNN layer, we
average RBT over all variables in this layer for all 44 instances. The resulting RBT values are 0.07, 0.22, 0.57, which means
that the sbt bounds are quite closed to OBBT bounds for early layers and decently tight for deeper layers.

Table 3: Summary of results for node classification. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds
tightening (SCIPsbt), and SCIP aggressive bounds tightening (SCIPabt). For each global budget, the number of instances is
2708 for Cora and 3312 for CiteSeer. We compare times with respect to both average (“avg-time”) and the shifted geometric
mean (“sgm-time”), as well as the number of solved instances within time limits 30 minutes (“# solved”). Since robust
instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found
by more heuristic approaches), we also compare on the set of robust instances.

benchmark method all instances robust instances

avg-time(s) sgm-time(s) # solved # avg-time(s) sgm-time(s) # solved

Cora
SCIPbasic 2708 0.10 0.10 2708 2223 0.08 0.08 2223
SCIPsbt 2708 0.17 0.16 2708 2223 0.10 0.10 2223
SCIPabt 2708 0.46 0.38 2708 2223 0.16 0.14 2223

CiteSeer
SCIPbasic 3312 0.07 0.06 3312 2917 0.06 0.06 2917
SCIPsbt 3312 0.07 0.07 3312 2917 0.06 0.06 2917
SCIPabt 3312 0.31 0.17 3312 2917 0.12 0.10 2917

14

Verifying message-passing neural networks via topology-based bounds tightening

Table 4: Summary of results for graph classification on ENZYMES with local attack strength s ∈ {2, 3, 4}. The approaches
tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt),
Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is
600, but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time(s) sgm-time(s) # solved # avg-time(s) sgm-time(s) # solved

s = 2

SCIPbasic 5915 605.97 37.81 5579 3549 278.58 12.51 3444
SCIPsbt 5915 230.59 21.26 5831 3549 82.89 6.65 3528
SCIPabt 5915 246.02 21.77 5817 3549 88.95 6.71 3522

GRBbasic 5915 86.03 7.59 5892 3549 32.80 2.82 3542
GRBsbt 5915 74.87 7.09 5895 3549 22.90 2.50 3548

s = 3

SCIPbasic 5855 2628.71 460.25 4149 1554 1423.02 99.43 1308
SCIPsbt 5855 1533.12 214.04 4977 1554 750.70 48.68 1440
SCIPabt 5855 1583.67 224.59 4943 1554 738.67 48.11 1447

GRBbasic 5855 845.77 85.82 5549 1554 367.89 22.54 1530
GRBsbt 5855 738.26 74.83 5524 1554 238.48 18.89 1545

s = 4

SCIPbasic 5901 4163.96 1492.61 3003 577 2030.34 319.19 448
SCIPsbt 5901 2802.04 581.20 4012 577 1353.31 154.83 504
SCIPabt 5901 2841.31 602.57 4013 577 1318.26 152.16 509

GRBbasic 5901 1780.68 306.11 5125 577 862.25 62.75 547
GRBsbt 5901 1372.88 233.52 5290 577 589.89 49.66 570

15

Verifying message-passing neural networks via topology-based bounds tightening

Table 5: Summary of results for graph classification on MUTAG with local attack strength s ∈ {2, 3, 4}. The approaches
tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt),
Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is
188, but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time(s) sgm-time(s) # solved # avg-time(s) sgm-time(s) # solved

s = 2

SCIPbasic 1589 679.86 189.75 1575 44 798.47 202.93 40
SCIPsbt 1589 196.07 75.17 1589 44 336.41 100.86 44
SCIPabt 1589 207.50 82.43 1589 44 238.10 91.11 44

GRBbasic 1589 34.58 4.06 1589 44 162.25 12.11 44
GRBsbt 1589 59.93 22.40 1589 44 73.78 15.00 44

s = 3

SCIPbasic 1840 1355.17 262.63 1670 68 643.89 427.71 66
SCIPsbt 1840 720.13 174.32 1793 68 380.43 179.95 66
SCIPabt 1840 669.39 169.55 1797 68 373.90 172.83 66

GRBbasic 1840 601.86 30.92 1816 68 208.24 15.38 68
GRBsbt 1840 315.93 70.03 1834 68 234.78 27.21 66

s = 4

SCIPbasic 1844 1745.56 487.75 1644 64 386.72 340.95 64
SCIPsbt 1844 1039.90 180.30 1734 64 155.26 144.16 64
SCIPabt 1844 1004.92 177.84 1748 64 147.46 136.26 64

GRBbasic 1844 1113.20 58.17 1758 64 11.90 10.96 64
GRBsbt 1844 420.78 84.82 1837 64 23.04 21.29 64

16

Verifying message-passing neural networks via topology-based bounds tightening
s
=

2
s
=

3
s
=

4

(a) SCIPbasic (b) SCIPsbt (c) SCIPabt

Figure 4: For each SCIP-based method on ENZYMES with local attack strength s ∈ {2, 3, 4}, we count the number of
robust graphs (green), nonrobust graphs (red), and time out (white). The percentage δ of the number of edges is the global
budget.

17

Verifying message-passing neural networks via topology-based bounds tightening
s
=

2
s
=

3
s
=

4

(a) SCIPbasic (b) SCIPsbt (c) SCIPabt

Figure 5: For each SCIP-based method on MUTAG with local attack strength s ∈ {2, 3, 4}, we count the number of robust
graphs (green), nonrobust graphs (red), and time out (white). The percentage δ of the number of edges is the global budget.

18

Verifying message-passing neural networks via topology-based bounds tightening
s
=

2
s
=

3
s
=

4

Figure 6: ENZYMES benchmark with local attack strength s ∈ {2, 3, 4}. (left) Number of instances solved by each method
below different time costs. (middle) Number of robust instances solved by each method below different time costs. (right)
Consider ρ, the ratio of time cost between SCIPabt and SCIPsbt on each robust instance.

19

Verifying message-passing neural networks via topology-based bounds tightening
s
=

2
s
=

3
s
=

4

Figure 7: MUTAG benchmark with local attack strength s ∈ {2, 3, 4}. (left) Number of instances solved by each method
below different time costs. (middle) Number of robust instances solved by each method below different time costs. (right)
Consider ρ, the ratio of time cost between SCIPabt and SCIPsbt on each robust instance.

20

Verifying message-passing neural networks via topology-based bounds tightening

Table 6: Results for ENZYMES with local attack strength s = 2 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 600 465.47 25.13 575 453 420.33 18.76 435
SCIPsbt 600 193.02 14.46 594 453 166.90 10.52 451
SCIPabt 600 190.05 14.58 592 453 161.85 10.53 449
GRBbasic 600 119.88 7.08 594 453 84.71 5.76 451
GRBsbt 600 87.31 5.90 596 453 47.40 4.89 453

global budget: ⌈0.02 · |E|⌉
SCIPbasic 597 630.47 37.42 557 392 457.99 18.92 371
SCIPsbt 597 248.67 20.65 585 392 181.41 10.44 385
SCIPabt 597 260.41 21.16 584 392 194.53 10.58 385
GRBbasic 597 170.91 9.36 588 392 111.73 5.05 388
GRBsbt 597 111.66 7.59 592 392 66.45 4.33 391

global budget: ⌈0.03 · |E|⌉
SCIPbasic 591 628.77 37.75 556 359 328.18 14.17 347
SCIPsbt 591 252.04 20.87 579 359 117.80 7.67 355
SCIPabt 591 262.35 21.03 577 359 120.84 7.67 354
GRBbasic 591 108.75 8.55 587 359 45.55 3.34 358
GRBsbt 591 79.77 7.05 588 359 22.37 2.79 359

global budget: ⌈0.04 · |E|⌉
SCIPbasic 593 633.12 39.29 557 346 256.36 11.96 336
SCIPsbt 593 234.00 21.84 585 346 61.20 6.07 344
SCIPabt 593 253.13 22.90 583 346 62.85 6.13 345
GRBbasic 593 80.87 7.59 591 346 6.44 2.19 346
GRBsbt 593 61.60 6.79 591 346 5.48 1.98 346

global budget: ⌈0.05 · |E|⌉
SCIPbasic 591 647.96 41.10 555 338 234.96 10.74 329
SCIPsbt 591 241.04 22.37 581 338 48.19 5.58 337
SCIPabt 591 293.33 23.46 576 338 75.63 5.66 335
GRBbasic 591 72.31 7.61 591 338 6.47 1.99 338
GRBsbt 591 70.81 7.34 589 338 13.86 1.83 338

global budget: ⌈0.06 · |E|⌉
SCIPbasic 594 623.67 41.01 560 334 204.73 10.09 327
SCIPsbt 594 210.26 22.99 588 334 37.46 5.22 333
SCIPabt 594 240.04 23.29 585 334 55.18 5.36 332
GRBbasic 594 73.46 7.56 594 334 8.41 1.85 334
GRBsbt 594 57.18 7.04 594 334 22.34 1.72 334

global budget: ⌈0.07 · |E|⌉
SCIPbasic 590 635.63 40.99 554 332 195.72 9.84 325
SCIPsbt 590 221.80 23.07 583 332 37.65 5.08 331
SCIPabt 590 259.83 23.68 583 332 54.13 5.25 330
GRBbasic 590 53.62 7.07 590 332 8.03 1.78 332
GRBsbt 590 62.36 7.46 590 332 6.69 1.77 332

global budget: ⌈0.08 · |E|⌉
SCIPbasic 583 608.75 39.97 553 332 197.92 9.95 325
SCIPsbt 583 240.35 22.52 575 332 38.82 5.11 331
SCIPabt 583 214.77 22.42 577 332 38.26 5.11 331
GRBbasic 583 60.73 6.92 582 332 8.32 1.85 332
GRBsbt 583 76.61 7.26 582 332 6.03 1.64 332

global budget: ⌈0.09 · |E|⌉
SCIPbasic 588 585.39 38.98 557 331 197.91 10.02 324
SCIPsbt 588 241.76 23.02 581 331 43.36 5.08 330
SCIPabt 588 249.56 23.67 580 331 37.99 5.05 330
GRBbasic 588 72.99 7.50 587 331 8.08 1.85 331
GRBsbt 588 75.35 7.23 586 331 6.08 1.66 331

global budget: ⌈0.10 · |E|⌉
SCIPbasic 588 602.12 39.14 555 332 205.53 10.01 325
SCIPsbt 588 223.54 22.05 580 332 46.58 5.09 331
SCIPabt 588 237.00 22.88 580 332 41.39 5.07 331
GRBbasic 588 44.81 6.83 588 332 7.72 1.96 332
GRBsbt 588 65.58 7.31 587 332 16.41 1.78 332

21

Verifying message-passing neural networks via topology-based bounds tightening

Table 7: Results for ENZYMES with local attack strength s = 3 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 597 2041.24 248.53 464 319 1088.49 94.41 287
SCIPsbt 597 1160.38 109.23 521 319 481.74 43.92 307
SCIPabt 597 1129.15 109.77 523 319 478.08 43.68 307
GRBbasic 597 985.15 52.53 542 319 370.09 20.68 310
GRBsbt 597 700.88 39.96 558 319 193.68 16.28 318

global budget: ⌈0.02 · |E|⌉
SCIPbasic 587 2738.05 498.94 413 218 1896.50 185.55 179
SCIPsbt 587 1683.98 226.92 484 218 1004.56 88.59 199
SCIPabt 587 1623.45 227.82 491 218 970.46 86.96 207
GRBbasic 587 1059.95 99.76 544 218 495.46 43.64 215
GRBsbt 587 728.29 66.57 552 218 352.89 34.88 217

global budget: ⌈0.03 · |E|⌉
SCIPbasic 590 2835.26 542.92 403 169 1685.32 142.10 139
SCIPsbt 590 1745.83 245.95 482 169 883.20 67.97 157
SCIPabt 590 1757.43 252.98 477 169 857.83 66.17 155
GRBbasic 590 926.16 94.63 551 169 346.30 30.00 166
GRBsbt 590 597.79 64.60 565 169 266.98 25.74 168

global budget: ⌈0.04 · |E|⌉
SCIPbasic 588 2793.58 539.45 404 141 1623.34 113.29 114
SCIPsbt 588 1684.95 241.19 486 141 844.50 54.50 129
SCIPabt 588 1779.51 259.53 481 141 869.72 53.91 128
GRBbasic 588 705.60 84.77 568 141 302.69 23.50 141
GRBsbt 588 498.54 63.82 572 141 268.36 20.55 139

global budget: ⌈0.05 · |E|⌉
SCIPbasic 589 2730.97 502.64 407 128 1462.98 88.07 104
SCIPsbt 589 1559.45 230.58 499 128 825.88 44.16 117
SCIPabt 589 1588.79 241.82 500 128 821.32 43.98 116
GRBbasic 589 653.18 82.60 572 128 363.43 20.28 128
GRBsbt 589 597.25 69.81 571 128 282.16 17.86 126

global budget: ⌈0.06 · |E|⌉
SCIPbasic 587 2678.33 483.01 409 120 1405.21 82.54 99
SCIPsbt 587 1523.67 226.15 502 120 798.68 41.36 110
SCIPabt 587 1611.51 243.19 496 120 813.46 42.08 110
GRBbasic 587 719.60 81.19 564 120 415.24 19.88 118
GRBsbt 587 664.13 78.00 558 120 214.15 17.07 120

global budget: ⌈0.07 · |E|⌉
SCIPbasic 576 2729.50 492.39 400 115 1290.92 70.80 97
SCIPsbt 576 1518.06 226.43 493 115 699.68 35.11 105
SCIPabt 576 1605.08 240.04 489 115 682.72 34.36 106
GRBbasic 576 762.36 88.48 552 115 332.71 16.17 114
GRBsbt 576 780.03 86.20 541 115 209.06 13.87 114

global budget: ⌈0.08 · |E|⌉
SCIPbasic 579 2527.15 450.55 425 116 1288.86 70.91 97
SCIPsbt 579 1445.35 212.99 499 116 675.81 35.33 107
SCIPabt 579 1492.87 226.64 500 116 700.39 36.03 107
GRBbasic 579 828.08 90.22 552 116 307.12 16.05 114
GRBsbt 579 842.19 93.20 539 116 146.60 13.40 116

global budget: ⌈0.09 · |E|⌉
SCIPbasic 586 2594.38 476.06 415 113 1190.02 64.52 96
SCIPsbt 586 1498.64 232.34 512 113 701.85 33.91 104
SCIPabt 586 1634.99 246.41 499 113 620.21 32.32 106
GRBbasic 586 863.88 96.14 561 113 260.83 14.23 112
GRBsbt 586 925.87 99.95 539 113 178.31 12.64 113

global budget: ⌈0.10 · |E|⌉
SCIPbasic 576 2627.36 459.95 409 115 1292.84 69.60 96
SCIPsbt 576 1513.94 234.73 499 115 746.69 35.91 105
SCIPabt 576 1620.34 252.07 487 115 727.18 35.21 105
GRBbasic 576 952.10 99.60 543 115 388.85 16.03 112
GRBsbt 576 1058.39 112.22 529 115 225.30 13.55 114

22

Verifying message-passing neural networks via topology-based bounds tightening

Table 8: Results for ENZYMES with local attack strength s = 4 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 594 3421.76 773.05 345 211 1260.49 170.39 182
SCIPsbt 594 2352.82 345.23 425 211 593.60 74.72 202
SCIPabt 594 2282.73 337.01 432 211 569.32 74.28 203
GRBbasic 594 2107.45 170.88 456 211 470.19 24.40 204
GRBsbt 594 1595.10 130.26 493 211 260.64 20.56 211

global budget: ⌈0.02 · |E|⌉
SCIPbasic 593 4550.98 1874.90 280 103 2833.99 581.49 76
SCIPsbt 593 3259.56 770.71 362 103 2135.50 324.52 82
SCIPabt 593 3120.26 741.51 374 103 2049.08 316.62 84
GRBbasic 593 2373.24 422.28 463 103 1195.25 153.67 98
GRBsbt 593 1658.01 233.42 502 103 819.20 108.68 102

global budget: ⌈0.03 · |E|⌉
SCIPbasic 591 4476.55 1883.37 270 65 2733.32 583.01 45
SCIPsbt 591 3307.01 869.32 360 65 1900.42 315.89 54
SCIPabt 591 3340.71 888.09 353 65 1820.57 298.76 54
GRBbasic 591 1984.46 403.78 504 65 1329.91 164.43 60
GRBsbt 591 1283.41 191.51 531 65 993.78 123.35 63

global budget: ⌈0.04 · |E|⌉
SCIPbasic 593 4469.33 1890.99 268 46 3027.57 602.22 28
SCIPsbt 593 3339.44 808.49 357 46 2376.84 332.05 35
SCIPabt 593 3312.35 824.98 362 46 2295.64 327.83 36
GRBbasic 593 1643.02 335.49 537 46 1407.86 154.94 41
GRBsbt 593 1039.69 175.10 550 46 1024.66 106.28 44

global budget: ⌈0.05 · |E|⌉
SCIPbasic 595 4379.75 1691.84 286 34 2571.61 438.08 23
SCIPsbt 595 2956.30 659.83 396 34 1625.51 205.03 30
SCIPabt 595 3034.27 691.12 385 34 1651.50 201.25 29
GRBbasic 595 1538.31 300.14 539 34 843.47 86.46 32
GRBsbt 595 1035.63 198.01 561 34 696.91 67.81 34

global budget: ⌈0.06 · |E|⌉
SCIPbasic 588 4108.15 1427.47 302 29 2220.69 366.12 21
SCIPsbt 588 2879.51 624.42 399 29 1571.68 174.19 24
SCIPabt 588 2891.41 644.29 404 29 1619.69 174.26 25
GRBbasic 588 1472.87 283.85 543 29 1209.09 79.81 27
GRBsbt 588 1035.34 214.00 551 29 518.49 49.90 29

global budget: ⌈0.07 · |E|⌉
SCIPbasic 592 4147.98 1484.03 309 24 1749.90 288.38 19
SCIPsbt 592 2685.22 543.80 414 24 1005.48 122.89 22
SCIPabt 592 2732.23 556.59 416 24 1053.82 119.60 22
GRBbasic 592 1609.26 294.58 532 24 679.49 41.95 24
GRBsbt 592 1298.98 257.15 541 24 155.27 32.76 24

global budget: ⌈0.08 · |E|⌉
SCIPbasic 588 4085.50 1440.95 308 22 1622.94 281.69 18
SCIPsbt 588 2489.10 505.68 430 22 1091.16 114.08 19
SCIPabt 588 2693.02 563.16 418 22 1089.48 114.84 19
GRBbasic 588 1574.46 297.33 532 22 472.77 33.43 21
GRBsbt 588 1399.73 308.64 536 22 502.12 34.93 22

global budget: ⌈0.09 · |E|⌉
SCIPbasic 579 4023.93 1476.52 310 22 1739.77 287.68 18
SCIPsbt 579 2443.85 480.58 422 22 1384.42 127.34 18
SCIPabt 579 2599.45 530.96 427 22 1384.49 127.40 18
GRBbasic 579 1726.07 315.56 504 22 920.76 45.09 20
GRBsbt 579 1574.30 346.97 517 22 961.86 45.76 21

global budget: ⌈0.10 · |E|⌉
SCIPbasic 588 3971.18 1391.04 325 21 1375.79 221.98 18
SCIPsbt 588 2294.64 426.34 447 21 1111.89 107.09 18
SCIPabt 588 2398.19 460.41 442 21 1079.78 103.04 19
GRBbasic 588 1772.66 311.55 515 21 632.60 34.92 20
GRBsbt 588 1814.80 403.30 508 21 695.35 34.77 20

23

Verifying message-passing neural networks via topology-based bounds tightening

Table 9: Results for MUTAG with local attack strength s = 2 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 124 74.28 45.27 124 24 176.24 162.61 24
SCIPsbt 124 33.89 22.76 124 24 84.37 79.12 24
SCIPabt 124 32.31 22.18 124 24 77.22 72.94 24
GRBbasic 124 2.30 2.16 124 24 4.91 4.82 24
GRBsbt 124 4.10 3.69 124 24 9.39 8.98 24

global budget: ⌈0.02 · |E|⌉
SCIPbasic 141 437.96 87.20 139 16 1028.39 226.02 14
SCIPsbt 141 127.08 37.84 141 16 407.73 115.97 16
SCIPabt 141 98.31 36.72 141 16 287.84 103.45 16
GRBbasic 141 94.67 11.83 141 16 205.18 15.21 16
GRBsbt 141 26.14 8.90 141 16 93.51 17.19 16

global budget: ⌈0.03 · |E|⌉
SCIPbasic 180 542.88 162.56 178 3 4807.52 1181.75 1
SCIPsbt 180 152.61 57.72 180 3 2080.69 545.97 3
SCIPabt 180 134.96 58.51 180 3 1334.79 425.77 3
GRBbasic 180 87.25 10.17 180 3 1245.54 325.46 3
GRBsbt 180 34.48 16.03 180 3 507.82 176.89 3

global budget: ⌈0.04 · |E|⌉
SCIPbasic 174 613.49 199.84 172 1 26.09 26.09 1
SCIPsbt 174 175.59 66.82 174 1 11.45 11.45 1
SCIPabt 174 133.90 67.08 174 1 13.23 13.23 1
GRBbasic 174 49.70 4.59 174 1 1.51 1.51 1
GRBsbt 174 47.76 21.59 174 1 1.55 1.55 1

global budget: ⌈0.05 · |E|⌉
SCIPbasic 167 707.14 233.17 166 0 — — —
SCIPsbt 167 185.08 81.61 167 0 — — —
SCIPabt 167 170.37 82.49 167 0 — — —
GRBbasic 167 23.07 2.30 167 0 — — —
GRBsbt 167 61.18 27.22 167 0 — — —

global budget: ⌈0.06 · |E|⌉
SCIPbasic 158 832.55 270.16 157 0 — — —
SCIPsbt 158 190.53 92.80 158 0 — — —
SCIPabt 158 215.46 102.23 158 0 — — —
GRBbasic 158 23.74 2.55 158 0 — — —
GRBsbt 158 57.60 27.95 158 0 — — —

global budget: ⌈0.07 · |E|⌉
SCIPbasic 159 841.40 265.97 158 0 — — —
SCIPsbt 159 219.35 94.60 159 0 — — —
SCIPabt 159 264.65 112.42 159 0 — — —
GRBbasic 159 43.72 2.98 159 0 — — —
GRBsbt 159 57.12 25.68 159 0 — — —

global budget: ⌈0.08 · |E|⌉
SCIPbasic 159 859.84 265.24 159 0 — — —
SCIPsbt 159 254.42 109.18 159 0 — — —
SCIPabt 159 299.46 134.91 159 0 — — —
GRBbasic 159 4.31 2.18 159 0 — — —
GRBsbt 159 65.85 27.45 159 0 — — —

global budget: ⌈0.09 · |E|⌉
SCIPbasic 165 877.25 254.34 163 0 — — —
SCIPsbt 165 274.26 113.80 165 0 — — —
SCIPabt 165 333.40 137.86 165 0 — — —
GRBbasic 165 4.26 2.07 165 0 — — —
GRBsbt 165 89.31 31.92 165 0 — — —

global budget: ⌈0.10 · |E|⌉
SCIPbasic 162 864.13 251.70 159 0 — — —
SCIPsbt 162 307.52 120.64 162 0 — — —
SCIPabt 162 352.19 149.21 162 0 — — —
GRBbasic 162 6.29 2.89 162 0 — — —
GRBsbt 162 141.44 49.11 162 0 — — —

24

Verifying message-passing neural networks via topology-based bounds tightening

Table 10: Results for MUTAG with local attack strength s = 3 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 178 216.94 138.74 178 43 484.49 438.14 43
SCIPsbt 178 97.37 68.28 178 43 191.70 180.49 43
SCIPabt 178 96.24 67.91 178 43 186.38 174.65 43
GRBbasic 178 6.75 5.92 178 43 13.62 12.68 43
GRBsbt 178 11.81 9.64 178 43 25.98 24.19 43

global budget: ⌈0.02 · |E|⌉
SCIPbasic 183 964.93 197.33 169 22 709.48 418.88 21
SCIPsbt 183 353.80 93.62 180 22 470.79 172.81 21
SCIPabt 183 348.24 92.84 180 22 461.02 162.62 21
GRBbasic 183 494.45 23.69 181 22 315.86 16.25 22
GRBsbt 183 216.83 20.71 180 22 347.31 27.91 21

global budget: ⌈0.03 · |E|⌉
SCIPbasic 185 1457.00 260.71 169 2 3634.79 747.48 1
SCIPsbt 185 424.80 119.43 182 2 3616.68 549.13 1
SCIPabt 185 418.05 118.39 182 2 3616.66 548.81 1
GRBbasic 185 744.52 83.02 183 2 3311.59 274.89 2
GRBsbt 185 257.34 44.27 182 2 3601.72 301.41 1

global budget: ⌈0.04 · |E|⌉
SCIPbasic 185 1473.13 290.37 168 1 73.10 73.10 1
SCIPsbt 185 605.01 151.85 179 1 35.09 35.09 1
SCIPabt 185 557.49 149.98 182 1 35.24 35.24 1
GRBbasic 185 910.40 82.52 182 1 2.25 2.25 1
GRBsbt 185 204.63 52.12 185 1 3.55 3.55 1

global budget: ⌈0.05 · |E|⌉
SCIPbasic 186 1464.64 307.77 167 0 — — —
SCIPsbt 186 661.42 211.00 182 0 — — —
SCIPabt 186 637.86 204.26 183 0 — — —
GRBbasic 186 1072.39 91.48 183 0 — — —
GRBsbt 186 282.76 77.28 186 0 — — —

global budget: ⌈0.06 · |E|⌉
SCIPbasic 186 1341.58 261.62 171 0 — — —
SCIPsbt 186 700.35 212.61 181 0 — — —
SCIPabt 186 626.75 198.82 183 0 — — —
GRBbasic 186 934.94 59.53 184 0 — — —
GRBsbt 186 334.13 93.00 186 0 — — —

global budget: ⌈0.07 · |E|⌉
SCIPbasic 186 1537.24 306.34 166 0 — — —
SCIPsbt 186 964.08 244.13 181 0 — — —
SCIPabt 186 919.51 235.79 180 0 — — —
GRBbasic 186 564.47 23.72 183 0 — — —
GRBsbt 186 375.94 104.92 186 0 — — —

global budget: ⌈0.08 · |E|⌉
SCIPbasic 186 1559.03 279.39 166 0 — — —
SCIPsbt 186 1065.84 242.82 179 0 — — —
SCIPabt 186 989.15 236.15 179 0 — — —
GRBbasic 186 388.40 13.63 184 0 — — —
GRBsbt 186 426.44 132.03 186 0 — — —

global budget: ⌈0.09 · |E|⌉
SCIPbasic 184 1720.80 331.98 161 0 — — —
SCIPsbt 184 1080.19 279.90 179 0 — — —
SCIPabt 184 993.48 271.16 178 0 — — —
GRBbasic 184 456.38 12.95 182 0 — — —
GRBsbt 184 496.92 164.96 184 0 — — —

global budget: ⌈0.10 · |E|⌉
SCIPbasic 181 1777.61 317.24 155 0 — — —
SCIPsbt 181 1231.10 271.38 172 0 — — —
SCIPabt 181 1090.15 259.43 172 0 — — —
GRBbasic 181 414.44 10.81 176 0 — — —
GRBsbt 181 545.06 187.13 181 0 — — —

25

Verifying message-passing neural networks via topology-based bounds tightening

Table 11: Results for MUTAG with local attack strength s = 4 and different global budgets. The approaches tested are
SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi
basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188,
but we only present comparisons when all methods give consistent results except for time out, as shown in column “#”.
We compare times with respect to both average (“avg-time”) and the shifted geometric mean (“sgm-time”), as well as the
number of solved instances within time limits 2 hours (“# solved”). Since robust instances are the ones where mixed-integer
performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also
compare on the set of robust instances.

method all instances robust instances

avg-time sgm-time # solved # avg-time sgm-time # solved

global budget: ⌈0.01 · |E|⌉
SCIPbasic 178 191.35 123.98 178 42 424.81 387.63 42
SCIPsbt 178 85.15 59.78 178 42 169.78 161.44 42
SCIPabt 178 83.79 59.25 178 42 163.36 154.26 42
GRBbasic 178 6.28 5.43 178 42 13.03 12.04 42
GRBsbt 178 11.40 9.32 178 42 24.88 23.29 42

global budget: ⌈0.02 · |E|⌉
SCIPbasic 182 861.95 178.32 171 20 338.87 304.96 20
SCIPsbt 182 340.02 78.95 178 20 136.87 129.74 20
SCIPabt 182 373.47 79.59 178 20 125.34 119.02 20
GRBbasic 182 692.50 25.82 175 20 10.48 9.91 20
GRBsbt 182 292.40 22.45 179 20 21.10 19.82 20

global budget: ⌈0.03 · |E|⌉
SCIPbasic 186 1664.22 438.26 176 1 67.18 67.18 1
SCIPsbt 186 445.62 109.95 182 1 35.41 35.41 1
SCIPabt 186 469.51 109.72 182 1 35.42 35.42 1
GRBbasic 186 1246.43 111.16 179 1 2.32 2.32 1
GRBsbt 186 365.84 57.23 183 1 3.77 3.77 1

global budget: ⌈0.04 · |E|⌉
SCIPbasic 187 1910.56 613.64 172 1 63.21 63.21 1
SCIPsbt 187 766.90 144.99 178 1 33.13 33.13 1
SCIPabt 187 783.38 144.70 178 1 34.23 34.23 1
GRBbasic 187 1457.39 114.36 173 1 2.31 2.31 1
GRBsbt 187 327.42 64.44 187 1 3.74 3.74 1

global budget: ⌈0.05 · |E|⌉
SCIPbasic 185 1889.19 632.42 166 0 — — —
SCIPsbt 185 1167.71 244.49 174 0 — — —
SCIPabt 185 1156.75 242.43 174 0 — — —
GRBbasic 185 1553.69 113.65 171 0 — — —
GRBsbt 185 493.57 97.94 185 0 — — —

global budget: ⌈0.06 · |E|⌉
SCIPbasic 186 1990.98 693.58 163 0 — — —
SCIPsbt 186 1440.55 279.50 172 0 — — —
SCIPabt 186 1461.07 286.93 171 0 — — —
GRBbasic 186 1410.53 95.52 176 0 — — —
GRBsbt 186 524.40 116.61 186 0 — — —

global budget: ⌈0.07 · |E|⌉
SCIPbasic 183 2151.99 693.12 156 0 — — —
SCIPsbt 183 1403.40 246.99 171 0 — — —
SCIPabt 183 1452.16 254.92 169 0 — — —
GRBbasic 183 1303.05 82.57 176 0 — — —
GRBsbt 183 466.03 124.70 183 0 — — —

global budget: ⌈0.08 · |E|⌉
SCIPbasic 186 2252.93 732.66 153 0 — — —
SCIPsbt 186 1525.19 314.64 170 0 — — —
SCIPabt 186 1513.03 309.31 170 0 — — —
GRBbasic 186 1218.15 65.01 177 0 — — —
GRBsbt 186 535.35 181.75 185 0 — — —

global budget: ⌈0.09 · |E|⌉
SCIPbasic 186 2214.69 692.20 155 0 — — —
SCIPsbt 186 1599.46 285.69 163 0 — — —
SCIPabt 186 1333.37 260.48 175 0 — — —
GRBbasic 186 1037.36 41.38 178 0 — — —
GRBsbt 186 595.20 205.80 186 0 — — —

global budget: ⌈0.10 · |E|⌉
SCIPbasic 185 2251.07 734.90 154 0 — — —
SCIPsbt 185 1579.84 272.52 168 0 — — —
SCIPabt 185 1380.72 254.21 173 0 — — —
GRBbasic 185 1153.80 41.88 175 0 — — —
GRBsbt 185 578.28 217.22 185 0 — — —

26

