Verifying message-passing neural networks via topology-based bounds tightening

Christopher Hojny^{*1} Shiqiang Zhang^{*2} Juan S. Campos² Ruth Misener²

Abstract

Since graph neural networks (GNNs) are often vulnerable to attack, we need to know when we can trust them. We develop a computationally effective approach towards providing robust certificates for message-passing neural networks (MPNNs) using a Rectified Linear Unit (ReLU) activation function. Because our work builds on mixed-integer optimization, it encodes a wide variety of subproblems, for example it admits (i) both adding and removing edges, (ii) both global and local budgets, and (iii) both topological perturbations and feature modifications. Our key technology, topology-based bounds tightening, uses graph structure to tighten bounds. We also experiment with aggressive bounds tightening to dynamically change the optimization constraints by tightening variable bounds. To demonstrate the effectiveness of these strategies, we implement an extension to the open-source branch-andcut solver SCIP. We test on both node and graph classification problems and consider topological attacks that both add and remove edges.

1. Introduction

Graph neural networks (GNNs) may have incredible performance in graph-based tasks, but researchers also raise concerns about their vulnerability: small input changes sometimes lead to wrong GNN predictions (Günnemann, 2022). To study these GNN vulnerabilities, prior works roughly divide into two classes: adversarial attacks (Dai et al., 2018; Zügner et al., 2018; Takahashi, 2019; Xu et al., 2019; Zügner & Günnemann, 2019b; Chen et al., 2020; Ma et al., 2020; Sun et al., 2020; Wang et al., 2020; Geisler et al., 2021) and certifiable robustness (Bojchevski & Günnemann, 2019; Zügner & Günnemann, 2019a; 2020; Bojchevski et al., 2020; Jin et al., 2020; Sälzer & Lange, 2023). Beyond the difficulties of developing adversarial robustness for dense neural networks (Lomuscio & Maganti, 2017; Fischetti & Jo, 2018), incorporating graphs brings new challenges to both adversarial attacks and certifiable robustness. The first difficulty is defining graph perturbations because, beyond tuning the features (Takahashi, 2019; Zügner et al., 2018; Zügner & Günnemann, 2019a; Bojchevski et al., 2020; Ma et al., 2020), an attacker may inject nodes (Sun et al., 2020; Wang et al., 2020) or add/delete edges (Dai et al., 2018; Zügner et al., 2018; Bojchevski & Günnemann, 2019; Zügner & Günnemann, 2019b; 2020; Xu et al., 2019; Chen et al., 2020; Jin et al., 2020; Geisler et al., 2021). Second, binary elements in the adjacency matrix create discrete optimization problems. Finally, perturbations to a node may indirectly attack other nodes via message passing or graph convolution.

Adversarial attacks aim to change the predictions of a GNN with admissible perturbations. In graph classification, the attacking goal is the prediction of a target graph (Dai et al., 2018; Chen et al., 2020). In node classification, attacks may be *local* (or targeted) and *global* (or untargeted). Local attacks (Dai et al., 2018; Zügner et al., 2018; Takahashi, 2019; Wang et al., 2020) try to change the prediction of a single node under perturbations, and global attacks (Xu et al., 2019; Zügner & Günnemann, 2019b; Ma et al., 2020; Sun et al., 2020; Geisler et al., 2021) allow perturbations to a group of nodes. Except for the Q-learning approach and genetic algorithm of Dai et al. (2018), most aforementioned works are first-order methods which derive or approximate gradients w.r.t. features and edges. Binary variables are flipped when they are chosen to be updated.

Certifiable robustness tries to guarantee that the prediction will not change under any admissible GNN perturbation. The state-of-the-art (Bojchevski & Günnemann, 2019; Zügner & Günnemann, 2019a; 2020; Jin et al., 2020) typically formulates certifiable robustness as a constrained optimization problem, where the objective is the worst-case margin between the correct class and other class(es), and the constraints represent admissible perturbations (Günnemann, 2022). Given a GNN and a target node/graph, a certificate requires proving that the objective is always positive. Any feasible solution with a negative objective is an adversarial attack. Most existing certificates (Zügner & Günnemann, 2019a; Jin et al., 2020) focus on graph convolutional net-

^{*}Equal contribution ¹Eindhoven University of Technology, Eindhoven, The Netherlands ²Department of Computing, Imperial College London, UK. Correspondence to: Christopher Hojny <c.hojny@tue.nl>.

Proceedings of the 41st International Conference on Machine Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by the author(s).

Verifying message-passing neural networks via topology-based bounds tightening

Figure 1: (left) Consider a graph with 6 nodes u = 0, ..., 5 and one feature. The neighbor set of node 0 is $\mathcal{N}(0) = \{0, 1, 2\}$. The input bounds are given above each node. Assume the budget, i.e., maximal number of modifications, for node 0 is 3. The modifications could be removing neighbors from $\mathcal{N}(0)$ or adding new neighbors from $\{3, 4, 5\}$. Four decisions have been made in the branch-and-bound tree, i.e., binary variables representing edges are set as $A_{1,0} = 0, A_{2,0} = 1, A_{3,0} =$ $0, A_{4,0} = 1$. Since node 2 is a neighbor of node 0 while node 3 is not, fixing $A_{2,0} = 1$ and $A_{3,0} = 0$ spends no budget. For each method, we compute the bounds for node 0 in the next layer. To compute a lower bound, the plain strategy (*basic*) chooses all negative lower bounds without considering either budgets or previous decisions in the branch-and-bound tree. Static bounds tightening (*sbt*), the first topology-based bounds tightening routine, removes node 2 and adds node 3, 4 as neighbors within 3 budgets, but ignores decisions in the branch-and-bound tree. Aggressive bounds tightening (*abt*) yields tighter bounds by saving node 0 and adding node 5 as neighbors. (**right**) The branch-and-bound tree corresponding to the left. We provide the bounds yielded from *abt* and budget left after each decision.

works (GCNs) (Kipf & Welling, 2017). The certificate on personalized propagation of neural predictions (Gasteiger et al., 2019) relies on local budget and yields looser guarantees in the presence of a global budget (Bojchevski & Günnemann, 2019). Also, each certificate has specific requirements on the perturbation type, e.g., changing node features only (Zügner & Günnemann, 2019a), modifying graph structure only (Bojchevski & Günnemann, 2019; Jin et al., 2020), removing edges only (Zügner & Günnemann, 2020), and allowing only orthogonal Gromov-Wasserstein threats (Jin et al., 2022). Instead of verifying GNNs directly, several works (Bojchevski et al., 2020; Wang et al., 2021; Xia et al., 2024) provide certified defenses based on the randomized smoothing framework (Cohen et al., 2019).

This work develops certificates on the classic message passing framework, especially GraphSAGE (Hamilton et al., 2017). Using a recently-proposed mixed-integer formulation for GNNs (McDonald et al., 2024; Zhang et al., 2024; 2023), we directly encode a GNN into an optimization problem using linear constraints. Many perturbations are compatible with our formulation: (i) both adding and removing edges, (ii) both global and local budgets, and (iii) both topological perturbations and feature modifications.

When verifying fully-dense, feed-forward neural networks with ReLU activation, prior work shows that tightening variable bounds in a big-M formulation (Anderson et al., 2020) may lead to better computational performance (Tjeng et al., 2019; Botoeva et al., 2020; Tsay et al., 2021; Badilla et al., 2023; Zhao et al., 2024). Since tighter variable bounds may improve the objective value of relaxations of the big-M formulation, they may be useful when providing a certificate of robustness. Because the optimization problems associated with verifying MPNNs are so large, this work cannot use the tighter, convex-hull based optimization formulations (Singh et al., 2019a; Tjandraatmadja et al., 2020; Müller et al., 2022). Instead, we use what we call topology-based bounds tightening to enable a much stronger version of feasibilitybased bounds tightening: we extend SCIP (Bestuzheva et al., 2023) to explicitly use the graph structures. We also develop an aggressive bounds tightening (Belotti et al., 2016) routine to dynamically change the optimization constraints by tightening variable bounds within SCIP. Key outcomes include: (i) solving literature node classification instances in a fraction of a second, (ii) solving an extra 266 graph classification instances after implementing topology-based bounds tightening in SCIP, and (iii) making the open-source solver SCIP nearly as performant as the commercial solver Gurobi, e.g., improving the time penalty of the open-source solver from a factor of 10 to a factor of 3 for robust instances.

The paper begins in Section 2 by defining a mixed-integer encoding for MPNNs. Section 3 presents the verification problem and develops our two topology-based bounds tightening routines, static bounds tightening *sbt* and aggressive bounds tightening *abt*. Section 4 presents the numerical experiments and Section 5 concludes. Figure 1 represents a toy example showing the basic approach in comparison to our two topology-based approaches *sbt* and *abt*.

2. Definition & Encoding of MPNNs

We inherit the mixed-integer formulation of MPNNs from Zhang et al. (2024) and formulate ReLU activation using big-M (Anderson et al., 2020). Consider a trained GNN:

$$f: \mathbb{R}^{N \times d_0} \times \{0, 1\}^{N \times N} \to \mathbb{R}^{N \times d_L}$$
$$(X, A) \mapsto f(X, A)$$
(1)

whose *l*-th layer with weights $w_{u \to v}^{(l)}$ and biases $b_v^{(l)}$ is:

$$\boldsymbol{x}_{v}^{(l)} = \sigma \left(\sum_{u \in \mathcal{N}(v) \cup \{v\}} \boldsymbol{w}_{u \to v}^{(l)} \boldsymbol{x}_{u}^{(l-1)} + \boldsymbol{b}_{v}^{(l)} \right) \quad (2)$$

where $v \in V$, $V = \{0, 1, ..., N - 1\}$ is the node set, $\mathcal{N}(v)$ is the neighbor set of node v, and σ is activation. Given input features $\{\boldsymbol{x}_{v}^{(0)}\}_{v \in V}$ and the graph structure, we can derive the hidden features $\{\boldsymbol{x}_{v}^{(l)}\}_{v \in V}, \boldsymbol{x}_{v}^{(l)} \in \mathbb{R}^{d_{l}}$. When l = L, we obtain the node representation $\boldsymbol{x}_{v}^{(L)}$ of each node.

2.1. Big-M formulation for MPNNs

When the graph structure is not fixed, we need to include all possible contributions from all nodes, i.e., the *l*-th layer is:

$$\boldsymbol{x}_{v}^{(l)} = \sigma \left(\sum_{u \in V} A_{u,v} \boldsymbol{w}_{u \to v}^{(l)} \boldsymbol{x}_{u}^{(l-1)} + \boldsymbol{b}_{v}^{(l)} \right)$$
(3)

where $A_{u,v} \in \{0,1\}$ controls the existence of edge $u \to v$. With fixed weights and biases, we still need to handle the nonlinearities caused by (i) bilinear terms $A_{u,v} \boldsymbol{x}_u^{(l-1)}$, and (ii) activation σ . Let $\bar{\boldsymbol{x}}_v^{(l)} = \sum_{u \in V} A_{u,v} \boldsymbol{w}_{u \to v}^{(l)} \boldsymbol{x}_u^{(l-1)} + \boldsymbol{b}_v^{(l)}$, the Zhang et al. (2023) big-M formulation introduces auxiliary variables $\boldsymbol{x}_{u \to v}^{(l-1)}$ to replace the bilinear terms $A_{u,v} \boldsymbol{x}_u^{(l-1)}$ and linearly encodes $\bar{\boldsymbol{x}}_v^{(l)}$:

$$\bar{\boldsymbol{x}}_{v}^{(l)} = \sum_{u \in V} \boldsymbol{w}_{u \to v}^{(l)} \boldsymbol{x}_{u \to v}^{(l-1)} + \boldsymbol{b}_{v}^{(l)}.$$
(4)

Let $F_l := \{0, 1, \ldots, d_l - 1\}$ and denote the *f*-th element of $\boldsymbol{x}_*^{(l)}$ by $x_{*,f}^{(l)}, f \in F_l$. Use $lb(\cdot)$ and $ub(\cdot)$ to represent the lower and upper bound of a variable, respectively. Then $x_{u \to v,f}^{(l-1)} = A_{u,v} x_{u,f}^{(l-1)}$ is equivalently formulated in the following big-M constraints:

$$x_{u \to v,f}^{(l-1)} \ge lb(x_{u,f}^{(l-1)}) \cdot A_{u,v}$$
(5a)

$$x_{u \to v, f}^{(l-1)} \le ub(x_{u, f}^{(l-1)}) \cdot A_{u, v}$$
(5b)

$$x_{u \to v, f}^{(l-1)} \le x_{u, f}^{(l-1)} - lb(x_{u, f}^{(l-1)}) \cdot (1 - A_{u, v})$$
(5c)

$$x_{u \to v, f}^{(l-1)} \ge x_{u, f}^{(l-1)} - ub(x_{u, f}^{(l-1)}) \cdot (1 - A_{u, v}).$$
(5d)

2.2. Big-M formulation for ReLU

When using ReLU as the activation, i.e.,

$$x_{v,f}^{(l)} = \max\{0, \bar{x}_{v,f}^{(l)}\},\tag{6}$$

Anderson et al. (2020) proposed a big-M formulation:

$$x_{v,f}^{(l)} \ge 0 \tag{7a}$$

$$x_{v,f}^{(l)} \ge \bar{x}_{v,f}^{(l)} \tag{7b}$$

$$x_{v,f}^{(l)} \le \bar{x}_{v,f}^{(l)} - lb(\bar{x}_{v,f}^{(l)}) \cdot (1 - \sigma_{v,f}^{(l)})$$
(7c)

$$x_{v,f}^{(l)} \le ub(\bar{x}_{v,f}^{(l)}) \cdot \sigma_{v,f}^{(l)}$$
(7d)

where $\sigma_{v,f}^{(l)} \in \{0,1\}$ controls the on/off of the activation:

$$x_{v,f}^{(l)} = \begin{cases} 0, & \sigma_{v,f}^{(l)} = 0\\ \bar{x}_{v,f}^{(l)}, & \sigma_{v,f}^{(l)} = 1. \end{cases}$$
(8)

2.3. Bounds propagation

Eqs. (5) and (7) show the importance of variable bounds $lb(\cdot)$ and $ub(\cdot)$ or *big-M parameters*. Given the input feature bounds, we define bounds for auxiliary variables $x_{u \to v,f}^{(l-1)}$ and post-activation variables $x_{v,f}^{(l)}$. Using $x_{u \to v,f}^{(l-1)} = A_{u,v}x_{u,f}^{(l-1)}$, the bounds of $x_{u \to v,f}^{(l-1)}$ are:

$$lb(x_{u \to v, f}^{(l-1)}) = \min\{0, lb(x_{u, f}^{(l-1)})\}$$
(9a)

$$ub(x_{u \to v, f}^{(l-1)}) = \max\{0, ub(x_{u, f}^{(l-1)})\}$$
(9b)

with which we can use arithmetic propagation or feasibilitybased bounds tightening to obtain bounds of $\bar{x}_{v,f}^{(l)}$ based on Eq. (4). Then, we use Eq. (6) to bound $x_{v,f}^{(l)}$:

$$lb(x_{v,f}^{(l)}) = \max\{0, lb(\bar{x}_{v,f}^{(l)})\}$$
(10a)

$$ub(x_{v,f}^{(l)}) = \max\{0, ub(\bar{x}_{v,f}^{(l)})\}.$$
 (10b)

Without extra information, bounds defined in Eqs. (9) and (10) are the tightest possible which derive from interval arithmetic. However, in a branch-and-bound tree, more and more variables will be fixed, which provides the opportunity to tighten the bounds. Additionally, in specific applications such as verification, the graph domain is restricted, allowing us to derive tighter bounds.

Remark 2.1. A MPNN with L message passing steps is suitable for node-level tasks. For graph-level tasks, there is usually a pooling layer after message passing to obtain a global representation and several dense layers thereafter as a final regressor/classifier. We omit these formulations since (i) linear pooling, e.g., mean and sum, is easily incorporated into our formulation, and (ii) dense layers are a special case of Eq. (2) with a single node.

3. Verification of MPNNs

3.1. Problem definition

First, consider node classification. Given a trained MPNN defined as Eq. (2), the number of classes is the number of output features, i.e., $C = d_L$, and the predicted label of node t corresponds to the maximal logit, i.e., $c^* = \max_{c \in C} f_{t,c}(X, A)$. Given an input (X^*, A^*) consisting of features X^* and adjacency matrix A^* , denote its predictive label for a target node t as c^* . The worst case margin between predictive label c^* and attack label c under perturbations $\mathcal{P}(\cdot)$ is:

$$m^{t}(c^{*}, c) := \min_{(X,A)} f_{t,c^{*}}(X, A) - f_{t,c}(X, A)$$

s.t. $X \in \mathcal{P}(X^{*}), A \in \mathcal{P}(A^{*}).$ (11)

A positive $m^t(c^*, c)$ means that the logit of class c^* is always larger than class c. If $m^t(c^*, c) > 0, \forall c \in C \setminus \{c^*\}$, then any admissible perturbation can not change the label assigned to node t, that is, this MPNN is robust to node t.

For graph classification, instead of considering a single node, we want to know the worst case margin between two classes for a target graph, i.e.,

$$m(c^*, c) := \min_{(X,A)} f_{c^*}(X, A) - f_c(X, A)$$

s.t. $X \in \mathcal{P}(X^*), \ A \in \mathcal{P}(A^*).$ (12)

In both problems, the target graph (X^*, A^*) and predictive label c^* are fixed. For node classification, the target node tis also given. Therefore, we omit t in Eq. (11) and reduce both problems to one as shown in Eq. (12).

3.2. Admissible perturbations

The perturbations on features and edges can be described similarly. Locally, we may only change features/edges for each node with a given local budget. Also, there is typically a global budget for the number of changes. The feature perturbations are typically easier to implement since they will not hurt the message passing scheme, i.e., the graph structure is fixed. In such settings, there is no need to use the mixed-integer formulations for MPNNs in Section 2.1 since a message passing step is actually simplified as a dense layer. Since feature perturbations are well-studied (Zügner & Günnemann, 2019a) and our proposed bounds tightening techniques mainly focus on changeable graph structures, our computational results only consider the perturbations on the adjacency matrix.

We first define the admissible perturbations for undirected graphs, which admits both adding and removing edges. Denote the global budget by Q and local budget to node v by

Algorithm 1 Static bounds tightening (sbt)

Input: Input features $\boldsymbol{x}_{v}^{(0)}$, weights $\boldsymbol{w}_{u \to v}^{(l)}$, biases $\boldsymbol{b}_{v}^{(l)}$. Initialize $lb(\boldsymbol{x}^{(0)}) = ub(\boldsymbol{x}^{(0)}) = \boldsymbol{x}^{(0)}$. for l = 1 to L do Get $lb(\bar{\boldsymbol{x}}^{(l)})$ using Eq. (17). {basic uses Eq. (20).} Get $lb(\boldsymbol{x}^{(l)})$ using Eq. (10). Get $ub(\bar{\boldsymbol{x}}^{(l)})$ and $ub(\boldsymbol{x}^{(l)})$ in a similar way. end for

 q_v , then the perturbations $\mathcal{P}_1(A^*)$ are defined as:

$$\mathcal{P}_{1}(A^{*}) = \{A \in \{0, 1\}^{N \times N} \mid A = A^{T}, \\ \|A - A^{*}\|_{0} \le 2Q, \\ \|A_{v} - A_{v}^{*}\|_{0} \le q_{v}, \forall v \in V\}$$
(13)

where A_v is the v-th column of A. $\mathcal{P}_1(\cdot)$ will be used in graph classification since the graphs in benchmarks are usually undirected and relatively small.

For node classification, literature benchmarks usually (i) are large directed graphs, e.g., 3000 nodes, (ii) have many node features, e.g., 3000 features, (iii) have small average degree, e.g., $1 \sim 3$. If admitting adding edges, then the graph domain is too large to optimize over. Therefore, the state-of-the-art (Zügner & Günnemann, 2020) only considers removing edges, where a *L*-hop neighborhood around the target node *t* is sufficient. For a MPNN with *L* message passing steps without perturbations, nodes outside a *L*-hop neighborhood cannot affect the prediction of *t*. Since adding edges is not allowed, the *L*-hop neighborhood of *t* after perturbations is always a subset of the unperturbed neighborhood. Similar to the literature, we define a more restrictive perturbation space for large graphs:

$$\mathcal{P}_{2}(A^{*}) = \{A \in \{0, 1\}^{N \times N} \mid A_{u,v} \leq A_{u,v}^{*}, \forall u, v \in V, \\ \|A - A^{*}\|_{0} \leq Q, \\ \|A_{v} - A_{v}^{*}\|_{0} \leq q_{v}, \forall v \in V\}$$
(14)

where global budget is replaced by Q since the graph is directed. $\mathcal{P}_2(\cdot)$ will be used in node classification. For our later analysis, however, we focus on $\mathcal{P}_1(\cdot)$ since $\mathcal{P}_2(\cdot)$ is more like a special case without adding edges.

3.3. Static bounds tightening

Note that large budgets in Eq. (13) make the verification problems meaningless since the perturbed graph could be any graph. The very basic assumption is that the perturbed graph is similar to the original one, which brings us to propose the first bounds tightening approach. The rough idea is to consider budgets when computing bounds of $\bar{x}_v^{(l)}$ based on bounds of $x_{u\to v}^{(l-1)}$ in Eq. (4). Instead of considering

all contributions from all nodes, we first calculate the bounds based on original neighbors and then maximally perturb the bounds with given budgets. Mathematically, $lb(\bar{x}_{v,f'}^{(l)})$ is found by solving the following optimization problem:

$$\min_{A, \boldsymbol{x}^{(l-1)}} \sum_{u \in V} A_{u,v} \sum_{f \in F_{l-1}} w_{u \to v, f \to f'}^{(l)} x_{u,f}^{(l-1)} + b_{v,f'}^{(l)}$$
s.t. $A \in \mathcal{P}_1(A^*)$
 $\boldsymbol{x}^{(l-1)} \in [lb(\boldsymbol{x}^{(l-1)}), ub(\boldsymbol{x}^{(l-1)})]$
(15)

where $x^{(l-1)} := \{x_{u,f}^{(l-1)}\}_{u \in V, f \in F_{l-1}}, w_{u \to v, f \to f'}^{(l)}$ is the (f, f')-th element in $w_{u \to v}^{(l)}$.

Remark 3.1. For brevity, we omit the superscripts of layers for all variables, and subscripts of edges in weights, i.e., rewriting Eq. (15) as:

$$lb(\bar{x}_{v,f'}) = \min_{A,\boldsymbol{x}} \sum_{u \in V} A_{u,v} \sum_{f \in F_{l-1}} w_{f,f'} x_{u,f} + b_{v,f'}$$

s.t. $A \in \mathcal{P}_1(A^*)$
 $\boldsymbol{x} \in [lb(\boldsymbol{x}), ub(\boldsymbol{x})].$ (16)

Property 3.2. Eq. (16) is equivalent to:

$$lb(\bar{x}_{v,f'}) = \sum_{u \in \mathcal{N}^{*}(v)} lb_{u \to v} + b_{v,f'} + \min_{|V_{lb}| \le q_{v}} \sum_{u \in V_{lb}} \Delta_{u \to v}$$
(17)

where $\mathcal{N}^*(v)$ denotes the original neighbor set of node v, $lb_{u \to v}$ represents the contribution of node u to the lower bound of node v when u is a neighbor of v, $\Delta_{u \to v}$ denotes the change of lower bound of node v caused by modifying edge $u \to v$, V_{lb} is the set of nodes consisting of removed/added neighbors of node v.

Calculating $lb_{u \to v}$ is straightforward:

$$lb_{u \to v} = \sum_{f \in F_{l-1}} w_{f,f'} \cdot \mathbb{I}_{w_{f,f'} \ge 0} \cdot lb(x_{u,f}) + \sum_{f \in F_{l-1}} w_{f,f'} \cdot \mathbb{I}_{w_{f,f'} < 0} \cdot ub(x_{u,f})$$
(18)

which is used to derive $\Delta_{u \to v}$ as:

$$\Delta_{u \to v} = \begin{cases} -lb_{u \to v}, & u \in \mathcal{N}^*(v) \\ lb_{u \to v}, & u \notin \mathcal{N}^*(v) \end{cases}$$
(19)

where two cases correspond to removing neighbor u and adding u as a neighbor, respectively. Furthermore, the last minimal term in Eq. (17) is equivalent to choosing at most q_v smallest negative terms among $\{\Delta_{u\to v}\}_{u\in V}$. The time complexity to compute lower bounds following Eq. (17) for each feature in l-th layer is $O(N^2 d_{l-1} d_l + N \log N)$. Upper bounds could be defined similarly, which are not included here due to space limitation. Algorithm 2 Aggressive bounds tightening (abt)

Input: Input features $\boldsymbol{x}_v^{(0)}$, weights $\boldsymbol{w}_{u \to v}^{(l)}$, biases $\boldsymbol{b}_v^{(l)}$. Initialize $lb(\boldsymbol{x}^{(0)}) = ub(\boldsymbol{x}^{(0)}) = \boldsymbol{x}^{(0)}$. **for** each node in branch-and-bound tree **do for** l = 1 **to** L **do** Update q'_v using Eq. (23). Update $lb(\bar{\boldsymbol{x}}^{(l)})$ using Eq. (22). Update $lb(\boldsymbol{x}^{(l)})$ using Eq. (10). Update $ub(\bar{\boldsymbol{x}}^{(l)})$ and $ub(\boldsymbol{x}^{(l)})$ in a similar way. **end for end for**

Remark 3.3. The plain strategy without considering graph structure and budgets *basic* is:

$$lb(\bar{x}_{v,f'}) = \sum_{u \in V} \min\{0, lb_{u \to v}\}$$
 (20)

and the time complexity is $O(N^2 d_{l-1} d_l)$.

Algorithm 1 calculates *sbt* bounds (and *basic* bounds) in a single forward pass of the model. As shown in the example presented in the Figure 1 example, the bounds derived from *basic* is [-9, 9], which is improved to [-4, 9] after applying static bounds tightening *sbt*.

3.4. Aggressive bounds tightening

Consider any node in a branch-and-bound tree, values of several $A_{u,v}$ are already decided during the path from root to current node, with which we can further tighten bounds in the subtree rooted by this node. Belotti et al. (2016) refer to the idea of tightening bounds in the branch-and-bound tree as *aggressive bounds tightening*. In MPNN verification, there are three types of $A_{u,v}$ in Eq. (16): (i) $A_{u,v}$ is fixed to 0, (ii) $A_{u,v}$ is fixed to 1, and (iii) $A_{u,v}$ is not fixed yet. Denote $V_0 = \{u \in V \mid A_{u,v} = 0\}$ and $V_1 = \{u \in V \mid A_{u,v} = 1\}$, then Eq. (16) in the current node is restricted as:

$$lb(\bar{x}_{v,f'}) = \min_{A} \sum_{u \in V} A_{u,v} lb_{u \to v} + b_{v,f'}$$

$$s.t. \ A \in \mathcal{P}_1(A^*) \qquad (21)$$

$$A_{u,v} = 0, \ \forall u \in V_0$$

$$A_{u,v} = 1, \ \forall u \in V_1.$$

Property 3.4. Eq. (21) is equivalent to:

$$lb(\bar{x}_{v,f'}) = \sum_{u \in (\mathcal{N}^*(v) \setminus V_0) \cup V_1} lb_{u \to v} + b_{v,f'} + \min_{V_{lb} \subseteq V \setminus (V_0 \cup V_1), |V_{lb}| \le q'_v} \sum_{u \in V_{lb}} \Delta_{u \to v}$$
(22)

where q'_v is the currently available budget for node v.

In Eq. (22), the first term sums over $(\mathcal{N}^*(v)\setminus V_0) \cup V_1$ to represent the contributions from current neighbors. The last term excludes all fixed edges and only considers changeable neighbors. Similarly, this minimal term equals to choose at most q'_v smallest negative terms among $\{\Delta_{u \to v}\}_{u \in V \setminus (V_0 \cup V_1)}$. q'_v is derived from the remaining local and global budgets:

$$q'_{v} = \min\{q_{v} - e_{r}(v) - e_{a}(v), Q - \frac{1}{2}\sum_{u \in V} e_{r}(u) - \frac{1}{2}\sum_{u \in V} e_{a}(u)\}$$
(23)

where $e_r(v) := |\mathcal{N}^*(v) \cap V_0|$ is the number of removed edges around node v, $e_a(v) := |V_1 \setminus \mathcal{N}^*(v)|$ is the number of added edges around node v.

Algorithm 2 describes the *abt* steps. Since we derive *abt* bounds within the branch-and-bound tree (when solvers will not directly change variable bounds), we add local cutting planes to implement *abt* bounds (see Appendix B example). *Remark* 3.5. The bounds tightening inside the branch-and-bound tree can be interpreted as applying the Section 3.3 bounds tightening to a modified target graph with a reduced budget. The spent budget changes the neighbors of node v from $\mathcal{N}^*(v)$ to $(\mathcal{N}^*(v) \setminus V_0) \cup V_1$.

As shown in Figure 1, aggressive bounds tightening *abt* gives tighter bounds [-1, 4] comparing to *basic* and *sbt*. The branch-and-bound tree in Figure 1 shows *abt* in action.

Table 1: Information on benchmarks. For multiple graphs, we compute the average number of nodes and edges.

benchmark	#graphs	#nodes	#edges	#features	#classes
MUTAG ENZYMES	188 600	$17.9 \\ 32.6$	$39.6 \\ 124.3$	$7 \\ 3$	$2 \\ 6$
Cora CiteSeer	1 1	$2708 \\ 3312$	$5429 \\ 4715$	$1433 \\ 3703$	$7 \\ 6$

3.5. Bounds tightening for ReLU

Aggressive bounds tightening could also tighten ReLU interval bounds in feed-forward neural networks (NNs). Although we did not directly tighten ReLU bounds in MPNNs, local cutting planes representing tighter big-M coefficients $lb(\bar{x}_{v,f}^{(l)}), ub(\bar{x}_{v,f}^{(l)})$ in Eq. (7) are added after applying *abt*. For each ReLU, if its pre-activation variable $x_{v,f}^{(l)}$ has a nonnegative lower bound or a non-positive upper bound, the binary variable $\sigma_{v,f}^{(l)}$ controlling on/off of this ReLU will be fixed due to these local cutting planes. Therefore, *abt* implies a dynamic tightening on ReLU interval bounds in MPNNs. This idea could be applied to NNs since a NN is an MPNN with a single node in the graph.

For ReLU NNs, bounds tightening techniques yielding tighter bounds than interval arithmetic include: FastLin (Weng et al., 2018), CROWN (Zhang et al., 2018), Deep-Poly (Singh et al., 2018; 2019b), and optimization-based bound tightening (OBBT) (Tjeng et al., 2019; Tsay et al., 2021). But these techniques are rarely applied in GNN verification. Although a few works (Zügner & Günnemann, 2019a; Jin et al., 2020) involve convex relaxations for Re-LUs, they do not tighten bounds for ReLUs.

OBBT is the only one of the existing advanced approaches which could immediately apply to GNNs. OBBT yields tighter bounds with high computational cost of solving many linear programs (LPs) or mixed-integer programs (MIPs). Incorporating computationally-effective methods like FastLin, CROWN or DeepPoly is difficult for GNNs because we lose the linearity between layers. Such linearity is crucial to these approaches, e.g., the linear lower/upper bounds in FastLin/CROWN, or the zonotopy abstraction of DeepPoly. When the input graph structure is fixed, bounds tightening on ReLUs in GNNs is equivalent to its counterpart in NNs (Wu et al., 2022). But for non-fixed graphs, the links between two adjacent layers in GNNs are controlled by an adjacency matrix, whose elements are binary variables. So it is considering topological perturbations that loses the linearity between layers and inspires *sbt* and *abt*.

4. Experiments

This section empirically evaluates the impact of static and aggressive bounds tightening on verifying MPNNs by solving a mixed-integer program (MIP) as shown in Section 2 and Section 3. All GNNs are built and trained using PyG (PyTorch Geometric) 2.1.0 (Fey & Lenssen, 2019). All MIPs are implemented in C/C++ using the open-source MIP solver SCIP 8.0.4 (Bestuzheva et al., 2023); all LP relaxations are solved using Soplex 6.0.4 (Gamrath et al., 2020). We used the GNN pull request (Zhang et al., 2024) in the Optimization and Machine Learning Toolkit OMLT (Ceccon et al., 2022) to debug the implementation. Observe that we could have alternatively extended a similar tool in SCIP (Turner et al., 2023). For each verification problem, we apply the basic implementation (SCIPbasic), static bounds tightening (SCIPabt), and aggressive bounds tightening (SCIPsbt). Our experiments also include a basic and static bounds tightening implementation of Gurobi 10.0.3 (GRBbasic, GRBsbt) (Gurobi Optimization, LLC, 2023). The code is available at GitHub, also see Hojny & Zhang (2024).

4.1. Implementation details

Our code models and solves the verification problem in three stages (for basic and static bounds tightening) or four stages (for aggressive bounds tightening). First, parameters Table 2: Summary of results for graph classification with local attack strength s = 2. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600 for ENZYMES and 188 for MUTAG, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

benchmark	method		all instances				robust instances				
	memou	#	avg-time(s)	sgm-time(s)	# solved	#	avg-time(s)	sgm-time(s)	# solved		
	SCIPbasic	5915	605.97	37.81	5579	3549	278.58	12.51	3444		
	SCIPsbt	5915	230.59	21.26	5831	3549	82.89	6.65	3528		
ENZYMES	SCIPabt	5915	246.02	21.77	5817	3549	88.95	6.71	3522		
	GRBbasic	5915	86.03	7.59	5892	3549	32.80	2.82	3542		
	GRBsbt	5915	74.87	7.09	5895	3549	22.90	2.50	3548		
	SCIPbasic	1589	679.86	189.75	1575	44	798.47	202.93	40		
	SCIPsbt	1589	196.07	75.17	1589	44	336.41	100.86	44		
MUTAG	SCIPabt	1589	207.50	82.43	1589	44	238.10	91.11	44		
	GRBbasic	1589	34.58	4.06	1589	44	162.25	12.11	44		
	GRBsbt	1589	59.93	22.40	1589	44	73.78	15.00	44		

Figure 2: ENZYMES benchmark. (left) Number of instances solved by each method below different time costs. (middle) Number of robust instances solved by each method below different time costs. (right) Consider ρ , the ratio of time cost between SCIPabt and SCIPsbt on each robust instance. SCIPabt is at least 10% faster than SCIPsbt on 412 robust instances.

of a trained MPNN (weights, biases) and the verification problem (predictive label c^* , attack label c, global budget Q, local budget q_v) are read. Second, lower and upper bounds on the variables in Eqs. (5) and (7) are computed for SCIPbasic and SCIPsbt. Third, a MIP model of the verification problem is created and solved. We do not solve the MIP models to global optimality as we only ask: *Is this instance robust or not*? We interrupt the optimization once a solution with negative objective value is found, i.e., the instance is non-robust, or the dual bound of the branch-andbound tree is positive, i.e., the instance is robust.

In case of SCIPabt, the model is created as for static bounds tightening. During the solving process, a fourth step takes place. This step collects, at each node of the SCIP branchand-bound tree, the A-variables that have been fixed to 0 and 1. We then iterate through the layers of the MPNN and, for each layer, we: (i) recompute the variable bounds as in the second step for the current layer, taking the fixed variables into account following Section 3.4; (ii) check if any inequality in Eqs. (5) and (7) using the newly computed bounds is violated by the current linear programming solution; (iii) if a violated inequality is detected, we add this inequality as a local cutting plane to the model. That is, we inform SCIP that the inequality is only valid at the current node of the branch-and-bound tree and all its children, which is necessary as the inequality is based on fixed variables at the current node. The separation of local cutting planes has been implemented via a separator callback in SCIP.

To compare with the interval arithmetic approaches, we implemented an OBBT routine. For each variable, we changed the objective to the variable's lower or upper bound, relaxed all binary variables, and solved the resulting LP.

Figure 3: For each SCIP-based method with local attack strength s = 2 on ENZYMES (the first row) and MUTAG (the second row), we count the number of robust graphs (green), nonrobust graphs (red), and time out (white). The percentage δ of the number of edges is the global budget.

Besides our implementation in SCIP, we also conducted experiments using Gurobi 10.0.3 (Gurobi Optimization, LLC, 2023) to compare baseline (GRBbasic) and static bounds tightening (GRBsbt). We used our SCIP implementation to create the MIP models, store them on the hard drive, and read them via Gurobi's Python interface. We did not investigate aggressive bounds tightening in Gurobi as Gurobi does not support local cutting planes. As for SCIP, we interrupt the solving process after deriving (non-) robustness.

4.2. Experimental setup

All experiments have been conducted on a Linux cluster with 12 Intel Xeon Platinum 8260 2.40 GHz processors each having 48 physical threads. Every model has been solved (either by SCIP or Gurobi) using a single thread. Due to the architecture of the cluster, the jobs have not been run exclusively. The reported running time in the following only consists of the time solving a model, but not creating it. That is, the time for computing the initial variable bounds for baseline and static bounds tightening are not considered, whereas the time for computing bounds in aggressive bounds tightening is considered since this takes place dynamically during the solving process.

We evaluate the performance of various verification methods on benchmarks including: (i) MUTAG and ENZYMES (Morris et al., 2020) for graph classification, and (ii) Cora and CiteSeer (Yang et al., 2023) for node classification. All datasets are available in PyG and summarized in Table 1. The attack label for each graph/node is fixed as $c = (c^* + 1) \mod C$, where c^* is the predictive label.

For graph classification, we train a MPNN with L = 3SAGEConv (Hamilton et al., 2017) layers with 16 hidden channels, followed by an add pooling and a dense layer as the final classifier. ReLU is used in the first 2 SAGEConv layers. Following Jin et al. (2020), 30% of the graphs are used to train the model. The local budget of each node is $q_v = \max\{0, d_v - \max_{u \in V} d_u + s\}$, where d_v is the degree of node v, s is the so-called local attack strength. In our experiments, we choose $s \in \{2, 3, 4\}$, and use δ percentage of the number of edges as the global budget Q, where $1 \le \delta \le 10$. We report results for s = 2 in the paper and results for $s \in \{3, 4\}$ in Appendix C.

For node classification, we train a MPNN with L = 2 SAGE-Conv layers with 32 hidden channels. Similar to Zügner & Günnemann (2020), 10% of the nodes are used for training. We set 10 as the global budget and 5 as the local budget. For each node, we extract its 2-hop neighborhood to build the corresponding verification problem. It is noteworthy that 2-hop neighborhood is sufficient for 2 message passing steps in MPNN, but insufficient for 2 graph convolutional steps in GCN. The reason is that removing an edge within a 3-hop neighborhood may influence the degree of a node within a 2-hop neighborhood. All models are trained 200 epochs with learning rate 0.01, weight decay 10^{-4} , and dropout 0.5. We set 2 hours as the time limit for verifying a graph in graph classification, and 30 minutes for verifying a node in node classification.

4.3. Numerical results

For each verification problem, we will get one of three results: robust (objective has non-negative lower bound), nonrobust (a feasible attack, i.e., solution with negative objective, is found), or time out (inconclusive within time limit). For each benchmark, we consider three criteria for each method: (i) average solving time (avg-time), (ii) shifted geometric mean (sgm-time) of solving time, and (iii) number of solved instances within time limit. A commonly used measure to compare MIP-based methods, the shifted geometric mean of t_1, \dots, t_n is $\left(\prod_{i=1}^n (t_i + s)\right)^{1/n} - s$, where shift s = 10. Since all approaches use the same model, we ignore model creation time (~ 0.036 s). We also exclude the negligible time (~ 0.005 s) spent computing variable bounds for both *basic* and *sbt*. For *abt*, we include the time calculating variable bounds since tightening happens at each branch-and-bound tree node. We cannot know the ground truth of a robust instance without complete enumeration or relying on a solver's numerical tolerances, so we classify an instance as robust if all methods claim it is robust except for time out. Three criteria are evaluated for each method on each benchmark over all instances and all robust instances, respectively. We exclude all instances with inconsistencies, i.e., SCIP and Gurobi declares differently, for a fair comparison. See the Appendix B for more details.

The results for node classification are reported in Table 3 in Appendix C. Only removing edges results in simple verification problems: all methods can solve all instances instantly. Adding more cutting planes is not helpful as this could hinder heuristics to find a feasible attack (in case of nonrobustness) or result in solving more (difficult) LPs due to additional cutting planes (in case of robustness). Therefore, we skip the comparison with GRBbasic and GRBsbt.

For graph classification, we analyze results with local attack strength s = 2 in the main text and put results for $s \in \{3, 4\}$ in Appendix C. Our numerical analysis for s = 2is consistent with the $s \in \{3, 4\}$ results. Table 2 summarizes the results for all instances. Figure 2 visualizes the number of solved (robust) instances below different time costs, and compares the time costs between SCIPabt and SCIPsbt for ENZYMES. See Appendix C for similar plots for MUTAG. Figure 3 plots the number of different types of graphs (robust, nonrobust, time out) with various global budgets $1 \le \delta \le 10$ for ENZYMES and MUTAG.

As shown in Table 2, SCIPsbt is around three times faster than SCIPbasic and solves more instances within the same time limit. From the comparison between GRBbasic and GRBsbt, we can still notice the speed-up from static bounds tightening. Considering all instances from MUTAG, it seems like static bounds tightening slows down the solving process. The reason is that most MUTAG instances are not robust, i.e., finding good bounds on the objective value is unnecessary, finding a feasible attack instead is sufficient.

Our numerical results reflect similar performance between SCIPsbt and SCIPabt w.r.t. times in Table 2. SCIPabt might even be slower than SCIPsbt in some instances. On the one hand, we proposed *abt* as a general extension of *sbt* and expect it outperforms sbt in harder verification problems. One can easily create larger problems from different aspects, e.g., increasing budgets, incorporating feature perturbations, and enlarging size of models. However, larger problems do not imply harder verification problems since the instance could be nonrobust. Then the extra cutting planes added in abt may slow down finding a feasible attack. On the other hand, as shown in Appendix C, when comparing OBBT and SCIPsbt over robust instances, OBBT bounds are indeed tighter but still perform similarly to SCIPsbt. The phenomenon that tighter bounds can result in slower solving times has been previously reported (Badilla et al., 2023).

Observe in Figure 2 that, of the 3549 robust instances from the ENZYMES benchmark, 412 are significantly faster when using SCIPabt and 512 are significantly faster when using SCIPabt. Similarly for the MUTAG benchmark, 19 of the 44 robust instances are substantially faster using SCIPabt rather than SCIPsbt (see Figure 7). This is also reflected in Table 2 when considering the robust instances only. For the MUTAG instances (which are harder to solve than EN-ZYMES), SCIPabt is roughly 10% faster than SCIPsbt in shifted geometric mean (29% in arithmetic mean). This effect is even more pronounced for the most difficult MUTAG instances with a global budget of 2% and 3%, where SCI-Pabt is 10.8% and 22.0%, respectively, faster than SCIPsbt in shifted geometric mean (29.4% and 35.8% in arithmetic mean), see Table 9 in Appendix C.

We therefore propose running SCIPsbt and SCIPabt in parallel, this idea corresponds to the common observation in MIP that parallelizing multiple strategies (here: SCIPsbt and SCIPabt) yields more benefits than parallelizing just one algorithm (Carvajal et al., 2014).

5. Conclusion

We propose topology-based bounds tightening approaches to verify message-passing neural networks. By exploiting graph structures and available budgets, our techniques compute tighter bounds for variables and thereby help certify robustness. Numerical results show the improvement of topology-based bounds tightening w.r.t. the solving time and the number of solved instances.

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/W003317/1], an Imperial College Hans Rausing PhD Scholarship to SZ, and a BASF/RAEng Research Chair in Data-Driven Optimisation to RM. This collaboration was initiated at the Mittag-Leffler Institute seminar titled *Learning from Both Sides: Linear and Nonlinear Mixed-Integer Optimization*.

Impact Statement

Despite the widespread use and outstanding performance of GNNs in various fields, their vulnerabilities are frequently detected, even with slight perturbations. In safety-critical applications such as drug design and autonomous driving, such vulnerabilities could result in unacceptable consequences. For safety considerations, two major directions are investigated by many researchers: (i) verification: how to measure the robustness of GNNs, and (ii) robust training: how to train GNNs that are more robust. This work considers verification problems on MPNNs, a classic GNN framework whose robustness is seldom studied in the literature. With the proposed bounds tightening strategies, we hope that the robustness of MPNNs deployed in real-world applications could be verified efficiently to avoid unreliable predictions.

References

- Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., and Vielma, J. P. Strong mixed-integer programming formulations for trained neural networks. *Mathematical Programming*, 183(1-2):3–39, 2020.
- Badilla, F., Goycoolea, M., Muñoz, G., and Serra, T. Computational tradeoffs of optimization-based bound tightening in ReLU networks, 2023.
- Belotti, P., Bonami, P., Fischetti, M., Lodi, A., Monaci, M., Nogales-Gómez, A., and Salvagnin, D. On handling indicator constraints in mixed integer programming. *Computational Optimization and Applications*, 65:545–566, 2016.
- Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A., Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul, O., Gamrath, G., Gleixner, A., et al. Enabling research through the SCIP optimization suite 8.0. ACM Transactions on Mathematical Software, 49(2):1–21, 2023.
- Bojchevski, A. and Günnemann, S. Certifiable robustness to graph perturbations. *NeurIPS*, 2019.
- Bojchevski, A., Gasteiger, J., and Günnemann, S. Efficient robustness certificates for discrete data: Sparsity-aware randomized smoothing for graphs, images and more. In *ICML*, 2020.

- Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., and Misener, R. Efficient verification of ReLU-based neural networks via dependency analysis. In AAAI, 2020.
- Carvajal, R., Ahmed, S., Nemhauser, G., Furman, K., Goel, V., and Shao, Y. Using diversification, communication and parallelism to solve mixed-integer linear programs. *Operations Research Letters*, 42(2):186–189, 2014.
- Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C., Laird, C. D., and Misener, R. OMLT: Optimization & machine learning toolkit. *Journal of Machine Learning Research*, 23(349):1–8, 2022.
- Chen, J., Xu, H., Wang, J., Xuan, Q., and Zhang, X. Adversarial detection on graph structured data. In *PPMLP*, 2020.
- Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robustness via randomized smoothing. In *ICML*, 2019.
- Dai, H., Li, H., Tian, T., Huang, X., Wang, L., Zhu, J., and Song, L. Adversarial attack on graph structured data. In *ICML*, 2018.
- Fey, M. and Lenssen, J. E. Fast graph representation learning with PyTorch Geometric. In ICLR 2019 Workshop on Representation Learning on Graphs and Manifolds, 2019.
- Fischetti, M. and Jo, J. Deep neural networks and mixed integer linear optimization. *Constraints*, 23(3):296–309, 2018.
- Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.-K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., et al. The SCIP optimization suite 7.0. Technical Report 20-10, ZIB, Takustr. 7, 14195 Berlin, 2020.
- Gasteiger, J., Bojchevski, A., and Günnemann, S. Predict then propagate: Graph neural networks meet personalized pagerank. In *ICLR*, 2019.
- Geisler, S., Schmidt, T., Şirin, H., Zügner, D., Bojchevski, A., and Günnemann, S. Robustness of graph neural networks at scale. *NeurIPS*, 2021.
- Günnemann, S. Graph neural networks: Adversarial robustness. Graph Neural Networks: Foundations, Frontiers, and Applications, pp. 149–176, 2022.
- Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.gurobi.com.
- Hamilton, W., Ying, Z., and Leskovec, J. Inductive representation learning on large graphs. In *NeurIPS*, 2017.

- Hojny, C. and Zhang, S. SCIP-MPNN: Code for the paper "Verifying message-passing neural networks via topologybased bounds tightening". https://doi.org/10. 5281/zenodo.11208355, 2024.
- Jin, H., Shi, Z., Peruri, V. J. S. A., and Zhang, X. Certified robustness of graph convolution networks for graph classification under topological attacks. *NeurIPS*, 2020.
- Jin, H., Yu, Z., and Zhang, X. Certifying robust graph classification under orthogonal Gromov-Wasserstein threats. *NeurIPS*, 2022.
- Kipf, T. N. and Welling, M. Semi-supervised classification with graph convolutional networks. In *ICLR*, 2017.
- Lomuscio, A. and Maganti, L. An approach to reachability analysis for feed-forward ReLU neural networks. *arXiv* preprint arXiv:1706.07351, 2017.
- Ma, J., Ding, S., and Mei, Q. Towards more practical adversarial attacks on graph neural networks. *NeurIPS*, 2020.
- McDonald, T., Tsay, C., Schweidtmann, A. M., and Yorke-Smith, N. Mixed-integer optimisation of graph neural networks for computer-aided molecular design. *Comput*ers & Chemical Engineering, 185:108660, 2024.
- Morris, C., Kriege, N. M., Bause, F., Kersting, K., Mutzel, P., and Neumann, M. Tudataset: A collection of benchmark datasets for learning with graphs. In *ICML 2020 Workshop on Graph Representation Learning and Beyond* (*GRL*+ 2020), 2020.
- Müller, M. N., Makarchuk, G., Singh, G., Püschel, M., and Vechev, M. PRIMA: general and precise neural network certification via scalable convex hull approximations. *Proceedings of the ACM on Programming Languages*, 6(POPL):1–33, 2022.
- Sälzer, M. and Lange, M. Fundamental limits in formal verification of message-passing neural networks. In *ICLR*, 2023.
- Singh, G., Gehr, T., Mirman, M., Püschel, M., and Vechev, M. Fast and effective robustness certification. *NeurIPS*, 2018.
- Singh, G., Ganvir, R., Püschel, M., and Vechev, M. Beyond the single neuron convex barrier for neural network certification. In *NeurIPS*, pp. 15098–15109, 2019a.
- Singh, G., Gehr, T., Püschel, M., and Vechev, M. An abstract domain for certifying neural networks. *Proceedings of the ACM on Programming Languages*, 3(POPL):1–30, 2019b.

- Sun, Y., Wang, S., Tang, X., Hsieh, T.-Y., and Honavar, V. Adversarial attacks on graph neural networks via node injections: A hierarchical reinforcement learning approach. In WWW, 2020.
- Takahashi, T. Indirect adversarial attacks via poisoning neighbors for graph convolutional networks. In *IEEE Big Data*, 2019.
- Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., PATEL, K. K., and Vielma, J. P. The convex relaxation barrier, revisited: Tightened single-neuron relaxations for neural network verification. In *NeurIPS*, volume 33, pp. 21675–21686, 2020.
- Tjeng, V., Xiao, K. Y., and Tedrake, R. Evaluating robustness of neural networks with mixed integer programming. In *ICLR*, 2019.
- Tsay, C., Kronqvist, J., Thebelt, A., and Misener, R. Partition-based formulations for mixed-integer optimization of trained ReLU neural networks. In *NeurIPS*, 2021.
- Turner, M., Chmiela, A., Koch, T., and Winkler, M. PySCIPOpt-ML: Embedding trained machine learning models into mixed-integer programs. arXiv preprint arXiv:2312.08074, 2023.
- Wang, B., Jia, J., Cao, X., and Gong, N. Z. Certified robustness of graph neural networks against adversarial structural perturbation. In *SIGKDD*, 2021.
- Wang, J., Luo, M., Suya, F., Li, J., Yang, Z., and Zheng, Q. Scalable attack on graph data by injecting vicious nodes. *Data Mining and Knowledge Discovery*, 34:1363–1389, 2020.
- Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.-J., Daniel, L., Boning, D., and Dhillon, I. Towards fast computation of certified robustness for ReLU networks. In *ICML*, 2018.
- Wu, H., Barrett, C., Sharif, M., Narodytska, N., and Singh, G. Scalable verification of GNN-based job schedulers. *Proceedings of the ACM on Programming Languages*, 6 (OOPSLA2):1036–1065, 2022.
- Xia, Z., Yang, H., Wang, B., and Jia, J. GNNCert: Deterministic certification of graph neural networks against adversarial perturbations. In *ICLR*, 2024.
- Xu, K., Chen, H., Liu, S., Chen, P.-Y., Weng, T.-W., Hong, M., and Lin, X. Topology attack and defense for graph neural networks: An optimization perspective. *IJCAI*, 2019.
- Yang, R., Shi, J., Xiao, X., Yang, Y., Bhowmick, S. S., and Liu, J. PANE: scalable and effective attributed network embedding. *The VLDB Journal*, pp. 1–26, 2023.

- Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., and Daniel, L. Efficient neural network robustness certification with general activation functions. *NeurIPS*, 2018.
- Zhang, S., Campos, J. S., Feldmann, C., Walz, D., Sandfort, F., Mathea, M., Tsay, C., and Misener, R. Optimizing over trained GNNs via symmetry breaking. In *NeurIPS*, 2023.
- Zhang, S., Campos, J. S., Feldmann, C., Sandfort, F., Mathea, M., and Misener, R. Augmenting optimizationbased molecular design with graph neural networks. *Computers & Chemical Engineering*, 186:108684, 2024.
- Zhao, H., Hijazi, H., Jones, H., Moore, J., Tanneau, M., and Van Hentenryck, P. Bound tightening using rollinghorizon decomposition for neural network verification. *arXiv preprint arXiv:2401.05280*, 2024.
- Zügner, D. and Günnemann, S. Certifiable robustness and robust training for graph convolutional networks. In *SIGKDD*, 2019a.
- Zügner, D. and Günnemann, S. Adversarial attacks on graph neural networks via meta learning. In *ICLR*, 2019b.
- Zügner, D. and Günnemann, S. Certifiable robustness of graph convolutional networks under structure perturbations. In *SIGKDD*, 2020.
- Zügner, D., Akbarnejad, A., and Günnemann, S. Adversarial attacks on neural networks for graph data. In *SIGKDD*, 2018.

A. Proofs of Properties 3.2 & 3.4

Proof of Property 3.2. Since $A_{u,v} \ge 0$, we only need to consider the lower bound of $\sum_{f \in F_{l-1}} w_{f,f'} x_{u,f}$ in Eq. (16), which is denoted as $lb_{u \to v}$. Using bounds for $x_{u,f}$ gives $lb_{u \to v}$ defined as Eq. (18). Then Eq. (16) becomes:

$$lb(\bar{x}_{v,f'}) = \min_{A \in \mathcal{P}_1(A^*)} \sum_{u \in V} A_{u,v} lb_{u \to v} + b_{v,f'}.$$
(24)

Recall the definition of $\mathcal{P}_1(A^*)$, we can remove/add at most q_v neighbors of node v. Denote the set of removed/added neighbors as V_{lb} . Then the summation $u \in V$ can be divided into: $u \in \mathcal{N}^*(v)$ (original neighbors), $u \in V_{lb} \setminus \mathcal{N}^*(v)$ (added neighbors), $u \in \mathcal{N}^*(v) \cap V_{lb}$ (removed neighbors), and $u \in V \setminus (\mathcal{N}^*(v) \cup V_{lb})$ (nodes without contribution either before or now), from which we obtain that:

$$\sum_{u \in V} A_{u,v} lb_{u \to v} = \left(\sum_{u \in \mathcal{N}^*(v)} + \sum_{u \in V_{lb} \setminus \mathcal{N}^*(v)} - \sum_{u \in \mathcal{N}^*(v) \cap V_{lb}} \right) lb_{u \to v}$$

$$= \sum_{u \in \mathcal{N}^*(v)} lb_{u \to v} + \sum_{u \in V_{lb}} \Delta_{u \to v}$$
(25)

with $\Delta_{u \to v}$ defined as Eq. (19). Moving the minimization to the only changeable term $\sum_{u \in V_{lb}} \Delta_{u \to v}$ yields Eq. (17). \Box

Proof of Property 3.4. This property can be proved similarly to Property 3.2. Here we give a simple way to prove it using the conclusion of Property 3.2. As mentioned in Remark 3.5, we can modify the original graph with previous decisions, i.e., current neighborhood of node v is $(\mathcal{N}^*(v) \setminus V_0) \cup V_1$ and the remaining budget is q'_v defined as Eq. (23). Since we already decided the values of $A_{u,v}$ for $u \in V_0 \cup V_1$, V_{lb} should not include any node in $V_0 \cup V_1$. Applying Property 3.2 on the current graph with budgets q'_v gives Eq. (22) and finishes this proof.

B. Implementation details

B.1. Local cutting planes

A local cutting plane in SCIP is any inequality together with the first node where it is valid. As shown in the right side of Figure 1, after branching variable $A_{1,0} = 0$, we can improve the bounds of node 0 from [-4, 9] to [-3, 6]. These improved bounds can be incorporated into the model by adding inequalities $x \ge -3$ and $x \le 6$ to the left branch. However, these inequalities cannot be added to the root node as they are invalid unless $A_{1,0} = 0$. At each node in the branch-and-bound tree, all local cutting planes associated with its ancestors are valid. Including all of these local cutting planes is correct but inefficient. Therefore, SCIP will decide whether an inequality will be added. For example, if node 0 equals to 7 at the left child of the root node, then SCIP only adds $x \le 6$ into the model since this inequality is violated.

B.2. Inconsistent instances

We exclude instances with inconsistent results from different solvers, which results in the numbers in column "#" of Table 6 – Table 11 being smaller than the total number of graphs from each benchmark. This is because we found and reported a small bug in Gurobi wherein several instances were declared *infeasible* despite having a feasible solution found by SCIP. This bug was easily fixed in Gurobi and is now incorporated into a recent minor release. We continued using the Gurobi version with the bug after the ICML rebuttal period because there was insufficient time to redo all the experiments. So, in fairness to the Gurobi solver, we slightly modified the optimization problems by increasing the right-hand side of Eq. (7c) by 10^{-11} . This change eliminated the bug, but then meant that the Gurobi solver frequently returns solutions that are infeasible, i.e., violating some constraints of the MIP model by more than tolerance 10^{-6} . To compare on an equal footing, we only report results on instances where all solvers return consistent answers. In other words, if one solver wrongly declares an instance *infeasible* or returns an infeasible solution, we do not report results.

C. Full numerical results

Table 3 gives results for node classification. Tables 4 and 5 summarize the results for graph classification with local attack strength $s \in \{2, 3, 4\}$ on ENZYMES and MUTAG, respectively. Detailed results with different global budgets are reported in Tables 6–11. Figures 6 and 7 plot the number of different types of graphs (robust, nonrobust, time out) with various budgets. Figures 4 and 5 visualize the number of solved (robust) instances below different time costs, and compares the time costs between SCIPabt and SCIPsbt. For graph classification, our numerical analysis in Section 4.3 for s = 2 is consistent with results for $s \in \{3, 4\}$, as shown here.

Furthermore, we report some numerical results to show that applying OBBT in GNN verification is not recommended. Our OBBT implementation is straight-forward: for each variable, change the objective in our verification problem to its lower/upper bound and relax all binary variables into continuous variables. Due to the high time cost for solving each instance, as well as our numerical observation that tighter bounds may slow down the process to find a feasible attack for a non-robust instance, we only apply OBBT to the 44 robust instances for MUTAG with s = 2. The average time spent on calculating OBBT bounds for all variables is 6045.02s (3.57s per LP), and the average solving time with OBBT bounds is 331.60s. As shown in Table 2, the average solving time for SCIPsbt is 336.41s. Therefore, the improvement of OBBT w.r.t. the solving time is quite limited, despite its high time cost on computing bounds. We also compare the bounds derived from *sbt* and OBBT using the relative bound tightness (RBT) used in Badilla et al. (2023): $RBT = \frac{SBT - OBBT}{OBBT + 10^{-10}}$, where SBT/OBBT represents the length of interval bounds derived from *sbt* /OBBT, respectively. For each MPNN layer, we average RBT over all variables in this layer for all 44 instances. The resulting RBT values are 0.07, 0.22, 0.57, which means that the *sbt* bounds are quite closed to OBBT bounds for early layers and decently tight for deeper layers.

Table 3: Summary of results for node classification. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), and SCIP aggressive bounds tightening (SCIPabt). For each global budget, the number of instances is 2708 for Cora and 3312 for CiteSeer. We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 30 minutes ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

benchmark	method		all instances				robust instances			
oononnun	method	#	avg-time(s)	sgm-time(s)	# solved	#	avg-time(s)	sgm-time(s)	# solved	
Cora	SCIPbasic	2708	0.10	0.10	2708	2223	0.08	0.08	2223	
	SCIPsbt	2708	0.17	0.16	2708	2223	0.10	0.10	2223	
	SCIPabt	2708	0.46	0.38	2708	2223	0.16	0.14	2223	
CiteSeer	SCIPbasic	3312	0.07	0.06	3312	2917	0.06	0.06	2917	
	SCIPsbt	3312	0.07	0.07	3312	2917	0.06	0.06	2917	
	SCIPabt	3312	0.31	0.17	3312	2917	0.12	0.10	2917	

Table 4: Summary of results for graph classification on ENZYMES with local attack strength $s \in \{2, 3, 4\}$. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

	method		all i	nstances			robust	tinstances	
	memou	#	avg-time(s)	sgm-time(s)	# solved	#	avg-time(s)	sgm-time(s)	# solved
s = 2	SCIPbasic	5915	605.97	37.81	5579	3549	278.58	12.51	3444
	SCIPsbt	5915	230.59	21.26	5831	3549	82.89	6.65	3528
	SCIPabt	5915	246.02	21.77	5817	3549	88.95	6.71	3522
	GRBbasic	5915	86.03	7.59	5892	3549	32.80	2.82	3542
	GRBsbt	5915	74.87	7.09	5895	3549	22.90	2.50	3548
s = 3	SCIPbasic	5855	2628.71	460.25	4149	1554	1423.02	99.43	1308
	SCIPsbt	5855	1533.12	214.04	4977	1554	750.70	48.68	1440
	SCIPabt	5855	1583.67	224.59	4943	1554	738.67	48.11	1447
	GRBbasic	5855	845.77	85.82	5549	1554	367.89	22.54	1530
	GRBsbt	5855	738.26	74.83	5524	1554	238.48	18.89	1545
s = 4	SCIPbasic	5901	4163.96	1492.61	3003	577	2030.34	319.19	448
	SCIPsbt	5901	2802.04	581.20	4012	577	1353.31	154.83	504
	SCIPabt	5901	2841.31	602.57	4013	577	1318.26	152.16	509
	GRBbasic	5901	1780.68	306.11	5125	577	862.25	62.75	547
	GRBsbt	5901	1372.88	233.52	5290	577	589.89	49.66	570

Table 5: Summary of results for graph classification on MUTAG with local attack strength $s \in \{2, 3, 4\}$. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

	method		all i	nstances			robu	st instances	
	memou	#	avg-time(s)	sgm-time(s)	# solved	#	avg-time(s)	sgm-time(s)	# solved
	SCIPbasic	1589	679.86	189.75	1575	44	798.47	202.93	40
	SCIPsbt	1589	196.07	75.17	1589	44	336.41	100.86	44
s = 2	SCIPabt	1589	207.50	82.43	1589	44	238.10	91.11	44
	GRBbasic	1589	34.58	4.06	1589	44	162.25	12.11	44
	GRBsbt	1589	59.93	22.40	1589	44	73.78	15.00	44
	SCIPbasic	1840	1355.17	262.63	1670	68	643.89	427.71	66
	SCIPsbt	1840	720.13	174.32	1793	68	380.43	179.95	66
s = 3	SCIPabt	1840	669.39	169.55	1797	68	373.90	172.83	66
	GRBbasic	1840	601.86	30.92	1816	68	208.24	15.38	68
	GRBsbt	1840	315.93	70.03	1834	68	234.78	27.21	66
	SCIPbasic	1844	1745.56	487.75	1644	64	386.72	340.95	64
	SCIPsbt	1844	1039.90	180.30	1734	64	155.26	144.16	64
s = 4	SCIPabt	1844	1004.92	177.84	1748	64	147.46	136.26	64
	GRBbasic	1844	1113.20	58.17	1758	64	11.90	10.96	64
	GRBsbt	1844	420.78	84.82	1837	64	23.04	21.29	64

Figure 4: For each SCIP-based method on ENZYMES with local attack strength $s \in \{2, 3, 4\}$, we count the number of robust graphs (green), nonrobust graphs (red), and time out (white). The percentage δ of the number of edges is the global budget.

Figure 5: For each SCIP-based method on MUTAG with local attack strength $s \in \{2, 3, 4\}$, we count the number of robust graphs (green), nonrobust graphs (red), and time out (white). The percentage δ of the number of edges is the global budget.

Figure 6: ENZYMES benchmark with local attack strength $s \in \{2, 3, 4\}$. (left) Number of instances solved by each method below different time costs. (middle) Number of robust instances solved by each method below different time costs. (right) Consider ρ , the ratio of time cost between SCIPabt and SCIPsbt on each robust instance.

Figure 7: MUTAG benchmark with local attack strength $s \in \{2, 3, 4\}$. (left) Number of instances solved by each method below different time costs. (middle) Number of robust instances solved by each method below different time costs. (right) Consider ρ , the ratio of time cost between SCIPabt and SCIPsbt on each robust instance.

Table 6: Results for ENZYMES with local attack strength s = 2 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method		all i	nstances		robust instances				
	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved	
global budget: [0.	$.01 \cdot E $								
SCIPbasic	600	465.47	25.13	575	453	420.33	18.76	435	
SCIPsbt	600	193.02	14.46	594	453	166.90	10.52	451	
SCIPabt	600	190.05	14.58	592	453	161.85	10.53	449	
GRBbasic	600	119.88	7.08	594	453	84.71	5.76	451	
GRBsbt	600	87.31	5.90	596	453	47.40	4.89	453	
global budget: [0.	$.02 \cdot E $	(20.17	27.42		202	157.00	10.00	271	
SCIPbasic	597	630.47	37.42	557	392	457.99	18.92	3/1	
SCIPsbt	597	248.67	20.65	585	392	181.41	10.44	385	
GPRhadia	597	200.41	21.10	584 599	392	194.55	10.58	385	
GRBsbt	597	111.66	7.59	592	392	66.45	4.33	391	
global budget: [0	$03 \cdot E $								
SCIPbasic	591	628.77	37.75	556	359	328.18	14.17	347	
SCIPsbt	591	252.04	20.87	579	359	117.80	7.67	355	
SCIPabt	591	262.35	21.03	577	359	120.84	7.67	354	
GRBbasic	591	108.75	8.55	587	359	45.55	3.34	358	
GRBsbt	591	79.77	7.05	588	359	22.37	2.79	359	
global budget: [0.	$.04 \cdot E $]								
SCIPbasic	593	633.12	39.29	557	346	256.36	11.96	336	
SCIPsbt	593	234.00	21.84	585	346	61.20	6.07	344	
SCIPabt	593	253.13	22.90	583	346	62.85	6.13	345	
GRBbasic	593	80.87	7.59	591	346	6.44	2.19	346	
GRBsbt	393	01.00	0.79	591	340	5.48	1.98	340	
global budget: 0.	$.05 \cdot E $ 501	647.96	41.10	555	338	234.06	10.74	320	
SCIPsht	591	241.04	22 37	581	338	48 19	5 58	337	
SCIPabt	591	293.33	23.46	576	338	75.63	5.66	335	
GRBbasic	591	72.31	7.61	591	338	6.47	1.99	338	
GRBsbt	591	70.81	7.34	589	338	13.86	1.83	338	
global budget: [0.	$.06 \cdot E $								
SCIPbasic	594	623.67	41.01	560	334	204.73	10.09	327	
SCIPsbt	594	210.26	22.99	588	334	37.46	5.22	333	
SCIPabt	594	240.04	23.29	585	334	55.18	5.36	332	
GRBbasic	594	73.46	7.56	594	334	8.41	1.85	334	
GRBsbt	594	57.18	7.04	594	334	22.34	1.72	334	
global budget: [0.	$.07 \cdot E $		10.00						
SCIPbasic	590	635.63	40.99	554	332	195.72	9.84	325	
SCIPSDI	590	221.80	23.07	583 583	332	57.05	5.08	331	
GRBbasic	590	239.83	25.08	500	332	8.03	5.25	332	
GRBsbt	590	62.36	7.46	590	332	6.69	1.77	332	
global budget: [0	08. [F]]								
SCIPhasic	583	608 75	39.97	553	332	197 92	9 95	325	
SCIPsbt	583	240.35	22.52	575	332	38.82	5.11	331	
SCIPabt	583	214.77	22.42	577	332	38.26	5.11	331	
GRBbasic	583	60.73	6.92	582	332	8.32	1.85	332	
GRBsbt	583	76.61	7.26	582	332	6.03	1.64	332	
global budget: [0.	$.09 \cdot E $					-			
SCIPbasic	588	585.39	38.98	557	331	197.91	10.02	324	
SCIPsbt	588	241.76	23.02	581	331	43.36	5.08	330	
SCIPabt	588	249.56	23.67	580	331	37.99	5.05	330	
GRBbasic GRBsbt	588 588	72.99	7.50	587	331	8.08	1.85	331	
	200	15.55	1.25	280	551	0.08	1.00	331	
global budget: [0. SCIPbasic	$10 \cdot E 588$	602.12	30.14	555	337	205 53	10.01	375	
SCIPsht	588	223 54	22.05	580	332	46 58	5 09	331	
SCIPabt	588	237.00	22.88	580	332	41.39	5.07	331	
GRBbasic	588	44.81	6.83	588	332	7.72	1.96	332	
GRBsbt	588	65.58	7.31	587	332	16.41	1.78	332	

Table 7: Results for ENZYMES with local attack strength s = 3 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method		all i	nstances		robust instances				
method	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved	
global budget: [0.0	$(1 \cdot E]$								
SCIPbasic	597	2041.24	248.53	464	319	1088.49	94.41	287	
SCIPsbt	597	1160.38	109.23	521	319	481.74	43.92	307	
SCIPabt	597	1129.15	109.77	523	319	478.08	43.68	307	
GRBbasic	597	985.15	52.53	542	319	370.09	20.68	310	
GRBsbt	597	700.88	39.96	558	319	193.68	16.28	318	
global budget: [0.0	$2 \cdot E $								
SCIPbasic	587	2738.05	498.94	413	218	1896.50	185.55	179	
SCIPsbt	587	1683.98	226.92	484	218	1004.56	88.59	199	
SCIPabt	587	1623.45	227.82	491	218	970.46	86.96	207	
GRBbasic	587	1059.95	99.76	544	218	495.46	43.64	215	
GRBsbt	587	728.29	66.57	552	218	352.89	34.88	217	
global budget: [0.0	$3 \cdot E $								
SCIPbasic	590	2835.26	542.92	403	169	1685.32	142.10	139	
SCIPsbt	590	1745.83	245.95	482	169	883.20	67.97	157	
CDRhasia	590	1/5/.43	252.98	4//	169	857.83	00.17	155	
GRBobt	590 590	920.10 507.70	94.63 64.60	565	169	266.98	25.74	168	
	570	571.17	04.00	505	105	200.70	25.74	100	
global budget: 0.0	$04 \cdot E $	2702.50	520.45	10.1	1.41	1(22.24	112.20	114	
SCIPbasic	588	2793.58	539.45	404	141	1623.34	113.29	114	
SCIPSDI	288	1084.95	241.19	480	141	844.50	54.50	129	
GPPhasia	500	705.60	239.33	401	141	309.72	22 50	120	
GRBebt	588	103.00	63.82	572	141	268.36	23.50	141	
GKBS01	500	490.04	03.82	512	141	208.50	20.55	139	
global budget: 0.0	$5 \cdot E $	2730.07	502.64	407	128	1462.08	88.07	104	
SCIPobt	580	1550.97	230.58	407	128	825.88	44.16	104	
SCIPabt	589	1588 79	230.38	500	128	821.32	43.98	117	
GRBhasic	589	653.18	82.60	572	128	363.43	20.28	128	
GRBsbt	589	597.25	69.81	571	128	282.16	17.86	126	
global budget: [0.($ 6 \cdot E $								
SCIPbasic	587	2678 33	483.01	409	120	1405 21	82.54	99	
SCIPsbt	587	1523.67	226.15	502	120	798.68	41.36	110	
SCIPabt	587	1611.51	243.19	496	120	813.46	42.08	110	
GRBbasic	587	719.60	81.19	564	120	415.24	19.88	118	
GRBsbt	587	664.13	78.00	558	120	214.15	17.07	120	
global budget: [0.0	$07 \cdot E $								
SCIPbasic	576	2729.50	492.39	400	115	1290.92	70.80	97	
SCIPsbt	576	1518.06	226.43	493	115	699.68	35.11	105	
SCIPabt	576	1605.08	240.04	489	115	682.72	34.36	106	
GRBbasic	576	762.36	88.48	552	115	332.71	16.17	114	
GRBsbt	576	780.03	86.20	541	115	209.06	13.87	114	
global budget: [0.0	$ 8 \cdot E $								
SCIPbasic	579	2527.15	450.55	425	116	1288.86	70.91	97	
SCIPsbt	579	1445.35	212.99	499	116	675.81	35.33	107	
SCIPabt	579	1492.87	226.64	500	116	700.39	36.03	107	
GRBbasic	579 579	828.08	90.22	539	116	307.12 146.60	10.05	114	
		012.17	<i>JJJL</i> 0	555	110	110.00	15.10	110	
global budget: 0.0	J9・ <i>E</i> 586	2504 29	176 06	115	112	1100.02	64 50	06	
SCIPODSIC	586	2374.30	4/0.00	413	113	701.85	33 01	90 104	
SCIPabt	586	1634 00	232.34	400	113	620.21	32 32	104	
GRBbasic	586	863.88	96.14	561	113	260.83	14 23	112	
GRBsbt	586	925.87	99.95	539	113	178.31	12.64	112	
global budget: [0,]	[0, E]								
SCIPbasic	576	2627.36	459.95	409	115	1292.84	69.60	96	
SCIPsbt	576	1513.94	234.73	499	115	746.69	35.91	105	
SCIPabt	576	1620.34	252.07	487	115	727.18	35.21	105	
GRBbasic	576	952.10	99.60	543	115	388.85	16.03	112	
GRBsbt	576	1058.39	112.22	529	115	225.30	13.55	114	

Table 8: Results for ENZYMES with local attack strength s = 4 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 600, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method		all i	nstances		robust instances				
	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved	
global budget: [0.0	$01 \cdot E $								
SCIPbasic	594	3421.76	773.05	345	211	1260.49	170.39	182	
SCIPsbt	594	2352.82	345.23	425	211	593.60	74.72	202	
SCIPabt	594	2282.73	337.01	432	211	569.32	74.28	203	
GRBbasic	594	2107.45	170.88	456	211	470.19	24.40	204	
GRBsbt	594	1595.10	130.26	493	211	260.64	20.56	211	
global budget: [0.0	$02 \cdot E $								
SCIPbasic	593	4550.98	1874.90	280	103	2833.99	581.49	76	
SCIPsbt	593	3259.56	770.71	362	103	2135.50	324.52	82	
SCIPabt	593	3120.26	/41.51	3/4	103	2049.08	316.62	84	
GRBsht	593 593	1658.01	422.28	403 502	103	819.20	108.68	102	
		1050.01	233.12	502	105	019.20	100.00	102	
global budget: 0.0	$J3 \cdot E = 501$	1176 55	1883 37	270	65	2733 32	583.01	45	
SCIPsht	591	3307.01	869 32	360	65	1900 42	315.89	43 54	
SCIPabt	591	3340 71	888.09	353	65	1820 57	298.76	54	
GRBbasic	591	1984.46	403.78	504	65	1329.91	164.43	60	
GRBsbt	591	1283.41	191.51	531	65	993.78	123.35	63	
global budget: [0.0	$04 \cdot E $								
SCIPbasic	593	4469.33	1890.99	268	46	3027.57	602.22	28	
SCIPsbt	593	3339.44	808.49	357	46	2376.84	332.05	35	
SCIPabt	593	3312.35	824.98	362	46	2295.64	327.83	36	
GRBbasic	593	1643.02	335.49	537	46	1407.86	154.94	41	
GRBsbt	593	1039.69	175.10	550	46	1024.66	106.28	44	
global budget: [0.0	$05 \cdot E $								
SCIPbasic	595	4379.75	1691.84	286	34	2571.61	438.08	23	
SCIPsbt	595	2956.30	659.83	396	34	1625.51	205.03	30	
SCIPabt	595	3034.27	691.12	385	34	1651.50	201.25	29	
GRBbbsic	595 595	1538.31	300.14	539	34	843.47	80.40 67.81	32	
	595	1055.05	198.01	501	54	090.91	07.81		
global budget: 0.0	$56 \cdot E $	4100.15	1 407 47	202	20	2220 (0	266.12	21	
SCIPbasic	588	4108.15	1427.47	302	29	2220.69	366.12	21	
SCIPSDI	588	2879.51	644.20	399	29	15/1.08	174.19	24	
GRBbasic	588	1472.87	283.85	404 543	29	1209.09	79.81	23	
GRBsbt	588	1035.34	214.00	551	29	518.49	49.90	29	
global budgat: [0.(
SCIPhasic	592	4147.98	1484 03	309	24	1749 90	288 38	19	
SCIPsht	592	2685 22	543.80	414	24	1005 48	122.89	22	
SCIPabt	592	2732.23	556.59	416	24	1053.82	119.60	22	
GRBbasic	592	1609.26	294.58	532	24	679.49	41.95	24	
GRBsbt	592	1298.98	257.15	541	24	155.27	32.76	24	
global budget: [0.0	$08 \cdot E $								
SCIPbasic	588	4085.50	1440.95	308	22	1622.94	281.69	18	
SCIPsbt	588	2489.10	505.68	430	22	1091.16	114.08	19	
SCIPabt	588	2693.02	563.16	418	22	1089.48	114.84	19	
GRBbasic	588	1574.46	297.33	532	22	472.77	33.43	21	
GRBsbt	588	1399.73	308.64	536	22	502.12	34.93	22	
global budget: [0.0	$09 \cdot E $	1000 00			~~	1500	207 50		
SCIPbasic	579	4023.93	1476.52	310	22	1739.77	287.68	18	
SCIPSDI	579 570	2443.85	480.58	422	22	1384.42	127.34	18	
GPBhasic	579 570	2399.43	315 56	427	22	1384.49	127.40	18	
GRBsbt	579	1574.30	346.97	517	22	920.76	45.76	20	
-1-h-1 h-1-h-1 - f 0 f			2.0077						
SCIPbasic	588	3971 18	1391.04	325	21	1375 79	221 98	18	
SCIPsbt	588	2294.64	426.34	447	21	1111.89	107.09	18	
SCIPabt	588	2398.19	460.41	442	21	1079.78	103.04	19	
GRBbasic	588	1772.66	311.55	515	21	632.60	34.92	20	
GRBsbt	588	1814.80	403.30	508	21	695.35	34.77	20	

Table 9: Results for MUTAG with local attack strength s = 2 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method		all i	nstances			robust instances				
memou	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved		
global budget: [0.0	$1 \cdot E $									
SCIPbasic	124	74.28	45.27	124	24	176.24	162.61	24		
SCIPsbt	124	33.89	22.76	124	24	84.37	79.12	24		
SCIPabt	124	32.31	22.18	124	24	77.22	72.94	24		
GRBbasic	124	2.30	2.16	124	24	4.91	4.82	24		
GKBSDI	124	4.10	5.09	124	24	9.39	8.98	24		
global budget: [0.0	$2 \cdot E $	107.07	07.00	100		1020.20	226.02			
SCIPbasic	141	437.96	87.20	139	16	1028.39	226.02	14		
SCIPSOL	141	08.21	37.04	141	10	407.75	103.97	10		
GRBhasic	141	94.67	11.83	141	16	207.04	15 21	10		
GRBsbt	141	26.14	8.90	141	16	93.51	17.19	16		
alobal budget: [0.0	13. F]									
SCIPhasic	180	542.88	162.56	178	3	4807 52	1181 75	1		
SCIPsbt	180	152.61	57.72	180	3	2080.69	545.97	3		
SCIPabt	180	134.96	58.51	180	3	1334.79	425.77	3		
GRBbasic	180	87.25	10.17	180	3	1245.54	325.46	3		
GRBsbt	180	34.48	16.03	180	3	507.82	176.89	3		
global budget: [0.0	$ 4 \cdot E $									
SCIPbasic	174	613.49	199.84	172	1	26.09	26.09	1		
SCIPsbt	174	175.59	66.82	174	1	11.45	11.45	1		
SCIPabt	174	133.90	67.08	174	1	13.23	13.23	1		
GRBbasic	174	49.70	4.59	174	1	1.51	1.51	1		
GRBsbt	174	47.76	21.59	174	1	1.55	1.55	1		
global budget: [0.0	$ 5 \cdot E $	707.14	222.17	177	0					
SCIPbasic	167	/0/.14	233.17	160	0	_	_	_		
SCIPSOL	167	165.06	81.01	107	0					
GRBhasic	167	23.07	2 30	167	0	_	_	_		
GRBsbt	167	61.18	27.22	167	Ő	_	_	_		
global budget: [0.0	$ 6 \cdot E $									
SCIPbasic	158	832.55	270.16	157	0	_	_			
SCIPsbt	158	190.53	92.80	158	Ő	_	_	_		
SCIPabt	158	215.46	102.23	158	0	_	_	_		
GRBbasic	158	23.74	2.55	158	0	_	_	_		
GRBsbt	158	57.60	27.95	158	0	—	—	—		
global budget: [0.0	$7 \cdot E $									
SCIPbasic	159	841.40	265.97	158	0	_	_	_		
SCIPsbt	159	219.35	94.60	159	0	—	—	—		
SCIPabt	159	264.65	112.42	159	0	—	_	—		
GRBbasic	159	43.72	2.98	159	0	_	_	_		
	139	37.12	25.08	139	0					
global budget: 0.0	$ 8 \cdot E $	850.84	265.24	150	0					
SCIPsht	159	254 42	109.18	159	0					
SCIPabt	159	299.46	134 91	159	0	_	_	_		
GRBbasic	159	4.31	2.18	159	Ő	_	_	_		
GRBsbt	159	65.85	27.45	159	0	—	_	_		
global budget: [0.0	$9 \cdot E $									
SCIPbasic	165	877.25	254.34	163	0	_	_	_		
SCIPsbt	165	274.26	113.80	165	0	_	_	_		
SCIPabt	165	333.40	137.86	165	0	—	—	—		
GRBbasic GRBabt	165	4.26	2.07	165	0	—	—	—		
UKDSUL	105	07.31	51.92	105	U	_	_			
global budget: [0.1	$0 \cdot E $	864 12	251 70	150	0					
SCIPobt	162	307 52	231.70	159	0	_	_	_		
SCIPabt	162	352.19	149.21	162	õ	_	_	_		
GRBbasic	162	6.29	2.89	162	Õ	_	_	_		
GRBsbt	162	141.44	49.11	162	0	—	_	_		

Table 10: Results for MUTAG with local attack strength s = 3 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method		all i	instances		robust instances				
memou	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved	
global budget: [0.0	$1 \cdot E $								
SCIPbasic	178	216.94	138.74	178	43	484.49	438.14	43	
SCIPsbt	178	97.37	68.28	178	43	191.70	180.49	43	
GPPhasia	1/8	96.24	67.91 5.02	1/8	43	186.38	1/4.65	43	
GRBsbt	178	11.81	9.64	178	43	25.98	24.19	43	
	$2 \cdot E $								
SCIPbasic	183	964.93	197.33	169	22	709.48	418.88	21	
SCIPsbt	183	353.80	93.62	180	22	470.79	172.81	21	
SCIPabt	183	348.24	92.84	180	22	461.02	162.62	21	
GRBbasic	183	494.45	23.69	181	22	315.86	16.25	22	
GRBsbt	183	216.83	20.71	180	22	347.31	27.91	21	
global budget: [0.0	$3 \cdot E $	1457.00	2(0.71	160	2	2624 70	747.40		
SCIPbasic	185	1457.00	260.71	169	2	3634.79	/4/.48	1	
SCIPabt	185	424.80	119.43	182	2	3616.66	548.81	1	
GRBbasic	185	744.52	83.02	183	2	3311.59	274.89	2	
GRBsbt	185	257.34	44.27	182	2	3601.72	301.41	1	
global budget: [0.0	$4 \cdot E $								
SCIPbasic	185	1473.13	290.37	168	1	73.10	73.10	1	
SCIPsbt	185	605.01	151.85	179	1	35.09	35.09	1	
SCIPabt	185	557.49	149.98	182	1	35.24	35.24	1	
GRBbasic	185	910.40	82.52	182	1	2.25	2.25	1	
GKBSDI	185	204.63	52.12	185	I	3.55	3.33	1	
global budget: [0.0	$ 5 \cdot E $	1464 64	207 77	167	0				
SCIPsht	186	661.42	211.00	182	0	_	_	_	
SCIPabt	186	637.86	204.26	182	0	_	_	_	
GRBbasic	186	1072.39	91.48	183	0	_	_	_	
GRBsbt	186	282.76	77.28	186	0	_	_		
global budget: [0.0	$6 \cdot E $								
SCIPbasic	186	1341.58	261.62	171	0	—	_		
SCIPsbt	186	700.35	212.61	181	0	—	—		
SCIPabt	186	626.75	198.82	183	0	—	—		
GRBbasic	186	934.94 334 13	59.53 93.00	184	0				
global budget: [0,0	7. [F]								
SCIPhasic	186	1537.24	306 34	166	0	_	_		
SCIPsbt	186	964.08	244.13	181	Ő	_	_	_	
SCIPabt	186	919.51	235.79	180	0	_	_	_	
GRBbasic	186	564.47	23.72	183	0	_	_	_	
GRBsbt	186	375.94	104.92	186	0	_	_		
global budget: [0.0	$ 8 \cdot E $				~				
SCIPbasic	186	1559.03	279.39	166	0	—	_	—	
SCIPsbt	186	1065.84	242.82	179	0	—	_		
GRBbasic	180	989.15 388.40	230.15	179	0	_	_	_	
GRBsbt	186	426.44	132.03	186	0	_	_	_	
global budget: [0 0	$9 \cdot E $								
SCIPbasic	184	1720.80	331.98	161	0	_	_	_	
SCIPsbt	184	1080.19	279.90	179	0	—	_	_	
SCIPabt	184	993.48	271.16	178	0	_	_	_	
GRBbasic GRBcht	184	456.38	12.95	182	0	—	—	—	
	184	496.92	104.90	184	0		_		
global budget: [0.1 SCIPbasic	$0 \cdot E $	1777 61	317 24	155	0	_	_	_	
SCIPsbt	181	1231 10	271 38	172	0	_	_	_	
SCIPabt	181	1090.15	259.43	172	õ	_	_	_	
GRBbasic	181	414.44	10.81	176	õ	_	_	_	
GRBsbt	181	545.06	187.13	181	0	—	_	_	

Table 11: Results for MUTAG with local attack strength s = 4 and different global budgets. The approaches tested are SCIP basic (SCIPbasic), SCIP static bounds tightening (SCIPsbt), SCIP aggressive bounds tightening (SCIPabt), Gurobi basic (GRBbasic), and Gurobi static bounds tightening (GRBsbt). For each global budget, the number of instances is 188, but we only present comparisons when all methods give consistent results except for time out, as shown in column "#". We compare times with respect to both average ("avg-time") and the shifted geometric mean ("sgm-time"), as well as the number of solved instances within time limits 2 hours ("# solved"). Since robust instances are the ones where mixed-integer performance is most important (non-robust instances may frequently be found by more heuristic approaches), we also compare on the set of robust instances.

method	all instances					robust instances				
method	#	avg-time	sgm-time	# solved	#	avg-time	sgm-time	# solved		
global budget: [0.0	$1 \cdot E $									
SCIPbasic	178	191.35	123.98	178	42	424.81	387.63	42		
SCIPsbt	178	85.15	59.78	178	42	169.78	161.44	42		
SCIPabt	178	83.79	59.25	178	42	163.36	154.26	42		
GRBsbt	178	11.40	9.32	178	42	24.88	23.29	42		
alobal budget: [0,0	9 F									
SCIPbasic	182	861.95	178.32	171	20	338.87	304.96	20		
SCIPsbt	182	340.02	78.95	178	20	136.87	129.74	20		
SCIPabt	182	373.47	79.59	178	20	125.34	119.02	20		
GRBbasic	182	692.50	25.82	175	20	10.48	9.91	20		
GRBsbt	182	292.40	22.45	179	20	21.10	19.82	20		
global budget: [0.0	$3 \cdot E $	1444.00	100.04	174		(7.10	(7.10			
SCIPbasic	186	1664.22	438.26	176	1	67.18	67.18	1		
SCIPSOL	180	443.02	109.93	182	1	25.41	25.41	1		
GRBhasic	186	1246.43	111.16	179	1	2.32	2.32	1		
GRBsbt	186	365.84	57.23	183	1	3.77	3.77	1		
global budget: [0.0	$4 \cdot E $									
SCIPbasic	187	1910.56	613.64	172	1	63.21	63.21	1		
SCIPsbt	187	766.90	144.99	178	1	33.13	33.13	1		
SCIPabt	187	783.38	144.70	178	1	34.23	34.23	1		
GRBbasic	187	1457.39	114.36	173	1	2.31	2.31	1		
GRBsbt	187	327.42	64.44	187	1	3.74	3.74	1		
global budget: [0.0	$5 \cdot E $	1000 10	(22.42	144	0					
SCIPbasic	185	1889.19	632.42	100	0	_	_	_		
SCIPabt	185	1156.75	244.49	174	0	_	_	_		
GRBbasic	185	1553.69	113.65	171	0	_	_	_		
GRBsbt	185	493.57	97.94	185	0	_	_	_		
global budget: [0.0	$6 \cdot E $									
SCIPbasic	186	1990.98	693.58	163	0	_	_			
SCIPsbt	186	1440.55	279.50	172	0	_	_	_		
SCIPabt	186	1461.07	286.93	171	0	_	—	_		
GRBbasic	186	1410.53	95.52	176	0	—	—	—		
GRBsbt	186	524.40	116.61	186	0	_	_			
global budget: 0.0	$7 \cdot E $	2151.00	(02.12	154	0					
SCIPbasic SCIPsbt	183	2151.99	693.12 246.00	156	0	_	_	_		
SCIPabt	183	1452.16	254 92	169	0	_	_	_		
GRBbasic	183	1303.05	82.57	176	Ő	_	_			
GRBsbt	183	466.03	124.70	183	0	—	—	—		
global budget: [0.0	$ 8 \cdot E $									
SCIPbasic	186	2252.93	732.66	153	0	_	—	_		
SCIPsbt	186	1525.19	314.64	170	0	—	—			
SCIPabt	186	1513.03	309.31	170	0	—	—			
GRBsbt	186	535.35	181.75	177	0	_	_	_		
global budget: [0.0	[0, F]				-					
SCIPbasic	186	2214.69	692.20	155	0	_	_	_		
SCIPsbt	186	1599.46	285.69	163	ŏ	_	_	_		
SCIPabt	186	1333.37	260.48	175	0	_	_	_		
GRBbasic	186	1037.36	41.38	178	0	_	—	_		
GRBsbt	186	595.20	205.80	186	0		_			
global budget: [0.1	$0 \cdot E $	2251.07	724.00	151	0					
SCIPbasic SCIPobt	185	2251.07	734.90	154	0	—		—		
SCIPabt	185	1379.04	212.32	100	0	_	_	_		
GRBbasic	185	1153.80	41.88	175	0	_	_	_		
GRBsbt	185	578.28	217.22	185	Õ	_	_	_		