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Abstract

Vision-language models (VLMs) like CLIP001
have demonstrated remarkable applicability002
across a variety of downstream tasks, including003
zero-shot image classification. Recently, the004
use of prompts or adapters for efficient transfer005
learning (ETL) has gained significant attention006
for effectively adapting to downstream tasks.007
However, previous studies have overlooked the008
challenge of varying transfer difficulty of down-009
stream tasks. In this paper, we empirically an-010
alyze how each ETL method behaves with re-011
spect to transfer difficulty. Our observations012
indicate that utilizing vision prompts and text013
adapters is crucial for adaptability and general-014
izability in domains with high difficulty. Also,015
by applying an adaptive ensemble approach016
that integrates task-adapted VLMs with pre-017
trained VLMs and strategically leverages more018
general knowledge in low-difficulty and less019
in high-difficulty domains, we consistently en-020
hance performance across both types of do-021
mains. Based on these observations, we pro-022
pose an adaptive ensemble method that com-023
bines visual prompts and text adapters with024
pre-trained VLMs, tailored by transfer diffi-025
culty, to achieve optimal performance for any026
target domain. Upon experimenting with ex-027
tensive benchmarks, our method consistently028
outperforms all baselines, particularly on un-029
seen tasks, demonstrating its effectiveness.030

1 Introduction031

Vision-language models (VLMs), such as032

CLIP (Radford et al., 2021) and ALIGN (Jia et al.,033

2021), have demonstrated remarkable applicability034

across various downstream tasks such as image035

classification. A distinctive feature of these VLMs036

for image classification is their ability to classify037

unseen classes that have not been encountered038

during pre-training through zero-shot inference,039

which is not possible to traditional vision models.040

The primary challenge of VLMs for downstream041

tasks is to excel in classifying both seen and un-042

seen class sets. In the context of VLM classifica- 043

tion tasks, the ability to accurately classify seen 044

class sets is termed adaptability, while the capa- 045

bility to extend this proficiency to unseen class 046

sets is referred to as generalizability. To boost 047

these abilities, recent research has introduced effi- 048

cient transfer learning (ETL) methods to fine-tune 049

VLMs. One strategy involves the use of soft prompt 050

tuning (Zhou et al., 2022b,a; khattak et al., 2023; 051

Khattak et al., 2023). Another research direction in- 052

volves adapter-style tuning (Gao et al., 2023; Zhang 053

et al., 2022; Zhu et al., 2023b) either by adjust- 054

ing specific parameters or employing cache-based 055

techniques. These approaches empower VLMs to 056

swiftly adapt to new tasks using only a few samples 057

(i.e. few-shot image classification task). 058

However, previous approaches do not consider 059

a significant factor for adapting to downstream 060

tasks: varying transfer difficulty (Yu et al., 2023). 061

This refers to the challenge of adapting pre-trained 062

VLMs according to the target domain. For instance, 063

transferring pre-trained VLMs to specific fine- 064

grained domains, such as FGVC Aircraft, is more 065

challenging than transferring to general coarse- 066

grained domains. In a real-world scenario, it is hard 067

to predict the specific target task and domain that 068

will emerge. Therefore, without investigating how 069

each type of ETL behaves in response to different 070

levels of transfer difficulty and applying an adap- 071

tive method based on this investigation, the result 072

for each target domain can be suboptimal. Some 073

works manually train models differently for each 074

dataset (Gao et al., 2023; Zhang et al., 2022), but 075

this approach is not feasible in real-world scenarios 076

as prior knowledge for the target task is not given. 077

To overcome these limitations and apply an adap- 078

tive method for tuning adapters and prompts for 079

downstream tasks, we empirically investigate the 080

characteristics of applying different tuning methods 081

for each modality on multiple domains with vary- 082

ing transfer difficulty, revealing four key findings. 083
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Figure 1: Overview of APEX compared to the conventional ETL methods. APEX exhibits two key differences: (a):
Firstly, APEX integrates prompt tuning for the visual encoder and a linear adapter for the text encoder, each tailored
to the specific properties of their respective modalities, which performs better on high-difficulty domains. (b):
Secondly, APEX integrates an adaptive coefficient within the text encoder to strategically balance pre-adapter and
post-adapter features to properly combine task-specific knowledge and general VLMs knowledge based on transfer
difficulty. A detailed explanation, including notations and the algorithm, can be found in Section 4 and Appendix B.

Firstly, we find that visual prompt tuning (VPT)084

generalizes better to unseen classes compared to085

text prompt tuning (TPT) in cases of high-difficulty086

domains, as TPT tends to overfit on base classes for087

these domains. (▷ Obs. 1). This occurs because, in088

high-difficulty domains, the class separability of vi-089

sual features from a visual encoder is low, causing090

TPT to overly adapt in classifying these challeng-091

ing features (▷ Obs. 2). Moreover, text adapter (TA)092

can significantly boost the adaptability of VPT, re-093

sulting in high adaptability and generalizability,094

especially for highly difficult domains (▷ Obs. 3).095

However, fine-tuning with adapters could compro-096

mise generalizability in easier domains. Our last097

observation is that combining pre- and post-adapter098

features to leverage pre-trained VLMs knowledge099

can address this concern with a proper balance be-100

tween them. For instance, using more pre-adapter101

features can maintain generalizability in easier do-102

mains. The ideal balance depends on the domain’s103

difficulty, highlighting the need to adjust the en-104

semble coefficient accordingly (▷ Obs. 4).105

Based on our observations, we present a106

APEX (text Adapter, visual Prompt, and adaptive107

Ensemble for cross(X)-modality) that utilizes an108

adaptive ensemble with VPT and TA. Specifically,109

we use the combination of VPT and TA, which110

have shown high generalizability and adaptability111

for high-difficulty domains, as shown in Obs. 1-3112

(Fig. 1(a)). Also, motivated by Obs. 4, we employ113

an adaptive ensemble approach that determines the114

optimal ensemble coefficient for each domain by115

using the distances to learned classes in pre-trained116

VLMs to estimate transfer difficulty (Fig. 1(b)).117

This adaptive ensemble controls the level of adapta- 118

tion, by primarily utilizing task-specific knowledge 119

with adapted VLMs for high-difficulty domains but 120

leveraging general knowledge for low-difficulty 121

domains, as pre-trained VLMs already possess suf- 122

ficient ability and prevent an overfitting from ex- 123

cessive adaptation. With this, our method acts as 124

a difficulty-agnostic solution, enabling the model 125

to effectively adapt to all target domains regard- 126

less of transfer difficulty. In summary, our main 127

contributions are: 128

• We investigate prompt tuning and adapter tuning 129

methods to understand their effectiveness across 130

domains with varying transfer difficulties. Our 131

findings reveal that the efficacy of each method 132

with each modality varies across different of 133

transfer difficulty, with notable performance of 134

VPT and TA for high-difficulty domains. 135

• We propose APEX, which utilizes VPT and TA 136

for tuning and employ an adaptive ensemble ap- 137

proach to optimally leverage the general knowl- 138

edge of VLMs for each domain. The ensemble’s 139

coefficient is adaptively determined by the dis- 140

tances to learned classes, serving as an estimate 141

of transfer difficulty. 142

• We show that APEX achieves state-of-the-art 143

performance across various downstream tasks, 144

with particularly notable improvements in unseen 145

tasks during adaptation. 146

2 Backgrounds 147

Here, we provide a brief overview of the back- 148

ground related to our method. For a detailed expla- 149

nation with more related works is in Appendix E. 150
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Zero-shot CLIP. CLIP (Radford et al., 2021) is151

designed for creating visual features based on nat-152

ural language guidance. The CLIP model can per-153

form zero-shot inference, classifying an image into154

one of C possible classes without additional train-155

ing. This is achieved by calculating the cosine simi-156

larity between an visual feature z, derived from the157

visual encoder, and the text features of each class158

{ti}Ci=1, which are obtained from the text encoder.159

For processing the image, let us define the visual160

encoder as V , which comprises LV layers, denoted161

as {Vi}LV
i=1. The encoder takes patch embeddings162

E0 ∈ RM×dv as input, which are obtained by di-163

viding the image I into M fixed-size patches. Patch164

embeddings Ei is then fed into the (i+ 1)th trans-165

former block (Vi+1) along with a learnable class166

([CLS]) tokens ci. This process is sequentially car-167

ried out through all LV transformer blocks, formu-168

lated as follows:169

[ci,Ei] = Vi ([ci−1,Ei−1]) i = 1, . . . , LV , (1)170

z = ImageProj(cLV ), (2)171

Here, [·, ·] denotes the concatenation operation. We172

can obtain the text features in a similar way with173

word embeddings W0 = [w1
0, . . . ,w

N
0 ] ∈ RN×dl174

and text encoder T which is consist of LT layers175

{Ti}LT
i=1, as follows:176

[Wi] = Ti(Wi−1) i = 1, . . . , LT (3)177

ti = TextProj(wN
LT ) (4)178

The predicted probability for class i is as:179

Pr(y = i|z, t) = exp (sim(z, ti)/τ)∑C
j=1 exp (sim(z, tj)/τ)

, (5)180

where sim(·, ·) indicates cosine similarity and τ181

is the learned temperature of CLIP. We can also182

interpret the text features as a classifier (Gao et al.,183

2023; Zhang et al., 2022), where ti is the classifier184

weight for class i.185

Prompt Tuning for CLIP. To enable prompt186

tuning (Zhou et al., 2022a; khattak et al., 2023;187

Zhu et al., 2023a; Khattak et al., 2023), we re-188

place the Eq. (1) and Eq. (3) by newly introducing189

bV and bT learnable tokens {P̂ k
i ∈ Rdv}bVk=1 and190

{P k
i ∈ Rdl}bTk=1 for ith layer, and their concatena-191

tion P̂i and Pi. We can introduce the visual prompt192

for the first JV layers of the visual encoder, then193

we can compute as follows:194

[ci,Ei, ] = Vi([ci−1,Ei−1, P̂i−1]), (6)195

[cj ,Ej , P̂j ] = Vj([cj−1,Ej−1, P̂j−1]),196

for i = 1, . . . , JV and j = JV + 1, . . . , LV . Also, 197

we can replace Eq. (3) to belows by introducing 198

text prompt for the fisrt JT layers of text encoder: 199

[ ,Wi] = Ti([Pi−1,Wi−1]) i = 1, . . . , JT , (7) 200

[Pj ,Wj ] = Tj([Pj−1,Wj−1]) j = JT + 1, . . . , LT . 201

Here, we train the visual and text prompt for the 202

first JV and JT layers of corresponding encoders. 203

Adapter-style Tuning for CLIP. To enable 204

adapter-style tuning, we replace Eq. (2) and Eq. (4) 205

by introducing ImgAdapt and TxtAdapt which 206

are shallow stacking networks upon the frozen 207

CLIP model (Gao et al., 2023; Zhang et al., 2022; 208

Zhu et al., 2023b). 209

z̃ = ImgProj(cLV ), z = ImgAdapt(z̃) (8) 210

t̃ = TxtProj(wN
LT ), t = TxtAdapt(t̃) (9) 211

3 Motivating Observations 212

Here, we analyze the behavior of visual and text 213

encoders depending on different tuning methods 214

and transfer difficulty of target domains within the 215

framework of ETL. To accomplish this, we begin 216

by categorizing domains based on their relative 217

transfer difficulty (RTD), which is a metric first 218

defined by Yu et al. (2023). 219

Definition 1 (Relative Transfer Difficulty (Yu et al., 220

2023)). Let f(·) and g(·) be random classifiers 221

where the precision of each equals 1/C, and zero- 222

shot CLIP, respectively. Also, Precf and Precg de- 223

note the precision of classifiers f and g. Then, RTD 224

is formulated as follows: 225

RTD =
Precf
Precg

=
1/C

Precg
=

1

C · Precg
226

Under this metric, we identify EuroSAT, DTD, and 227

FGVC Aircraft as the three most challenging do- 228

mains, while ImageNet, SUN397, and Stanford 229

Cars are recognized as the three easiest domains. 230

We will primarily focus on these six domains to 231

clearly demonstrate the impact of RTD on VLMs’ 232

behavior. To assess adaptability and generalizabil- 233

ity, we train the CLIP-B/16 utilizing each prompt 234

tuning approach on tasks requiring generalization 235

from base to novel categories. Here, “base cate- 236

gory" refers to a subset of classes within the domain 237

learned through few-shot methods, and “novel cat- 238

egory" is those not included in the training. Each 239

dataset is split into these categories; the model is 240

trained on base classes with 16 shots and tested 241
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on both. Therefore, performance on the “base cate-242

gory" is related to adaptability, and performance in243

the “novel category" is related to generalizability.244

More detailed values are present in Appendix D.245

Observation 1. VPT offers better generalizability246

than TPT. While TPT has greater adaptability to247

seen classes in low-difficulty domains, it is not ef-248

fective for high-difficulty domains and shows over-249

fitting to the base classes.250

We commence with an analysis of the sepa-251

rate behavior of visual and text prompts during252

the tuning process. Fig. 2 illustrates the perfor-253

mance discrepancy between the two categories254

for each method. Across all domains, VPT con-255

sistently shows the smallest performance gap for256

every shot number, indicating reduced overfitting to257

base classes. This observation is especially promi-258

nent in domains with high RTD though the trend is259

not as pronounced in domains with low RTD. We260

also observe that combining VPT and TPT does261

not consistently mitigate the overfitting of TPT, as262

evidenced by the larger performance gap in FGVC263

Aircraft and EuroSAT compared to TPT alone.264

Fig. 3 displays the comparative performance of265

base and novel categories over different epochs.266

While all prompt tuning methods show an im-267

provement in base category performance at the ex-268

pense of generalization, VPT consistently exhibits269

a lesser decline in novel category performance. No- 270

tably, for challenging domains like FGVC Aircraft 271

and EuroSAT, VPT exceeds the novel performance 272

of TPT and their combination regardless of epoch. 273

Observation 2. Low class separability of visual 274

features is the primary reason for the overfitting of 275

TPT on high RTD. 276

Class separability is a critical factor in deter- 277

mining the transferability of a source model to a 278

target domain (Pándy et al., 2022). To determine 279

the class separability of visual features, we use the 280

ratio of intra- to inter-class cosine similarities (Oh 281

et al., 2021; Zhu et al., 2023b). Fig. 5 demonstrates 282

that the ratio is higher in domains with lower RTD, 283

which are considered easier, and lower in more 284

challenging datasets with higher RTD. These find- 285

ings suggest that the class separability highly cor- 286

relates with transfer difficulty, strongly influencing 287

the overfitting risk of TPT on high RTD domains. 288

To see how class separability affects TPT, we 289

further explore the visual features and predictions 290

of zero-shot CLIP and TPT. As shown in Fig. 4, 291

EuroSAT, which exhibits a high RTD, shows lower 292

class separability compared to SUN397 that has a 293

lower RTD. Furthermore, in EuroSAT, when TPT 294

attempts to classify visual features with low class 295

separability, its performance for novel classes is 296

lower than zero-shot CLIP. This is because TPT 297
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tries to fit the decision boundary, represented as dot-298

ted lines, to features that are challenging to classify299

by solely adjusting classifier weights with multiple300

stacks of learnable prompts. This underscore the301

significance of separable visual features, a factor302

closely linked to VPT. Consequently, this leads to303

significant overfitting, where the decision boundary304

of one class overlaps with others. Conversely, with305

visual features that exhibit high class separability,306

TPT’s predictions are more accurate than those of307

zero-shot CLIP as it can easily determine the bet-308

ter decision boundary.These results underscore the309

significance of separable visual features, a factor310

closely linked to VPT.311

Observation 3. TA effectively enhances adaptabil-312

ity with a low risk of overfitting when employed313

with VPT, especially on higher RTD datasets.314

Fig. 6 shows that while TA and VPT each ex-315

hibit less adaptability than TPT alone, together they316

outperform across all categories, signifying both317

high adaptability and generalizability. This advan-318

tageous combination is particularly significant for319

higher RTD, while the performance improvement320

in novel categories with lower RTD is marginal.321

This synergy occurs because VPT enhances the322

class separability in visual features, allowing the323

linear transformation of classifier weights to suf-324

fice for adaptation, as depicted in Fig. 7. TA simply325

modifies the features of the pre-trained text encoder, 326

preventing overconfidence in the decision bound- 327

ary, especially for domains with high RTD and low 328

class separability. In addition, we conduct exper- 329

iments using a combination of TPT and a visual 330

adapter (VA). However, this combination proves 331

less effective than integrating VPT and TA, fur- 332

ther emphasizing the importance of visual feature 333

separability. 334

Observation 4. By modulating the influence of 335

TA through an ensemble of pre-adapter and post- 336

adapter features, each with a domain-specific coef- 337

ficient, we can significantly improve generalization 338

in low RTD domains while maintaining high per- 339

formance in high RTD domains. 340

While combining VPT and TA has great synergy 341

in high RTD domains, utilizing TA can result in the 342

loss of some general knowledge from the original 343

CLIP, which is crucial for domains with low RTD. 344

This is evident in Tab. 1, as naïvely using VPT and 345

TA together may lead to a degradation in perfor- 346

mance on novel classes in domains with low RTD. 347

This is because for low RTD, a lot of tasks within 348

the domain need to lie in the region of general 349

knowledge, as illustrated in Fig. 1(b). But the train- 350

ing of a TA creates a task-specific boundary which 351

may not be optimal for other tasks within the same 352

domain. In domains with high RTD, task-specific 353

knowledge gained from adapters can also enhance 354

performance on unseen tasks, as the general knowl- 355

edge is often insufficient for these domains. 356

This degradation in domains with low RTD can 357

be mitigated by diminishing the influence of TA. 358

Inspired by the residual connection in adapter-style 359

tuning methods (Zhang et al., 2022; Gao et al., 360

2023), we use an ensemble of pre-adapter and post- 361

adapter features for the text encoder. This ensemble, 362

defined with coefficient α, can be expressed as: 363

t = α · TxtAdapt(t̃) + (1− α) · t̃. (10) 364
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Table 1: Comparison of accuracy (%) on novel classes
between zero-shot CLIP, without an ensemble, an en-
semble with fixed coefficient, and an ensemble with
optimal coefficient. We determine the fixed coefficient
as 0.4, based on average novel performance.

Dataset SUN397 Stanford Cars DTD EuroSAT

ZS CLIP 75.35 74.89 59.90 64.05

VPT + TA
74.52 68.40 63.05 77.73
(-0.83) (-6.49) (+3.15) (+13.68)

+ Fixed Ens 78.68 74.22 64.16 75.87
(α = 0.4) (+3.33) (-0.67) (+4.26) (+11.82)

+ Opt. Ens
78.90 75.19 64.32 77.73

(+3.55) (+0.30) (+4.42) (+13.68)

Opt. α 0.3 0.0 0.5 1.0

As Tab. 1 illustrates, the ensemble method im-365

proves performance in domains with low RTD.366

However, using pre-adapter features can yield sub-367

optimal outcomes in more challenging domains.368

For instance, performance on EuroSAT drops from369

77.73% to 75.87% when α is set as a fixed coef-370

ficient, as domains with high RTD demand more371

from TA. By optimally setting α for each domain,372

we consistently outperform zero-shot CLIP across373

all domains by effectively combining general and374

task-specific knowledge tailored to each domain’s375

needs. Observing this optimal coefficient, we note376

that that more challenging domains typically re-377

quire a higher coefficient. These findings highlight378

the necessity of a method to calculate an adaptive379

coefficient of ensemble, which would modulate TA380

activation according to domain and its RTD.381

4 Method382

Based on our observations, we propose a new383

method, APEX, which is a difficulty-agnostic ap-384

proach that utilizes an adaptive ensemble with tun-385

ing methods including VPT and TA.386

4.1 Configuration Design & Training387

Due to the need for a combination of VPT and388

TA to achieve adaptability and generalizability in389

highly difficult domains, we configure the train-390

able parameters to include multiple stacks of vi-391

sual prompts, and a linear text adaptation layer392

following the pre-trained text encoder. While ex-393

isting adapter-style methods (Zhang et al., 2022;394

Zhu et al., 2023b; Gao et al., 2023) rely on manu-395

ally optimized text prompts for different datasets,396

we use learnable text prompts just for the input397

because manually creating prompt templates for398

each domain in the real world is challenging. The399

learnable text prompts are unnecessary if manual400

Optimal  α
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Figure 8: The relationship between class distance and
optimal α for each domain used in Eq. (10) and Table 1.
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Figure 9: A concept figure for calculating the adaptive
coefficient αeval for ensemble upon its class distance.

prompts are already well-formed, which is further 401

explained in Section 5. 402

We extract the visual feature z using Eq. (6) 403

and Eq. (2) and the text feature t using Eq. (7) 404

with JT = 1 and Eq. (9). We apply linear 405

adapter parameterized as matrix A and bias b for 406

TextAdapter in Eq. (9) rather than using bottle- 407

neck structure (Zhang et al., 2022; Gao et al., 2023) 408

based on our results in Fig. 10. Our adapter can be 409

formulated as follows: 410

t = TxtAdapt(t̃) := A⊺t̃+ b (11) 411

During the training procedure, our objective is to 412

maximize the predicted probability Pr(y = ygt|z, t) 413

for ground truth label ygt by using cross-entropy 414

loss ℓCE(z, t, ygt) which is defined as follows: 415

ℓCE(z, t, ygt) = log Pr(y = ygt|z, t), 416

where the predicted probability is computed as 417

Eq. (5). 418

4.2 Adaptive Ensemble for Evaluation 419

Due to the various levels of transfer difficulty en- 420

countered during deployment, an adaptive method 421

is necessary to avoid suboptimal results for each 422

target domain. Motivated by our observations, in 423

the evaluation stage, we use an adaptive ensem- 424

ble approach that combines pre-adapter (t̃eval) and 425
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post-adapter text features (Eq. (11)), described as426

follows:427

teval = αeval · (A⊺t̃eval + b) + (1− αeval) · t̃eval,428

where αeval is the ensemble coefficient for a target429

class at evaluation and teval is the final represen-430

tation for that class. With this ensemble approach,431

for domains with high RTD, the model relies on the432

adaptability and generalizability of VPT and TA.433

Conversely, for domains with low RTD, it leverages434

general knowledge from the pre-trained model to435

avoid excessive adaptation.436

To determine the optimal αeval for each class,437

which estimates transfer difficulty and acts as a con-438

troller for adaptation, we employ a non-parametric439

method based on the distance between the text fea-440

tures of the evaluation class and the classes learned441

during training. This approach is based on the as-442

sumption that in domains with high RTD, class443

features are typically less separable in the text em-444

bedding space, similarly to their separability in the445

image embedding space. Hence, domains like Eu-446

roSAT exhibit low class distances, while those with447

low RTD, such as Stanford Cars, display high class448

distances. Fig. 8 shows that the optimal α, used in449

Eq. (10) and Tab. 1, is highly correlated with the450

distance between class features. This tendency sug-451

gests that αeval based on the distance between class452

features can effectively represent transfer difficulty.453

Moreover, instead of applying a single αeval for454

all classes, we adopt a class-wise approach. This455

is because, within the same domain, target features456

considered as out-of-task should rely more on the457

general knowledge of pre-trained VLMs, whereas458

features closer to the learned classes should lever-459

age more task-specific knowledge. With regard to460

this, we adaptively set αeval by comparing the text461

feature of the evaluation class with the features of462

the learned classes, as illustrated in Fig. 9. Specif-463

ically, we calculate both the average and nearest464

distances between the evaluation class and the C465

learned classes in the following manner:466

d
avg
eval = 1.0− 1

C

∑C
j=1 sim(t′eval, t

′
j),467

dnn
eval = 1.0− min

∀j∈{1,...,C}
sim(t′eval, t

′
j),468

where t′eval and t′j indicate text feature of evalua-469

tion class and learned class j ∈ {1, . . . , C} from470

pre-trained VLMs and sim denotes cosine similar-471

ity. Using these distance metrics, we compute the472

coefficient αeval as follows:473

Table 2: Accuracy comparison on base-to-novel gener-
alization of APEX with previous methods.

Dataset CLIP CLIP
-Adapter

Co
-CoOp MaPLe Pro

-Grad APEX

Average on 11
datasets

Base 69.34 83.23 81.11 82.52 82.55 83.99
Novel 74.22 70.13 70.55 74.24 72.20 76.76
HM 71.70 75.64 75.03 77.86 76.77 80.04

ImageNet
Base 72.43 76.06 76.47 77.02 76.97 77.12
Novel 68.14 68.40 69.60 70.15 67.20 71.10
HM 70.22 72.03 72.87 73.42 71.75 73.99

Caltech101
Base 96.84 98.00 97.70 97.95 97.88 98.18
Novel 94.00 93.66 93.96 94.60 93.57 95.06
HM 95.40 95.78 95.78 96.25 95.68 96.59

OxfordPets
Base 91.17 94.86 95.66 95.80 95.00 95.11
Novel 97.26 94.49 96.32 97.82 97.46 97.27
HM 94.12 94.67 95.99 96.80 96.21 96.18

Stanford Cars
Base 63.37 77.62 72.92 74.69 78.64 80.53
Novel 74.89 68.53 71.98 73.53 70.23 75.08
HM 68.65 72.79 72.45 74.11 74.20 77.71

Flowers102
Base 72.08 96.88 94.82 95.90 94.83 97.47
Novel 77.80 69.20 70.71 72.96 74.70 77.58
HM 74.83 80.73 81.01 82.87 83.57 86.40

Food101
Base 90.10 90.02 90.63 90.46 90.40 89.60
Novel 91.22 89.76 91.13 91.71 90.43 92.06
HM 74.83 89.89 90.88 91.08 90.41 90.81

FGVC Aircraft
Base 27.19 40.14 36.19 37.76 40.77 42.69
Novel 36.29 31.77 26.82 34.67 30.16 35.21
HM 31.09 35.47 30.81 36.15 34.67 38.59

SUN397
Base 69.36 81.72 80.55 81.33 81.19 81.17
Novel 75.35 73.54 75.48 77.75 73.42 78.98
HM 72.23 77.41 77.93 79.50 77.11 80.06

DTD
Base 53.24 81.77 77.34 79.34 76.64 82.45
Novel 59.90 49.02 48.86 56.64 54.23 63.80
HM 56.37 61.29 59.89 66.10 63.52 71.94

EuroSAT
Base 56.48 91.55 87.05 93.00 91.23 92.83
Novel 64.05 61.10 61.27 69.17 68.58 79.89
HM 60.03 73.29 71.92 79.33 78.30 85.88

UCF101
Base 70.53 86.87 82.86 84.43 84.54 86.74
Novel 77.50 71.94 69.92 77.64 74.24 78.37
HM 73.85 78.70 75.84 80.89 79.06 82.34

αeval = exp
(
−β · (davg

eval) · 1(dnn
eval>ϵ)

)
, 474

where β is a scaling factor. The equation indi- 475
cates a preference for pre-adapter features when 476

the text feature distance from learned classes is 477

large, and for trained TA when it is small. The 478

condition of dnn
eval > ϵ, where ϵ is a small value 479

set at 0.05, serves to treat an evaluation class that 480

is very similar to the base class as identical. This 481

adaptive αeval enables flexible use of general and 482

task-specific knowledge. Moreover, since text em- 483

beddings are usually pre-calculated (Radford et al., 484

2021), this adaptive coefficient incurs only a minor 485

computational overhead. 486

Vision Ensemble. Additionally, to further im- 487

prove the performance by leveraging more general 488

knowledge of the pretrained VLMs, we can also 489

employ an ensemble technique for the visual en- 490

coder that combines the visual feature of the pre- 491

trained VLM (z′) with the task-adapted VLMs (z) 492

as follows: 493
z = ᾱ · z′ + (1− ᾱ) · z, 494

ᾱ, the mean value of αeval, is used for image en- 495

semble since class-specific αeval cannot be applied 496

at the image level. 497
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Table 3: Comparison of accuracy on cross-dataset of
APEX with previous methods.

Dataset C-Adapter CoCoOp MaPLe ProGrad APEX

Source ImageNet 70.12 71.46 70.58 71.73 72.00

Target

Caltech101 92.94 93.24 93.46 93.30 94.46
OxfordPets 86.80 90.38 90.28 89.95 90.06
Cars 64.22 64.08 65.22 65.25 65.46
Flower102 69.06 70.50 71.80 69.34 71.58
Food101 85.20 85.64 86.24 86.22 86.44
Aircraft 24.24 21.58 23.62 21.22 24.44
SUN397 64.36 66.30 67.32 65.32 67.20
DTD 43.44 43.68 45.04 42.19 45.70
EuroSAT 47.66 45.48 46.24 45.33 47.58
UCF101 65.52 67.42 68.26 67.62 68.80

Average 64.34 64.83 65.75 64.57 66.16

Table 4: Comparison of accuracy on domain generaliza-
tion of APEX with previous methods.

Source Target

ImageNet -V2 -S -A -R Avg.

C-Adapter 70.12 61.78 46.70 48.56 74.00 57.76
CoCoOp 71.46 64.44 48.58 50.20 75.64 59.72
MaPLe 70.58 63.95 48.78 50.53 76.78 59.90
ProGrad 71.73 64.54 48.59 50.38 75.87 59.85

APEX 72.00 64.70 48.48 50.68 76.76 60.16

5 Experiments498

We describe our experimental setup and results499

for verifying superiority of our method. Additional500

experimental results are described in Appendix C.501

5.1 Experimental Setup502

We evaluate APEX on the three most commonly503

used transfer learning tasks: base-to-novel general-504

ization, cross-dataset evaluation, and domain gen-505

eralization. For all the few-shot experiments except506

domain generalization, we follow CoCoOp (Zhou507

et al., 2022a) which uses 11 image recognition508

datasets. For the domain generalization, we use509

ImageNet (Deng et al., 2009) as a source dataset510

and use wide range of variants of ImageNet. We511

use multiple baselines for comparison with our512

methods in experiments. These include the stan-513

dard zero-shot CLIP (Radford et al., 2021), CLIP-514

Adapter (Gao et al., 2023), CoCoOp (Zhou et al.,515

2022a) and MaPLe (khattak et al., 2023). We also516

consider ProGrad (Zhu et al., 2023a), which uses517

gradient alignment for prompt learning. We use the518

average of 20 seeds to determine the final value for519

base-to-novel and the average of 5 seeds for cross-520

evaluation and domain-generalization. More exper-521

imental details can be found in the Appendix A.522

5.2 Main Results523

Base-to-Novel Generalization. In this scenario,524

the datasets are evenly divided into base and novel525

categories. The model is trained on the base classes 526

using 16 shots and is subsequently tested on both 527

the base and novel classes. As indicated in Ta- 528

ble 2, APEX consistently outperforms the best of 529

the previous methods in average accuracy across 530

all datasets, with a margin of 1∼6%. In particular, 531

our method exhibits superior performance in novel 532

classes on all datasets, demonstrating APEX’s en- 533

hanced generalizability. The exceptions are Oxford 534

Pets and FGVC Aircraft, where the performance 535

is already exceptionally high and low, respectively. 536

This improvement is especially notable in domains 537

with high RTD, such as EuroSAT (+15.84%) and 538

DTD (+3.90%). Additionally, the APEX method 539

also shows superior performance in base categories, 540

highlighting the high adaptability of our approach. 541

Cross-dataset Evaluation. We train the model 542

to generalize across different domains by using a 543

cross-dataset evaluation task. Specifically, we first 544

train the model on the ImageNet dataset and then 545

transfer it to the 10 other datasets. Table 3 sum- 546

marizes that APEX shows the best overall perfor- 547

mance compared to existing baselines. Our pro- 548

posed method achieves the best performance on 549

7 out of 11 tasks. This demonstrates APEX’s ef- 550

fectiveness, especially in difficult situations where 551

both the task and domain are unseen. 552

Domain Generalization. We assess the capabil- 553

ity of APEX to generalize to out-of-distribution data 554

by training on the source dataset, ImageNet, and 555

subsequently testing on various modified versions 556

of ImageNet. Our method does not achieve a large 557

margin of superiority since our adaptive ensemble 558

is primarily designed to enhance performance in 559

novel classes. Nonetheless, our method still sur- 560

passes all baseline models on average accuracy in 561

this domain generalization task. 562

6 Conclusion 563

We propose APEX to address the challenges of con- 564

ventional prompt and adapter-style tuning methods 565

for ETL for VLMs. Our approach incorporates two 566

key components based on our observations: (1) us- 567

ing VPT and TA for exploiting the property of each 568

modality and (2) adaptive ensemble coefficient in 569

the inference stage. We empirically demonstrate 570

the superior performance of APEX, consistently 571

achieving a better performance than the previous 572

methods. 573
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Limitation574

We focus on two types of ETL, prompt tuning and575

adapter-style tuning, for VLMs for vision-language576

understanding tasks such as CLIP, EVA-CLIP, and577

CoCA-CLIP. While our extensive analyses provide578

valuable insights, our paper primarily centers on579

understanding tasks, with opportunities for further580

exploration in vision-language generation tasks581

such as BLIP (Li et al., 2022a) and LLaVA (Liu582

et al., 2024). Additionally, though we focus on two583

main representative ETL methods, further analy-584

ses could be conducted on other ETL methods like585

LoRA (Hu et al., 2022) and IA3 (Liu et al., 2022).586

We leave these aspects for future work but wish587

to emphasize the comprehensive exploration pro-588

vided by our study on the two representative ETL589

methods for VLMs.590
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A Implementation Details831

As explained in Section 5, we utilize the ViT-B/16832

model as the CLIP image encoder and a standard833

GPT2-like structure with an End Of Text (EOT) to-834

ken as the classification token for the text encoder.835

To implement APEX, we use visual prompts for836

all layers, setting JV = 12 for base-to-novel gen-837

eralization and JV = 3 for cross-evaluation and838

domain generalization. The text prompt is applied839

only to the shallow prompt, and therefore, JV = 1840

for all experiments. The number of prompts for841

each layer, bV and bT , is set to 2. The initial text842

prompt is fixed as “a photo of a", and the visual843

prompts are initialized with a zero-mean Gaussian844

distribution with a standard deviation of 0.02. The845

matrix term of the text adapter is initialized with846

an identity matrix, and the bias vector is initialized847

with a zero vector.848

The datasets cover multiple recognition tasks849

including ImageNet (Deng et al., 2009) and Cal-850

tech101 (Fei-Fei et al., 2004) which consists851

of generic objects; OxfordPets (Parkhi et al.,852

2012), Stanford Cars (Krause et al., 2013),853

Flowers102 (Nilsback and Zisserman, 2008),854

Food101 (Bossard et al., 2014), and FGVC Air-855

craft (Maji et al., 2013) for fine-grained classifica-856

tion, SUN397 (Xiao et al., 2010) for scene recog-857

nition, UCF101 (Soomro et al., 2012) for action858

recognition, DTD (Cimpoi et al., 2013) for texture859

classification, and EuroSAT (Helber et al., 2017)860

which consists of satellite images. For the domain861

generalization benchmark, we use ImageNet as a862

source dataset and use ImageNet-A (Hendrycks863

et al., 2019), ImageNet-R (Hendrycks et al., 2020),864

ImageNet-Sketch (Wang et al., 2019), and Ima-865

geNetV2 (Recht et al., 2019) as out-of-domain866

datasets.867

For training, we use the Adadelta opti-868

mizer (Zeiler, 2012) with a learning rate of 0.15869

and a cosine learning rate scheduler. The batch size870

is set to 16, and we train for 15 epochs, except for871

ImageNet, where we train for 5 epochs. As in pre-872

vious works, we apply augmentation techniques of873

random cropping and flipping. The scaling factor874

β, used for calculating αeval, is set to 4.0. In the875

SGD experiments presented in Appendix C, we876

adopt a batch size of 16 and epochs of 30 and 5877

for ImageNet, along with a learning rate of 0.0015878

and a cosine learning rate scheduler. The augmen-879

tation and scaling factors are set the same as in the880

Adadelta experiments.881

For reproducing baselines, we use the Adadelta 882

optimizer with a learning rate of 0.25, selected after 883

a grid search with values [0.1, 0.15, 0.2, 0.25, 0.3]. 884

The rest of the settings remain the same as in the 885

original papers. Results with their original con- 886

figurations using SGD optimizer are listed in Ap- 887

pendix C. All our experiments were conducted on 888

a single NVIDIA RTX 3090. 889
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B Notation and Algorithm890

In this section, we present the notation and algo-891

rithm of our method, APEX. The notation is de-892

tailed in Table 5. The training algorithm for APEX893

is outlined in Algorithm 1, and the adaptive infer-894

ence algorithm is presented in Algorithm 2.

Table 5: The notation table for Section 3

Notation Description

The notation for VLMs

V The visual encoder of VLMs
T The text encoder of VLMs
LV The number of layers of visual encoder
LT The number of layers of text encoder
Vℓ The ℓth Transformer layer of visual encoder
Tℓ The ℓth Transformer layer of text encoder
Eℓ The patch embeddings of ℓth layer of visual encoder
Wℓ The word embeddings of ℓth layer of text encoder

The inputs for VLMs or prompt tuning

JV The number of layers of VPT
JT The number of layers of TPT
bV The context length of VPT
bT The context length of TPT
P̂ℓ The visual prompt of ℓth layer of visual encoder
Pℓ The text prompt of ℓth layer of text encoder

The outputs for VLMs

cℓ The embedded features of ℓth layer for [CLS] token
ti The text features of ith class
z The visual features from visual encoder

The outputs for VLMs related to APEX

z′
The visual features from visual encoder of
pretrained VLMs for adaptive ensemble

t′
The text features from text encoder of
pretrained VLMs for adaptive ensemble

t̃
The pre-adapter text features of text encoder of
adapted VLMs

895

Algorithm 1 Pseudo-Algorithm for Training of
APEX
Require: Pretrained visual encoder V , Pretrained

text encoder T , Learnable vision prompts P̂,
Shallow text prompts P0, Adapter parameter-
ized by matrix A and b

Require: Training Samples S , Initial Text Embed-
dings W0

1: Randomly initialize ϕ = [P̂,A,b]
2: while not done do
3: Sample Batch B = (I, ygt)
4: E0 = PathEmbedding(I)
5: for i = 1, . . . , JV do
6: [ci,Ei, ]← Vi([ci−1,Ei−1, P̂i−1])
7: end for
8: for i = JV + 1, . . . , LV do
9: [ci,Ei, P̂i]← Vi([ci−1,Ei−1, P̂i−1])

10: end for
11: z← ImageProj(cLV )
12: t̃ = T ([W0,P0])
13: t = A⊺t̃+ b
14: /* Calculate the probability for class i */
15: Pr(y = i|z, t) = exp(sim(z,ti)/τ)∑C

j=1 exp(sim(z,tj)/τ)

16: ℓCE(z, t, ygt) = log Pr(y = ygt|z, t)
17: ϕ = ϕ− γ∇ϕℓCE(z, t, ygt;ϕ)
18: end while

C Additional Experiments 896

C.1 Ablation on Adaptive Ensemble 897

Table 6 illustrates the complete results of the com- 898

ponent analysis of the adaptive ensemble. We only 899

display results for novel classes, as these ensem- 900

ble components do not affect the results for base 901

classes, given that αeval is set to 1.0 for seen 902

classes. AThe ensemble of the text encoder is cru- 903

cial as its removal leads to a significant perfor- 904

mance drop in domains with low RTD, such as 905

Stanford Cars and SUN397. This demonstrates that 906

moderating TA with an adaptive ensemble helps 907

to leverage both task-specific knowledge and gen- 908

eral VLMs knowledge effectively. The ensemble 909

on the visual encoder offers marginal improvement, 910

but combining both still yields the most superior 911

performance on average. 912

C.2 Results on Low-Rank Experiments 913

Figure 10 presents detailed results for each dataset 914

using low-rank methods. The result demonstrates 915

that our linear adapter provides better overall re- 916

sults, particularly for novel classes across most 917
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Figure 10: Results for the performance of the low-rank approach with different ranks.

Table 6: Comparison of the effect of adaptive ensemble
technique between text and visual encoder by RTD.

Visual ✗ ✗ ✓ ✓(APEX)
Text ✗ ✓ ✗ ✓(APEX)

ImageNet 69.08 70.09 69.22 71.10
Caltech101 94.91 94.80 95.01 95.06
OxfordPets 97.24 97.39 97.07 97.27
Cars 68.40 74.46 68.32 75.08
Flower102 73.71 76.40 74.43 77.58
Food101 90.70 91.83 90.82 92.06
Aircraft 33.97 33.89 33.87 35.21
SUN397 74.52 78.98 74.82 78.98
DTD 63.05 63.05 63.82 63.80
EuroSAT 77.73 79.04 78.25 79.89
UCF101 77.39 78.17 77.55 78.37

Average 74.61 76.19 74.83 76.76

datasets. This parameter-efficient approach exhibits918

relative robustness in performance, even outper-919

forming MaPLe (khattak et al., 2023) for rank920

64 (+0.32%) on average. These encouraging re-921

sults have led us to adopt the linear adapter for the922

text encoder. Furthermore, we observe that initial-923

izing the adapter with an identity matrix improves 924

performance, a strategy that can be explored more 925

thoroughly in future work. 926

C.3 Full Results on Manual Text Prompts 927

Table 7 presents the detailed results for each dataset 928

using manual prompts, which are summarized in 929

Table 13. The manual prompts, designed for each 930

dataset as described in (Gao et al., 2023; Zhang 931

et al., 2022), appear to underperform compared 932

to other methods. This suggests that they may 933

not be the optimal choice for every dataset, and 934

that designing these prompts manually is challeng- 935

ing. In contrast, just ensembling multiple manual 936

prompts (Radford et al., 2021) works significantly 937

better, indicating that optimal prompts may exist 938

among these manual options. This finding also im- 939

plies that utilizing improved manual prompts can 940

substantially enhance performance, potentially re- 941

placing shallow prompts. Shallow prompt tuning 942

for the text input yields the best results, demonstrat- 943
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Table 7: Full results on each dataset of Table 13

Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

Opt. manual prompt (Zhang et al., 2022)
Base 84.15 76.64 98.15 95.05 80.75 97.45 89.35 42.92 81.24 83.02 93.93 87.10
Novel 75.24 69.00 94.33 97.04 75.32 77.66 91.28 36.42 77.60 57.59 71.74 79.70
HM 79.17 72.62 96.20 96.03 77.94 86.44 90.30 39.40 79.38 68.01 81.35 83.24

Ens. (60 manual prompts) (Radford et al., 2021)
Base 84.02 76.48 98.15 95.09 80.70 97.37 89.56 42.56 81.46 82.62 93.01 87.18
Novel 76.17 70.24 93.93 96.44 75.88 77.16 91.20 35.64 78.36 59.45 80.35 79.21
HM 79.70 73.23 95.99 95.76 78.22 86.09 90.37 38.79 79.88 69.15 86.22 83.00

Shallow prompt (APEX)
Base 83.99 77.12 98.18 95.11 80.53 97.47 89.60 42.69 81.17 82.45 92.83 86.74
Novel 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
HM 80.04 73.99 96.59 96.18 77.71 86.40 90.81 38.59 80.06 71.94 85.88 82.34

ing its effectiveness and flexibility. Therefore, we944

adopt this approach for our main results.945

C.4 Baseline Results with SGD946

Table 8 displays the reproduced results using the947

SGD optimizer, in contrast to the Adadelta opti-948

mizer presented in Table 2. As observed, the results949

with SGD are slightly lower compared to those950

with Adadelta. This difference is likely due to the951

adaptive learning rate of Adadelta, which facili-952

tates training in this unstable few-shot scenario.953

Nonetheless, even with the SGD optimizer, our954

method significantly outperforms all baselines, par-955

ticularly in domains with high RTD, maintaining956

the same trend observed with the Adadelta opti-957

mizer.958

C.5 Comparison with More Baselines959

Due to the page limit, we present a comparison960

with additional baselines for base-to-novel gener-961

alization experiments in Table 9, which are not962

included in Table 2. These include training with963

VPT, TPT, and a combination of VPT and TPT.964

We also compare our method with the recently pro-965

posed PromptSRC (Khattak et al., 2023), which966

employs various regularization techniques such as967

self-consistency loss and Gaussian averaging. Our968

method outperforms all these baselines in terms969

of harmonic mean and demonstrates particularly970

high performance for novel classes. Compared to971

PromptSRC, our method significantly outperforms972

in novel classes of high RTD domains, such as Eu-973

roSAT (+8.39%) and DTD (+4.22%), while main-974

taining comparable performance in other domains.975

Notably, our method achieves these results with976

a simpler training approach, without the need for977

numerous manual prompts for SRC loss, and with978

fewer hyperparameters, unlike the many required979

by PromptSRC’s regularization techniques. Addi-980

tionally, our method surpasses the simpler base-981

lines of naive training using VPT, TPT, and their982

combination, highlighting the effectiveness of our 983

configuration design and adaptive ensemble. 984

C.6 Ablation on Configuration 985

To further analyze the optimal configuration in com- 986

bination with an adaptive ensemble, we conduct 987

additional ablation studies on configurations. The 988

results, present in Table 10, show that utilizing VPT 989

and TA yields the best outcomes, confirming their 990

effectiveness when paired with the adaptive ensem- 991

ble. However, adding TPT to VPT and TA does not 992

enhance performance, especially in high RTD sce- 993

narios, as evidenced by decreased performance in 994

DTD (-4.98%) and EuroSAT (-6.78%) compared to 995

configurations without TPT. While combining TPT 996

with VA demonstrates reasonable performance, it 997

is not as effective as the combination of VPT and 998

TA. This highlights the importance of class separa- 999

bility of visual features achieved through multiple 1000

stacks of prompts. Overall, the configuration of 1001

APEX outperforms the other setups. 1002

C.7 Ablation on β 1003

Table 11 presents the results of an ablation study on 1004

the hyperparameter β, which is used to calculate 1005

αeval. A higher β leads to a lower αeval, indicat- 1006

ing greater reliance on the general knowledge of 1007

VLMs, which is beneficial for domains with low 1008

RTD, and vice versa. As observed, the performance 1009

in domains with low RTD, such as Stanford Cars 1010

and SUN397, tends to improve with a higher β. 1011

However, the optimal performance for difficult do- 1012

mains like Aircraft and DTD is achieved with β 1013

values between 1.0 and 3.0. Not all domains fol- 1014

low this tendency since αeval is calculated on a 1015

class-wise basis, as demonstrated in the case of 1016

EuroSAT. Interestingly, except for the value of 2.0, 1017

our method demonstrates robustness to variations 1018

in β, as it does not significantly affect the aver- 1019

age performance. Overall, setting β to 4.0 yields 1020

the best performance, and therefore, this value has 1021
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Table 8: Comparison of baselines using their own con-
figuration (SGD optimizer) with our method.

Dataset CLIP CLIP
-Adapter

Co
-CoOp MaPLe Pro

-Grad APEX

Average on 11
datasets

Base 69.34 81.81 80.28 81.74 81.78 84.04
Novel 74.22 71.43 72.03 73.89 69.42 75.67
HM 71.70 75.93 75.60 77.30 74.80 79.42

ImageNet
Base 72.43 74.40 75.99 76.81 76.93 76.93
Novel 68.14 68.63 70.39 70.66 69.51 69.61
HM 70.22 71.40 73.08 73.61 73.03 73.09

Caltech101
Base 96.84 97.61 97.64 95.61 95.41 98.18
Novel 94.00 93.72 94.52 94.71 94.05 95.02
HM 95.40 95.63 96.05 96.18 95.90 96.57

OxfordPets
Base 91.17 95.06 95.56 95.61 95.41 95.21
Novel 97.26 95.02 97.52 97.63 90.56 97.74
HM 94.12 95.04 96.53 96.61 92.92 96.46

Stanford Cars
Base 63.37 76.18 70.97 72.49 77.41 80.44
Novel 74.89 69.30 73.44 73.46 70.92 74.76
HM 68.65 72.58 72.18 72.97 74.02 77.50

Flowers102
Base 72.08 96.27 93.88 95.49 95.34 97.73
Novel 77.80 69.92 72.56 72.55 76.84 76.67
HM 74.83 81.01 81.85 82.45 85.10 85.93

Food101
Base 90.10 90.32 90.54 90.50 90.17 89.46
Novel 91.22 90.10 91.15 91.71 85.53 91.94
HM 74.83 90.21 90.84 91.10 87.79 90.68

FGVC Aircraft
Base 27.19 38.87 33.64 36.33 39.01 42.96
Novel 36.29 31.95 26.49 32.64 27.77 34.72
HM 31.09 35.07 29.64 34.39 32.44 38.40

SUN397
Base 69.36 76.50 79.86 80.65 81.35 81.18
Novel 75.35 74.60 76.51 78.33 69.06 77.08
HM 72.23 75.54 78.15 79.47 74.70 79.08

DTD
Base 53.24 80.46 76.58 79.20 77.45 82.19
Novel 59.90 52.79 53.47 55.01 51.63 61.21
HM 56.37 63.75 62.97 64.92 61.96 70.17

EuroSAT
Base 56.48 88.48 86.18 90.38 84.88 93.48
Novel 64.05 67.12 63.04 68.43 56.66 75.88
HM 60.03 76.33 72.82 77.89 67.96 83.77

UCF101
Base 70.53 85.81 82.22 84.02 83.82 86.71
Novel 77.50 72.55 73.22 77.62 71.13 77.77
HM 73.85 78.62 77.46 80.69 76.96 82.00

been selected for the final results.1022

C.8 Ablation on α1023

Table 12 presents the comprehensive results of the1024

ablation study on a fixed α, which is used in Table 11025

and Eq. (10). The same α is applied uniformly1026

across all classes and is set as a fixed value for1027

both the visual and text encoders. This is done1028

to determine the correlation between α and the1029

domain, along with its transfer difficulty. Similar1030

to Section C.7, domains with high RTD, such as1031

EuroSAT, require a higher α value to perform well1032

compared to domains with low RTD, like Stanford1033

Cars. These findings support the necessity for an1034

adaptive ensemble that is closely aligned with RTD.1035

C.9 Shallow Prompt1036

Although we observe that TPT leads to overfit-1037

ting, we employ one-layer learnable text prompts1038

to enhance real-world practicality. Table 13 com-1039

Table 9: Extended baselines not presented in Table 2
for comparison between base-to-novel experiments with
our method.

Dataset CLIP VPT TPT VPT
+ TPT

Prompt
-SRC APEX

Average on 11
datasets

Base 69.34 81.01 82.07 82.93 84.36 83.99
Novel 74.22 73.11 73.90 74.15 75.37 76.76
HM 71.70 76.55 77.51 78.00 79.39 80.04

ImageNet
Base 72.43 75.94 76.81 77.18 77.90 77.12
Novel 68.14 68.74 69.45 69.86 70.26 71.10
HM 70.22 72.16 72.94 73.34 73.88 73.99

Caltech101
Base 96.84 97.79 97.84 97.98 97.81 98.18
Novel 94.00 93.65 94.29 94.38 93.88 95.06
HM 95.40 95.68 96.03 96.15 95.80 96.59

OxfordPets
Base 91.17 95.11 95.48 95.78 95.69 95.11
Novel 97.26 96.57 97.52 97.65 97.42 97.27
HM 94.12 95.83 96.49 96.71 96.55 96.18

Stanford Cars
Base 63.37 70.72 75.18 75.75 80.16 80.53
Novel 74.89 72.78 72.73 73.02 74.52 75.08
HM 68.65 71.74 73.93 74.36 77.24 77.71

Flowers102
Base 72.08 91.60 96.45 96.26 96.96 97.47
Novel 77.80 69.62 74.69 72.62 76.73 77.58
HM 74.83 79.11 84.19 82.79 85.67 86.40

Food101
Base 90.10 90.17 90.30 90.36 90.60 89.60
Novel 91.22 90.94 91.42 91.58 91.38 92.06
HM 90.66 90.55 90.86 90.97 90.99 90.81

FGVC Aircraft
Base 27.19 34.70 37.86 38.76 43.67 42.69
Novel 36.29 33.53 34.17 35.08 36.42 35.21
HM 31.09 34.10 35.92 36.83 39.72 38.59

SUN397
Base 69.36 79.09 81.70 81.57 82.94 81.17
Novel 75.35 76.85 77.62 77.92 78.37 78.98
HM 72.23 77.95 79.61 79.70 80.59 80.06

DTD
Base 53.24 78.67 79.81 80.81 82.21 82.45
Novel 59.90 53.78 55.32 55.64 59.58 63.80
HM 56.37 63.89 65.35 65.90 69.09 71.94

EuroSAT
Base 56.48 94.17 86.98 92.91 93.06 92.83
Novel 64.05 73.26 69.16 71.19 71.60 79.89
HM 60.03 82.41 77.05 80.61 80.93 85.88

UCF101
Base 70.53 83.10 84.38 84.92 87.05 86.74
Novel 77.50 74.52 76.54 76.75 78.96 78.37
HM 73.85 78.58 80.27 80.63 82.81 82.34

pares the performance of manually optimized 1040

prompts (Gao et al., 2023; Zhang et al., 2022), the 1041

ensemble of manual prompts (Radford et al., 2021), 1042

and shallow prompts. The shallow prompt method 1043

outperforms manual prompts, proving its effective- 1044

ness. However, manual prompts, particularly when 1045

ensembled, also show comparable performance to 1046

shallow prompts, suggesting that well-designed 1047

manual prompts can be an effective alternative. 1048

C.10 Results on Different VLMs 1049

We validate our approach using different back- 1050

bones: EVA-CLIP (Sun et al., 2023) and CoCa (Yu 1051

et al., 2022). Table 14 displays the results us- 1052

ing these two backbones, where we compare our 1053

method with both zero-shot and naive prompt tun- 1054

ing approaches that combine VPT and TPT. As 1055

observed, APEX consistently outperforms the aver- 1056
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Table 10: Results for additional ablation study on configurations when combined with adaptive ensemble.

Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

TPT + VA
Base 83.51 76.43 98.00 94.76 79.68 97.28 89.24 42.27 80.96 81.49 92.27 86.24
Novel 75.88 69.43 94.49 97.21 75.77 77.50 91.50 34.85 78.20 62.05 76.77 76.90
HM 79.32 72.76 96.21 95.97 77.68 86.27 90.36 38.20 79.56 70.45 83.81 81.30

VPT + TA + TPT
Base 83.56 76.93 98.03 94.77 79.45 97.51 89.26 42.14 81.02 81.72 92.11 86.21
Novel 75.09 71.30 94.72 97.76 72.98 76.70 91.94 33.80 78.08 58.82 73.11 76.80
HM 78.85 74.01 96.35 96.24 76.08 85.86 90.58 37.51 79.52 68.40 81.52 81.23

VPT + TA (APEX)
Base 83.99 77.12 98.18 95.11 80.53 97.47 89.60 42.69 81.17 82.45 92.83 86.74
Novel 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
HM 80.04 73.99 96.59 96.18 77.71 86.40 90.81 38.59 80.06 71.94 85.88 82.34

Table 11: Results for additional ablation study on scaling factor β. Our proposed methods shows robust performance
on the selection of β.

β
Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

1.0 75.97 70.62 95.15 97.43 72.15 75.95 91.38 35.07 77.02 63.90 78.36 78.66
2.0 76.51 71.06 95.14 97.44 73.95 77.06 91.70 35.35 78.12 63.99 78.89 78.92
3.0 76.75 71.18 95.15 97.37 74.69 77.61 91.92 35.46 78.66 64.17 79.35 78.64
4.0 (APEX) 76.76 71.10 95.06 97.27 75.08 77.58 92.06 35.21 78.98 63.80 79.89 78.37
5.0 76.72 71.00 95.16 97.18 75.10 77.79 91.96 35.05 78.96 63.77 79.88 78.07
6.0 76.66 70.96 95.16 97.15 75.17 77.80 91.98 34.84 78.92 63.54 80.01 77.75

age results in terms of harmonic mean, regardless1057

of the model used. Specifically, with EVA-CLIP,1058

our method demonstrates superior performance for1059

both base and novel classes. In the case of the1060

most challenging domain, EuroSAT, our method1061

significantly enhances performance compared to1062

the zero-shot accuracy for novel classes (+18.46%).1063

A similar improvement of 8.85% on EuroSAT is1064

observed with CoCa. However, in terms of novel1065

classes, the average performance of zero-shot tun-1066

ing is superior for CoCa. This could be attributed1067

to the larger patch size of this backbone, which1068

might increase the risk of overfitting on the vision1069

side when setting two learnable prompts. Nonethe-1070

less, our method shows comparable performance1071

on novel classes to zero-shot CoCa, with a signif-1072

icant improvement in base classes. This results in1073

superior performance in harmonic mean, demon-1074

strating our method’s effectiveness across various1075

VLMs.1076

D Details about Observation1077

D.1 Relative Transfer Difficulty1078

Here, we report the value of RTD which is defined1079

in Sectionn 3 for 11 transfer datasets. We compute1080

the RTD based on the CLIP-B/16 model.1081

D.2 Inter- and Intra-class Cosine Similarity1082

In addition to presenting relative values in Figure 5,1083

we also report the absolute values for both inter-1084

and intra-class similarities. We observe a signifi- 1085

cant correlation between the RTD and the ratio of 1086

intra- to inter-class similarity. 1087

D.3 Results on 6 datasets 1088
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Figure 11: Extended results for Figure 2. All results in
different datasets show similar trends that indicate VPT
yields a smaller discrepancy in performance between
base and novel categories, suggesting a reduced risk of
overfitting compared to TPT.

We also present extended results in Figure 11, 1089

which include data from three additional datasets: 1090

ImageNet, SUN397, and DTD. For ImageNet and 1091

SUN397, which already exhibit high class separa- 1092

bility, we note that all methods—TPT, VPT, and 1093

their combination—yield similar performance dif- 1094

ferences. However, the results for DTD indicate 1095
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Table 12: Extended results for ablation study on hyperparamter α related to Table 1.

α
Average on
11 datasets ImageNet Caltech101 OxfordPets Stanford

Cars Flowers102 Food101 FGVC
Aircraft SUN397 DTD EuroSAT UCF101

0.0 75.38 70.80 95.13 97.03 75.19 77.87 91.94 33.57 78.32 61.68 70.90 76.80
0.1 75.86 71.06 95.19 97.19 75.17 77.67 92.10 34.34 78.82 62.68 72.74 77.52
0.2 76.10 71.20 95.14 97.29 75.04 77.52 91.96 34.75 78.80 63.18 74.10 78.08
0.3 76.27 71.20 95.09 97.39 74.67 77.33 91.92 35.16 78.90 63.74 75.08 78.54
0.4 76.34 71.18 95.14 97.47 74.22 76.96 91.88 35.34 78.68 64.16 75.87 78.84
0.5 76.29 71.04 95.15 97.50 73.59 76.56 91.78 35.45 78.40 64.32 76.41 79.01
0.6 76.13 70.82 95.14 97.47 72.74 76.13 91.64 35.33 78.00 64.30 76.95 78.96
0.7 75.88 70.46 95.17 97.39 71.82 75.66 91.44 35.25 77.38 64.23 77.10 78.79
0.8 75.54 70.06 95.07 97.36 70.85 75.09 91.22 34.93 76.56 64.04 77.33 78.39
0.9 75.10 69.62 95.01 97.31 69.63 74.49 90.98 34.53 75.68 63.53 77.44 77.92
1.0 74.61 69.08 94.91 97.24 68.40 73.71 90.70 33.97 74.52 63.05 77.73 77.39

Table 13: Comparison of the accuracy of the base, novel,
and their harmonic means among the various prompt
types on text encoder.

Prompt Base Acc. Novel Acc. HM

Opt. manual prompt (Zhang et al., 2022) 84.15 75.24 79.17
Ens. (60 manual prompts (Radford et al., 2021)) 84.02 76.17 79.70
Shallow prompt 83.99 76.76 80.04

a tendency for TPT to overfit to the base classes.1096

This observation is consistent with the findings pre-1097

sented in Figure 2.1098

E More Related Work1099

Vision-Language Models VLMs overcome the1100

limitations of vision-only supervised learning with1101

their robustness and flexibility in zero-shot infer-1102

ence through natural language supervision. CLIP1103

(Radford et al., 2021) facilitates this by adopting1104

contrastive learning with a large-scale dataset of1105

400 million images. ALIGN(Jia et al., 2021) fur-1106

ther improves upon this by scaling up the dataset1107

with more noisy image-text pairs. FILIP (Yao et al.,1108

2022) enables finer-grained alignment between two1109

modalities and GLIP (Li et al., 2022b) improves1110

visual grounding and object detection using VLMs.1111

CoCa (Yu et al., 2022) employs both captioning and1112

contrastive losses, thereby integrating the model1113

capabilities of contrastive approaches like CLIP1114

with those of generative methods. CyCLIP (Goel1115

et al., 2022) employs cyclic loss to ensure geo-1116

metric consistency, while FLIP (Li et al., 2023)1117

enhances VLMs through masking techniques. EVA-1118

CLIP (Sun et al., 2023) implements various training1119

techniques, such as different attention mechanisms1120

and optimizers, to further improve CLIP’s perfor-1121

mance. Additionally, SigLIP (Zhai et al., 2023) re-1122

places the softmax loss with sigmoid loss, enabling1123

more efficient pretraining with smaller batch sizes.1124

There is also a line of research focused on 1125

encoder-decoder or decoder-only architectures. 1126

BLIP (Li et al., 2022a) facilitates both encoding 1127

and decoding by training with three objective func- 1128

tions, utilizing synthetic data and data filtering. 1129

ALBEF (Li et al., 2021) employs a strategy of 1130

alignment before applying cross-attention, com- 1131

bined with a momentum update. Flamingo (Alayrac 1132

et al., 2022) enables few-shot inference in vision- 1133

language tasks through architectural innovations, 1134

using vision-language prompts. 1135

Prompt Tuning Efficient tuning using soft 1136

prompts, originating in the domain of natural 1137

language processing, has gained a lot of atten- 1138

tion (Lester et al., 2021). This approach has also 1139

been applied in the vision-language domain to 1140

adapt to downstream tasks. CoOp (Zhou et al., 1141

2022b) was the first to apply learnable prompts 1142

for CLIP model, replacing manual prompts for 1143

each domain. ProDA (Lu et al., 2022) observes 1144

that these text prompts can be viewed as a distri- 1145

bution and proposes prompt distributional learning 1146

for higher quality results. CoCoOp (Zhou et al., 1147

2022a) conditions text prompts on images to pre- 1148

vent overfitting to base classes. KgCoOp (Yao et al., 1149

2023) regularizes by minimizing the discrepancy 1150

between learned and manual prompts. UPT (Zang 1151

et al., 2022) examines both VPT (Jia et al., 2022) 1152

and text prompts, proposing a unified approach to 1153

generate visual and textual prompts from the same 1154

architecture. MaPLe (khattak et al., 2023) employs 1155

the alignment of visual and text prompts for im- 1156

provement with deep prompts, while DCP (Liu 1157

et al., 2023) uses an attention mechanism for this 1158

alignment. There is also a line of research aimed 1159

at preventing the forgetting of general knowledge. 1160

ProGrad (Zhu et al., 2023a) aligns gradient direc- 1161
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Table 14: Accuracy on base-to-novel generalization of
APEX on EVA-CLIP (Sun et al., 2023) and CoCa (Yu
et al., 2022).

Model EVA-CLIP-B/16 CoCa-B/32

Dataset ZS TPT
+VPT APEX ZS TPT

+VPT APEX

Average on 11
datasets

Base 75.28 85.91 85.93 70.85 82.39 82.09
Novel 77.68 75.24 79.34 74.29 71.05 73.98
HM 76.46 80.22 82.50 72.53 76.30 77.87

ImageNet
Base 79.20 81.78 81.26 67.10 69.50 69.46
Novel 75.60 72.28 75.83 66.60 62.33 66.46
HM 77.36 76.74 78.45 66.85 65.72 67.90

Caltech101
Base 98.60 98.87 98.82 96.70 97.86 98.04
Novel 97.30 95.05 97.22 96.30 94.12 95.98
HM 97.95 96.92 98.01 96.50 95.95 97.00

OxfordPets
Base 94.90 95.52 95.27 92.30 91.83 92.44
Novel 98.10 98.34 97.97 96.20 95.07 93.54
HM 96.47 96.91 96.60 94.21 93.42 92.99

Stanford Cars
Base 76.90 85.76 86.16 84.00 88.94 88.87
Novel 87.10 82.49 86.75 93.00 90.73 92.57
HM 81.68 84.09 86.45 88.27 89.83 90.68

Flowers102
Base 74.20 99.41 99.50 69.10 96.33 96.83
Novel 81.10 77.32 79.94 74.70 65.61 70.09
HM 77.50 86.98 88.65 71.79 78.06 81.32

Food101
Base 90.30 90.34 90.24 81.20 79.87 80.80
Novel 91.90 90.11 91.76 82.90 79.30 82.66
HM 91.09 90.22 90.99 82.04 79.58 81.72

FGVC Aircraft
Base 28.70 45.52 46.01 21.40 40.71 39.81
Novel 32.50 26.75 32.12 25.50 22.04 25.22
HM 30.48 33.70 37.83 23.27 28.60 30.88

SUN397
Base 76.70 83.10 82.44 73.70 78.68 77.68
Novel 80.80 76.76 80.54 77.40 73.50 77.12
HM 78.70 79.80 81.48 75.50 76.00 77.40

DTD
Base 62.80 83.78 84.15 62.60 83.04 83.25
Novel 63.90 61.32 64.39 61.10 58.46 61.14
HM 63.35 70.81 72.96 61.84 68.62 70.50

EuroSAT
Base 72.30 95.32 94.81 62.80 96.42 93.87
Novel 68.30 73.74 86.76 71.50 73.90 80.35
HM 70.24 83.15 90.61 66.87 83.67 86.59

UCF101
Base 73.50 85.58 86.58 68.50 83.13 82.01
Novel 77.90 73.43 79.49 72.00 66.54 69.69
HM 75.64 79.04 82.88 70.21 73.92 74.76

tions to preserve general knowledge, and Prompt-1162

SRC (Khattak et al., 2023) utilizes multiple regular-1163

ization losses with Gaussian aggregation of model1164

weights to prevent forgetting.1165

Adapter-style Tuning Adapter-style tuning has1166

been extensively explored as an alternative to1167

prompt tuning. CLIP-Adapter (Gao et al., 2023)1168

was the first proposed method in this area, utilizing1169

a two-layer MLP structure with ReLU nonlinearity1170

in between. Additionally, it incorporates a residual1171

connection to preserve general knowledge. For im-1172

proved efficiency, Tip-Adapter (Zhang et al., 2022)1173

employs a cache-based model to save the features1174

and labels of few-shot samples, using them to pre-1175

dict test outcomes without further training. This1176

Table 15: The relative transfer difficulty values for all
datasets by using Definition 1.

Dataset ImageNet Caltech Pets Cars

RTD 1.4× 10−3 1.08× 10−2 3.01× 10−2 7.7× 10−3

Dataset Flowers Food Aircraft SUN

RTD 1.52× 10−2 1.15× 10−2 4.07× 10−2 3.8× 10−3

Dataset DTD EuroSAT UCF

RTD 4.95× 10−3 1.84× 10−1 1.42× 10−2

Table 16: The averaged cosine similarity value for inter-
and intra-class and their relative ratio.

Dataset ImageNet Caltech Pets Cars Flowers Food

Inter 0.551 0.672 0.844 0.564 0.749 0.754
Intra 0.925 0.898 0.910 0.829 0.924 0.853

Ratio 1.680 1.336 1.078 1.470 1.234 1.131

Dataset Aircraft SUN DTD EuroSAT UCF

Inter 0.746 0.487 0.803 0.896 0.673
Intra 0.858 0.780 0.823 0.934 0.866

Ratio 1.150 1.602 1.025 1.042 1.287

approach also facilitates better fine-tuning by us- 1177

ing the cache as initial training points for further 1178

refinement. Differently, Task Residual (Yu et al., 1179

2023) adopts a unique strategy by simply adding a 1180

residual or bias term vector for each class, reducing 1181

reliance on pre-trained features. Zhu et al. (2023b) 1182

enhances cache-based models through prior refine- 1183

ment, which involves selecting important features 1184

for the cache-based model. 1185
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Algorithm 2 Pseudo-Algorithm for Adaptive Infer-
ence of APEX
Require: Pretrained visual encoder V , Pretrained

text encoder T , Learned vision prompts P̂,
Learned shallow text prompts P0,Learned
adapter parameterized by matrix A and b, The
C classes for base category {1, . . . , C}, The
Ceval candidate classes for evaluation {C +
1, . . . , C + Ceval},

Require: Initial Trained Text Embeddings
{W0,j}Cj=1, Initial Evaluation Text Embed-
ding {W0,eval}C+Ceval

eval=C+1, Evaluation Image
I

1: {t′j}Cj=1 = {T (W0,j)}Cj=1

2: for eval = C + 1, . . . , C + Ceval do
3: t′eval = T (W0,eval)
4: t̃eval = T ([W0,eval,P0])

5: d
avg
eval = 1.0− 1

C

∑C
j=1 sim(t′eval, t

′
j)

6: dnn
eval = 1.0−min∀j∈{1,...,C} sim(t′eval, t

′
j)

7: αeval = exp
(
−β · (davg

eval) · 1(dnn
eval>ϵ)

)
8: teval = αeval·(A⊺t̃eval+b)+(1−αeval)·t̃eval
9: end for

10: E0 = PathEmbedding(I)
11: c′LV = V([c0,E0])
12: z′ ← ImageProj(c′LV )
13: for i = 1, . . . , JV do
14: [ci,Ei, ]← Vi([ci−1,Ei−1, P̂i−1])
15: end for
16: for i = JV + 1, . . . , LV do
17: [ci,Ei, P̂i]← Vi([ci−1,Ei−1, P̂i−1])
18: end for
19: z← ImageProj(cLV )

20: ᾱ = 1
Ceval

∑C+Ceval
eval=C+1 αeval

21: z = ᾱ · z′ + (1− ᾱ) · z
22: /* Calculate the probability for class i */
23: Calculate Pr(y = i|z, t) =

exp(sim(z,ti)/τ)∑C+Ceval
j=C+1 exp(sim(z,tj)/τ)

24: Predict as argmaxi∈{C+1,...,C+Ceval} Pr(y =
i|z, t)
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