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Abstract
Recent advances in hierarchical policy learning
highlight the advantages of decomposing sys-
tems into high-level and low-level agents, en-
abling efficient long-horizon reasoning and pre-
cise fine-grained control. However, the interface
between these hierarchy levels remains underex-
plored, and existing hierarchical methods often
ignore domain symmetry, resulting in the need
for extensive demonstrations to achieve robust
performance. To address these issues, we pro-
pose Hierarchical Equivariant Policy (HEP), a
novel hierarchical policy framework. We pro-
pose a frame transfer interface for hierarchical
policy learning, which uses the high-level agent’s
output as a coordinate frame for the low-level
agent, providing a strong inductive bias while
retaining flexibility. Additionally, we integrate
domain symmetries into both levels and theoret-
ically demonstrate the system’s overall equivari-
ance. HEP achieves state-of-the-art performance
in complex robotic manipulation tasks, demon-
strating significant improvements in both simula-
tion and real-world settings. (Code and videos are
available at project page.)

1. Introduction
Learning-based approaches have emerged as a powerful
paradigm for developing control policies in sequential
decision-making tasks, such as robotic manipulation. By
leveraging data-driven methods, policy learning provides
a scalable framework for addressing tasks with complex
dynamics and high-dimensional observation spaces. Recent
advancements in end-to-end policy learning (Zhao et al.,
2023; Chi et al., 2023) have shown promising results in
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Figure 1. Hierarchical Equivariant Policy (HEP) is composed
of a high-level agent that predicts a coarse translation, a low-level
agent that predicts the fine-grained trajectory, and a novel Frame
Transfer interface that transfers the coordinate frame of the low-
level to the predicted keypose frame from the high-level.

mapping raw sensory inputs to low-level actions such as
end-effector trajectories. While these methods exhibit state-
of-the-art performance when large amounts of training data
are available, they struggle in scenarios with only limited
data, due to the large function space required to parameter-
ize complex end-to-end mappings.

A promising alternative strategy is to employ a hierarchical
structural prior that decomposes the policy into different lev-
els, e.g., a high-level agent responsible for identifying a goal
pose and a low-level agent for trajectory refinement. Hier-
archical methods can reduce the complexity of the policy
function space by delegating long-horizon reasoning to the
high-level module and fine-grained control to the low-level
module, enabling efficient learning and execution. Despite
their promise, one underexplored question in hierarchical
policy learning is what is the right interface between differ-
ent levels. For example, in robotic manipulation, existing
hierarchical methods (Ma et al., 2024; Xian et al., 2023)
often impose rigid constraints on the interface between the
high-level and low-level agents, where the high-level action
is used as the last pose in the low-level trajectory. This
constraint limits flexibility and often requires both levels to
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perform fine-grained reasoning in high-dimensional spaces,
negating some of the potential benefits of the hierarchical
design. Moreover, prior hierarchical methods focus solely
on the hierarchical decomposition and do not exploit the do-
main symmetries often present in robotic tasks, missing an
opportunity to further improve generalization and efficiency.

In this paper, we propose a novel hierarchical policy learning
framework that overcomes these limitations by introducing
a more flexible and efficient interface between the high-
level and low-level agents. Specifically, our high-level agent
predicts a keypose in the form of a coarse 3D location rep-
resenting a subgoal of the task. This location is then used
to construct the coordinate frame for the low-level policy,
enabling it to predict trajectories relative to this keypose
frame, as shown in Figure 1. This Frame Transfer inter-
face maintains a strong inductive bias (by anchoring the
low-level policy to a subgoal) yet offers structural flexibility
(allowing the low-level policy to refine trajectories locally).
Furthermore, Frame Transfer offers a natural fit for integrat-
ing domain symmetry by decomposing it into the global
symmetry of the subgoal (i.e., the subgoal should transform
with the scene) and a local symmetry of the low-level pol-
icy (i.e., it should behave consistently in the local keypose
frame). By incorporating equivariant structures at both lev-
els, our entire hierarchical system becomes more robust to
spatial variations, resulting in significantly improved sample
efficiency. Lastly, to better encode 3D sensory information,
we adopt a stacked voxel representation (Zhou & Tuzel,
2018), ensuring rich visual features and fast computation.

We summarize our contributions as follows:

• We propose Hierarchical Equivariant Policy (HEP),
a novel, sample-efficient hierarchical policy learning
framework.

• We introduce Frame Transfer as an interface for hierar-
chical policy learning, providing effective and flexible
policy decomposition.

• We theoretically demonstrate the equivariance of HEP,
showing its spatial generalizability. Although equivari-
ance has been used in policy learning, our work is the
first to study it in a hierarchical policy.

• We provide a thorough evaluation of our method in
both simulation and the real-world. Among 30 RL-
Bench (James et al., 2020) tasks, HEP outperforms
state-of-the-art baselines by an average of 10% to 23%
in different settings, with particular improvement on
tasks requiring fine control or long-horizon reasoning.

2. Related Work
Learning from Demonstrations (LfD) enables policies
to be trained from human demonstrations and generalized

to unseen scenarios. One class of LfD learns abstracted
keyframe actions (James & Davison, 2022; James et al.,
2022; Shridhar et al., 2023; Gervet et al., 2023; Goyal et al.,
2023) in terms of the target pose of the gripper, then uses
motion planning to interpolate between keyframes. This
formulation enables learning with fewer decision steps, but
is not suitable for non-prehensile actions like door opening
or wiping (Xian et al., 2023; Ma et al., 2024). Another class
of LfD mimics the fine-grained trajectory directly (Song
et al., 2020; Ye et al., 2022; Toyer et al., 2020; Zhang et al.,
2018; Chi et al., 2023; Zhu et al., 2023; Mandlekar et al.,
2021; Zhao et al., 2023; Wang et al., 2024), enabling broader
task coverage but suffering from overloading the model with
details (Zhao et al., 2023), covariant shift (Ke et al., 2021),
and poor performance in long-horizon tasks. To bridge these
approaches, we introduce Frame Transfer, a novel interface
that integrates keyframe-based and trajectory-based models,
enhancing flexibility and task adaptability.

Hierarchical Policy has been explored for action refine-
ment in a coarse-to-fine manner (Levy et al., 2018; Gualtieri
& Platt, 2020; James et al., 2022) or through a two-stage
hierarchy for translational and rotational actions (Sharma
et al., 2017; Wang et al., 2020; Zhu et al., 2022). While
these approaches improve over end-to-end policies, they
lack integration of keyframe and trajectory actions. Recent
works (Xian et al., 2023; Ma et al., 2024) address this by
hierarchically combining a keyframe agent and a trajectory
agent, but they fix the goal pose of the trajectory agent with
the output from the keyfram agent, limiting flexibility in
the low-level and demanding precise reasoning from the
high-level agent. In contrast, our framework enables a more
adaptable interface between levels, allowing the low-level
agent to refine high-level actions.

Equivariant Robot Learning leverages geometric sym-
metries in 3-D Euclidean space, which has emerged as a
powerful strategy for boosting the sample efficiency, robust-
ness, and generalisation of robotic-manipulation policies.
An expanding line of research now demonstrates that en-
coding SE(3) equivariance—invariance to translations and
in-plane rotations—directly into the perception-to-action
pipeline can dramatically reduce the burden of data collec-
tion and retraining when scenes or objects are repositioned.
Recent works have explored this principle across a wide
spectrum of tasks and architectures, from point-cloud net-
works to image-conditioned diffusion models (Wang et al.,
2022; 2021; Liu et al., 2023; Kim et al., 2023; Kohler
et al., 2023; Nguyen et al., 2023; 2024; Eisner et al., 2024;
Gao et al., 2024). A particularly active subfield studies bi-
equivariant pick-and-place policies that remain consistent
under simultaneous transformations of both the target object
and the robot gripper. Systems in this class—spanning neu-
ral descriptors, transporters, and diffusion planners—have
achieved state-of-the-art placement accuracy and transfer-
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ability (Simeonov et al., 2022; Ryu et al., 2023b;a; Pan
et al., 2023; Huang et al., 2022; 2024a;c;b). Complementary
research focuses on equivariant grasp synthesis, showing
that symmetry-aware grasp networks can generalise to novel
object poses with an order of magnitude fewer demonstra-
tions (Zhu et al., 2022; Huang et al., 2023; Hu et al., 2024;
Lim et al., 2024). At a finer temporal scale, several groups
have begun to embed equivariance into trajectory-generation
modules for tasks such as tool use, insertion, or deformable
manipulation, reporting sharper motion accuracy and im-
proved long-horizon stability (Jia et al., 2023; Wang et al.,
2024; Yang et al., 2024b;a). Unlike these independent appli-
cations, we integrate equivariance into a hierarchical policy
that unifies keyframe and trajectory-based learning.

3. Background
3.1. Problem Definition

In this paper, we focus on visuomotor policy learning via
Behavior Cloning (BC) in robotic manipulation. We aim
to learn a policy π : O → A to map from the observation
space O to the action space A.

To define the observation and action spaces, let s =
(x, y, z, q, c) ∈ S = R3 × SO(3) × R be the space of
gripper states where (x, y, z) is a 3D position, q ∈ SO(3)
is an orientation, c is a gripper aperature (open width). The
observation space is o ∈ O = Rn×(3+k) × St including
both a point cloud P = {pi : pi = (xi, yi, zi, fi) ∈ R3+k}
with k dimensional point features (e.g., k = 3 for RGB)
and t history steps of the gripper state. The action a =
{a1, a2, . . . , am} ∈ A = Sm contains m control steps of
the gripper state.

3.2. Equivariance

A function f is equivariant if it commutes with the transfor-
mations of a symmetry group G, where ∀g ∈ G, f(gx) =
gf(x). This is a mathematical way of expressing that f is
symmetric with respect to G: if we evaluate f for trans-
formed versions of the same input, we should obtain trans-
formed versions of the same output.

Our objective is to design a policy that is symmetric (equiv-
ariant) under the group g ∈ T (3) × SO(2), where T (3)
represents the group of 3D translations, and SO(2) rep-
resents the group of planar rotations around the z-axis of
the world coordinate system, π(go) = gπ(o). This sym-
metry captures the ground truth structure in many robotic
tasks without enforcing unnecessary out-of-plane rotation
equivariance (which is often invalid due to gravity and the
canonical pose of objects).

To define a T (3)× SO(2) equivariant policy, we first need
to define how the group element acts on the observation

and the action. let g = (t, Rθ) ∈ T (3) × SO(2) where
t = (tx, ty, tz) and Rθ is the 2 × 2 rotation matrix, g acts
on the action a by transforming the gripper pose command.
Let R̃θ =

[
Rθ 0
0 1

]
, ga = {ga1, ga2, . . . gam} where

gai = (Rθ(xi + tx, yi + ty), zi + tz, R̃θ · qi, ci).

g acts on o through transforming the gripper pose in the
same way as a, and transforming the point cloud P = {pi :
pi = (xi, yi, zi, fi) ∈ R3+k} via gP = {gpi} where

gpi = (Rθ(xi + tx, yi + ty), zi + tz, fi).

3.3. Voxel Maps as Function

In deep learning, voxel maps (3D volumetric data) are typ-
ically expressed as tensors. However, it is sometimes con-
venient to express volumetric data in the form of functions
over the 3D space. Specifically, given a one-channel voxel
map V ∈ R1×D×H×W , we may equivalently express V
as a continuous function V : R3 → R, where V(x, y, z)
describes the intensity value at the continuous world coor-
dinate (x, y, z). Notice that here the domain of V is the 3D
world coordinate frame, not the discrete voxel indices. The
relationship between the voxel indices and world coordi-
nates is a linear map defined by the spatial resolution and
the origin of the voxel grid.

Similarly, if we have an m-channel voxel map V ∈
Rm×D×H×W , we can interpret it as V : R3 → Rm, where
each point (x, y, z) in the volume maps to anm-dimensional
feature vector. The group g = (t, θ) ∈ T (3)× SO(2) acts
on a voxel feature map as

(gV)(x, y, z) = ρ(θ)V(R−1
θ (x− tx, y − ty), z − tz), (1)

where t ∈ T (3) acts on V by translating the voxel location,
while θ acts on V by both rotating the voxel location and
transforming the feature vector via ρ(θ) ∈ GL(m), an m×
m invertible matrix known as a group representation.

4. Hierarchical Equivariant Policy
The main contribution of our paper is a Hierarchical Equiv-
ariant Policy that leverages equivariant learning in both the
high-level and low-level agents and employs a novel frame
transfer interface to connect them. In this section, we first
introduce the overview of our hierarchical policy structure
and the novel frame transfer interface. Then, we describe
the high-level and low-level agents in detail.

The overview of our system is shown in Figure 2. We factor
the policy learning problem into a two-step action prediction
using a high-level agent πhigh and a low-level agent πlow,

π(o) = πlow
(
o, thigh

)
; thigh = πhigh

(
o
)

(2)

where thigh ∈ T (3) is a 3D translation predicted by πhigh.
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Figure 2. Overview of Hierarchical Equivariant Policy (HEP). In the highlevel (top), given a point cloud input, we first use an
equivariant stacked voxel encoder (green) to process the point cloud and get a voxel feature map. The voxel feature map is then sent to an
equivariant UNet (blue) to produce a high-level action probability map. After taking the argmax of the action map as the high-level action,
we use Frame Transfer (yellow) to translate the coordinate frame of observation in the low-level (bottom). The translated observation is
sent to the stacked voxel encoder (green, same architecture as the one used in the high-level), followed by an equivariant diffusion policy
(Wang et al., 2024) (blue) to produce the low-level action.

4.1. Frame Transfer Interface

The effectiveness of a hierarchical policy depends largely
on the design of the high-level action output and its integra-
tion with the low-level agent. Prior approaches (Xian et al.,
2023; Ma et al., 2024) often constrain the high-level agent to
predict an SE(3) pose, which is then treated as a rigid con-
straint for the low-level agent by enforcing it as the endpoint
of the low-level trajectory. While this design simplifies task
decomposition, it restricts flexibility and imposes computa-
tional burdens on the high-level agent, which must reason
about precise pose constraints in high-dimensional spaces.

To overcome these limitations, we propose a flexible and
efficient Frame Transfer interface (Figure 2 middle) between
the high- and low-level agents by only passing a T (3) frame
rather than constraining the pose. Specifically, our high-
level agent predicts a 3D translation thigh, which is used as
a canonical reference frame for the low-level agent,

πlow
(
o, thigh

)
= τ

(
ϕ
(
τ
(
o, thigh

))
, −thigh

)
, (3)

where thigh is the 3D translation (i.e., a keypose) predicted

by the high-level agent, and ϕ is a trajectory generator that
produces a trajectory based on the transformed observation.
τ : (O ∪ A) × R3 → O ∪ A is a Frame Transfer func-
tion, which translates the (x, y, z) component of the input
observation or action to the input keypose frame. Specif-
ically, we define the +,− operators between o or a and
thigh as addition and subtraction on the (x, y, z) component
of o or a. For example, for a = (x, y, z, q, c), a + thigh =
((x, y, z)+thigh, q, c). The Frame Transfer function τ is then
defined as τ(o, thigh) = o− thigh, τ(a, thigh) = a− thigh.

The Frame Transfer interface offers several advantages.
First, it provides an efficient mechanism that geometrically
embeds the high-level action directly into the input of the
low-level agent, ensuring seamless communication between
the two levels. Second, by representing observations and tra-
jectories in a relative frame, it introduces translation invari-
ance to the low-level agent, simplifying its learning process
and improving robustness. Third, unlike prior works (Xian
et al., 2023; Ma et al., 2024) which treat the high-level pre-
diction as a rigid motion planning constraint (thus forcing
the high-level agent to generate accurate SE(3) poses and
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Figure 3. Equivariant Stacked Voxel Encoder. Compared with
the standard average pooling in point cloud voxelization (bottom),
stacked voxel representation (top) can provide a richer representa-
tion of the points within the region of a voxel.

limiting the policy in an open-loop manner), our approach
interprets the high-level output as a flexible constraint. This
flexibility reduces the computational burden on the high-
level agent, as it only predicts a 3D translation, while pre-
serving the system’s capability to operate in both open-loop
and closed-loop control settings.

4.2. High-level Agent

To efficiently predict the high-level action thigh ∈ T (3), we
represent it as a voxel map discretizing Va : R3 → R where
Va(t) represents the probability of translation t (see subsec-
tion 3.3) . This provides a dense spatial representation and
naturally handles translation multi-modality (Shridhar et al.,
2023). The center of the voxel with the highest predicted
probability is then selected as the high-level agent’s final
output, thigh = argmaxVa. Accordingly, the input obser-
vation is voxelized to Vo : R3 → R3 (where the output of
Vo is RGB), and we use an SO(2)-equivariant 3D U-Net
ψ : Vo → Va to enforce g ∈ T (3) × SO(2) symmetry,
ψ(gVo) = gψ(Vo). The entire high-level structure is shown
in Figure 2 top.

During training, the high-level agent’s objective is to mini-
mize the discrepancy between its predicted voxel heatmap
Va and the ground truth one-hot heatmap V∗

a , derived from
expert demonstrations, using the cross-entropy loss,

Lhigh = −
∑
x,y,z

V∗
a(x, y, z) log(V̂a(x, y, z)), (4)

where V̂a(x, y, z) is the probability for voxel (x, y, z) ob-
tained by applying a softmax over the predicted heatmap.

4.3. Stacked Voxel Representation

As our high-level agent uses 3D voxel grids as the visual
input, the voxel encoder plays a crucial role in the policy.
Standard 3D convolutional encoders impose a heavy compu-
tational burden, which often requires aggressive resolution

compression that reduces the fine details in the observation.
To address this limitation, we adopt Stacked Voxels (Zhou &
Tuzel, 2018) from the 3D vision literature, which preserve
fine-grained spatial cues by replacing voxel downsampling
with a PointNet (Qi et al., 2017) that aggregates information
from all points within the spatial extent of each voxel.

Specifically, given a point cloud P , we first partition it into
H×W ×D point sets, where each set Pj ⊆ P corresponds
to the points contained within a voxel j in the H ×W ×D
voxel grid. Each point set Pj is processed by an equivariant
PointNet l : Pj 7→ V(jx, jy, jz) to produce a c-dimensional
aggregated feature vector for the voxel j. Repeating for all
voxels results in a voxel grid feature map with dimensions
c×H ×W ×D. This feature map is then used as input to
subsequent 3D convolutional networks.

This process, illustrated in Figure 3, retains more nuanced
shape information compared to simple voxel downsampling.
Moreover, we prove that the stacked voxel representation
maintains equivariance. (See proof in Appendix C.)

Proposition 4.1. For g = (t, θ) ∈ T (3) × SO(2), if the
PointNet l is SO(2)-equivariant and T (3)-invariant, i.e.,
l(gPj) = ρ(θ)l(Pj), then the stacked voxel representation
ν : P 7→ V s.t. ν(P )(jx, jy, jz) = l(Pj) is T(3)× SO(2)-
equivariant, i.e., ν(gP ) = gν(P ).

In practice, we implement the T (3)-invariance in the Point-
Net by using the relative position to the center of each voxel,
and implement the SO(2)-equivariance using escnn (Cesa
et al., 2022).

4.4. Low-level Agent

After predicting the high-level action thigh and using Frame
Transfer to canonicalize the observation, our low-level tra-
jectory generator ϕ needs to create an SE(3) trajectory for
the robot gripper. As shown in Figure 2 bottom, we first
process the observation with a stacked voxel encoder, then
leverage an equivariant diffusion policy (Wang et al., 2024)
to represent the policy ϕ, which denoises the trajectory from
a randomly sampled noisy trajectory. Specifically, we model
a conditional noise prediction function ε : o, ak, k 7→ ek,
where the observation o is the denoising conditioning, ak

is a noisy action, k is the denoising step, and ek is the pre-
dicted noise in ak s.t. the noise-free action a = ak−ek. The
model ε is implemented as an SO(2)-equivariant function,
ε(go, gak, k) = gε(o, ak, k), to ensure the policy ϕ it rep-
resents is SO(2)-equivariant, ϕ(go) = gϕ(o). See (Wang
et al., 2024) for more details.

During training, given an expert observation trajectory
pair (o, a), we first use the translation tn from the last
step an as the keypose, then apply frame transfer to get
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o∗ = τ(o, tn), a
∗ = τ(a, tn). The low-level loss is

Llow =
∥∥ε(o∗, a∗ + ek, k)− ek

∥∥2 , (5)

where ek is a random noise conditioned on a randomly
sampled denoising step k.

4.5. Symmetry of Policy

In this section, we describe the overall T (3)×SO(2) symme-
try of our hierarchical architecture. As is shown in Figure 4,
a transformation in the observation should lead to the same
transformation in both levels of HEP. Specifically, we de-
compose the symmetry into a rotation and translation, and
prove each separately.

Let π be a hierarchical policy composed of a high-level
agent πhigh, a low-level agent πlow, and frame-transfer func-
tions τ (see section 4).

Proposition 4.2 (Hierarchical SO(2) Equivariance). π is
SO(2)-equivariant when the following assumptions hold for
g ∈ SO(2):

1. The high-level policy πhigh is SO(2)-equivariant,
πhigh(go) = gπhigh(o)

2. The low-level policy πlow is SO(2)-equivariant,
πlow(go, gthigh) = g · πlow(o, thigh)

3. The Frame Transfer function τ is SO(2)-equivariant.

In Appendix A we show that the entire hierarchical policy
π is SO(2)-equivariant so that rotating the observation o
results in an action rotated in the same way.

Proposition 4.3 (Hierarchical T(3) Equivariance). π is
T (3)-equivariant when the following assumptions hold for
t ∈ T (3)

1. πhigh is T(3)-equivariant, πhigh(o+ t) = t+ πhigh(o)

2. The Frame Transfer function τ is T(3)-invariant, and
satisfies τ(o, thigh) = τ(o+ t, thigh + t)

Notably, even if the low-level policy πlow is not T(3)-
equivariant, the entire hierarchical policy π is T(3)-
equivariant. This is proven in Appendix B.

5. Simulation Experiment
5.1. Experimental Settings

To evaluate our policy, we first perform experiments in sim-
ulated environments in the RLBench (James et al., 2020)
benchmark implemented using CoppeliaSim (Rohmer et al.,
2013) and PyRep (James et al., 2019). The simulated en-
vironments contain a 7-joint Franka Panda robot equipped

Figure 4. Equivariance in HEP. When the observation is rotated
and translated, the high- and low- level actions are rotated and
translated accordingly.

(a) Open Microwave (b) Stack Wine (c) Shoes Out of Box

Figure 5. The Simulation Tasks from RLBench (James et al.,
2020). See Appendix F for all environments.

with a parallel gripper, as well as four RGB-D cameras to
provide the point cloud observation.

We evaluate our model on 30 RLBench tasks, among which
20 are widely used in the prior works like (Xian et al., 2023).
The remaining 10 are challenging tasks that demand precise
control, such as Lamp On, or long-horizon planning, like
Push 3 Buttons. A subset of the 30 simulation tasks
is shown in Figure 5. Each task is trained using 100 demon-
strations, more detailed task descriptions and visualizations
are provided in Appendix F.

We consider two different control settings, open-loop and
closed-loop control. In closed-loop, we use each control step
in the dataset as the low-level’s target, and next keyframe is
used as the label for the high-level agent. In open-loop, we
use the keyframe (i.e., some key actions in the entire trajec-
tory like pick, place, etc.) defined by the prior work (Shrid-
har et al., 2023) as the target for the high-level agent, then
construct the low-level target by interpolating between the
consecutive keyframes. In principle, the open-loop set-
ting requires fewer prediction steps to finish a task, while
the closed-loop setting makes the policy more responsive.
Thanks to the flexibility of our Frame Transfer interface, our
policy can operate in both settings, while some prior works
are limited in the open-loop setting.
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Table 1. Performance of Different Models Across Various Tasks in Simulation. Success rates (in percentages) are reported for each
task. Bolded values indicate the best performance for each task, and improvements are shown in blue where applicable.

Method (Open-loop) Mean Pick/Lift Push
Button

Knife on
Board

Put Money Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella

Pick up
Cup

Ours (HEP) 88(+10) 99(+1) 100(+1) 96(+5) 98(-1) 100 100(+2) 100(+7) 90(-10) 100(+1) 98(+4)
Chained Diffuser 78 98 96 91 99 100 98 93 100 96 94
3D Diffuser Actor 56 98 99 84 88 100 98 90 89 99 94

Method (Open-loop) Unplug
Charger

Close
Door

Open Box Open
Fridge

Frame off
Hanger

Open Oven Books on
Shelf

Wipe Desk Cup in
Cabinet

Shoe out
of Box

Ours (HEP) 99(+4) 90(+24) 100(+4) 83(+15) 93(+8) 87(+1) 99(+7) 77(+12) 76(+8) 90(+12)
Chained Diffuser 95 76 96 68 85 86 92 65 68 78
3D Diffuser Actor 49 7 15 41 71 3 36 5 1 21

Method (Open-loop) Open Mi-
crowave

Turn on
Lamp

Open Grill Stack
Blocks

Stack Cups Push 3
Buttons

USB in
Computer

Open
Drawer

Put Item in
Drawer

Sort Shape

Ours (HEP) 82(+26) 95(+55) 99(+4) 54(+4) 32(+4) 99(+12) 90(+16) 94(+10) 95(+7) 22(+3)
Chained Diffuser 56 40 95 10 12 86 74 84 88 10
3D Diffuser Actor 46 20 70 50 28 87 42 71 70 19

Method (Closed-loop) Mean Turn On
Lamp

Open Mi-
crowave

Push 3
Buttons

Open
Drawer

Put Item in
Drawer

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella

Pick up
Cup

Ours (HEP) 79(+22) 60(+32) 64(+22) 37(+36) 95(+41) 76(+28) 95(+20) 89(+10) 94(+14) 90(+9) 93(+15)
EquiDiff 57 28 42 1 54 48 75 79 80 81 78

(a) Pot Cleaning

(b) Blocks to Drawer (c) Blocks Stacking

Figure 6. Real-world Experiment Setting. Figure 6a: Pot cleaning, the robot needs to open the pot lid, pour detergent into the pot, and
clean it with a sponge. Figure 6b: Blocks to drawer, the robot needs to open the drawer, place two blocks inside, and close the drawer.
Figure 6c: Blocks stacking, the robot needs to stack three blocks one by one.

5.2. Baseline

We compare our method against the following baselines. 3D
Diffuser Actor: an open-loop agent that combines diffusion
policies (Chi et al., 2023) with 3D scene representations.
Chained Diffuser: an open-loop hierarchical agent that
uses Act3D (Gervet et al., 2023) in the high-level and diffu-
sion policy in the low-level. Equivariant Diffusion Policy
(EquiDiff): an SO(2)-equivariant, closed-loop policy that
applies equivariant denoising.

5.3. Results

Table 1 presents the comparison in terms of the evaluation
success rates of the last checkpoint across 100 trials.

Open-loop Results: Our model outperforms the baselines
in 28 out of the 30 tasks, achieving an average absolute

improvement of 10%. The task where HEP falls short of
achieving the best results is Take Money. Further investi-
gation reveals that HEP achieves 98% success rate at earlier
checkpoints but fails at the final checkpoint, likely due to
overfitting. Tasks involving precise actions or long-horizon
trajectories e.g., Lamp-on and Push 3 Buttons also
exhibited consistently high success rates, demonstrating the
adaptability of our method to diverse task requirements.
We also compare our model with hierarchical diffusion pol-
icy (Ma et al., 2024) in Appendix H

Closed-loop Results: Here we consider 10 selected tasks
that represent the full diversity and complexity of the com-
plete task set. The closed-loop setting requires longer-
horizon trajectories, making it harder to succeed in eval-
uation. Despite this, our model consistently outperforms
EquiDiff across all 10 tasks, achieving an average absolute
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improvement of 23%. This improvement underscores the
effectiveness of HEP in handling the increased complexity
of long-horizon decision-making.

5.4. Ablation Study

Table 2. Ablation
Study Results.

Method Mean

No Hierarchy 0.51
No Equi No FT 0.60
No Equi 0.70
No FT 0.78
No Stacked Voxel 0.84
Complete Model 0.94

To validate the impact of our contri-
butions,we perform an ablation study
in six tasks considering the follow-
ing configurations: No Hierarchy:
removes high-level agent and uses
low-level agent only. No Equi: same
architecture but removes all equivari-
ant structure. No Stacked Voxel: re-
moves the stacked voxel encoder. No
FT: removes the Frame Transfer in-
terface and uses the high-level action
as an additional conditioning in the low-level. No Equi No
FT: combination of No Equi and No FT.

As is shown in Table 2, removing equivariance makes the
most significant negative impact on our model, reducing the
mean success rate by 24%. The performance drop when
removing Frame Transfer and stacked voxel encoder is 16%
and 10%, respectively, demonstrating the importance of all
three key pieces of our model. Moreover, the 10% perfor-
mance difference between No Equi and No Equi No FT
shows the potential of Frame Transfer beyond our model.
See Table 7 in the Appendix for the full table.

6. Real-World Experiment
In this section, we evaluate our method on a real robot
system comprised of a UR5 robot and 3 Intel Realsense (Ke-
selman et al., 2017) D455 RGBD sensors. Details on the
experiment setting are given in Appendix G.

Baseline Comparison We experiment in three tasks as
shown in Figure 6. These tasks are challenging due to their
extreme long horizon (can be divided into 6 to 9 sub-tasks)
and the diverse types of manipulation involved. Evaluations
are conducted in 20 trials: 10 with object placements similar
to the training dataset’s and 10 with unseen placements.

As shown in Table 3, our model successfully completes the
tasks under open-loop control. Most failures occur due to
the slight misalignment between the gripper and the object,
likely caused by poor depth quality of the sensors. We
further evaluate our model in a closed-loop setting, where
it achieves similar performance to the open-loop version in
two of the three tasks. However, in Pot Cleaning, while the
agent progresses further in the task, it becomes stuck in a
recurrent cleaning loop. This likely results from the lack
of history information in the observations, preventing the
agent from recognizing when to exit the cleaning phase. In

Table 3. Performance of Different Models in the Real-World.

Task Pot Cleaning Blocks to Drawer Blocks Stacking
Number of Demo 30 20 30

Chained Diffuser 0.3 0.2 0.4
Open-loop HEP (Ours) 0.8 0.85 0.9
Closed-loop HEP (Ours) - 0.8 0.9

Figure 7. One-Shot Test. The model is trained on a single demon-
stration to evaluate its generalization capability.

contrast, the open-loop version follows a single keypose for
cleaning, facilitating a smoother transition to the next stage.

One-Shot Generalization To evaluate the generalizabil-
ity of our model, we perform a one-shot experiment where
the model is trained to finish a pick-place task with only
one demonstration. During testing, the object is placed in
unseen poses, as shown in Figure 7. The results in Table 4
demonstrate the strong generalizability of our model, achiev-
ing an 80% success rate over 20 trials. For comparison, we
evaluate Chained Diffuser under the same setting, but it only
succeeded when the toy car was positioned exactly as in the
demonstration. This result highlights the superior general-
ization ability of our approach, enabling robust execution of
manipulation tasks from limited training data.

Figure 8. Environment Variations. Left shows the training envi-
ronment. Middle and right are the test environment with variation.

Robust to Environment Variations In this experiment,
we evaluate the robustness of our trained model under envi-
ronmental variations. Specifically, we introduced modifica-
tions to the Block Stacking task during test time by changing
the color of the table (Color) and additionally adding un-
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Table 4. Results of One-Shot Generalization Experiment.

Model Success Rate

Chained Diffuser 0.05
HEP (Ours) 0.80

Table 5. Results of Environmental Variation Experiment.

Method No Variation Color Color+Objects

Chained Diffuser 0.4 0 0
HEP (Ours) 0.9 0.9 0.6

related objects as distractors (Color+Objects), as shown in
Figure 8. The result is shown in Table 5. Surprisingly, our
model demonstrates exceptional adaptability, achieving 90%
and 60% success rate under those two test-time variations,
whereas the baseline fails to complete the task with those
distractions.

7. Conclusion
In this work, we propose an Hierarchical Equivariant Pol-
icy for visuomotor policy learning. By utilizing Frame
Transfer, our architecture naturally has both translational
and rotational equivariance. Experimentally, HEP achieves
significantly higher performance than previous methods
on behavior cloning tasks that require fine motor control.
While our work provides a solid foundation for hierarchical
policies with geometric structure, several future directions
remain open for exploration. One key limitation is that
our experiments focus on tabletop manipulation. Extend-
ing HEP to more complex robotic tasks, such as humanoid
motion, is a promising direction. Another limitation is the
lack of memory mechanisms, which can be critical for tasks
requiring history information. Future work could explore in-
tegrating Transformers (Vaswani, 2017) to enhance temporal
reasoning. Finally, expanding Frame Transfer to incorporate
both translational and rotational specification could further
improve the effectiveness of hierarchical policies.
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A. Proof: The Full Policy is SO(2) Equivariant
Let us prove that the policy is SO(2) Equivariant and satisfies

∀g ∈ SO(2), π(g · o) = g · π(o) (6)

We will prove this in two steps.

A.1. Low-level Equivariance

First, let us prove that the low-level agent is SO(2) equivariant. The low-level policy can be written as

πlow(o, thigh) = τ(ϕ(τ(o, thigh)),−thigh)

The frame transfer functions satisfy

∀g ∈ SO(2), τ(g · o, g · t) = g · τ(o, t)

and the diffusion policy satisfies

∀g ∈ SO(2), ϕ(g · o) = g · ϕ(o)

Thus, we have that

∀g ∈ SO(2), πlow(g · o, g · thigh) = τ(ϕ(τ(g · o, g · thigh)), g · −thigh)

Using the frame transfer function property τ(g · o, g · t) = g · τ(o, t)) we have that

∀g ∈ SO(2), πlow(g · o, g · thigh) = τ(ϕ(g · τ(o, thigh)), g · −thigh)

Using the SO(2) equivariance of the diffusion policy and the properties of the frame transfer functions, we have that

∀g ∈ SO(2), τ(ϕ(g · τ(o, thigh)), g · −thigh) = τ(g · ϕ(τ(o, thigh)), g · −thigh) = g · τ(ϕ(τ(o, thigh)),−thigh)

Thus,

∀g ∈ SO(2), πlow(g · o, g · thigh) = g · τ(ϕ(τ(o, thigh)),−thigh)

And by definition,

τ(ϕ(τ(o, thigh)),−thigh) = πlow(o, thigh)

Thus, we have that

∀g ∈ SO(2), πlow(g · o, g · thigh) = g · πlow(o, thigh)

A.2. Full Policy Equivariance

Using the equivariance of the low-level policy, let us show that the full policy is SO(2) equivariant. The high-level, low-level
and diffusion policies satisfy

∀g ∈ SO(2), πhigh(g · o) = g · πhigh(o)
∀g ∈ SO(2), πlow(g · o, g · thigh) = g · πlow(o, thigh)
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Now, combining high-level and low-level policy together we got that:

π(o) = πlow(πhigh(o), o)

When g acting on both the input observation, we have that

∀g ∈ SO(2), π(g · o) = πlow(πhigh(g · o), g · o)

Now, via the SO(2) equivariance of the high-level policy πhigh(g · o) = g · πhigh(o) we have that

∀g ∈ SO(2), πlow(πhigh(g · o), g · o) = πlow(g · πhigh(o), g · o)

Thus, using the SO(2) equivariance of the low-level policy πlow(g · πhigh(o), g · o) = g · πlow(πhigh(o), o) we have that

∀g ∈ SO(2), π(g · o) = g · πlow(πhigh(o), o)

Note that the πlow(πhigh(o), o) is just the expression for π(o). Thus, we must have that

∀g ∈ SO(2), π(g · o) = g · π(o)

holds.

B. Proof: The Full Policy is T (3) Equivariant
As defined in subsection 4.1, +,− as operators between o or a and thigh as addition and subtraction on the (x, y, z)
component of o or a. Similarly, we can define the translation t ∈ T (3) acting on o or a as an addition to the (x, y, z)
component as o+ t or a+ t.

First, suppose that the high-level policy πhigh(o) is T (3)-equivariant so that

∀t ∈ T (3), πhigh(o+ t) = t+ πhigh(o)

which is simply the statement that shifting the scene shifts the high-level policy in the same way. Now, we will show that the
full hierarchical policy satisfies the equivariance condition. The low-level policy is determined by

πlow(πhigh(o), o) = τ(ϕ(τ(o, πhigh(o))),−πhigh(o))

How does the low-level policy transform under a translation? Using π(o) = πlow(πhigh(o), o), we have that

π(o+ t) = πlow(o+ t, πhigh(o+ t))

Using the definition of the low-level policy, we have that

π(o+ t) = πlow(o+ t, πhigh(o+ t)) = τ(ϕ(τ(o+ t, πhigh(o+ t)),−πhigh(o+ t))

Now, using the equivariance of high-level policy, we have that πhigh(o+ t) = t+ πhigh(o) so that

τ(ϕ(τ(o+ t, πhigh(o+ t)),−πhigh(o+ t)) = τ(ϕ(τ(o+ t, πhigh(o) + t),−πhigh(o)− t)

Now, we can simplify this expression via the fact that the frame transfer τ function is T (3) invariant. We have that
τ(o+ t, πhigh(o) + t) = τ(o, thigh) which implies that

τ(ϕ(τ(o+ t, πhigh(o) + t),−πhigh(o) + t) = τ(ϕ(τ(o, πhigh(o)),−πhigh(o)− t)

Now, note that τ(o+ t, πhigh(o)+ t) = τ(o, thigh) implies that τ(o,−πhigh(o)− t) = τ(o+ t,−πhigh(o)). Using the fact
that τ(o+ t,−πhigh(o)) = τ(o,−πhigh(o)) + t, we have that

τ(ϕ(τ(o, πhigh(o)),−πhigh(o)− t) = τ(ϕ(τ(o, πhigh(o)),−πhigh(o)) + t

Thus, combining the above expressions and using the definition of the low-level policy, we have that

πlow(o+ t, πhigh(o+ t)) = τ(ϕ(τ(o, πhigh(o)),−πhigh(o)− t) = t+ τ(ϕ(τ(o, πhigh(o)),−πhigh(o)) = t+ πlow(o, πhigh(o))

Thus, we have that

πlow(o+ t, πhigh(o+ t)) = t+ πlow(o, πhigh(o))

This is just the expression for the full policy function as π(o) = πlow(o, πhigh(o)). Ergo, we must have that

π(o+ t) = t+ π(o)

and the full policy is T (3)-Equivariant.
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C. Proof: Equivariance of the Stacked Voxel Representation
Proof. We aim to prove that the stacked voxel representation ν is T (3)× SO(2)-equivariant, i.e.,

ν(gP ) = gν(P ),

where g ∈ T (3)× SO(2) is a group transformation.

Define a point set selection function m : jx, jy, jz, P 7→ PJ that selects the subset of points Pj ⊆ P within the voxel
indexed by (jx, jy, jz). By the definition, m is an equivariant function m(g(jx, jy, jz), gP ) = gm(jx, jy, jz, P ).

The stacked voxel representation ν for a given voxel location jx, jy, jz can be written as:

ν(P )(jx, jy, jz) = l (m(jx, jy, jz, P )) ,

where:

• m(jx, jy, jz, P ) selects the subset of points Pj ⊆ P within the voxel indexed by (jx, jy, jz),

• l(Pj) maps the selected point subset Pj to a feature vector representing the voxel at (jx, jy, jz).

Substitute P = gP into ν(P ). Using the definition, we have:

ν(gP )(jx, jy, jz) = l (m(jx, jy, jz, gP )) .

The point set selection function m is equivariant to group transformations, so we have:

m(jx, jy, jz, gP ) = gm(g−1(jx, jy, jz), P ).

Substitute this into the expression for ν(gP ):

ν(gP )(jx, jy, jz) = l
(
gm(g−1(jx, jy, jz), P )

)
.

The PointNet l is SO(2)-equivariant and T (3)-invariant, meaning:

l(gPj) = ρ(θ)l(Pj),

where Pj = m(jx, jy, jz, P ), and ρ(θ) is the linear representation of the rotation group action.

Applying this to l(gm(g−1(jx, jy, jz), P )):

ν(gP )(jx, jy, jz) = ρ(θ)l
(
m(g−1(jx, jy, jz), P )

)
.

From the definition of ν(P ), we know:

l
(
m(g−1(jx, jy, jz), P )

)
= ν(P )(g−1(jx, jy, jz)).

Substituting this into the equation:

ν(gP )(jx, jy, jz) = ρ(g)ν(P )(g−1(jx, jy, jz)).

Since V = ν(P ) is a voxel grid (in function representation), the group action on ν is defined as:

(gν(P ))(jx, jy, jz) = ρ(g)ν(P )(g−1(jx, jy, jz)).

Thus, we have:
ν(gP ) = gν(P ).
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D. Additional Background of Group Symmetry
The group T (3) × SO(2) can be naturally decomposed into translation T (3), which is handled using methods like 3D
convolution, and rotation SO(2), which is addressed via network design by introducing equivariant layers (Cesa et al., 2022)
that respect SO(2) transformations through appropriate representations of SO(2) or its subgroups.

D.1. Group Action of SO(2)

We focus on three particular representations of g ∈ SO(2) or its subgroup g ∈ Cu (containing u discrete rotations) that
define how the group acts on different data. Specifically:

Trivial Representation ρ0: The trivial representation ρ0 characterizes the action of SO(2) or Cu on an invariant scalar x ∈ R
such that ρ0(g)x = x. This means that every group element g leaves the scalar x unchanged.

Standard Representation ρ1: The standard representation ρ1 defines how SO(2) or Cu acts on a vector v ∈ R2 using a 2× 2

rotation matrix. The action is given by ρω(g)v =
(

cos g − sin g
sin g cos g

)
v. When ω = 1, the representation ρ1(g) corresponds to the

standard 2× 2 rotation matrix.

Regular Representation ρreg: The regular representation ρreg describes the action of Cu on a vector x ∈ Ru via u×u permu-
tation matrices. Let g = rm be an element of the cyclic group Cu = {1, r1, . . . , ru−1}, and let x = (x1, x2, . . . , xu) ∈ Ru.
Then the action is defined by ρreg(g)x = (xu−m+1, xu−m+2, . . . , xu, x1, x2, . . . , xu−m) . This operation cyclically
permutes the coordinates of x in Ru.

A representation ρ can also be constructed as a combination of different representations. Specifically, ρ is de-
fined as the direct sum ρ = ρn0

0 ⊕ ρn1
1 ⊕ ρn2

2 , which belongs to the general linear group GL(n0 + 2n1 + 2n2). In this case,
ρ(g) is a block diagonal matrix of size (n0 + 2n1 + 2n2)× (n0 + 2n1 + 2n2) that acts on vectors x ∈ Rn0+2n1+2n2 .

D.2. Group Action of T (3)

Follow the definition of + - The group T (3) of 3D translations is an additive group, whose action is defined by shifting
spatial coordinates. For example, for a point cloud P = {p1, p2, . . . } where pi = (xi, yi, zi), the action of g ∈ T (3) is
t · pi = (xi + tx, yi + ty, zi + tz). Similarly, for voxel-based representations, T (3) acts by shifting the spatial indices of
the voxel grid. Convolutions are inherently translationally invariant. ¡- I would say this Translation symmetry is naturally
handled by operations such as 3D convolutions, which are inherently translation-equivariant.

E. Training Detail
In the simulation experiments, we we use a batch size of 16 for training. Specifically, the observation contains one step of
history observation, and 3 steps of history action and the output of the denoising process is a sequence of 18 action steps.
In close-loop control we use all 18 steps for training and execute 18 steps, similar to prior work ((Xian et al., 2023)). In
close-loop control 18 steps and 9 steps are used for training and execution, similar to setting of (Wang et al., 2024) a. We
train our models with the AdamW ((Loshchilov & Hutter, 2019)) optimizer (with a learning rate of 10−4 and weight decay
of 5*10−4). We use DDPM ((Ho et al., 2020)) with 100 denoising steps for both training and evaluation. We training each
tasks with 100000 iterates.

F. Detail of Simulation Tasks
Here are descriptions of 30 tasks, as shown in Figure 9, mentioned in simulation experiment:

1. Pick/Lift: Grasp and lift a block from the table.

2. Push Button: Press a button.

3. Knife on Board: Place a knife onto a cutting board.

4. Put Money: Put dollars in safe.

5. Reach Target: Move the gripper to a specified target location.
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6. Slide Block: Slide a block across the table to certain area.

7. Stack Wine: Put wine bottles into a shelf.

8. Take Money: Take dollars from safe.

9. Take Umbrella: Retrieve an umbrella from a stand.

10. Pick up Cup: Grasp and lift a cup.

11. Unplug Charger: Disconnect a charger from an outlet.

12. Close Door: Shut a door fully.

13. Open Box: Lift the lid of a box.

14. Open Fridge: Pull the fridge door open.

15. Frame off Hanger: Remove a frame from a hanger.

16. Open Oven: Open the oven door.

17. Books on Shelf: Put book on a shelf.

18. Wipe Desk: Wipe a desk surface clean using a cloth.

19. Cup in Cabinet: Place a cup inside a cabinet.

20. Shoe out of Box: Remove a shoe from its box.

21. Open Microwave: Open a microwave door.

22. Turn on Lamp: Activate a lamp using its switch.

23. Open Grill: Lift the lid of a grill.

24. Stack Blocks: Stack blocks on top of each other.

25. Stack Cups: Arrange cups in a stacked configuration.

26. Push 3 Buttons: Press three buttons in a specific sequence.

27. Plug USB in Computer: Insert a USB device into a port.

28. Open Drawer: Pull a drawer open.

29. Put Item in Drawer: Pull a drawer open and place an object inside a drawer.

30. Sort Shape: Put shape in a shape sorter

G. Real-World Experimental Settings
Our real-world experiments are conducted on a UR5e robotic arm equipped with a Robotiq 2F-85 gripper and three Intel
RealSense D455 cameras as shown in Figure 10 . Demonstrations are collected using a 6-DoF 3DConnexion SpaceMouse at
a 10 Hz rate, logging both the visual observations (from all three cameras) and the robot’s end-effector actions (position,
orientation, and gripper states).

H. Comparison With Hierarchical Diffusion Policy(HDP)
We also compare our policy with another hierarchical baseline, HDP (Ma et al., 2024), by selecting seven tasks from the
HDP paper that we evaluated. We then compare the success rates on these tasks, as shown in Table 6. Our approach achieves
an absolute mean improvement of 20%, demonstrating superior sampling efficiency.
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Table 6. Performance of HDP and HEP on 7 Tasks.

Method(Open-loop) Mean Reach
Target

Pick Up
Cup

Open Box Open
Drawer

Open
Microwave

Open Oven Knife on
Board

HDP 74 100 82 90 90 26 58 72
HEP (Ours) 94(+20) 100 98(+16) 100(+10) 94(+4) 82(+56) 87(+29) 96(+24)

Table 7. Performance of Different Ablations on Various Tasks.

Method Mean Lamp on Open
microw.

Push 3
buttons

Push
button

Open
box

Insert
USB

No Hierarchy 0.51 0.28 0.42 0.01 0.96 0.99 0.38
No Equi No FT 0.60 0.21 0.44 0.53 0.96 0.99 0.51
No Equi 0.70 0.41 0.53 0.67 0.98 0.99 0.64
No FT 0.78 0.75 0.56 0.73 0.98 0.99 0.68
No Stacked Voxel 0.84 0.77 0.65 0.87 0.99 0.99 0.79
Complete Model 0.94 0.95 0.82 0.99 1.00 1.00 0.90

I. Full Result of Ablation Study
We show the full result of ablation study (subsection 5.4) here at Table 7.

J. Voxelization Details
We build our voxelization function based on (Contributors, 2020). The size of our voxel grid is 64*64*64 with maximum 6
points within it.

K. Equivariance Error
We conducted an experiment measuring the equivariance error specifically on C4, a subgroup of SO(2). This allowed us
to quantify the difference between the rotated output and the output from a rotated input. The experimental results are
summarized in the Table 8.

Table 8. Equivariance Error Under Different Rotations

Rotation Equivariance Error

0◦ 0%
90◦ 0.013%
180◦ 0.006%
270◦ 0.009%

L. Performance Under Human Perturbation
We conducted an extra experiment evaluating the success rate of executing a block stacking task under human perturbation
mimicking a dynamic environment and include the results in Table 9.
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Table 9. Success Rate Under Human Perturbation
Task Success Rate

Blocks stacking 0.8

Figure 9. All simulation tasks we evaluate on
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Figure 10. Real-world Experiment Setting
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