
Under review as a conference paper at ICLR 2023

LEARNING PORTABLE SKILLS BY IDENTIFYING GEN-
ERALIZING FEATURES WITH AN ATTENTION-BASED
ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

The ability to rapidly generalize is crucial for reinforcement learning to be practi-
cal in real-world tasks. However, generalization is complicated by the fact that, in
many settings, some state features reliably support generalization while others do
not. We consider the problem of learning generalizable policies and skills (in the
form of options) by identifying feature sets that generalize across instances. We
propose an attention-ensemble approach, where a collection of minimally overlap-
ping feature masks is learned, each of which individually maximizes performance
on the source instance. Subsequent tasks are instantiated using the ensemble, and
transfer performance is used to update the estimated probability that each feature
set will generalize in the future. We show that our approach leads to fast policy
generalization for eight tasks in the Procgen benchmark. We then show its use in
learning portable options in Montezuma’s Revenge, where it is able to generalize
skills learned in the first screen to the remainder of the game.

1 INTRODUCTION

In recent years reinforcement learning has outperformed humans in many Atari games (Mnih et al.,
2015), learned to play world champion level Go (Silver et al., 2017) and mastered many robot
manipulation tasks (Levine et al., 2016; 2018). While these achievements are undeniably impressive,
they are in simulated and controlled environments stripped of many of the complexities humans face
in everyday life. For reinforcement learning to be viable in real-world applications, the ability to
scale to large, high-dimensional environments is crucial. Hierarchical reinforcement learning (Barto
& Mahadevan, 2003) is a promising approach to achieve this scalability through the use of high-level
skills that abstract away the detail of low-level action. The most popular hierarchical RL framework
is the options framework (Sutton et al., 1999)), which models abstract actions as consisting of three
components: a set of states from which execution can begin, a policy which specifies how the option
executes, and a set of states where execution ceases.

To fully realize the promise of the options framework, learned options should ideally be easily
reused, or ported, to new tasks and environments (Konidaris & Barto, 2007). The core difficulty
here is that, in practice, an option will be first learned in a small number of specific instantiations—
possibly just one—without foreknowledge of the circumstances under which it will be applied again
in the future. In such cases there may be many state features over which the first instance(s) of the
option could be successfully defined, but which will not support reuse. For example, a single option
to open a door might be equally well-defined using features describing the door’s location in a global
map, or features describing the location of its handle relative to the agent, but only the latter will
generalize to new doors. This problem is exacerbated by the fact that all three components of the
option must simultaneously function in new instantiations, or the option will fail.

We therefore propose to learn portable options by identifying sets of state features that support
generalization. We adopt the transfer learning setting (Taylor & Stone, 2009), where the goal is
to learn on a number of source tasks and perform well on target tasks with minimum re-training.
We introduce a method where an agent uses an attention-based ensemble (Kim et al., 2018) to
learn a collection of diverse feature sets that each individually maximize performance on the source
task. Subsequent option instantiations are evaluated for success, and the results are used to update

1



Under review as a conference paper at ICLR 2023

the agent’s estimate of the probability that each feature set will generalize to future tasks. These
probabilities in turn govern which feature sets are used in new option instantations.

We begin by showing how to learn a portable policy using an ensemble, and demonstrate that it leads
to fast learning on eight games from the Procgen generalization benchmark (Cobbe et al., 2020). The
ensemble is then extended to learn portable classifiers that represent initiation and termination sets.
We combine the resulting portable policy, initiation classifier, and termination classifier methods to
learn portable options in Montezuma’s Revenge, where our method enables an agent to generalize
skills learned in the first room to all the others.

2 BACKGROUND AND RELATED WORK

We consider the episodic reinforcement learning setting. An agent operates in a Markov Decision
Process (MDP) with state space S and action space A. The transition probability p(st+1|st, at) is the
probability of transitioning from state st to state st+1 with action at. At each time step, the agent
receives a scalar reward defined by the reward function r(st, at). The goal of the reinforcement
learning agent is to maximize the cumulative discounted reward over an episode by finding a policy
π(a|s) that selects actions at each step.

The options framework by Sutton et al. (1999) extends the MDP framework by creating temporally
extended abstract actions known as options. An option o is defined by a three-tuple (Io, πo, βo). The
initiation set, Io : S → {0, 1}, is the set of states in which option o can initiate. The termination
set, βo : S → {0, 1} is the set of states in which option o successfully terminates. The option policy
πo : S → A is a controller that transitions the agent from states in Io to states in βo.

Options in their most basic formulation offer no guarantees of being portable. However, Konidaris
& Barto (2007) argue that if the inputs to an option retain the same semantics (introducing the notion
of an agent-space) across option instances, these options will be reusable. There are many works
focused on building derived input spaces with transferable semantics. Konidaris & Barto (2007)
showed that an agent-centric representation, analogous to the egocentric space (the space surround-
ing the agent (Klatzky, 1998)), would be sufficient for many tasks, especially in the robotics domain.
The successor features (SF) and generalized policy improvement (GPI) framework proposed by Bar-
reto et al. (2018) creates a space derived from successor features leading to reusable skills. However,
these skills only adapt to changes in the reward function, not the transition dynamics. Gupta et al.
(2017) learn skills in an invariant feature space which enables generalization across morphollogi-
cally different robots. However, the invariant feature space cannot generalize across tasks. Hausman
et al. (2018) propose learning a separate embedding space which can be used to parameterize discov-
ered skills. They show this successfully generalizes these parameterized skills across tasks but make
the assumption that the agent has access to a collection of different tasks which are used to learn
the embedding space. This embedding space results in portable policies, but does not address the
main issue of over-fitting to the few instances an option is defined over. Topin et al. (2015) transfers
options between different object-oriented MDPs, but are confined to discrete-domains. Our work
instead focuses on building portable options in high-dimensional and continuous domains. We also
differ from these approaches by using diversity to build portable options. We propose to learn a
diverse set of state features—each of which maximizes rewards—to both define the option policy
and identify the portable initiation and termination sets.

One way of maintaining a set of features is by building an ensemble. Ensemble methods train mul-
tiple learners on the same task, resulting in a combined model which performs better than each
individual model. The quality of the ensemble depends on the quality of each individual and the
diversity among them. The attention-based ensemble proposed by Kim et al. (2018) is a deep learn-
ing framework, originally intended for deep metric learning, that encourages diversity in the feature
embeddings learned by each member in the ensemble. The objective for the ensemble is to minimize
a combination of the training objective loss and a divergence loss:

L({xi}) =
∑
m

Ltrain,(m)({xi}) + λdivLdiv({xi}). (1)

2



Under review as a conference paper at ICLR 2023

Here, {xi} is a set of training samples and Ltrain is the training loss of the learning objective for the
m-th learner. The divergence loss, Ldiv, is weighted by λdiv and defined as

Ldiv({xi}) =
∑
i

∑
p,q

max(0,mdiv − dY(Bp(xi), Bq(xi))
2) (2)

where dY is a distance metric in the embedded space, mdiv is a margin, and Bp(xi), Bq(xi) is the
embedding output of learners p and q. Optimizing the total loss L({xi}) incentivizes learners to in-
dividually perform well on the training task while learning maximally different feature embeddings.

3 PORTABLE POLICIES WITH AN ATTENTION-BASED ENSEMBLE

We propose to achieve option portability through ensembles. By learning multiple diverse feature
sets, we increase our chances of finding a portable one. We then condition the option’s policy,
initiation classifier, and termination classifier on the portable features, such that the resulting option
generalizes to subsequent tasks.

In this section, we focus on learning a portable policy. The agent learns to solve a task in the
flat reinforcement learning setting, where only the policy needs to be learned, without the need for
initiation and termination sets. We later extend this framework to options in Section 4.

3.1 ENSEMBLE OF POLICIES

The main challenge of learning an ensemble of policies is learning an ensemble of feature sets and
identifying a portable one. We use an attention-based ensemble architecture to learn N distinct
feature embeddings, which in turn are input to N individual reinforcement learners. Figure 1 shows
an architecture diagram for an ensemble with N worker policies, each attending to a different set of
features.

Each feature-learner consists of three components: a spatial feature extractor, an attention module,
and a global feature extractor. The spatial and global feature extractor are shared among all the
learners, but each learner has an individual attention module. The attention module encourages
each learner to attend to a different aspect of the input, thereby promoting diversity. The input
is passed through the shared spatial feature extractor first to obtain the spatial feature embedding
ϕ. This embedding is then passed to each attention module to obtain the attention mask, which
is multiplied with the spatial feature embedding to form an attention embedding ηi. Finally, each
attention embedding is passed through the global feature extractor to get the final feature embedding
µi. Each individual worker policy is conditioned on the features derived from the corresponding
member of the ensemble.

The ensemble minimizes the loss defined in Equation 1 with λtrain defined by the objective loss
of the reinforcement learning algorithm. Minimizing this loss encourages the agent to attempt to
learn a good policy using each of the feature sets, while keeping feature sets different from one
another. In this section, we use Proximal Policy Optimization (PPO) (Schulman et al., 2017) as the
reinforcement learner, but our method is compatible with any reinforcement learning algorithm.

Figure 1: Architecture for learning an ensemble of policies using Attention-Based Ensemble.

Each episode, a single ensemble member, known as the leader, is selected to govern action selection
and all members are trained on the experiences collected. The choice of leader has a big impact on

3



Under review as a conference paper at ICLR 2023

the ensemble performance when transferring to new tasks. If the leader is a portable policy, then
the ensemble will still be able to perform well during transfer. Otherwise, the ensemble will likely
fail. Since we repeatedly select a new leader every episode, it is natural to frame this as an N -armed
bandit problem (Sutton & Barto, 2018). We can view each choice of leader as a bandit-action and
the cumulative reward earned by the leader that episode the bandit-reward. We choose the leader
using an Upper Confidence Bound (LAI, 1985) method to balance exploration and exploitation. At
timestep t, we select leader Lt as follows:

Lt = argmax
i

[
Rcum

t (i) + c

√
ln t

Nt(i)

]
. (3)

Rcum
t (i) is the cumulative reward of ensemble member i at time t, Nt(i) denotes the number of times

that i has been elected leader prior to time t, and constant c controls the degree of exploration. The
first part of Eq. 3 can be understood as exploiting good arms, and the second part exploring others.

3.2 PROCGEN RESULTS

We showcase the effect of the attention-based ensemble on Procgen (Cobbe et al., 2020), a popular
benchmark for evaluating generalization in reinforcement learning. Procgen is a suite of procedu-
rally generated game environments, each offering many levels. Each level is a unique instance of
the game, differing in appearance—for example background colour or object shape—but represents
the same underlying game mechanism. We evaluated our approach on 8 games: Bigfish, Coinrun,
Dodgeball, Heist, Jumper, Leaper, Maze and Ninja1. Following Cobbe et al. (2020), we choose
PPO (Schulman et al., 2017) as the reinforcement learning algorithm. The training loss Ltrain is the
PPO loss detailed in Appendix B.2.

To provide intuition on the effect of the attention modules, we visualize the attention masks at a
single time-step of a 3-policy ensemble trained on the game Coinrun in Figure 2. Areas of high
attention (yellow) are accentuated by the attention module, while areas with low attention (dark
purple) have little effect on the final feature embedding space. Each ensemble member attends to
different aspects of the image, each of which represents a different set of features.

Figure 2: Visualization of the attention masks of a 3-policy ensemble trained on Coinrun, with
intensity represented by color. Each attention mask focuses on a different set of features.

We adapt the training scheme of Procgen to better align with the transfer learning paradigm. For
each game, we randomly select 20 training levels. The ensemble trains for 500k steps on each
level sequentially, maintaining knowledge obtained in previous levels. To evaluate, we compare the
average within-level performance across the 20 levels. In Figure 3, we plot the discounted episodic
reward achieved on each game, comparing 4 ensemble agents with different ensemble sizes 1, 2, 3,
and 5. The baseline agent with only one policy in the ensemble is equivalent to a PPO agent, because
the divergence loss in Equation 2 is zero and the attention-based ensemble architecture is equivalent
to the feature extraction layers in the PPO. For six out of the eight games, multi-member ensembles
outperform the 1-member ensemble, showing better skill transfer across levels. This demonstrates
that portable policies can be learned with an ensemble.

To confirm that the improved performance results from learning portable features instead of having
an ensemble of policies, which can bring benefits such as better exploration (Osband et al., 2016), we
repeat the experiment with the same ensemble of policy approach but with no attention-ensemble

1In consideration of computing resources, we set the difficulty level to easy

4



Under review as a conference paper at ICLR 2023

Figure 3: Learning curves of different ensembles of policies on 8 Procgen environments. The 4
different agents have an ensemble of 1, 2, 3, and 5 policies, respectively. On six of the environments,
multi-member ensemble agents are able to outperform the baseline agent. (10 random seeds; error
bars denote standard deviation.)

Figure 4: Ablation study of ensemble of policies without attention-ensemble feature learner on 8
Procgen environments. The 4 different agents have an ensemble of 1, 2, 3, and 5 policies, respec-
tively, but all policies share the same learned feature. (6 random seeds; error bars denote standard
deviation.)

feature learner. All policies in the ensemble will share a single learned feature. The results in
Figure 4 show that performance decreases without learning portable features for five out of eight
games.

We note that the optimal ensemble size varies for each game. This is an expected result because of
the differing complexities of the environments, which result in different numbers of possible useful
feature sets. When the ensemble size is too small, the learned feature representation may not be fine-
grained enough to generalize. On the other hand, an excessive number of ensemble members can
also degrade performance by spending too much time exploring policies that do not generalize, and
not enough time exploiting ones that do. We also draw attention to the importance of the exploration
constant c in the UCB algorithm (Equation 3). If c is too small, there is not enough exploration when
learning to choose the leader, essentially collapsing the ensemble agent to a 1-member ensemble.

5



Under review as a conference paper at ICLR 2023

4 PORTABLE OPTIONS WITH AN ATTENTION-BASED ENSEMBLE

The results from Section 3.2 show that agent policies can be generalized with an attention-based
ensemble. However, a portable option also requires a portable initiation and termination set. We
now extend the attention-based ensemble to an ensemble of classifiers that can be combined with
the ensemble of policies to learn a portable option. We first go over the construction of the ensemble
of classifiers in Section 4.1, and then explain how to combine it with an ensemble of policies to build
the portable options in Section 4.2.

4.1 ENSEMBLE OF CLASSIFIERS

Similar to the intuition in Section 3, we learn portable classifiers with an ensemble. We use the
attention-based ensemble to learn an ensemble of N classifiers, each trained on a unique set of
features. This increases the number of feature sets considered when learning the initiation and
termination sets, some of which will generalize.

Each classifier in the ensemble learns the set of states that make up the initiation and termination set.
The attention-based ensemble learns N diverse embedding spaces which are input to the classifiers.
The ensemble is trained using the objective function described by Equation 1, where the training loss
Ltrain is the classification loss when predicting whether a state is in the initiation or termination set
(here, binary cross entropy), with labels from the instantiating option’s classifier. In this paper we
use a two layer perceptron as the classifier, and train an ensemble of N = 8 classifiers.

Because not all classifiers in the ensemble are portable, we weight each classifier’s prediction by
the agent’s belief of its portability. In Section 3, we modeled this problem as an N -armed bandit
problem because only one policy can control action-selection during an execution and so successful
learning requires exploration. However, when querying the classifiers, we receive predictions from
all ensemble members, and so there is no need to explore. As such we can replace the N -armed
bandit model with a simpler Bayesian update rule

P (θi|Di) =
1

B(k + α, n− k + β)
θk+α−1
i (1− θi)

n−k+β−1 (4)

where given dataset Di, k out of n classifications are positive. θi ∈ [0, 1] is the prediction from
classifier i and α and β are selected to represent initial belief over portability. A full derivation of
this update rule can be found in Appendix A.

4.2 PORTABLE OPTIONS

We build a portable option using an ensemble of classifiers for the initiation and termination sets and
an ensemble of policies for the option policy. The training scheme of portable options is shown in
Figure 5. The portable option is first trained on the initial task instance (Figure 5 top green box). The
agent then explores the environment for possible new instantiations of the portable option (Figure 5
right red box). Finally, the new option instantiation is used to update the portable option after being
validated (Figure 5 left blue box). Instance discovery and validation of different instantiations can
occur concurrently as the agent continues to interact with the environment.

During discovery the agent uses the portable initiation set to identify new states in which the option
can be used, or instantiated. Once a new possible instantiation is identified, the portable option policy
is executed. If the option execution is successful (as shown in Figure 5), a new instantiation of the
option is created. Note that there is no supervision signal for successful executions of an option
when it is ported to new tasks because there is no guarantee that the reward function will align with
the option termination. As such, it is possible to incorrectly identify new option instantiations if
either both the initiation and termination sets fire on false positive states or, due to stochasticity in
the environment, the successful option execution cannot be reliably replicated. If the portable option
is updated using these incorrectly identified instantiations the option will degrade over time.

Therefore, we use the validation stage to refine discovered instantiations before updating the
portable option. During this stage the agent learns Markov classifiers that characterize the initi-
ation and termination sets of this single option instantiation, and is not portable. These Markov
classifiers remove the need for the agent to rely on the possibly unstable portable initiation and ter-
mination sets by learning the true initiation and termination sets of one task instance. Unreliable

6



Under review as a conference paper at ICLR 2023

Refinement

Well-trained
Markop classifiers

Portable 
Option

Initial training

Portable initiation
set triggers

Execute portable
policy

Portable termination
set triggers

Option execution
considered successful

Improve
portable option

Create Markov classifiers for
this option instantiation

Discovery of new
option instantiations

Validation of discovered
option instantiation

Figure 5: After a portable option is learned the agent continues to explore the environment, finding
new possible instantiations of the option. If a valid instantiation is found, this data is used to further
improve the portable option. This figures shows this process for a single successful option instanti-
ation.

option instantiations will “disappear” as the Markov classifiers learn that the initiation and termina-
tion are null sets and so the instantiation is not used to update the portable option. This ensures that
new instantiations are replicable. Finally, the portability belief over classifier ensemble members for
the initiation and termination sets is updated.

Before updating the portable option, we impose a check to ensure that the Markov classifiers are
“well-trained”. We expect a low classification loss for true positive states and, therefore, do not use
instantiations with a classification loss above a chosen threshold to update the portable option. This
is because, if a feature set is portable, true positive states should be almost indistinguishable from
that of previously seen states the classifier deemed positive.

After the validation phase, valid option instantiations are used to improve the portable option. This
is done by further training the portable initiation and termination sets on samples from the Markov
classifiers. The portable policy, however, continues to train during the validation stage.

4.3 MONTEZUMA RESULTS

In this section we validate portable option in the Atari game Montezuma’s Revenge, in which the
player must navigate a character through multiple rooms filled with enemies, obstacles, and trea-
sures. We define three options that can be utilized in multiple rooms across the game in Table 1. The
initiation and termination sets for these options are hand-labeled and only used for initial training
(see Figure 5) and evaluation but could in principle be learned by any skill discovery method (e.g.
Mannor et al. (2004); Şimşek & Barto (2004); McGovern & Barto (2001)).

The portable option is initially trained on the first room of Montezuma’s Revenge, then trained to
generalize on subsequent rooms. The portable option receives a stack of four 56×40 images around

7



Under review as a conference paper at ICLR 2023

OPTION INITIATION TERMINATION DESCRIPTION

Climb
Down
Ladder

The agent is on or
above a ladder.

The agent is on a
platform.

The agent climbs down the ladder to
the next valid platform.

Walk Left The agent can
move left without
dying.

The agent has
reached the left
edge of a platform
or a ladder.

The agent moves left until the platform
ends or a ladder is found.

Move Left
of Enemy

The agent is to
the right of an en-
emy.

The agent is to the
left of an enemy.

The agent must navigate to the left side
of the enemy without dying. We de-
fine a separate option for each enemy
because they require different policies.

Table 1: A description of options used in Montezuma’s Revenge. These options are selected because
they should be generalizable to many instances in the game.

the player as input. During initial training, we allow the ensemble of classifiers and ensemble of
policies to train until convergence, using the hand-designed initiation and termination sets to provide
labels for the classifiers. We then generalize the learned option by training on a collection of other
relevant task instances in multiple other rooms across the first level of the game, without hand-
designed information. For example, after initially training to descend the ladders of the first room,
we place the agent at the top of each ladder in subsequent rooms, and continue training the option
on the new ladders. The portable option trains on each new task 100 times through creating Markov
classifiers, updating its beliefs, and training the ensemble of policies.

While after initial training the agent is required to determine when an option execution was correct
without guidance from the environment, we still need a way to quantify option generalization to
validate our approach. We therefore use hand-designed initiation and termination sets for validation
and record the final distance from the true termination after option execution, normalized by the full
option distance. A perfect execution would result in a distance of 0. If the agent does not attempt
the option due to the initiation set not triggering, the distance is 1. If the agent dies during the option
execution, ending the episode, the recorded distance is again 1.

We record the option performance after initial training and after each subsequent training task (see
Figure 6). This is done by running the portable option on all defined tasks and reporting the per-
formance of the option on previously seen tasks and unseen tasks separately. The performance on
previously seen tasks is an indicator of whether the option has deteriorated while performance on
unseen tasks shows the option’s ability to zero-shot generalize. During evaluation, the portable op-
tion attempts each task 50 times and cannot make updates to its portability beliefs or ensemble of
policies and classifiers. Additionally, no Markov classifiers are created. We perform this experiment
with a multi-head ensemble which has 8 attention heads for the initiation and termination sets and 3
attention heads for the option policy. The experiment is repeated on a single-head ensemble which
uses one head for all option components and so does not learn diverse features.

Figures 6a and 6b show that the multi-head ensemble outperforms the single-head ensemble. Addi-
tionally, as more tasks are seen, the multi-head ensemble’s ability to zero-shot generalize improves,
indicating that the diverse features learned by the portable option helps generalization.

For Climb Down Ladder, task 4 and all tasks after task 6 require the agent to learn to avoid an
enemy, adding complexity to the initial training task as making contact with an enemy is considered
a failed execution. While the ensemble is able to complete these tasks before they are seen during
training, it is clear that training on these tasks heavily deteriorates the original option. After all tasks
are seen, the option fails on all previous tasks. This is because the ensemble loses confidence in
all classifier ensemble members as the agent fails to execute the option. However, while all tasks
require the agent to descend a ladder, it can be argued that ladders with enemies may require a
different option. Therefore, we likely need a mechanism that allows the ensemble to decide when a
new option instantiation should become a new option, which we leave for future work.

8



Under review as a conference paper at ICLR 2023

(a) Mean normalized distance from true termination
for the Climb Down Ladder option in Montezuma’s
Revenge averaged over 5 seeds.

(b) Mean normalized distance from true termination
for the Walk Left option in Montezuma’s Revenge av-
eraged over 5 seeds.

(c) Mean normalized distance from true termination
for the Move Left of Enemy option for spiders and
snakes in Montezuma’s Revenge averaged over 5
seeds.

(d) Mean normalized distance from true termination
for the Move Left of Enemy option for rolling skulls
in Montezuma’s Revenge averaged over 5 seeds.

Figure 6: Mean normalized distance from true termination for all Montezuma’s revenge experi-
ments.

We see a similar trend in the Walk Left option, where task 2 takes place in a room with disappearing
lasers. Due to the four frame stack, this is a partially observable hazard and so appears unpredictable
to the agent. We do see, however, that the option is able to recover from this task, with overall
performance on all seen tasks decreasing over time.

Avoiding the spider and snake enemies is harder than avoiding the rolling skull enemy. This is
evident in Figures 6c and 6d where the multi-head ensembles perform better on the rolling skull
compared to the snakes and spiders. However, we see again that the multi-head ensembles deteri-
orate over time, occasionally performing worse than the single-head ensembles. Similar to Climb
Down Ladder, the multi-head ensembles lose confidence in all classifiers in the ensemble if the agent
fails the option. This shows that the ability to identify valid option executions is critical to obtain
portable options.

5 CONCLUSION

In this work, we considered the problem of learning portable options. We proposed the use of an
attention-based ensemble that learns multiple, minimally-overlapping feature sets to increase the
probability of learning a portable feature set. We used this ensemble to learn a portable policy which
we tested on the Procgen benchmark. On six out of eight games we found that the ensemble of
policies improved performance, leading to faster generalization across levels. We then extended
the attention-based ensemble to classifiers, learning portable initiation and termination sets. We
combined the ensemble of policies and ensemble of classifiers to form a portable option which we
tested on the Montezuma’s Revenge Atari game. We found that portable options were able to reuse a
learned option in unseen rooms. For the portable option to improve over subsequent task executions
it is critical to identify valid option executions.

9



Under review as a conference paper at ICLR 2023

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. Advances in neural information processing systems, 30, 2017.

Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel
Mankowitz, Augustin Zidek, and Remi Munos. Transfer in deep reinforcement learning using
successor features and generalised policy improvement. In International Conference on Machine
Learning, pp. 501–510. PMLR, 2018.

Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

Tony F Chan, Gene H Golub, and Randall J LeVeque. Updating formulae and a pairwise algorithm
for computing sample variances. In COMPSTAT 1982 5th Symposium held at Toulouse 1982, pp.
30–41. Springer, 1982.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation to
benchmark reinforcement learning. In International conference on machine learning, pp. 2048–
2056. PMLR, 2020.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Learning invariant
feature spaces to transfer skills with reinforcement learning. arXiv preprint arXiv:1703.02949,
2017.

Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on Learn-
ing Representations, 2018.

Wonsik Kim, Bhavya Goyal, Kunal Chawla, Jungmin Lee, and Keunjoo Kwon. Attention-based
ensemble for deep metric learning. In Proceedings of the European conference on computer
vision (ECCV), pp. 736–751, 2018.

Roberta L Klatzky. Allocentric and egocentric spatial representations: Definitions, distinctions, and
interconnections. In Spatial cognition, pp. 1–17. Springer, 1998.

George Dimitri Konidaris and Andrew G Barto. Building portable options: Skill transfer in rein-
forcement learning. In IJCAI, volume 7, pp. 895–900, 2007.

TL LAI. Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6:
4–22, 1985.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Sergey Levine, Peter Pastor, Alex Krizhevsky, Julian Ibarz, and Deirdre Quillen. Learning hand-
eye coordination for robotic grasping with deep learning and large-scale data collection. The
International journal of robotics research, 37(4-5):421–436, 2018.

Shie Mannor, Ishai Menache, Amit Hoze, and Uri Klein. Dynamic abstraction in reinforcement
learning via clustering. In Proceedings of the twenty-first international conference on Machine
learning, pp. 71, 2004.

Amy McGovern and Andrew G Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

10



Under review as a conference paper at ICLR 2023

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via
bootstrapped dqn. Advances in neural information processing systems, 29, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. nature, 550(7676):354–359, 2017.

Özgür Şimşek and Andrew G Barto. Using relative novelty to identify useful temporal abstractions
in reinforcement learning. In Proceedings of the twenty-first international conference on Machine
learning, pp. 95, 2004.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(7), 2009.

Nicholay Topin, Nicholas Haltmeyer, Shawn Squire, John Winder, James MacGlashan, et al.
Portable option discovery for automated learning transfer in object-oriented markov decision pro-
cesses. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

A ENSEMBLE BELIEF UPDATE DERIVATION

Because the output of a classifier i, θi, is a value between 0 and 1, we use a Beta distribution for the
prior P (θi)

P (θi) =
1

B(α, β)
θα−1
i (1− θi)

β−1,

where α and β are selected to reflect our initial beliefs. Given data Di — if i made a correct
prediction — the likelihood a classifier is successful is modelled as a binomial distribution

P (Di|θi) =
(
n

k

)
θki (1− θi)

n−k

Using Bayes rule, we update our belief in each ensemble member using

P (θi|Di) =
1

B(k + α, n− k + β)
θk+α−1
i (1− θi)

n−k+β−1. (5)

B ARCHITECTURE AND HYPERPARAMETERS

B.1 ATTENTION-BASED ENSEMBLE ARCHITECTURE

The attention-based ensemble has three components, a spatial feature extractor, global feature ex-
tractor and attention module. The spatial feature extractor consists of a convolutional layer with 32
channels, kernel size of 3 and stride 1 followed by a max pooling layer with a kernel size of 2. Each
attention module is a convolutional layer with 32 channels and has a kernel size of 1 and stride 1.
We do not include bias in this layer. Furthermore, the attention outputs are normalized to between 0
and 1 with min-max normalization. The global feature extractor consists a convolutional layer, with
64 channels, kernel size of 3, and stride 2, followed by a max pooling layer with a kernel size of 2.
The output will also be flattened into a one-dimensional feature embedding.

For experiments on Montezuma’s Revenge, the global feature extractor has an appended Gated
Recurrent Unit (Cho et al., 2014) layer with a hidden size of 128. We found having this layer to
improve generalization performance.

11



Under review as a conference paper at ICLR 2023

B.2 PPO

Our PPO policy network consists of two linear layers, where the output feature size is 256 and 15,
respectively. The weights of the second layer are initialized with a (semi) orthogonal matrix, and
the bias to 0. The output of the policy is fed into the value network to predict the value. The value
network is simply a linear layer with output feature size 1.

The PPO agents are optimized according to the loss function proposed by Schulman et al. (2017).
At time step t, the loss of the network θ is the combination of three parts

LCLIP+VF+S
t (θ) = −Et[L

CLIP
t (θ)− c1L

VF
t (θ) + c2S[πθ](st)].

The clipped objective is

LCLIP
t (θ) = E[min(rt(θ)Ât, clip(rt(θ, 1− ϵ, 1 + ϵ))Ât)],

where Ât is an advantage estimator. The value function loss is

LVF
t = (Vθ(st)− V targ

t )2.

Finally, S denotes an entropy bonus.

B.3 Q NETWORK

For experiments on Montezuma’s Revenge, the ensemble of policies has the same structure of an
attention-based ensemble followed by policy networks. Each policy network is a q function, parame-
terized by a neural network with two linear layers. The first layer outputs embeddings of dimension
64, and the second layer outputs q values of dimension 18. The policy selects actions using an
epsilon-greedy scheme, where the epsilon parameter is being decayed linearly through time.

The updates to the q function uses samples collected and stored in a replay buffer. We weight each
sample with Hindsight Experience Replay (Andrychowicz et al., 2017).

C ENVIRONMENT SETTINGS

C.1 PROCGEN ENVIRONMENT

For all the experiments in Procgen, we use 8 parallel environments to speed up learning. The dis-
count factor is set to γ = 0.999. We always center the image observations on the game character.

We normalize the reward function using the Parallel Algorithm Chan et al. (1982).

The results in Figure 4 report the discounted episodic return for every time step. Furthermore, the
episodic rewards are smoothed over a sliding window of 100 episodes.

C.2 MONTEZUMA’S REVENGE ENVIRONMENT

We use a frame stack of four previous time steps, where each frame is a crop of the game screen
with the rectangular area around the player sprite, as input to the portable option. The size of the
agent space is 56 × 40 pixels centered around the player. During option training in the first room,
we ignore the environment reward, and instead only reward +1 when an option succeeds, and 0
otherwise.

While the portable option is trained using these cropped images, the Markov classifiers are trained
on the player’s position in the game.

D EXPERIMENT HYPERPARAMETERS

12



Under review as a conference paper at ICLR 2023

Table 2: PPO ensemble of policies hyperparameters.

HYPERPARAMETER VALUE

c1 0.5
c2 0.01
Clip (likelihood ratio & value function) 0.2
Maximum L2 norm for gradient clipping 0.5
Agent update period 256
Batch size 1024
Number epochs per gradient update 3
Learning rate 5× 10−4

λ-return 0.95
Replay buffer size 105

Bandit exploration weight c 500
Embedding distance function Euclidean distance
mdiv 1000

Table 3: Q-function ensemble of policies hyperparameters.

HYPERPARAMETER VALUE

Hidden layer output size 128
Discount rate 0.9
Target update interval 10
Exploration algorithm Linear decay epsilon greedy
Initial epsilon 1.0
Final epsilon 0.01
Epsilon decay steps 106

Ensemble size 3
Replay buffer size 105

Batch size 32
Learning rate 2.5× 10−4

Bandit exploration weight c 100
Embedding distance function Euclidean distance
mdiv 1

Table 4: Ensemble of classifiers hyperparameters.

HYPERPARAMETER VALUE

Ensemble learning rate 10−4

Classifier learning rate 10−2

α 100
β 10
Maximum loss 3× training loss
Initial embedding training epoch 100
Initial classifier training epoch 50
Batch size 32
Markov classifier interaction minimum 100
Maximum time steps before option timeout 50
Embedding distance function Euclidean distance
Markov Classifier Architecture Two-class support vector machine
mdiv 1

13


	Introduction
	Background and Related Work
	Portable Policies with an Attention-Based Ensemble
	Ensemble of Policies
	Procgen Results

	Portable Options with an Attention-Based Ensemble
	Ensemble of Classifiers
	Portable Options
	Montezuma Results

	Conclusion
	Ensemble Belief Update Derivation
	Architecture and Hyperparameters
	Attention-Based Ensemble Architecture
	PPO
	Q Network

	Environment Settings
	Procgen Environment
	Montezuma's Revenge Environment

	Experiment Hyperparameters

