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Abstract
Although the method of enhancing large lan-001
guage models’ (LLMs’) reasoning ability and002
reducing their hallucinations through the use003
of knowledge graphs (KGs) has received004
widespread attention, the exploration of how to005
enable LLMs to integrate the structured knowl-006
edge in KGs on-the-fly remains inadequate. Re-007
searchers often co-train KG embeddings and008
LLM parameters to equip LLMs with the abil-009
ity of comprehending KG knowledge. How-010
ever, this resource-hungry training paradigm011
significantly increases the model learning cost012
and is also unsuitable for non-open-source,013
black-box LLMs. In this paper, we employ014
complex question answering (CQA) as a task to015
assess the LLM’s ability of comprehending KG016
knowledge. We conducted a comprehensive017
comparison of KG knowledge injection meth-018
ods (from triples to natural language text), aim-019
ing to explore the optimal prompting method020
for supplying KG knowledge to LLMs, thereby021
enhancing their comprehension of KG. Con-022
trary to our initial expectations, our analysis023
revealed that LLMs effectively handle messy,024
noisy, and linearized KG knowledge, outper-025
forming methods that employ well-designed026
natural language (NL) textual prompts. This027
counter-intuitive finding provides substantial028
insights for future research on LLMs’ compre-029
hension of structured knowledge.030

1 Introduction031

By pretraining on vast amounts of data from vari-032

ous information sources, Large Language Models033

(LLMs), such as GPT-3 (Brown et al., 2020), Chat-034

GPT, GPT-4 and LLaMA (Touvron et al., 2023),035

provide both regular users and researchers with036

a comprehensive and extensive foundational tool,037

which store a significant amount of information and038

can perform a wide range of tasks. However, when039

dealing with domain-specific knowledge, LLM of-040

ten struggles to answer questions related to spe-041

cialized knowledge or even generates statements042
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Figure 1: The method of KG-enhanced LLM.

that are factually incorrect – a phenomenon known 043

as hallucination (Ji et al., 2023). In the current re- 044

search community, the factual knowledge within 045

a multitude of domains is stored in the form of 046

knowledge graphs (KGs) respectively (Rizun et al., 047

2019). Consequently, researchers have conducted 048

extensive research on the combination of KGs and 049

LLMs. 050

As shown in Figure 1, KG-enhanced LLM is cat- 051

egorized into two primary stages: the training stage 052

and the inference stage (Pan et al., 2024). Encoding 053

the KG and injecting these distributed representa- 054

tions as a trainable parameter into LLM enables 055

it to understand the semantic meaning hidden in 056

structured knowledge (Zhang et al., 2019; Rosset 057

et al., 2020). However, the increasing size of cur- 058

rent models causes a significant resource-hungry 059

problem. Moreover, training LLMs with billions of 060

parameters may encounter limitations, especially 061

when the model structure, training data, or training 062

methods are not publicly accessible (Ufuk, 2023). 063

In the enhancement stage, the integration of graph 064

neural networks with path reasoning methods is 065

essential for identifying potential reasoning paths. 066

The performance of LLMs depends on the KG in- 067

ference module (maybe need training). However, 068
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this approach lacks the consideration for leverag-069

ing LLMs in the process of KG understanding and070

reasoning.071

Consequently, researchers have recently shown072

a keen interest in exploring how to supply high-073

quality relevant knowledge to pre-trained LLMs via074

constructing optimal prompts, thereby facilitating075

the model’s comprehension of KG (Sorensen et al.,076

2022; White et al., 2023; Li et al., 2023; Wen et al.,077

2023; Hu et al., 2024). This more lightweighted078

approach involves converting the KG into linearly079

represented triples, reasoning paths, or natural lan-080

guage (NL) textual representations (sentences or081

a paragraph) and concatenating them to the input082

prompt to query the LLMs. To compensate for the083

loss of structured information, researchers strive to084

generate NL texts by effectively organizing struc-085

tured knowledge (Sun et al., 2020; Brate et al.,086

2022). However, the generation of KG-to-text it-087

self poses a significant challenge when dealing with088

sub-graphs containing numerous triples (tens or089

even hundreds).090

In this work, we use complex question answer-091

ing (CQA) based on KG to assess the LLM’s un-092

derstanding of externally injected KG knowledge.093

When LLM answers questions, it always needs to094

acquire the latest knowledge from external sources095

to assist in precise answering. Understanding the096

externally injected information, integrating it with097

the information inherent to LLM, are essential abil-098

ities for solving QA tasks. Therefore, choosing099

QA tasks to examine the model’s knowledge under-100

standing capability is the mainstream choice (Lan101

et al., 2021; Pan et al., 2024). The answers to such102

questions often extend beyond simply listing entity103

aliases; they involve tasks such as counting, sorting,104

comparing, judging authenticity, and other situa-105

tions that require LLM’s reasoning abilities (Tan106

et al., 2023).107

Following the intuitive cognition, compared with108

the structured data, we hypothesize that the NL tex-109

tual data should be easier for LLMs to understand110

since it better aligns with the corpus (mostly writ-111

ten in NL) used for LLM pretraining (Zhou et al.,112

2023). To validate this hypothesis, we propose the113

following research questions: 1) How does sub-114

graph injection at varying scales impact LLM’s115

reasoning ability in KGQA? 2) What is LLM’s116

reasoning performance in a completed KG? 3) Is117

fluently organized knowledge of natural language118

texts superior to disorganized structured knowl-119

edge? 4) How robust are LLMs when dealing120

with sub-graphs from noisy or incomplete KG? 5) 121

What factors should be considered when designing 122

the prompt framework to leverage KG as external 123

knowledge? 124

Based on the aforementioned questions, we con- 125

ducted an evaluation of LLM’s comprehension of 126

KG across various dimensions using a unified ex- 127

perimental metric. Our experiments produce in- 128

triguing findings when the LLM with billions of 129

parameters: 130

• LLMs consistently outperform well-crafted 131

and fluent text prompts when presented with 132

disorganized, noisy, and abstract knowledge 133

prompts. This indicates their proficiency in or- 134

ganizing and understanding structured knowl- 135

edge, which is beyond our expectations. 136

• Superfluous or irrelevant information does not 137

necessarily degrade the reasoning capabilities 138

of LLMs. They can enhance accuracy beyond 139

expectations by discarding irrelevant informa- 140

tion or harnessing relevant details. 141

• Even the marginally relevant knowledge can 142

bolster the reasoning performance of LLMs. 143

Experimental results show that the applica- 144

bility of prompts with different knowledge- 145

injection patterns varies for different LLMs. 146

Prompts that perform well on certain models 147

may not necessarily be effective on other mod- 148

els. Researchers need to conduct refined ex- 149

periments to identify the knowledge-injection 150

prompts that are more universally applicable. 151

2 Related Works 152

Extensive research conducts on injecting KG 153

knowledge into LLM during training, enabling 154

LLM to grasp the semantic meaning of the KG 155

embeddings by co-training (Sun et al., 2019; Liu 156

et al., 2020; Xiong et al., 2019; Su et al., 2021; He 157

et al., 2021; Arora et al., 2022; Chen et al., 2022). 158

ERNIE (Sun et al., 2019) is a notable approach 159

that improves LLM by using knowledge masking 160

techniques, including entity-level and phrase-level 161

masking. K-BERT (Liu et al., 2020) recognizes 162

the problem of knowledge noise caused by an over- 163

whelming amount of triple input and suggests a soft 164

position mechanism and a visible matrix to reduce 165

this negative impact. Colake (Sun et al., 2020) sug- 166

gests that relevant contextual knowledge can also 167

boost the performance of LLM. Although these 168
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Figure 2: The impact of different KG on LLM.

methods have shown progress with relatively small-169

scale LLMs, their applicability to larger LLMs170

(such as GPT-3) poses challenges that require care-171

ful consideration of data processing, model struc-172

ture, training methods, and other aspects. Further-173

more, this line of approaches are not applicable to174

the untrainable LLMs (for instance ChatGPT and175

GPT-41).176

Triple-to-text generation has also been exten-177

sively studied as an alternative to KG comprehen-178

sion. This line of work normally translates triple179

into NL text and then sends the NL text as ex-180

ternal information to LLMs. To address the se-181

mantic gap between triples and natural language182

text, KBGen (Banik et al., 2012) employs a two-183

step approach containing content selection and sur-184

face realization to generate text. Similarly, (Zhu185

et al., 2019; Moryossef et al., 2019; Tang et al.,186

2022) treat such the triple-to-text conversion as a187

Seq2Seq task, utilizing the language model for the188

conversion. Graph neural networks (GNNs) are189

also employed for this generation task to extract190

structural information from KG sub-graphs (Zhao191

et al., 2020; Guo et al., 2020).192

However, training the model to convert KG193

triples into NL text requires the text to fully cover194

the semantics of the triples, and the text needs to195

be fluent, natural, and easy for the model to un-196

derstand. This introduces additional computational197

costs to the model and even worse, a sub-optimal198

translation model may exert a negative influence199

on the downstream tasks, i.e., error propagation.200

1https://openai.com/gpt-4

3 Methods 201

This section presents our technical approach for 202

evaluating the LLM’s comprehension of KGs 203

through the KG-based CQA task. In the KGQA 204

task, whether it involves deducing answers from a 205

multi-hop sub-graph related to the central entity or 206

generating structured queries using semantic pars- 207

ing, these operations necessitate the utilization of 208

KG knowledge (in the form of triples). In cases 209

where training LLM becomes impractical (for in- 210

stance ChatGPT and GPT-4), it becomes necessary 211

to investigate the efficacy of LLM in addressing 212

problems involving KG at the textual level. 213

3.1 LLM’s Understanding of Sub-graphs 214

We utilize SPARQL queries in the KGQA dataset to 215

assist us in generating all reasoning paths. Specif- 216

ically, we deployed a local start-point to retrieve 217

all the variables in the constraints (namely in the 218

"where" section) of the SPARQL. It is worth not- 219

ing that originating from the subject entity of a 220

question, multiple core reasoning paths exist in the 221

KG, encompassing varying entities or relations, all 222

leading to the identical answer node. We utilize all 223

these multi-hop paths to conduct sub-graph expan- 224

sion. 225

We anticipate that the LLM will be capable of 226

providing answers by traversing such multi-hop 227

sub-graphs along core reasoning paths that are as- 228

sociated with the answers. However, considering 229

the constrained input length of the LLM, it becomes 230

impractical to provide a fully populated KG as in- 231

put. In order to quantitatively evaluate the impact 232

of different scales of KG sub-graphs on QA, we 233

propose a sub-graph generation method. 234
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Figure 2a illustrates that the number of neigh-235

boring nodes and the number of hops expanded236

from each node on the core reasoning path are237

controlled by the parameters expanded nodes and238

depth. This controlled generation of sub-graphs al-239

lows us to precisely analyze the impact of KG scale240

on LLM. We have defined six levels of expansion241

methods as follows: (1) The sub-graph remains242

unexpanded, preserving only the core reasoning243

path. (2) Each node on the core path expands to244

a neighboring node with a 50% probability of re-245

tention. (3) Each node on the core path expands246

to a neighboring node. (4) Each node on the core247

path expands to two neighboring nodes, each at a248

distance of one hop. (5) Each node on the core249

path expands to a neighboring node, which is two250

hops away. (6) Each node on the core path expands251

to two neighboring nodes, both at a distance of252

two hops. According to this rule, levels (4) and (5)253

have the same number of nodes in the sub-graphs254

but exhibit different structures. This facilitates the255

observation of LLM’s inference performance on256

multi-hop sub-graphs.257

In order to inject knowledge into LLM, we refer258

to existing literature and devise five levels of KG259

injection methods: (1) Omitting KG sub-graphs260

(Without Triples). (2) Providing only unordered261

linearized triples (Triples). (3) Combining triples262

that share the same head and tail entities to form263

meta paths (Gao et al., 2020) (Meta Paths). (4)264

Utilizing heuristic rules to convert meta paths into265

natural language texts (Wang et al., 2022) (Natural266

Language Generated by Rules). (5) Employing a267

text generation model to convert meta paths into NL268

texts (Tang et al., 2022) (Fluent Natural Language).269

Different combinations of extension and injection270

modes can form a total of 25 possible combinations271

(Omitting KG sub-graphs is treated as one method,272

irrespective of the KG size). In the experimental273

section, we will thoroughly analyze the outcomes274

of these combinations.275

3.2 Multi-hop Reasoning Capabilities of LLM276

As discussed in Section 2, the NL text generated277

by the underperforming triple-to-text generation278

model will affect LLM’s ability to understand KG279

and further perform CQA. To eliminate the impact280

of the Triple-to-text model on LLM, we leverage281

a Relation Extraction (RE) benchmark to gener-282

ate QA pairs, in which the document and its rele-283

vant ground-truth triples are provided. Since the284

triples in each document can represent the logi-285

cal structure of the entities, we consider them as a 286

comprehensive knowledge graph mapping the doc- 287

ument. Specifically, to generate QA pairs based on 288

each document, we adopted the dataset construc- 289

tion method employed in LC-QuAD 2.0 (Dubey 290

et al., 2019). We first filled the triples into many 291

different templates and constructed questions, and 292

then used ChatGPT to paraphrase the questions, 293

ensuring the diversity and complexity of questions. 294

Following this approach, as illustrated in Figure 2b, 295

we generated 1-hop, 2-hop, and 3-hop questions 296

for each document. This serves as the evaluation 297

dataset to assess the LLM’s ability to answer com- 298

plex questions based on the ground-truth KGs. 299

Figure 2b illustrates the composition of the 300

dataset. Additionally, apart from injecting the KG 301

corresponding to the document, we firmly believe 302

that the document itself represents fluent natural 303

language text corresponding to this KG. By uti- 304

lizing this dataset, we can eliminate any doubts 305

regarding the model performance of KG-to-text 306

generation, which may impact the sub-graph under- 307

standing evaluation task and hinder the effective- 308

ness of the injection. 309

3.3 Robustness of LLM to Noisy Sub-graphs 310

In order to assess the capacity of LLM to com- 311

prehend noisy sub-graphs, we systematically sab- 312

otaged the external knowledge within the inject- 313

ing sub-graphs. Specifically, we employ three ap- 314

proaches to alter the sub-graphs: (1) Nodes are 315

proportionally deleted randomly. (2) Nodes are 316

proportionally replaced with random irrelevant KG 317

nodes. (3) All core reasoning paths in the sub- 318

graph are removed. To ensure a smooth transition 319

when replacing and deleting elements based on 320

percentages, we employ the max expanded sub- 321

graph(expanded nodes=2, depth=2, details can be 322

found in Section 4.2). The operation of deletion 323

and replacement is shown in Figure 2c, and its ra- 324

tio ranges from 10% to 90%. The way to delete 325

the core reasoning path is to delete all the green 326

nodes in the graph. Deleting the core reasoning 327

path can be viewed as a complete destruction of the 328

path from the start-point node to the target node, 329

preventing the utilization of other nodes as inter- 330

mediate steps to reach the target. 331

3.4 KG Prompt Engineering 332

When it proves challenging to incorporate struc- 333

tured knowledge into the LLM through training, 334

we turn to prevalent retrieval-augmented genera- 335
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tion (RAG) techniques (Asai et al., 2023; Tang and336

Yang, 2024; Cuconasu et al., 2024; Yu et al., 2022).337

We explore a prompt method, treating triples as338

external data, to find the injection approach most339

suitable for LLMs.340

We construct the training data using all triples341

and questions present in the dataset, employing a342

BERT-based cross-encoder to assess the relevance343

of the triples to the questions. The correlation score344

of a triple to a question is computed as follows:345

Score = CrossBERT (Triple [TRI] Question),
(1)346

where [TRI] is the special token that separates347

triples and questions. We can view the Score as348

the probability of a certain triple appearing in the349

question’s reason path.350

During the inference, according to the equa-351

tion 1, we use the cross-encoder model to com-352

pute Score, and select the top 100 triples that have353

the highest Score from the KG as candidates. We354

perform the following operations on these triples355

to compose the relevance labels based on the356

Score : 1) Grouping: the triples are segregated357

into three groups based on two thresholds, namely358

the most relevant, moderately correlated, and low-359

correlation triples. The relevance label is the360

group a triple belongs to. 2) Ranking: we don’t361

have relevance label for Ranking, instead, we362

rank the candidate triples in descending order based363

on the Score and concatenate them in reverse or-364

der. 3) Scoring: the relevance label is Score.365

We append the relevance labels after the triples366

(illustrated in Table 6, Appendix A.2), explicitly367

informing the model about the confidence score of368

this input triple, and feed the triples together with369

the question into LLM to generate answers. We370

discuss model training and hyperparameter settings371

in Appendix A.2.372

4 Experiment373

Given the vast size of the training data, the external374

knowledge we provide to the LLM does not nec-375

essarily imply that the model has not previously376

learned this information. We do not want to cre-377

ate zero-shot knowledge that the model has never378

seen before. Instead, we want to use some false379

facts to evaluate the model’s robustness to noisy380

knowledge. A prevalent scenario is that despite the381

model’s understanding of certain knowledge, it still382

struggles with fact-intensive multi-hop reasoning383

tasks (Zhang et al., 2023). To address these chal-384

lenges, techniques such as prompt engineering or 385

RAG retain substantial significance for the LLMs. 386

Our experiment aims to explore the five questions 387

raised in the Introduction. 388

4.1 Experimental Setup 389

4.1.1 Evaluation metrics 390

Referring to ChatGPT’s evaluation research for the 391

KGQA task (Tan et al., 2023), we compare the 392

string similarity between the LLM’s predicted an- 393

swers and the gold answers to the question, using 394

an empirically set threshold of 0.7. The final score 395

is determined by the proportion of questions an- 396

swered correctly. We discuss the detailed informa- 397

tion on input format in Appendix A.1. 398

4.1.2 Datasets and LLMs 399

Wikidata (Vrandečić and Krötzsch, 2014) is a large- 400

scale, high-quality knowledge graph that is up- 401

dated frequently. We carefully chose three KGQA 402

datasets, i.e., QALD-7 (Usbeck et al., 2017), LC- 403

QuAD 2.0 (Dubey et al., 2019), and KQAPro (Cao 404

et al., 2020), that resort to SPARQL queries to 405

retrieve knowledge from the underlying KG, Wiki- 406

data. The QALD-7 dataset has 215 train questions 407

and 50 test questions written in NL. The LC-QuAD 408

2.0 dataset has 24k train questions and 6046 test 409

questions. The KQAPro dataset consists of 94K 410

train questions and 10k test questions. 411

From the training and test datasets of QALD-7, 412

we filtered out questions whose reasoning paths did 413

not meet our expansion rules, contained wrong an- 414

swers or involved with single-hop SPARQL queries. 415

After filtering, there are 64 questions left in QALD- 416

7. For LC-QuAD 2.0 and KQAPro, we randomly 417

sampled 2000 questions from each dataset, consid- 418

ering the high time cost when calling the interface 419

of ChatGPT. 420

For evaluating LLM’s ability to understand a 421

completed KG, we chose DocRED (Yao et al., 422

2019). DocRED is a document-level RE dataset, 423

where entities and relations in this dataset can be 424

linked to Wikidata. The dataset consists of 5053 425

Wikipedia documents, each associated with a set 426

of human-annotated KG triples. This dataset em- 427

phasizes cross-sentence reasoning, thus each docu- 428

ment’s mapping triples can form a complete small 429

KG where entity nodes connect with each other 430

through multi-hop relations. We consider this small 431

KG as a complete structured representation of all 432

entities and relations involved in the document. Fol- 433

lowing this approach, we select 800 documents 434

5



Knowledge Injection Method
Without Triples Unordered Triples Meta Paths Natural Language Generated by Rules Natural Language

Expanded
Node Ratio

Expanded
Nodes

Hop
ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b ChatGPT Vicuna 7b Vicuna 13b

0% 0 0 71.45 14.35 60.82 84.01 74.59 78.02 84.01 70.00 73.29 75.07 60.71 71.44 73.62 60.33 65.65
33.33% 0.5 1 71.45 14.35 60.82 84.00 66.44 79.42 84.00 66.38 76.18 76.04 53.61 74.59 69.28 46.81 68.79

50% 1 1 71.45 14.35 60.82 84.01 72.41 79.90 84.01 72.19 73.14 71.21 39.76 61.54 57.68 38.60 52.85
66.67% 2 1 71.45 14.35 60.82 84.01 67.34 81.11 84.01 60.05 77.00 68.55 47.67 64.69 59.86 47.00 55.27
66.67% 1 2 71.45 14.35 60.82 84.01 58.65 78.21 84.01 58.55 73.14 68.31 48.26 57.68 54.54 38.84 52.76

QALD-7

85.72% 2 2 71.45 14.35 60.82 82.56 65.70 77.00 81.35 60.77 74.30 67.34 50.92 50.91 63.96 37.54 60.10
0% 0 0 16.42 2.60 13.47 50.80 36.76 46.62 50.29 33.47 39.53 23.28 11.32 17.34 21.12 10.04 16.88

33.33% 0.5 1 16.42 2.60 13.47 51.61 36.37 45.75 50.16 31.88 39.12 26.98 14.13 21.10 23.32 10.54 18.12
50% 1 1 16.42 2.60 13.47 51.71 35.95 42.43 48.55 30.73 38.22 24.47 12.12 20.47 20.49 10.79 17.70

66.67% 2 1 16.42 2.60 13.47 51.24 35.18 43.73 47.57 29.38 36.29 23.13 12.59 18.91 19.34 9.74 17.04
66.67% 1 2 16.42 2.60 13.47 51.35 33.97 44.96 48.82 30.11 37.66 23.85 11.52 19.69 21.00 9.44 17.27

LC-QuAD 2.0

85.72% 2 2 16.42 2.60 13.47 50.60 32.84 42.98 47.23 28.53 36.20 21.80 10.80 18.03 17.94 8.92 15.14
0% 0 0 15.77 3.55 10.29 49.33 23.10 36.69 48.10 22.09 27.74 34.93 12.19 18.88 27.15 10.88 15.77

33.33% 0.5 1 15.77 3.55 10.29 51.45 25.39 33.33 49.97 23.35 28.61 29.89 12.08 18.79 23.57 10.68 15.54
50% 1 1 15.77 3.55 10.29 52.54 25.64 31.60 50.78 24.72 28.22 28.80 12.39 19.07 23.60 10.51 15.30

66.67% 2 1 15.77 3.55 10.29 52.46 28.47 31.04 50.00 25.42 27.24 28.19 12.36 18.93 22.54 9.70 14.77
66.67% 1 2 15.77 3.55 10.29 54.19 26.85 32.72 51.45 25.39 27.77 28.61 11.27 16.89 23.33 8.47 12.67

KQAPro

85.72% 2 2 15.77 3.55 10.29 54.03 27.63 32.75 51.51 25.70 28.58 22.60 10.23 15.30 17.20 7.49 11.49

Table 1: The understanding of sub-graphs by LLMs.

(each map to a 3-hop sub-graph) and generate 1-435

hop, 2-hop, and 3-hop questions for each sub-graph436

(document). We use ChatGPT, Vicuna 7B, and437

13B (Zheng et al., 2023) to evaluate all data, and438

all model parameters are fixed.439

4.2 Results and Findings440

4.2.1 How does sub-graph injection at varying441

scales impact LLM’s reasoning ability in442

KGQA?443

We initiate the expansion of the sub-graph by ex-444

panding the neighboring nodes of the core reason-445

ing path in the KG. As illustrated in Figure 2a, we446

are using depth to indicate how many hops of the447

expansion will be, and expanded nodes to denote448

the number of neighbor nodes that are selected as449

the expanded nodes each hop, which is an iterative450

process. By regulating the scale of the sub-graph,451

we can ascertain the ratio of core reasoning triples452

amidst all the triples of the KG sub-graph. Table 1453

presents the results of LLM’s performance in CQA,454

considering various scale sub-graphs and different455

methods of knowledge injection.456

In Table 1, the bold result denotes the maximum457

value for each model, observed row-wise, with un-458

ordered triples consistently outperforming other459

methods, including the NL text. The limited size460

of the QALD-7 dataset and its simplicity initially461

obscure the advantages of our approach. However,462

upon increasing the complexity of the questions463

and expanding the data scale (In LC-QuAD 2.0 and464

KQAPro), unordered triples demonstrated superior465

performance in knowledge injection. An underline466

signifies the maximum value of column-wise sub-467

graph expansion in each dataset. We find that a468

sub-graph with a high proportion of core inference469

paths does not necessarily yield the strongest model470

inference performance. Contrarily, the inclusion of 471

irrelevant yet correct triples can actually enhance 472

the model’s performance. This observation aligns 473

with findings from recent research (Cuconasu et al., 474

2024), which shows that irrelevant noise documents 475

can improve the performance of RAG. Based on 476

the results, we can draw the following conclusions: 477

1) Models with larger parameters always yield su- 478

perior performance in that the 13B model generally 479

outperforms the 7B model while ChatGPT exhibits 480

the best performance. 2)LLM infused with any 481

form of relevant knowledge consistently outper- 482

forms LLM without infusion by a significant mar- 483

gin. This demonstrates the importance of knowl- 484

edge provision and highlights knowledge infusion 485

as a cost-effective method. 3) Table 1 shows that 486

when the size of the sub-graph is enlarged within 487

the range of the LLM input length, the performance 488

degradation is not obvious, and sometimes even in- 489

creases. Furthermore, comparing the setting of 490

‘expanded nodes=2’ with ‘depth=1’ and the setting 491

’expanded nodes=1’ with ’depth=2’, the structure 492

of the expanded nodes are different from each other. 493

However, LLM is not sensitive to such the struc- 494

tural changes, but focuses on the knowledge of the 495

triples. 496

4.2.2 What is LLM’s reasoning performance 497

in a completed KG? 498

In this experiment, we investigate the performance 499

differences of the model when facing complex ques- 500

tions of varying difficulty levels, ranging from 1- 501

Hop to 3-Hop. As described in Section 4.1.2, the 502

triples mapping to each DocRED document are 503

manually annotated, ensuring the completeness of 504

sub-graphs. We evaluated 800 documents that meet 505

the criteria for three-hop QA. We employed two 506

methods of information injection: direct injection 507
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DOCRED 800 Questions ChatGPT Vicuna 7b Vicuna 13b
1-Hop Text 25.25 14.88 27.62

1-Hop Triple 73.38 50.13 60.13
2-Hop Text 14.25 9.50 15.37

2-Hop Triple 19.88 11.00 16.38
3-Hop Text 14.00 8.63 13.87

3-Hop Triple 18.25 10.50 14.75

Table 2: Multi-hop QA for completed KG.

of all triples in completed KG and direct injection508

of the document. The injected triples are also ran-509

domly shuffled. In the case of LLM, utilizing the510

given triples to deduce the structural information511

of the KG is essential to address questions. Simi-512

larly, the document’s text exhibits a rigorous logi-513

cal structure, yet it also encompasses an abundance514

of intricate details, thereby posing a non-trivial515

challenge for LLM in extracting question-relevant516

knowledge from its contents.517

The experimental results are shown in Table 2.518

Notably, LLM exhibits exceptional proficiency in519

addressing 1-hop questions, thereby showcasing its520

capacity to directly locate answers within the set521

of triples. However, when confronted with exten-522

sive textual content encompassing diverse details,523

LLM encounters difficulty in effectively retrieving524

question-relevant information. This observation525

reveals LLM’s inherent limitation in fact extrac-526

tion from natural language text. Furthermore, the527

performance of LLMs drops significantly when528

answering questions with more than 2 hops, sug-529

gesting that improving the reasoning capabilities530

of models is still an important research area.531

4.2.3 Is fluently organized knowledge of532

natural language texts superior to533

disorganized structured knowledge?534

In the DocRED dataset, the NL document and535

its corresponding triples are manually annotated.536

Therefore, we consider the document and their537

mapping triples as ground-truth KG-to-text pairs,538

serving as a complement to the potential issues539

in Table 1. In Table 1, we hypothesized that the540

model’s performance degradation under NL text541

prompts could be attributed to the lack of an opti-542

mized KG-to-text model. However, the triples in543

this experiment were derived from manually anno-544

tated natural language documents, which refutes545

our hypothesis. In Table 2, we consider the doc-546

ument as the most reasonable and fluent natural547

language text generated from the triples, which548

assists us in eliminating the concern presented in549

Table 1 regarding the potential decline in LLM per-550

formance caused by the subpar quality of the text 551

generated by the MVP model (Tang et al., 2022). 552

When compared to methods that inject knowl- 553

edge using NL text, LLM with structured knowl- 554

edge consistently performs better. Fluent NL texts 555

may introduce noise, such as function words, which 556

can hinder LLM’s ability to reorganize the core 557

structured knowledge that it should pay attention to. 558

This indicates that LLM has a strong understand- 559

ing capacity for the structured input knowledge and 560

excels in reasoning on the structured knowledge, 561

surpassing our initial expectations. 562

4.2.4 How robust are LLMs when dealing 563

with sub-graphs from noisy or 564

incomplete KG? 565

Replacement and deletion operations require a 566

larger number of triples. In order to make the num- 567

ber of triples as large as possible, we choose to ex- 568

pand each node in Table 1 to 2 adjacent nodes and 569

to 2 hops. Deletion operation simulates incomplete 570

KG scenario. In the replacement operation, the 571

sub-graph is attacked, and some nodes are replaced 572

to generate false fact information and simulate a 573

noisy sub-graph. We randomly delete and replace 574

KG sub-graphs according to specified percentages. 575

Based on Table 3, we have the following two find- 576

ings: 1) The random replacement of nodes in KG 577

has a more significant impact on the inference per- 578

formance of LLM compared to the random deletion. 579

Incorrect facts are more likely to result in erroneous 580

model outputs. In some instances, the model can 581

provide correct answers without reliance on any 582

external knowledge; however, the introduction of 583

noisy knowledge can lead to erroneous model out- 584

puts. We show this case in A.3. 2) When triples 585

are injected as external knowledge, the model’s ro- 586

bustness to noisy knowledge decreases as its size 587

increases. Despite larger models demonstrating 588

superior answering performance, they exhibit a 589

greater performance loss when subjected to ran- 590

dom replacement and deletion of KG knowledge. 591

There exists an inverse proportionality between a 592

model’s robustness and its size. 593

4.2.5 What factors should be considered when 594

designing the prompt framework to 595

leverage KG as external knowledge? 596

The results of the knowledge prompt injection 597

methods, designed in Section 3.4, are shown in 598

Table 4. We observed that the performance of vari- 599

ous prompt methods is inconsistent across different 600
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ChatGPT Vicuna 7b Vicuna 13b
QALD-7 LC-QuAD 2.0 KQAPro QALD-7 LC-QuAD 2.0 KQAPro QALD-7 LC-QuAD 2.0 KQAPro

Ratio Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace Delete Replace
0% 82.56 82.56 50.60 50.60 54.03 54.03 65.70 65.70 32.84 32.84 27.63 27.63 77.00 77.00 42.98 42.98 32.75 32.75

10% 82.08 80.62 47.84 47.74 51.57 52.04 64.44 58.89 31.07 32.20 26.12 26.23 72.85 78.21 41.66 40.55 31.32 31.24
20% 82.08 80.62 46.23 46.02 49.66 49.91 70.00 58.65 31.83 29.59 26.09 26.17 75.51 81.16 39.43 39.43 30.96 31.07
30% 80.39 79.90 44.18 43.60 46.95 46.87 62.95 59.08 29.51 28.10 23.52 24.58 74.59 78.70 38.57 38.85 28.94 29.81
40% 80.39 79.90 42.49 42.41 43.82 44.10 55.27 57.68 27.83 27.47 23.60 23.94 77.00 73.84 36.12 36.83 27.93 28.19
50% 80.39 80.39 40.78 40.28 41.02 41.33 66.86 59.66 27.78 26.03 21.95 21.87 76.52 74.35 34.57 35.09 26.26 27.88
60% 80.39 80.39 36.25 35.99 37.28 37.08 63.24 61.30 24.50 22.56 21.37 19.16 75.31 78.21 33.50 32.94 25.53 25.36
70% 75.56 75.56 31.87 31.72 32.33 32.02 63.00 48.74 21.82 19.44 18.06 16.69 73.62 68.07 30.54 27.36 23.01 23.38
80% 65.85 63.91 26.28 25.82 27.21 27.46 50.00 47.25 18.54 16.50 14.57 13.49 65.17 66.14 25.56 23.79 20.41 20.25
90% 62.42 54.30 19.16 17.64 19.91 19.77 46.64 45.02 13.21 11.98 10.49 9.82 57.51 56.23 18.48 17.51 14.15 14.90

Degradation
Ratio

20.14 28.26 31.44 32.96 34.12 34.26 19.06 20.68 19.63 20.86 17.14 17.81 19.49 20.77 24.50 25.47 18.60 17.85

Table 3: Randomly delete and replace nodes in the sub-graph. The Degradation Ratio quantifies the discrepancy
between the model’s peak performance and its poorest performance. Values in bold denote the maximum, while
underlined values signify the second highest. Larger models exhibit the most pronounced performance degradation
when faced with attacks.

ChatGPT Vicuna 7b Vicuna 13b
Data Set

Grouping Ranking Scoring Grouping Ranking Scoring Grouping Ranking Scoring
QALD-7 84.11 84.11 84.11 63.84 64.54 53.64 75.52 77.81 72.4

LC-QuAD 2.0 48.71 50.01 52.48 33.49 35.72 26.14 45.1 45.13 42.57
KQAPro 50.25 52.29 54.03 27.74 31.32 24.92 36.05 37.64 35.12

Table 4: KG prompt engineering. Distinct models exhibit unique preferences towards various prompting methods.

Dataset ChatGPT Vicuna 7b Vicuna 13b
QALD-7 79.42 (71.45) 53.73 (14.35) 72.13 (60.82)

LC-QuAD 2.0 27.51 (16.42) 18.37 (2.60) 23.17 (13.47)
KQAPro 30.09 (15.77) 18.82 (3.55) 22.18 (10.29)

Table 5: KG without reason path. In brackets are the
performance of the model without any knowledge (form
Table 1).

models. ChatGPT favors the knowledge injection601

method that incorporates confidence scores, while602

the Vicuna series exhibits a preference for ranking603

methods. This discrepancy may be attributed to604

variations in the training data and inherent tenden-605

cies of the respective models. This finding suggests606

that when designing a prompt method, the applica-607

bility of a given lightweight method across multiple608

models should be considered.609

We discovered that when we delete triples up610

to 90%, the ability of LLM to answer questions611

consistently improved compared to having no in-612

formation at all. In Table 5, We specifically re-613

moved all core reasoning paths within a sub-graph614

and observed that as long as some triples were615

present (even if they weren’t particularly relevant),616

the QA performance of LLM remained superior to617

providing no information. This situation is illus-618

trated in the Appendix A.3. We hypothesize that619

these triples stimulate LLM thinking with question-620

related information, thus driving the model’s abil-621

ity to generate accurate answers. This underscores622

the importance of designing rigorous experiments623

when proposing a knowledge injection method, 624

in order to validate the robustness of the method. 625

For instance, the results from the ablation studies 626

demonstrate that adding low-correlation triples or 627

noisy knowledge does not significantly enhance the 628

performance of the LLM. 629

5 Conclusion 630

In this work, we investigate the proficiency of LLM 631

in comprehending KG knowledge through chal- 632

lenging KGQA tasks. Experiments show that the 633

presence of redundant or irrelevant knowledge does 634

not necessarily diminish the reasoning capability of 635

LLM. In fact, it can enhance accuracy by filtering 636

out irrelevant information and leveraging relevant 637

details, surpassing our initial expectations. LLMs 638

consistently outperform well-crafted and fluent text 639

prompts when confronted with disorganized, noisy, 640

and abstract knowledge inputs. This demonstrates 641

their proficiency in organizing and comprehend- 642

ing structured knowledge beyond what we antic- 643

ipated. Moreover, when incomplete KG or noisy 644

sub-graphs are introduced, LLM consistently out- 645

performs scenarios without any structured knowl- 646

edge. This discovery emphasizes the necessity for 647

researchers to conduct rigorous experiments to vali- 648

date the effectiveness of their proposed frameworks. 649

Additionally, the preference for KGs among dif- 650

ferent models warrants the community’s attention, 651

necessitating ample experimental validation when 652

proposing frameworks for LLMs. 653
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6 Limitations654

Despite our extensive research on LLMs’ under-655

standing of KGs, this paper presents certain limita-656

tions.657

We utilized the QALD-7 (Usbeck et al., 2017)658

dataset for our study. However, the simplicity and659

limited number of questions within this dataset660

present a challenge. To conduct quantitative sub-661

graph expansion experiments, we imposed strict662

restrictions on the inference path of the dataset. For663

instance, since the data from QALD-7 contains too664

many simple questions that do not meet the restric-665

tion of a 2-hop limitation, and some nodes in the666

core reasoning path also do not meet the augmenta-667

tion method proposed in this paper, questions that668

do not meet the requirements are removed. After669

applying these stringent filters, the number of ques-670

tions meeting the criteria in each dataset was fur-671

ther reduced. This issue is particularly pronounced672

with the QALD-7 dataset, potentially biasing the673

evaluation results and complicating our analysis.674

Furthermore, we restricted our study to datasets675

based on Wikidata, which inherently limits the676

dataset selection. However, as the largest knowl-677

edge base that continues to be updated and devel-678

oped, Wikidata remains the best choice. Other679

KGs, including DBpedia (Lehmann et al., 2015)680

and YAGO (Pellissier Tanon et al., 2020), have681

ceased updates. In the future, we will consider eval-682

uating our model on different KG-based datasets.683

Owing to the constraints of paper length, an anal-684

ysis of model interpretability in the experimental685

results is not included. Due to the limitations of686

black-box models and training difficulty, our work687

has not explored the principles of understanding688

structured knowledge by models at the vector level.689

This will serve as the focus of our subsequent re-690

search. In the future, we will continue research691

into understanding why the counter-intuitive phe-692

nomena discussed in this paper occur in certain693

open-source LLMs.694
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A Appendix 932

A.1 LLM Input 933

As illustrated in Figure 3, the input to the LLM is 934

primarily divided into four components: task in- 935

struction, in-context learning examples, external 936

knowledge, and questions. Within the instruction 937

section, we impose constraints on the model’s out- 938

put mode, mandating that different questions must 939

be answered according to the prescribed format. 940

For example, if the answer pertains to an entity, 941

we stipulate that the answer should be presented 942

as a list of entities devoid of any explanations. For 943

counting questions, only numerical values are per- 944

missible. Unanswerable questions are indicated by 945

returning None. This specification ensures that the 946

format of the model’s responses consistently aligns 947

with our unified evaluation process. 948

You need to give me answers to the question I ask you. 
When answering, you don't need to give a detailed 
explanation, just provide the answers. If a question has 
multiple answers, they can be separated by commas. If you 
can't understand the question or give the exact answers, you 
can just reply "None". Here are some examples:

You can refer to these information in brace to better answer 
the question: {(Seaview, located in the administrative 

territorial entity, New Jersey), …}

Question: What is the country club with the lowest slope 
settled down in New Jersey?
Answer:

Question: Who is the daughter of Robert Kennedy married to?
Answer: Paul Hill, Andrew Cuomo.
Question: What was the first Queen album?
Answer: Queen.
Question: N / A N / A
Answer: None.

Task 
Instruction

In-context
Learning
Examples

External
Knowledge

Question

Figure 3: The structure of the input. The knowledge
component is provided in triple format, and alternative
formats (such as meta path or sentence) can be used to
represent the knowledge.

During the experiment, we observed certain 949

cases where the LLM’s replies still failed to meet 950

our criteria, occasionally returning sentences or 951

blocks of text. To address this issue, we refer to 952

the concept of in-context learning, wherein we pro- 953

vided multiple examples resembling the question 954

to guide the model towards producing responses 955

in the desired format. Regarding the knowledge 956

injection method, we augmented the prompt with 957
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text derived from the KG, encompassing various958

formats, and supplied it to the LLM as additional959

knowledge. Finally, we appended the NL question960

that requires answers at the end of the model input.961

A.2 Cross Encoder Training and Prompt962

Engineering963

We utilize the BERT-Base (Devlin et al., 2018) as964

the foundation for our model. The training data965

comprises triples and corresponding questions. We966

partition the dataset into training and test sets in967

an 8:2 ratio. Triples in the reasoning path linked968

to the question are labeled as positive examples;969

otherwise, they are designated as negative exam-970

ples. For the cross-encoder, the batch size is set971

at 50, we experimented with initial learning rates972

of {5e-4, 2e-5, 5e-5, 2e-5}, and the learning rate973

decays every 3 epochs. We set the multiplicative974

factor, gamma, for updating the learning rate to 0.2.975

Upon training the model, it exhibits an accuracy976

of 98.89% in determining whether triples are per-977

tinent to the question, i.e., whether they are part978

of the crucial reasoning path. This cross-encoder979

is employed to assign scores to the questions and980

their associated triples. By setting thresholds of981

0.3 and 0.8 at either end to segment the triples, we982

can categorize them into high, medium, and low983

correlation groups relative to a question.984

After the assignment of scores to triples by the985

cross-encoder, Table 6 illustrates the organizational986

format of the structured knowledge to the ques-987

tion "What trade structure did Straight to the point988

Gehry design?". This component is incorporated989

into the LLM as knowledge. For details on the990

incorporation format, refer to Appendix A.1.991

A.3 Qualitative Example Study992

We employ ChatGPT as our baseline model to elu-993

cidate the influence of external knowledge on the994

reasoning capability of the model. As shown in995

the first and second rows of Table 7, the model996

tends to commit errors when directly responding997

to the questions. Nevertheless, upon integrating998

a sub-graph devoid of inference paths, the model999

succeeds in providing correct responses. This is at-1000

tributable to the model’s capacity to draw analogies1001

from similar knowledge, even though the external1002

knowledge does not proffer direct answers. As il-1003

lustrated in rows three and four of Table 7, 90%1004

of the triples in the knowledge we gave have been1005

replaced by wrong entities, which contain a lot of1006

noisy knowledge. The model can provide correct1007

Injection
Method

Knowledge Prompt

Grouping Here are some triples that are highly rel-
evant to the question: (DZ Bank building,
architect, Frank Gehry), (Gehry Tower, in-
stance of, office building), ... Here are some
triples that are likely relevant to the ques-
tion: (IAC Building, architect, Frank Gehry),
(Gehry Tower, architect, Frank Gehry) ...
Here are some triples that are less relevant
to the question: (Toledo Museum of Art, ar-
chitect, Frank Gehry), (Vlado Miluni, notable
work, Dancing House), ...

Ranking The triples are sorted from high to low ac-
cording to their relevance score to the ques-
tion for your reference: (DZ Bank building,
architect, Frank Gehry), (Dancing House, in-
stance of, office building),(Gehry Tower, ar-
chitect, Frank Gehry), (Dancing House, archi-
tect, Frank Gehry), (IAC Building, instance
of, office building), ...

Scoring You can refer to these information to bet-
ter answer the question. Each triple is
followed by a confidence score of its rel-
evance to the question, which helps in solv-
ing the question: {(DZ Bank building, ar-
chitect, Frank Gehry) | 0.9981}, {(Toledo
Museum of Art, architect, Frank Gehry) |
0.0019}, {(Gehry Tower, instance of, office
building) | 0.998}, {(Vlado Miluni, notable
work, Dancing House) | 0.0023}...

Table 6: Prompt Orgnization.

answers when responding directly, however, the 1008

introduction of erroneous external knowledge leads 1009

to incorrect responses from the model. This indi- 1010

cates that the model lacks robustness against noisy 1011

information and is significantly influenced by the 1012

introduction of external inaccuracies. 1013
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Question Knowledge Without
Knowl-
edge
Answer

With
Knowl-
edge
Answer

Correct
Answer

Which is the calling for
the field of occupation
of manga?

without reason path: (Jack Bauer, occupation, field
agent), (field agent, instance of, profession), (Comic
Gum, intended public, seinen), (manga, subclass of,
manga), (seinen, subclass of, manga), (comedian, occu-
pation, comedian), (Son Gokb, creator, Akira Toriyama),
(field agent, occupation, field agent), (Nozomu Tamaki,
occupation, mangaka), (Dragon Ball GT, after a work
by, Akira Toriyama), (Akira Toriyama, occupation,
mangaka), (seinen, intended public, seinen), (Douglas
Adams, occupation, comedian), (comedian, instance of,
profession)

Illustration,
story-
telling,
comic art.

mangaka mangaka

Is it true that David Ko-
resh’s given name was
David or Wayne?

without reason path: (Waco siege, instance of, religious
persecution), (Wayne Shorter, given name, Wayne),
(David Bowie, given name, David), (Dave Arneson,
given name, David), (religious persecution, statement
supported by, David Koresh)

False. True. True.

Which is the island
country for the nation of
pound sterling?

90% replace: (Germany, diplomatic relation, Bahrain),
(South Holland, contains the administrative territorial
entity, Nieuw-Lekkerland), (Antwerp, twinned adminis-
trative body, Rotterdam), (Nieuw-Lekkerland, contains
the: administrative territorial entity, Nieuw-Lekkerland),
(Nieuw-Lekkerland, contains the administrative terri-
torial entity, Nieuw-Lekkerland), (Nieuw-Lekkerland,
instance of, village), (Antwerp, twinned administra-
tive body, Rotterdam), (South Holland, contains the
administrative territorial entity, Spijkenisse), (Nieuw-
Lekkerland, instance of, village), (South Holland, con-
tains the administrative territorial entity, Rijnsburg),
(South Holland, contains the administrative territorial
entity, Nieuw-Lekkerland), (South Holland, contains the
administrative territorial entity, Rijnsburg), (Rijnsburg,
contains the administrative territorial entity, Rijnsburg),
(Nieuw-Lekkerland, instance of, village), (Rijnsburg, in-
stance of, village), (European Netherlands, has part(s),
South Holland)

United
Kingdom.

None. United
Kingdom.

What is the inverse class
for fiction?

90% replace: (The Night Watch, genre, historical fic-
tion), (Gerry Adams, position held, Mary Lou McDon-
ald), (Sinn Fin, chairperson, Mary Lou McDonald),
(Sinn Fin, chairperson, Mary Lou McDonald), (Gerry
Adams, position held, Mary Lou McDonald), (Mar-
tin McGuinness, member of political party, Sinn Fin),
(Gerry Adams, position held, Mary Lou McDonald),
(Sinn Fin, chairperson, Mary Lou McDonald), (Lynn
Boylan, member of political party, Sinn Fin), (2001
United Kingdom general election, followed by, 2005
United Kingdom general election), (Martin McGuin-
ness, candidacy in election, 2005 United Kingdom gen-
eral election), (Martin McGuinness, member of political
party, Sinn Fin), (2005 United Kingdom general election,
candidate, Sinn Fin), (Mary Lou McDonald, replaced by,
Mary Lou McDonald), (Martin McGuinness, member
of political party, Sinn Fin), (Lynn Boylan, member of
political party, Sinn Fin), (Martin McGuinness, mem-
ber of political party, Sinn Fin), (Martin McGuinness,
member of political party, Sinn Fin), (Gerry Adams, po-
sition held, Mary Lou McDonald), (Martin McGuinness,
member of political party, Sinn Fin)

nonfiction. historical
fiction.

Non-
fiction.

Table 7: The impact of external knowledge on LLM inference performance.
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