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ABSTRACT

Synthetic time series generation (TSG) is crucial for applications such as privacy
preservation, data augmentation, and anomaly detection. A key challenge in TSG
lies in modeling the multi-modal distributions of time series, which requires simul-
taneously capturing diverse high-level representation distributions and preserving
local temporal fidelity. Most existing diffusion models, however, are constrained
by their single-space focus: latent-space models capture representation distribu-
tions but often compromise local fidelity, while data-space models preserve local
details in the data space but struggle to learn high-level representations essential
for multi-modal time series. To address these limitations, we propose L2D-Diff,
a dual-space diffusion framework for synthetic time series generation. Specifi-
cally, L2D-Diff first compresses input sequences into a latent space to efficiently
model the distribution of time series representations. The distribution then guides a
data-space diffusion model to refine local data details, enabling faithful generation
of time series distribution without relying on external conditions. Experiments
on both single-modal and multi-modal datasets demonstrate the effectiveness of
L2D-Diff in tackling unconditional TSG tasks. Ablation studies further highlight
the necessity and impact of its dual-space design, showcasing its capability to
achieve representation coherence and local fidelity.

1 INTRODUCTION

Time series data is critical in domains such as finance, healthcare, biotechnology, and climate science.
However, restricted access to temporal datasets, especially in privacy-sensitive contexts, often limits
the progress of machine learning models. Synthetic time series generation (TSG) has emerged as a
promising solution, leveraging deep learning techniques to create realistic data that replicates complex
temporal dependencies and multidimensional correlations (Zhou et al., 2023; Alaa et al., 2021; Ang
et al., 2023; Yuan & Qiao, 2024). These synthetic datasets retain their utility for downstream tasks
such as classification and forecasting (Esteban et al., 2017; Ang et al., 2023; Yuan & Qiao, 2024).

Generative adversarial networks (GANs) (Goodfellow et al., 2014) were the preferred approach for
TSG (Esteban et al., 2017; Li et al., 2022; Mogren, 2016; Pei et al., 2021; Yoon et al., 2019). Despite
their success, GANs face challenges such as adversarial training instability and mode collapse,
limiting their effectiveness in generating diverse and robust time series. Recently, diffusion models
(Yang et al., 2023), particularly denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020),
have gained prominence due to their superior perceptual quality and stable training dynamics. These
advancements have led to significant progress in generative AI tasks (Yang et al., 2023), with diffusion
models excelling in areas such as image editing (Huang et al., 2024), image generation (Cao et al.,
2024), and video generation (Xing et al., 2024).

While diffusion models have achieved remarkable success in images and videos, their application
to time series presents unique challenges. Unlike visual data, time series generation requires the
simultaneous modeling of multi-modal latent structures and the preservation of local temporal fidelity.
This involves capturing intricate temporal relationships and managing complex interdependencies
across variables, both of which are essential for accurately modeling real-world time series patterns.
Addressing these challenges is crucial for extending the capabilities of diffusion models to TSG.

Recent works on time series diffusion primarily focus on conditional generation tasks such as fore-
casting (Rasul et al., 2021; Shen & Kwok, 2023; Kollovieh et al., 2024) and imputation (Tashiro et al.,
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2021; Alcaraz & Strodthoff, 2022). For instance, TimeGrad (Rasul et al., 2021) employs recurrent
neural networks to summarize history as conditions for denoising future values. Similarly, TimeDiff
(Shen & Kwok, 2023) introduces autoregressive initialization and future mixup to enable efficient
non-autoregressive prediction. CSDI (Tashiro et al., 2021) adopts self-supervised masking techniques,
while Alcaraz & Strodthoff (2022) enhance CSDI by replacing transformers with structural state space
models (Gu et al., 2021), improving long-range temporal modeling. These studies primarily focus
on leveraging conditional information, designing robust conditioning networks, and constructing
effective denoising architectures to address specific supervised tasks. In contrast, synthetic time
series generation focuses on unconditionally producing high-quality time series (modeling the data
distributions) that replicate the statistical properties of the original dataset (Ang et al., 2023).

Recent approaches to unconditional generation (Park et al., 2024; Yuan & Qiao, 2024; Crabbé et al.,
2024; Naiman et al., 2024a; Zhou et al., 2023) can be broadly divided into two categories:

i) Data-space diffusion models, which directly model the raw time series distribution. Exam-
ples include Park et al. (2024), who employ diffusion bridges to map prior distributions to time
series, enabling flexible and accurate synthesis. Diffusion-TS (Yuan & Qiao, 2024) integrates
seasonal-trend decomposition with diffusion models and introduces a Fourier-based objective to
better capture periodic patterns. Similarly, FourierDiffusion (Crabbé et al., 2024) operates within
the frequency domain, replacing traditional Brownian motion with mirrored Brownian motion to
enhance its ability to model periodic behaviors. Other methods, such as Naiman et al. (2024a),
transform time series into images and apply vision-based diffusion models to synthesize data.

data latent cascaded

TimeGrad ✓ p p
CSDI ✓ p p
TimeDiff ✓ p p
TSDE ✓ p p
TimeLDM p ✓ p
LDT p ✓ p
DiffusionTS ✓ p p
MG-TSD ✓ p ✓
mr-Diff ✓ p ✓

L2Diff (proposed) ✓ ✓ ✓

Table 1: Comparing related diffusion methods.
“data” refers to directly modeling the time series
distribution in the data space. “latent” indicates
learning the distribution of representations in a
latent space. “cascaded” denotes using multiple
diffusion models for generation.

ii) Latent-space diffusion models, which operate on
compressed representations obtained through pre-
defined transformations (e.g., Fourier transform) or
learned nonlinear encoders. Representative meth-
ods such as TimeLDM (Qian et al., 2024) and
latent diffusion transformer (LDT) (Feng et al.,
2024) achieve computational efficiency by work-
ing in a lower-dimensional latent space. This com-
pression helps preserve structural representations
within the data distributions. However, the reliance
on encoder-decoder architectures introduces an in-
formation bottleneck, which risks discarding fine-
grained temporal details and limits the fidelity of
the generated outputs.

While latent-space diffusion models excel at cap-
turing high-level semantic structures through com-
pressed representations, they often struggle to pre-
serve subtle temporal dynamics. The process of
dimensionality reduction can result in the loss of
fine-grained details, thereby reducing the diversity
and fidelity of the generated outputs. On the other hand, data-space diffusion models perform iterative
denoising directly on the raw time series, effectively capturing localized temporal patterns with
high precision. However, their focus on local details makes it difficult to comprehensively model
representation distributions.

To address these challenges, we transition from unconditional diffusion in the data space to latent-
to-data conditional diffusion, which balances representation distributions with local temporal data
distributions. Specifically, we propose L2D-Diff, a latent-to-data diffusion framework that integrates
the strengths of latent-space modeling and data-space refinement to overcome the limitations of
unconditional generation. L2D-Diff operates in two complementary stages: i) Latent-space coarse
generation: A latent diffusion model captures representation distributions by representation learning
techniques. ii) Data-space refinement: A subsequent denoising process integrates the global latent
codes into the data space, enabling fine-grained temporal precision and ensuring consistency with
the original data distribution. This two-stage approach ensures both global consistency and local
precision, enabling realistic, semantically rich, and high-fidelity time series generation. To the best of
our knowledge, we are the first to study the latent-to-data cascaded diffusion model for synthetic time
series generation.
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Some initial attempts have been proposed in the contexts of image generation and graph modeling.
For example, in the representation-conditioned generation (RCG) framework (Li et al., 2024), a
pre-trained image encoder is used to first obtain image representation distributions, which then
condition the image distributions. This is further extended to the generation of graphs in (Wang et al.,
2024). Another model EDDPM (Liu et al., 2019) uses parameterized encoding-decoding in a unified
space to generalize the Gaussian noising-denoising in standard data-space diffusion. However, the
development of hybrid models for time series generation is still under-explored.

Note that some cascaded time series diffusion models exist, including (Fan et al., 2024; Shen et al.,
2024). For example, as mr-Diff (Shen et al., 2024), which employs multiple diffusion models to
learn coarse-to-fine trend distributions. In contrast, our proposed L2D-Diff is a cascade of a latent-
space diffusion model and a data-space diffusion model, emphasizing the transition from latent
representations to the data space. Table 1 provides a comparison between the proposed method and
related works.

2 PRELIMINARIES

Problem definition. Let T = {x(1), . . . ,x(N)} be a dataset with N multivariate time series samples.
Each x(i) = (x

(i)
1 , . . . ,x

(i)
L ) with x

(i)
t ∈ RD can be represented as a D-by-L matrix, where D is the

number of variables and L is the time series length. The goal of synthetic time series generation (TSG)
is to create a synthetic dataset T gen = {x̃(1), . . . , x̃(N ′)} such that its distribution q(T gen) is similar
to the true distribution p(T ), exhibiting consistent statistical properties and temporal dynamics. This
is an unconditional generation task. Importantly, we require each synthetic time series x̃(i) to also be
of length L and contain D variables, ensuring compatibility with the original dataset structure.

2.1 DENOISING DIFFUSION PROBABILISTIC MODELS

Denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) is a latent variable model with
forward diffusion and backward denoising processes.

Forward diffusion. A time series input1 x0 is gradually corrupted to a Gaussian noise vector. At the
kth step, xk is generated by corrupting the previous iterate xk−1 (scaled by

√
1− βk) with zero-mean

Gaussian noise (with variance βk ∈ [0, 1]):

q(xk|xk−1) = N (xk;
√
1− βkx

k−1, βkI), k = 1, . . . ,K.

It can be shown that q(xk|x0) = N (xk;
√
ᾱkx

0, (1− ᾱk)I), where ᾱk = Πk
s=1αs, and αk = 1−βk.

Thus, xk can be simply obtained as

xk =
√
ᾱkx

0 +
√
1− ᾱkϵ, (1)

where ϵ is a noise from N (0, I). This equation also allows x0 to be easily recovered from xk.

Reverse denoising. At the kth denoising step, xk−1 is generated from xk by sampling from the
normal distribution:

pθ(x
k−1|xk) = N (xk−1;µθ(x

k, k),Σθ(x
k, k)). (2)

Here, the variance Σθ(x
k, k) is usually fixed as σ2

kI, while the mean µθ(x
k, k) is defined by a neural

network (parameterized by θ). This is usually formulated as a noise estimation or data prediction
problem (Benny & Wolf, 2022). For noise estimation, a network ϵθ predicts the noise of the diffused
input xk, and then obtains µθ(x

k, k) = 1√
αk

xk − βk√
αk

√
1−ᾱk

ϵθ(x
k, k). Parameter θ is learned by

minimizing the noise estimation loss Lϵ = Ek,x0,ϵ

[
∥ϵ− ϵθ(x

k, k)∥2
]
.

Alternatively, the data prediction strategy uses a denoising network xθ to obtain an estimate xθ(x
k, k)

of the clean data x0 given xk, and then set

µθ(x
k, k) =

√
αk(1− ᾱk−1)

1− ᾱk
xk +

βk
√
αk

1− ᾱk
xθ(x

k, k). (3)

1Here, superscript 0 means the original input without diffusion.
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Then, θ is learned by minimizing the following loss

Lx = Ex0,ϵ,k∥x0 − xθ(x
k, k)∥2. (4)

When a condition c is accessible, the following distribution is considered (Rasul et al., 2021; Tashiro
et al., 2021; Shen & Kwok, 2023)

pθ(x
0:K |c)=p(xK)

K∏
k=1

pθ(x
k−1|xk,F(c)), (5)

where xK ∼ N (0, I). F is a conditioning network that takes the condition c as input. Correspond-
ingly, the denoising process at step k is

pθ(x
k−1|xk, c)=N (xk−1;µθ(x

k, k|F(c)), σ2
kI), (6)

where k = K,K − 1, . . . , 1.

Data sampling. During inference, let the generated sample corresponding to xk be x̂k. We first
initialize x̂K as a noise vector from N (0, I). By repeatedly running the denoising step in Equation
(6) till k = 1, the final generation is x̂0.

2.2 LATENT-SPACE DIFFUSION MODELS

Latent-space diffusion models (LDMs) Rombach et al. (2022) consist of two main components: (i)
pretaining process and (ii) latent diffusion. The pretraining process is commonly performed based
on optimizing a representation learning task, such as masked modeling or contrastive learning. It
involves an encoder, which maps time series x ∈ RD×L to a lower-dimensional (fixed-length) latent
space r ∈ Rd, and a decoder, which generates x from r. Subsequently, a diffusion model is applied
on the latent code r. The forward diffusion process in latent space is:

rk =
√
ᾱkr

0 +
√
1− ᾱkϵ. (7)

The reverse process is learned by a denoising network rϕ:

pϕ(r
k−1|rk) = N (rk−1;µϕ(r

k, k),Σϕ(r
k, k)). (8)

The training objective minimizes the following loss:

Lr = Er0,ϵ,k∥r0 − rϕ(r
k, k)∥2. (9)

3 METHODOLOGY

Overview. The proposed cascaded diffusion model, L2D-Diff, is illustrated in Figure 1. As shown,
L2D-Diff integrates two collaborative diffusion/denoising branches: one in the latent space and the
other in the data space. The latent-space branch models the distribution of high-level representations
in time series, offering a compressed yet structured understanding of temporal patterns. To construct
the latent space, an encoder-decoder pair is pretrained using masked modeling-based representation
learning optimization, ensuring that the latent representations are meaningful and informative. Then,
the data-space branch models the probability density function of the time series data guided by the
representation distributions, capturing fine-grained temporal details. To bridge these two branches,
a latent-to-data conditioning mechanism is introduced. This module enables latent representations
to guide the denoising process in the data space, ensuring seamless coordination between the
representation distribution and the data distribution. This design enables L2D-Diff to effectively
capture high-level temporal patterns in the latent space while achieving data detail generation in the
data space, guided by the latent variables.

3.1 DUAL-BRANCH DIFFUSION DESIGN

Latent Space Construction. Given an input time series x ∈ RD×L, where D represents the number
of channels and L the sequence length, we perform a pretraining task based on masked modeling to
derive a compact, high-level representation r ∈ Rd, with d ≪ L×D.

4
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Encoder

representation distribution

Latent-space diffusion

Latent-to-data condition

Data-space diffusion

Denoising network

time series

sampling
(at inference)

target
(for training)

noised input denoised output

conditions

Figure 1: Framework of the proposed L2D-Diff for time series generation.

In this process, a random subset of the input tokens is masked according to a binary mask m ∈
{0, 1}D×L, where mi,j = 1 indicates that the token (i, j) is masked. The masked input xmasked is
obtained by replacing the masked positions with special mask tokens. The encoder E processes
the corrupted input xmasked, generating a latent representation r = E(xmasked). The decoder D
reconstructs the original input x from the latent representation r. The optimization objective is
designed to minimize the reconstruction error at the masked positions only: Lpretraining = ∥m⊙ (x−
D(E(xmasked)))∥22, where ⊙ denotes element-wise multiplication, ensuring that only the masked
positions contribute to the loss.

Latent-Space Diffusion. After pretraining, input x is encoded into the representation r = E(x).
Intuitively, r encapsulates the high-level temporal characteristics of x. We then introduce a latent-
space diffusion model, denoted rϕ (where ϕ denotes its parameters), to model the distribution of r
over S diffusion steps. The diffused representation rs is obtained from r0 (= r) following (7):

rs =
√
ᾱsr

0 +
√
1− ᾱsϵ, (10)

where ϵ is the Gaussian noise, ᾱs governs the noise level at step s (1 ≤ s ≤ S), and S is the total
number of latent diffusion steps.

To train rϕ, we minimize the denoising loss in (9), which encourages rϕ to recover the original
representation r0 from its noisy counterpart rs:

Llatent = Er0,ϵ,s∥r0 − rϕ(r
s, s)∥2. (11)

Data-Space Diffusion. The data-space diffusion model regenerates the full-resolution series x ∈
RD×L, guided by the representation encoded in the latent space. This latent-to-data diffusion
mechanism allows each position in the data-space series xt to attend to the latent code r, effectively
injecting structural priors into local refinements.

Following (4), the diffusion model is optimized by minimizing the denoising loss

Ldata = Ex0,ϵ,k∥x0 − xθ(x
k, k,F(c))∥2, (12)

where xθ is the denoising network, c is the condition, and F is the conditioning network. In practice,
F is implemented as a convolutional neural network (5 layers by default).

At each denoising step k, xθ takes three inputs: noisy input xk ∈ RD×L, timestep k and the
conditioning network’s output F(c) (where c is the condition), while producing a data estimate
xθ(x

k, k,F(c)).

3.2 LATENT-TO-DATA CONDITIONING

Conditioning Network. In L2D-Diff, unconditional time series generation is reformulated as
conditional generation, which leverages the latent-space sampled representation r̂ as a condition for

5
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Stock Energy ETTh River. T.P. ECG M.I. A.D. Atrial. J.V. C.T.

L2D-Diff 0.31 0.53 0.45 0.32 0.21 0.11 0.08 1.29 1.15 0.46 0.28

Diffusion-TS 0.49 0.82 4.75 1.24 1.69 1.95 3.10 1.66 2.39 1.93 3.57
TSDE 3.90 4.13 - 0.26 2.83 1723.0 0.85 2.60 - 3.97 4.70

mr-Diff 41.96 58.65 13.27 491.89 3.30 4.23 2.54 8.70 8.09 9.86 7.45

TimeLDM 6.17 3.51 9.52 1.01 1.40 0.76 0.88 5.99 5.48 0.99 2.00
EDDPM 2.31 2.89 10.76 28.29 6.72 1.11 1.01 5.40 4.63 1.40 3.56

FourierDiffusion 0.21 0.48 3.38 3.54 1.16 0.32 0.41 1.26 1.14 0.49 3.58
ImagenTime 4.23 2.22 7.72 0.50 4.82 6.38 2.99 2.98 1.66 1.08 12.02

FourierFlow 1.15 0.38 3.17 1.843 1.21 0.98 1.52 2.84 2.37 0.74 5.07
TimeFlow 0.41 0.85 3.19 2.177 1.17 0.20 0.65 8.40 173.12 - 3.45

TimeGAN 0.88 0.87 20.32 2.00 2.26 3.88 0.70 4.73 6.63 1.30 3.97
GTGAN 0.70 2.55 26.60 3.23 25.53 3.39 2.82 16.23 3.23 2.24 10.01

KoVAE 0.48 1.17 6.78 1.72 8.82 1.17 0.80 2.46 2.89 3.85 6.54
TimeVQVAE 2.45 6.05 8.40 0.74 5.06 4.20 2.93 8.17 3.77 4.62 3.98

LS4 5.85 10.97 23.47 3.47 15.81 24.21 31.81 14.45 8.15 11.34 24.67
VAE 4.41 7.16 35.65 1.67 28.16 3.42 2.62 15.70 7.66 6.88 10.02

Table 2: Contextual-FID results on 11 time series datasets. The lower the better. Bold and underline
indicate the best and second best performance, respectively. (T.P.=Two Patterns, M.T.=Medical
Images, A.D.=Arabic Digits, J.V.=Japanese Vowels, C.T.=Character Trajectories)

the data-space diffusion process. This integration allows the representation distribution learned in the
latent space to effectively guide the data-space denoising process.

During training, the conditioning network F takes condition input as the latent code r ∈ Rd, say
c = r. Then, we have intuitively, F learns to map latent representations into a condition that is
specifically tailored to guide the data-space diffusion process.

This latent-to-data conditioning mechanism ensures that the representation distribution captured in
the latent space effectively guides the local refinements in the data space, leading to high-quality time
series generation that aligns with both representation distribution and data representation.

Denoising Network. The denoising networks rϕ in Equation (11) and xθ in Equation (12) are
trained to learn to denoise the representation rs (or the diffused data xk) into rs−1 (or xk−1). The
key distinction between the two denoising networks lies in their conditioning mechanisms: xθ

incorporates a latent-space-derived conditioning signal r to guide the refinement process.

3.3 SYNTHETIC TIME SERIES GENERATION

On inference, we start from r̂S ∼ N (0, I) in the latent space. Based on the data prediction strategy
in (3),

r̂s−1 =

√
αs(1− ᾱs−1)

1− ᾱs
rs +

√
ᾱs−1(1− αs)

1− ᾱs
rϕ(r

s, s) + σsϵ, (13)

where ϵ ∼ N (0, I) when s > 1, and ϵ = 0 otherwise. Till s = 1, we obtain the sampled
representation r̂0. Then, we have c = r̂0 to guide the data denoising process. Specifically, we start
from x̂K ∼ N (0, I) in the data space. And we have the reverse denoising step equation

x̂k−1 =

√
αk(1− ᾱk−1)

1− ᾱk
xk +

√
ᾱk−1(1− αk)

1− ᾱk
xθ(x

k, k,F(c)) + σkϵ. (14)

Till k = 1, we obtain the sampled time series data x̂0. The pseudocodes for the training and sampling
procedures are in Algorithms 1 and 2 of Appendix A, respectively.

4 EXPERIMENTS

Datasets. We evaluate the proposed model on 11 multivariate time series datasets, varying in the num-
ber of variates, lengths, and number of classes. Previous works, such as Diffusion-TS (Yuan & Qiao,
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2024), focus on single-modal time series datasets (Stock, Energy, ETTh, and Riverflow), which are
constructed using sliding windows and lack clear class labels, limiting their ability to represent multi-
modal distributions. To evaluate generative performance on time series with multi-modal distributions,
we include 7 well-labeled datasets from the UCR and UEA archives2. These datasets are more chal-
lenging due to: i) multiple modes corresponding to classes (no label information is used in generation);
ii) varying lengths (e.g., Character Trajectories, padded with zeros to a maximum length); iii) longer
sequences and more channels, further increasing complexity. Table 3 shows statistics for the datasets.

dataset #training #testing D L C

Stock 2,928 733 6 24 -
Energy 15,768 3,943 28 24 -
ETTh 13,801 3,451 7 168 -

Riverflow 18,858 4,715 1 168 -

Two Patterns 1,000 4,000 1 128 4
ECG5000 500 4,500 1 140 5

Medical Images 381 760 1 99 10
Arabic Digits 6600 2200 13 93 10

Atrial Fibrillation 4,832 185 2 45 3
Japanese Vowels 270 370 12 29 9

Character Trajectories 300 2,558 3 205 20

Table 3: Summary of dataset statistics, including
the number of training and testing, dimension (D),
time series length (L), and number of classes C.

Baselines. We include baselines from various
categories: (i) Diffusion models operating in
the time domain: Diffusion-TS (Yuan & Qiao,
2024), TSDE Senane et al. (2024), and mr-Diff
Shen et al. (2024);3 (ii) Latent diffusion mod-
els: TimeLDM Park et al. (2024) and EDDPM
Liu et al. (2019); (iii) Diffusion models oper-
ating in the Fourier domain: Fourier Diffusion
Crabbé et al. (2024) and ImagenTime (Naiman
et al., 2024a). (iv) Flow-based generative mod-
els: FourierFlow and its variant TimeFlows Alaa
et al. (2021). (v) Generative adversarial networks
(GANs): We include two popular baselines as
suggested in Ang et al. (2023): TimeGAN Yoon
et al. (2019) and GTGAN Jeon et al. (2022); (vi)
Variational autoencoder (VAE) models, including KoVAE Naiman et al. (2024b) TimeVQVAE Lee
et al. (2023) LS4 (Zhou et al., 2023) and the original VAE Kingma & Welling (2014).

Evaluation Metrics. As in Ang et al. (2023), we evaluate generation quality using three metrics:
(i) Contextual-FID (C-FID), which measures how well the synthetic time series align with the local
context of the original data; (ii) Discriminative Score (DS), and (iii) Predictive Score (PS). The use of
DS and PS follows Yuan & Qiao (2024). For DS, a 2-layer LSTM is trained to classify sequences as
"real" (original) or "not real" (generated), with the classification error measuring dataset similarity.
For PS, a 2-layer LSTM is trained on the generated data to predict next-step temporal vectors, and
its mean prediction error on the original dataset reflects how well predictive patterns are preserved.
However, we consider DS and PS as secondary metrics due to their sensitivities to model setup and
dataset size. Besides, we also provide visualizations using t-SNE and distribution plot to compare the
distributions of the original and generated time series.

Implementation Details. We train the model using Adam with a learning rate of 10−3, batch size of
128, and early stopping for up to 100 epochs. We use K = 100 diffusion steps with a linear variance
schedule (Rasul et al., 2021) (β1 = 10−4 to βK = 10−1). The CNN of TS2Vec (Yue et al., 2022) is
pre-trained as our encoder, with a default latent dimension of 8 for high-level representation learning.
The decoder utilizes a three-layer convolutional network. The masked ratio is set to be 50% as in
(Dong et al., 2023). Experiments are run on an Nvidia RTX A6000 GPU with 48GB of memory.

4.1 MAIN RESULTS

Results on Contextual-FID are shown in Table 2. To validate the statistical significance of method
rankings, we employ the Friedman test Friedman (1937) and Conover’s post-hoc test Conover &
Iman (1979). Figure 2 shows the average rankings and the corresponding critical differences for
each method. The average ranking reflects the overall performance of each method, with lower ranks
indicating better performance. The CD indicates the smallest difference in rankings that is statistically
significant, as determined by a post-hoc test.

As can be seen, the proposed L2D-Diff achieves superior overall performance with an average
rank of 1.45, significantly outperforming all the baselines. L2D-Diff is simple yet effective. As
a cascaded diffusion model, it bridges the latent and data diffusion processes, transforming an

2https://www.timeseriesclassification.com/
3As mr-Diff is originally designed for forecasting, we adapt it for unconditional generation by setting its

history input to zeros.
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unconditional time series generation problem into a conditional one. Specifically, the latent diffusion
model first captures the high-level representation distribution, which then guides the data-space
denoising process. This approach not only reduces complexity but also ensures efficient and robust
generation of time series, particularly when dealing with complex or multimodal distributions.

12345678910111213141516

14.4545LS4
12.9091mrDiff
12.6364VAE
10.9091GTGAN

9.9091TSDE
9.8182TimeVQVAE
9.0000DiffusionTS
8.7273EDDPM 8.6364 ImagenTime

7.6364 TimeGAN

7.1818 TimeLDM

7.0000 KoVAE

6.8182 TimeFlow

5.3636 FourierFlow

3.5455 FourierDiffusion

1.4545 DualDiff

Figure 2: Critical difference diagram of TSG meth-
ods. The lower the better.

Among the baselines, FourierDiffusion Crabbé
et al. (2024) ranks second with an average
rank of 3.55, followed by FourierFlow Alaa
et al. (2021) with an average rank of 5.36.
Fourier Diffusion introduces the innovative con-
cept of mirrored Brownian motions and per-
forms data generation in the frequency domain,
while Fourier Flow leverages a discrete Fourier
transform (DFT) to convert time series into
fixed-length spectral representations and applies
a data-dependent spectral filter to these trans-
formed series. Moreover, TSDE and mr-Diff underperform due to their lack of high-level latent
guidance, with mr-Diff further limited by its reliance on clear seasonal or trend components. Results
for Discriminative Score (DS) and Predictive Score (PS) are presented in Table 7 in the Appendix.

4.2 VISUALIZATION RESULTS

(a) L2D-Diff (proposed). (b) FourierDiffusion.

(c) FourierFlow. (d) Diffusion-TS.

Figure 3: 2D t-SNE embeddings of data (not
representations) generated vs. the real data of
Character Trajectories with multiple modes.

Figure 3 shows the 2-D t-SNE embeddings of the
proposed L2D-Diff and three popular baselines. Due
to the space limit, we provide more visualization
results in Appendix B. As can be seen, the Char-
acter Trajectories dataset is challenging due to its
complex multi-modal distribution across 20 classes,
limited training samples, and the need to model nu-
merous modes effectively. The proposed L2D-Diff
overcomes these difficulties by leveraging its latent-
to-data dual-space framework, capturing global struc-
tures while preserving local fidelity, and generating
time series that replicate the original data’s features
and patterns with high accuracy.

In contrast, FourierDiffusion, FourierFlow and
Diffusion-TS partially capture the overall distribu-
tion center but struggle with data diversity. Due to
the dominance of low-frequency signals in the power
spectrum, their frequency-domain modeling overem-
phasizes low-frequency components, leading to poor
representation of high-frequency details.

It is worth noting that most existing evaluations of
synthetic time series generation are conducted on
datasets with relatively simple distributions, such as the Stock dataset illustrated in Figure 6 of the
Appendix. As shown, most existing methods are capable of effectively capturing the underlying
distribution in such cases. This highlights the need to evaluate performance on more challenging time
series datasets with complex, multimodal distributions.

4.3 ABLATION STUDY

In this section, we perform an ablation study the effectiveness of latent-space and data-space diffusion
using the Stock and Character Trajectories datasets. We compare the proposed L2D-Diff with two
variants: (i) Latent-space only, which uses only latent-space diffusion by removing the data-space
branch and decoding with a pretrained decoder, and (ii) Data-space only, which uses only the
data-space diffusion by replacing the latent condition c with zeros.
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Stock Character Trajectories
C-FID DS PS C-FID DS PS

L2D-Diff (full) 0.310 0.048 0.041 0.284 0.179 0.333
Latent-space only 3.682 0.204 0.089 1.829 0.355 0.353
Data-space only 0.385 0.049 0.052 2.368 0.380 0.369

Table 4: Effectiveness of latent or data variants.

models type training
(ms/sample)

inference
(ms/sample)

# of trainable
parameters

L2D-Diff data + latent 0.52 3.47 2.2M
mr-Diff data 1.14 9.43 4.5M

Diffusion-TS data 14.28 5.10 25M
TSDE data 2.10 5.05 1.3M

TimeLDM latent 0.51 4.85 1.9M
EDDPM latent 0.51 3.80 1.9M

FourierDiffusion frequency 0.36 9.66 1.6M
ImagenTime fourier 1.22 2.82 1.1M

Table 5: Training & inference time, and number of trainable parameters on the Character Trajectories.

Table 4 shows the ablation study results. As can be seen, on Stock, the data-space variant outperforms
the latent-space one. We speculate that it is because the time series is short (L = 24) and the
distribution is simple (as shown in Figure 3). On the other hand, for the more difficult Character
Trajectories dataset, the latent-space variant performs better, indicating the effectiveness of global
semantics. In both cases, L2D-Diff consistently outperforms the two variants. This demonstrates that
combining latent-space and data-space diffusion is crucial for achieving both global coherence and
local fidelity in time series generation.

4.4 EFFICIENCY

In this section, we evaluate the efficiency of our model against four representative diffusion models:
i) mr-Diff, a multiscale diffusion model; ii) Diffusion-TS, a recent popular data-space model; iii)
TimeLDM, a latent-space diffusion model; iv) FourierDiffusion, the most competitive baseline.

Table 5 summarizes their training time, inference time, and number of trainable parameters on the
Character Trajectories dataset. As can be seen, compared to existing time series diffusion models,
the proposed L2D-Diff is efficient because its latent-space diffusion process is learned in a low-
dimensional latent space (d ≪ D × L). By leveraging convolution layers and the acceleration
technique DPM-Solver (Lu et al., 2022), L2D-Diff achieves a significant reduction in computational
costs without compromising generation quality. This demonstrates its efficiency in handling complex
multi-modal time series data while maintaining a lightweight model design.

CONCLUSION

We proposed L2D-Diff, a simple yet efficient dual-space diffusion framework for high-fidelity time
series generation. By integrating dual-space diffusion processes, L2D-Diff learns representation
distribution in a compressed latent space and generation time series in the data space under latent
guidance. This streamlined design effectively balances simplicity, fidelity, and efficiency, achieving
state-of-the-art performance across a wide range of datasets. Extensive experiments validate L2D-
Diff’s ability to generate realistic and coherent time series while preserving multi-modal distribution
structures. Its use of latent representations, coupled with convolutional accelerations, enables it
to handle complex time series tasks with minimal computational costs, setting it apart from more
complex baselines.

In summary, L2D-Diff exemplifies how a simple yet efficient approach can address the challenges of
unconditional time series generation. We hope this work inspires the development of more lightweight
and scalable diffusion models. The code will be released upon publication to support reproducibility
and further exploration.
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ETHICS STATEMENT

This study focuses on methodological advancements in modeling the distribution of time series data.
All datasets utilized are widely recognized, publicly available benchmarks, and no human subjects,
sensitive personal data, or proprietary information were involved. Therefore, we do not anticipate any
direct ethical risks associated with this research.

That said, like other generative modeling techniques, the proposed method has potential applications
in areas such as privacy preservation, data augmentation, and anomaly detection. These applications
may involve ethical considerations, including fairness, privacy protection, and the risk of misuse. It is
crucial that practitioners carefully assess and address these considerations to ensure the responsible
and ethical deployment of the method.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by presenting a detailed mathematical description of the proposed PGBC
framework in the main text, including its model formulation and experimental setup. Furthermore, we
provide comprehensive implementation details, encompassing information on datasets, preprocessing
procedures, evaluation metrics, model configurations, and experimental settings.

To promote transparency and facilitate reproducibility, all source code and scripts will be made
publicly available upon the acceptance of this paper.

USE OF LARGE LANGUAGE MODELS

This paper employed a large language model to assist in refining writing style and grammar. All
research ideas, core arguments, and intellectual contributions remain entirely the work of the authors.
The language model was used exclusively for improving the clarity and presentation of the text.
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A SUPPLEMENTARY ON ALGORITHMS: TRAINING AND SAMPLING

In Algorithm 1, we present a pseudocode algorithm to clarify the training and sampling processes,
outlining key steps to help readers quickly understand its implementation.

Algorithm 1 Training of L2D-Diff.
Require: Training dataset T , noise schedules {βt}Tt=1.
Ensure: Trained latent-space denoising network rϕ latent-space denoising network xθ, and the

conditioning network F .
while not converged do
s ∼ Uniform({1, 2, . . . , S}), k ∼ Uniform({1, 2, . . . ,K});
Sample x ∼ T ;
Generate latent embedding r = E(x);
Generate noised latent rs =

√
ᾱsr+

√
1− ᾱsϵ, where ϵ ∼ N (0, I) and ϵ ∈ Rd;

Compute latent denoising loss Llatent in Equation ( 11).
Obtain latent-to-data condition c = r;
Generate noised data xk =

√
ᾱkx+

√
1− ᾱkϵ, where ϵ ∼ N (0, I) and ϵ ∈ RD×L;

Compute data denoising loss Ldata in Equation (12);
Update ϕ, θ via ∇ϕ,θ(Llatent + λ · Ldata) (the trade-off weight λ is set to be 1 by default);

end while

Algorithm 2 Sampling of L2D-Diff.
Require: Trained denoising models rϕ, xθ and the conditioning network F .
Ensure: Generated sample x̂0.

Latent-space generation:
Sample r̂S ∼ N (0, I).
for s = S downto 1 do

Denoise latent: r̂s−1 = rϕ(r
s, s) by Equation (13).

end for
Data-space refinement:
Sample x̂K ∼ N (0, I).
Compute the condition c = F(r̂0).
for t = T downto 1 do

Denoise data: x̂k−1 = xθ(x
k, k, c) by Equation (14).

end for
return x̂0
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B SUPPLEMENTARY VISUALIZATION RESULTS

Figures 4 present the t-SNE embeddings visualizations of the data distributions generated by the
proposed method and eight other baseline methods. These results reveal that, for the dataset with
a 20-class multimodal distribution, the proposed L2D-Diff method produces data distributions that
closely match the true multimodal distribution. In contrast, existing unconditional time series
generation methods struggle to fit such complex data distributions effectively. This limitation arises
primarily from either an inability to capture the fine-grained details of data generation or a failure
to comprehensively capture the semantic structure of the data. By introducing the latent-to-data
collaborative diffusion generation mechanism, the proposed method achieves superior performance in
modeling complex multimodal distributions, ensuring a better match with the true data distribution.

(a) L2D-Diff (proposed). (b) FourierDiffusion. (c) FourierFlow.

(d) KoVAE. (e) Diffusion-TS. (f) TimeGAN.

(g) TimeLDM. (h) TSDE. (i) mrDiff.

Figure 4: Visualization of 2D t-SNE embeddings of synthetic data generated vs. the real data of
Character Trajectories.
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Figure 5 presents the kernel density estimation results, offering a detailed comparison of the data
distributions generated by different methods against the original data. The proposed L2D-Diff
demonstrates exceptional performance, consistently producing synthetic data with a distribution that
closely mirrors the original, regardless of the complexity of the underlying data.

(a) L2D-Diff (proposed). (b) FourierDiffusion. (c) FourierFlow.

(d) KoVAE. (e) Diffusion-TS. (f) TimeGAN.

(g) TimeLDM. (h) TSDE. (i) mrDiff.

Figure 5: Data distribution using kernel density estimation on Character Trajectories.
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C SUPPLEMENTARY RELATED WORKS OF TIME SERIES GENERATION

Generative models aim to learn intricate patterns and temporal dependencies in time series datasets,
enabling the generation of new data that reflects the statistical properties of the original dataset Ang
et al. (2023). In addition to the recent time series diffusion models discussed in Section 1, this section
explores three major categories of classic generative models for time series generation: generative
adversarial networks (GANs), variational autoencoders (VAEs), and flow-based generative models.

Generative adversarial networks (GANs) Goodfellow et al. (2014) consist of a generator and a
discriminator, trained through a two-player minimax game. The generator takes random noise
as input and learns to produce synthetic data that is indistinguishable from the real data, while
the discriminator is tasked with classifying real and generated samples. In the context of time
series generation, GANs have been enhanced by incorporating specialized generator architectures,
such as LSTMs or Transformers, to improve the modeling of temporal dependencies Esteban et al.
(2017); Li et al. (2022); Mogren (2016); Pei et al. (2021); Yoon et al. (2019). Additionally, various
strategies have been proposed to improve the training process, including novel loss functions, extra
discriminators, classification layers, and data augmentation techniques, which aim to achieve better
temporal alignment and enhance performance Ni et al. (2021); Jeha et al. (2022); Seyfi et al. (2022);
Wang et al. (2023). Despite their effectiveness, GAN-based models are often challenging to train
due to instability in the adversarial process and are computationally expensive, requiring significant
resources and time Jeon et al. (2022); Ang et al. (2023).

Variational autoencoders (VAEs) Kingma & Welling (2014) offer an alternative approach by minimiz-
ing a combination of reconstruction loss and the divergence between the learned latent distribution
and a prior standard Gaussian distribution. VAEs effectively leverage variational inference to capture
complex temporal relationships in time series data Desai et al. (2021); Lee et al. (2023); Li et al.
(2023). A notable example is TimeVQVAE Lee et al. (2023), which integrates vector quantization
Van Den Oord et al. (2017) to preserve both the general shape and fine-grained details of time series.
Another recent work, LS4 Zhou et al. (2023), models latent space evolution using a state space
ordinary differential equation (ODE) and is trained with standard sequence VAE objectives.

In addition to GANs and VAEs, flow-based generative models have also been extended to time
series generation Dinh et al. (2024); Alaa et al. (2021). Unlike GANs and VAEs, flow-based
models directly model the probability density function of time series, avoiding the computational
challenges of sampling from latent representation distributions. For instance, Fourier Flow Alaa
et al. (2021) employs a novel class of normalizing flows combined with discrete Fourier transforms
(DFT) to convert variable-length time series with arbitrary sampling periods into fixed-length spectral
representations. A data-dependent spectral filter is then applied to refine the frequency-transformed
time series, enabling explicit likelihood estimation.
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D SUPPLEMENTARY OF DATASETS

For the evaluation, we consider 11 datasets with varying dimensions, time lengths, and numbers
of classes. These datasets are carefully selected to evaluate the proposed method’s robustness and
capability in handling diverse and challenging scenarios.

Existing works, such as Diffusion-TS (Yuan & Qiao, 2024), primarily focus on time series datasets
that lack multi-modal distributions, such as Stock and Energy. These datasets are typically generated
using sliding windows, resulting in sequences without clear class labels. Consequently, they are
not well-suited for assessing the generation performance on datasets with multi-modal distributions,
where distinct modes correspond to different underlying patterns or classes.

• The Stock dataset consists of daily historical Google stock data from 2004 to 2019, including
six channels: high, low, opening, closing, adjusted closing prices, and volume. This dataset
lacks periodicity and is dominated by random walk patterns.

• The Energy dataset contains 28 channels with correlated features and exhibits noisy period-
icity along with continuous-valued measurements (Candanedo et al., 2017).

• The ETTh dataset comprises two years of electricity transformer temperature data collected
in China at 1-hour intervals (Zhou et al., 2021).

• The Riverflow dataset records the mean daily flow of the Saugeen River at Walkerton,
spanning the period from January 1, 1915, to December 31, 1979 (McLeod & Gweon,
2013).

Figure 6 shows the t-SNE embeddings visualization of the Stock dataset, along with the results
of the proposed method compared to FourierDiffusion and FourierFlow on the same dataset. It
can be observed that the performance of recent methods on the unsupervised generation of the
sliding-window-based Stock dataset is generally satisfactory and not particularly challenging.

(a) L2D-Diff. (b) FourierDiffusion. (c) FourierFlow. (d) Diffusion-TS.

Figure 6: Visualization of 2D t-SNE embeddings of synthetic data generated vs. the true data of
Stock.

To address this gap, we include an additional 7 datasets from the UCR and UEA time series classifica-
tion archives4. These datasets are specifically selected to evaluate the proposed method’s ability to
generate multi-modal time series data. This experimental setup can be considered an innovation of
our work, as these datasets have not been explored in previous research.

In addition to these four datasets, which are typically used for prediction tasks, we include seven
datasets from the UCR and UEA time series classification archives5. These datasets are of particular
interest for evaluating multi-modal time series generation due to the following challenges: 1. They
exhibit multiple modes corresponding to multiple classes. Importantly, no label information is used
in our time series generation tasks. 2. They feature varying time series lengths, such as the Character
Trajectories dataset. For consistency, we pad these datasets with zeros to a predefined maximum
length, as shown in Table 3. 3. They include datasets with longer time series lengths and larger
numbers of channels, making the generation task significantly more challenging.

These challenges highlight the complexity of the selected datasets and underscore their suitability
for evaluating the performance of the proposed method. These datasets have not been thoroughly
evaluated in many previous works, further emphasizing the novelty of this study.

4https://www.timeseriesclassification.com/
5https://www.timeseriesclassification.com/
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E SUPPLEMENTARY OF DENOISING PROCESSES

E.1 DIFFUSION STEP’S EMBEDDINGS

For each diffusion step k, its d′-dimensional embedding pk is computed using two fully connected
(FC) layers, following prior works (Rasul et al., 2021; Tashiro et al., 2021; Kong et al., 2020):

pk = SiLU(FC(SiLU(FC(kembedding)))), (15)

where SiLU is the sigmoid-weighted linear unit activation function (Elfwing et al., 2018).

The term kembedding represents the sinusoidal position embedding (Vaswani et al., 2017), defined as:

kembedding =
[
sin(10

0×4
w−1 t), . . . , sin(10

w×4
w−1 t), cos(10

0×4
w−1 t), . . . , cos(10

w×4
w−1 t)

]
, (16)

where w = d′

2 . By default, d′ is set to 128.

E.2 DENOISING NETWORK WORKFLOW

Take the data denoising network xθ as an example. The input xk ∈ RD×L is first mapped to the
embedding z̄k ∈ Rd′×L by an input projection block consisting of several convolutional layers.

The embedding z̄k, along with the d′-dimensional diffusion step embedding pk (from Equation 15),
is then passed to an encoder (a convolutional network) to produce the representation zk ∈ Rd′′×L.
Next, the representation zk is concatenated with zc ( which has a size of dc×L after being upsampled
to length L by the conditioning network F , dc represents the number of channels in zc ) along the
variable dimension, forming a tensor of size (dc + d′′)× L. This concatenated tensor is then passed
to a decoder, also implemented as a convolutional network, which outputs the denoised estimation:
xθ(x

k, k, c).

In the latent-space denoising network rϕ, the corresponding representation zs is directly fed into the
decoder, which outputs the final denoised estimation: rϕ(rs, s).

E.3 NETWORK IMPLEMENTATION

The conditioning network and the denoising network’s encoder/decoder are built by stacking a number
of convolutional blocks. The default configuration of each convolutional block is shown in Table 6.

layer operator default parameters

1 Conv1d in channel=256, out channel=256, kernel size=3, stride=1, padding=1
2 BatchNorm1d number of features=256
3 LeakyReLU negative slope=0.1
4 Dropout dropout rate=0.1

Table 6: Configuration of the convolutional block.
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F SUPPLEMENTARY RESULTS REGARDING DISCRIMINATIVE SCORE (DS);
BOTTOM: PREDICTIVE SCORE (PS)

For this analysis, we selected the six best-performing baselines from each category based on their
rankings in Figure 2. As can be seen, L2D-Diff consistently achieves the best overall performance,
outperforming all the baselines. This demonstrates the effectiveness of the L2D dual-space framework
in tackling the key challenge of TSG: capturing global structures in the latent space while preserving
local fidelity in the data space.

Stock Energy ETTh Riverflow Two
Patterns ECG Medical

Images
Arabic
Digits

Atrial
Fibrillation

Japanese
Vowels

Character
Trajectories

Win/
Tie

L2D-Diff 0.048 0.166 0.009 0.000 0.000 0.000 0.000 0.298 0.000 0.027 0.179 8
Diffusion-TS 0.007 0.420 0.101 0.000 0.000 0.000 0.000 0.368 0.000 0.324 0.385 6
TimeLDM 0.493 0.495 0.489 0.000 0.000 0.000 0.000 0.475 0.000 0.324 0.323 5

DS FourierDiffusion 0.174 0.316 0.153 0.000 0.000 0.000 0.000 0.451 0.000 0.203 0.321 5
FourierFlow 0.221 0.394 0.381 0.000 0.000 0.000 0.000 0.481 0.000 0.216 0.253 5
TimeGAN 0.218 0.496 0.494 0.000 0.000 0.000 0.000 0.492 0.000 0.142 0.164 6
KoVAE 0.054 0.214 0.089 0.000 0.000 0.000 0.000 0.220 0.000 0.392 0.297 6

L2D-Diff 0.041 0.251 0.654 0.049 0.754 0.556 0.623 0.333 0.539 0.331 0.333 8
Diffusion-TS 0.048 0.269 0.905 0.049 0.755 0.599 0.801 0.338 0.539 0.365 0.368 1
TimeLDM 0.078 0.278 0.889 0.064 0.755 0.671 0.631 0.365 1.081 0.355 0.347 0

PS FourierDiffusion 0.051 0.252 0.780 0.050 0.755 0.551 0.626 0.338 0.540 0.340 0.355 1
FourierFlow 0.108 0.269 0.823 0.064 0.755 0.554 0.654 0.343 0.540 0.338 0.355 0
TimeGAN 0.045 0.293 0.889 0.038 0.754 0.611 0.645 0.343 0.707 0.361 0.347 2
KoVAE 0.047 0.257 0.782 0.038 0.754 0.554 0.619 0.341 0.542 0.367 0.340 3

Table 7: Results on the 11 time series datasets. Top: Discriminative Score (DS); Bottom: Predictive
Score (PS). The lower the better. The last column counts the number of wins or ties for each method.

F.1 EFFECTS OF THE LATENT DIMENSION.

As L2D-Diff bridges the diffusion process in the latent and data spaces, the dimension of the latent
space plays a crucial role. We study its effects by varying the dimension sizes in {4,8, 32, 64, 128}.
As shown in Table 8, smaller latent dimensions, such as 8 or 32, yield promising results. This is
reasonable since smaller latent spaces compress data and extract the most informative representations,
effectively capturing the essential structures of the time series. In contrast, higher dimensions, such
as 64 or 128, tend to increase training complexity and may lead to overfitting, as they retain more
redundant or less informative details. Therefore, balancing latent dimension size is critical for
achieving efficient and accurate generation.

d Stock Character.
C-FID DS PS C-FID DS PS

4 0.334 0.052 0.048 0.308 0.169 0.363
8 0.310 0.048 0.041 0.284 0.171 0.333

32 0.339 0.078 0.047 0.304 0.165 0.342
64 1.121 0.095 0.049 2.614 0.175 0.372
128 0.366 0.071 0.059 2.947 0.243 0.382

Table 8: Varying the latent dimension d.
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