LATENT-TO-DATA CASCADED DIFFUSION MODELS FOR UNCONDITIONAL TIME SERIES GENERATION

Anonymous authorsPaper under double-blind review

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027 028 029

031

032

033

034

037

040

041

042

043

044

045

046

047

048

051

052

ABSTRACT

Synthetic time series generation (TSG) is crucial for applications such as privacy preservation, data augmentation, and anomaly detection. A key challenge in TSG lies in modeling the multi-modal distributions of time series, which requires simultaneously capturing diverse high-level representation distributions and preserving local temporal fidelity. Most existing diffusion models, however, are constrained by their single-space focus: latent-space models capture representation distributions but often compromise local fidelity, while data-space models preserve local details in the data space but struggle to learn high-level representations essential for multi-modal time series. To address these limitations, we propose L2D-Diff, a dual-space diffusion framework for synthetic time series generation. Specifically, L2D-Diff first compresses input sequences into a latent space to efficiently model the distribution of time series representations. The distribution then guides a data-space diffusion model to refine local data details, enabling faithful generation of time series distribution without relying on external conditions. Experiments on both single-modal and multi-modal datasets demonstrate the effectiveness of L2D-Diff in tackling unconditional TSG tasks. Ablation studies further highlight the necessity and impact of its dual-space design, showcasing its capability to achieve representation coherence and local fidelity.

1 Introduction

Time series data is critical in domains such as finance, healthcare, biotechnology, and climate science. However, restricted access to temporal datasets, especially in privacy-sensitive contexts, often limits the progress of machine learning models. Synthetic time series generation (TSG) has emerged as a promising solution, leveraging deep learning techniques to create realistic data that replicates complex temporal dependencies and multidimensional correlations (Zhou et al., 2023; Alaa et al., 2021; Ang et al., 2023; Yuan & Qiao, 2024). These synthetic datasets retain their utility for downstream tasks such as classification and forecasting (Esteban et al., 2017; Ang et al., 2023; Yuan & Qiao, 2024).

Generative adversarial networks (GANs) (Goodfellow et al., 2014) were the preferred approach for TSG (Esteban et al., 2017; Li et al., 2022; Mogren, 2016; Pei et al., 2021; Yoon et al., 2019). Despite their success, GANs face challenges such as adversarial training instability and mode collapse, limiting their effectiveness in generating diverse and robust time series. Recently, diffusion models (Yang et al., 2023), particularly denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020), have gained prominence due to their superior perceptual quality and stable training dynamics. These advancements have led to significant progress in generative AI tasks (Yang et al., 2023), with diffusion models excelling in areas such as image editing (Huang et al., 2024), image generation (Cao et al., 2024), and video generation (Xing et al., 2024).

While diffusion models have achieved remarkable success in images and videos, their application to time series presents unique challenges. Unlike visual data, time series generation requires the simultaneous modeling of multi-modal latent structures and the preservation of local temporal fidelity. This involves capturing intricate temporal relationships and managing complex interdependencies across variables, both of which are essential for accurately modeling real-world time series patterns. Addressing these challenges is crucial for extending the capabilities of diffusion models to TSG.

Recent works on time series diffusion primarily focus on conditional generation tasks such as forecasting (Rasul et al., 2021; Shen & Kwok, 2023; Kollovieh et al., 2024) and imputation (Tashiro et al.,

2021; Alcaraz & Strodthoff, 2022). For instance, TimeGrad (Rasul et al., 2021) employs recurrent neural networks to summarize history as conditions for denoising future values. Similarly, TimeDiff (Shen & Kwok, 2023) introduces autoregressive initialization and future mixup to enable efficient non-autoregressive prediction. CSDI (Tashiro et al., 2021) adopts self-supervised masking techniques, while Alcaraz & Strodthoff (2022) enhance CSDI by replacing transformers with structural state space models (Gu et al., 2021), improving long-range temporal modeling. These studies primarily focus on leveraging conditional information, designing robust conditioning networks, and constructing effective denoising architectures to address specific supervised tasks. In contrast, synthetic time series generation focuses on unconditionally producing high-quality time series (modeling the data distributions) that replicate the statistical properties of the original dataset (Ang et al., 2023).

Recent approaches to unconditional generation (Park et al., 2024; Yuan & Qiao, 2024; Crabbé et al., 2024; Naiman et al., 2024a; Zhou et al., 2023) can be broadly divided into two categories:

i) Data-space diffusion models, which directly model the raw time series distribution. Examples include Park et al. (2024), who employ diffusion bridges to map prior distributions to time series, enabling flexible and accurate synthesis. Diffusion-TS (Yuan & Qiao, 2024) integrates seasonal-trend decomposition with diffusion models and introduces a Fourier-based objective to better capture periodic patterns. Similarly, FourierDiffusion (Crabbé et al., 2024) operates within the frequency domain, replacing traditional Brownian motion with mirrored Brownian motion to enhance its ability to model periodic behaviors. Other methods, such as Naiman et al. (2024a), transform time series into images and apply vision-based diffusion models to synthesize data.

ii) Latent-space diffusion models, which operate on compressed representations obtained through predefined transformations (e.g., Fourier transform) or learned nonlinear encoders. Representative methods such as TimeLDM (Qian et al., 2024) and latent diffusion transformer (LDT) (Feng et al., 2024) achieve computational efficiency by working in a lower-dimensional latent space. This compression helps preserve structural representations within the data distributions. However, the reliance on encoder-decoder architectures introduces an information bottleneck, which risks discarding finegrained temporal details and limits the fidelity of the generated outputs.

While latent-space diffusion models excel at capturing high-level semantic structures through compressed representations, they often struggle to preserve subtle temporal dynamics. The process of dimensionality reduction can result in the loss of fine-grained details, thereby reducing the diversity

	data	latent	cascaded
TimeGrad	~	×	×
CSDI	~	×	×
TimeDiff	~	×	×
TSDE	~	×	×
TimeLDM	×	~	×
LDT	×	~	×
DiffusionTS	~	×	×
MG-TSD	~	×	~
mr-Diff	~	×	~
L2Diff (proposed)	~	~	~

Table 1: Comparing related diffusion methods. "data" refers to directly modeling the time series distribution in the data space. "latent" indicates learning the distribution of representations in a latent space. "cascaded" denotes using multiple diffusion models for generation.

and fidelity of the generated outputs. On the other hand, data-space diffusion models perform iterative denoising directly on the raw time series, effectively capturing localized temporal patterns with high precision. However, their focus on local details makes it difficult to comprehensively model representation distributions.

To address these challenges, we transition from unconditional diffusion in the data space to latent-to-data conditional diffusion, which balances representation distributions with local temporal data distributions. Specifically, we propose L2D-Diff, a latent-to-data diffusion framework that integrates the strengths of latent-space modeling and data-space refinement to overcome the limitations of unconditional generation. L2D-Diff operates in two complementary stages: *i) Latent-space coarse generation:* A latent diffusion model captures representation distributions by representation learning techniques. *ii) Data-space refinement:* A subsequent denoising process integrates the global latent codes into the data space, enabling fine-grained temporal precision and ensuring consistency with the original data distribution. This two-stage approach ensures both global consistency and local precision, enabling realistic, semantically rich, and high-fidelity time series generation. To the best of our knowledge, we are the first to study the latent-to-data cascaded diffusion model for synthetic time series generation.

Some initial attempts have been proposed in the contexts of image generation and graph modeling. For example, in the representation-conditioned generation (RCG) framework (Li et al., 2024), a pre-trained image encoder is used to first obtain image representation distributions, which then condition the image distributions. This is further extended to the generation of graphs in (Wang et al., 2024). Another model EDDPM (Liu et al., 2019) uses parameterized encoding-decoding in a unified space to generalize the Gaussian noising-denoising in standard data-space diffusion. However, the development of hybrid models for time series generation is still under-explored.

Note that some cascaded time series diffusion models exist, including (Fan et al., 2024; Shen et al., 2024). For example, as mr-Diff (Shen et al., 2024), which employs multiple diffusion models to learn coarse-to-fine trend distributions. In contrast, our proposed L2D-Diff is a cascade of a latent-space diffusion model and a data-space diffusion model, emphasizing the transition from latent representations to the data space. Table 1 provides a comparison between the proposed method and related works.

2 Preliminaries

 Problem definition. Let $\mathcal{T} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ be a dataset with N multivariate time series samples. Each $\mathbf{x}^{(i)} = (\mathbf{x}_1^{(i)}, \dots, \mathbf{x}_L^{(i)})$ with $\mathbf{x}_t^{(i)} \in \mathbb{R}^D$ can be represented as a D-by-L matrix, where D is the number of variables and L is the time series length. The goal of synthetic time series generation (TSG) is to create a synthetic dataset $\mathcal{T}^{gen} = \{\tilde{\mathbf{x}}^{(1)}, \dots, \tilde{\mathbf{x}}^{(N')}\}$ such that its distribution $q(\mathcal{T}^{gen})$ is similar to the true distribution $p(\mathcal{T})$, exhibiting consistent statistical properties and temporal dynamics. This is an unconditional generation task. Importantly, we require each synthetic time series $\tilde{\mathbf{x}}^{(i)}$ to also be of length L and contain D variables, ensuring compatibility with the original dataset structure.

2.1 Denoising Diffusion Probabilistic Models

Denoising diffusion probabilistic model (DDPM) (Ho et al., 2020) is a latent variable model with forward diffusion and backward denoising processes.

Forward diffusion. A time series input \mathbf{x}^0 is gradually corrupted to a Gaussian noise vector. At the kth step, \mathbf{x}^k is generated by corrupting the previous iterate \mathbf{x}^{k-1} (scaled by $\sqrt{1-\beta_k}$) with zero-mean Gaussian noise (with variance $\beta_k \in [0,1]$):

$$q(\mathbf{x}^k|\mathbf{x}^{k-1}) = \mathcal{N}(\mathbf{x}^k; \sqrt{1-\beta_k}\mathbf{x}^{k-1}, \beta_k\mathbf{I}), \quad k = 1, \dots, K.$$

It can be shown that $q(\mathbf{x}^k|\mathbf{x}^0) = \mathcal{N}(\mathbf{x}^k; \sqrt{\bar{\alpha}_k}\mathbf{x}^0, (1-\bar{\alpha}_k)\mathbf{I})$, where $\bar{\alpha}_k = \Pi_{s=1}^k \alpha_s$, and $\alpha_k = 1-\beta_k$. Thus, \mathbf{x}^k can be simply obtained as

$$\mathbf{x}^k = \sqrt{\bar{\alpha}_k} \mathbf{x}^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon, \tag{1}$$

where ϵ is a noise from $\mathcal{N}(\mathbf{0}, \mathbf{I})$. This equation also allows \mathbf{x}^0 to be easily recovered from \mathbf{x}^k .

Reverse denoising. At the kth denoising step, \mathbf{x}^{k-1} is generated from \mathbf{x}^k by sampling from the normal distribution:

$$p_{\theta}(\mathbf{x}^{k-1}|\mathbf{x}^k) = \mathcal{N}(\mathbf{x}^{k-1}; \mu_{\theta}(\mathbf{x}^k, k), \Sigma_{\theta}(\mathbf{x}^k, k)). \tag{2}$$

Here, the variance $\Sigma_{\theta}(\mathbf{x}^k,k)$ is usually fixed as $\sigma_k^2\mathbf{I}$, while the mean $\mu_{\theta}(\mathbf{x}^k,k)$ is defined by a neural network (parameterized by θ). This is usually formulated as a noise estimation or data prediction problem (Benny & Wolf, 2022). For noise estimation, a network ϵ_{θ} predicts the noise of the diffused input \mathbf{x}^k , and then obtains $\mu_{\theta}(\mathbf{x}^k,k) = \frac{1}{\sqrt{\alpha_k}}\mathbf{x}^k - \frac{\beta_k}{\sqrt{\alpha_k}\sqrt{1-\bar{\alpha}_k}}\epsilon_{\theta}(\mathbf{x}^k,k)$. Parameter θ is learned by minimizing the noise estimation loss $\mathcal{L}_{\epsilon} = \mathbb{E}_{k,\mathbf{x}^0,\epsilon}\left[\|\epsilon - \epsilon_{\theta}(\mathbf{x}^k,k)\|^2\right]$.

Alternatively, the data prediction strategy uses a denoising network \mathbf{x}_{θ} to obtain an estimate $\mathbf{x}_{\theta}(\mathbf{x}^{k}, k)$ of the clean data \mathbf{x}^{0} given \mathbf{x}^{k} , and then set

$$\mu_{\theta}(\mathbf{x}^k, k) = \frac{\sqrt{\alpha_k} (1 - \bar{\alpha}_{k-1})}{1 - \bar{\alpha}_k} \mathbf{x}^k + \frac{\beta_k \sqrt{\alpha_k}}{1 - \bar{\alpha}_k} \mathbf{x}_{\theta}(\mathbf{x}^k, k).$$
(3)

¹Here, superscript 0 means the original input without diffusion.

Then, θ is learned by minimizing the following loss

$$\mathcal{L}_{\mathbf{x}} = \mathbb{E}_{\mathbf{x}^0, \epsilon, k} \|\mathbf{x}^0 - \mathbf{x}_{\theta}(\mathbf{x}^k, k)\|^2. \tag{4}$$

When a condition c is accessible, the following distribution is considered (Rasul et al., 2021; Tashiro et al., 2021; Shen & Kwok, 2023)

$$p_{\theta}(\mathbf{x}^{0:K}|\mathbf{c}) = p(\mathbf{x}^K) \prod_{k=1}^K p_{\theta}(\mathbf{x}^{k-1}|\mathbf{x}^k, \mathcal{F}(\mathbf{c})),$$
 (5)

where $\mathbf{x}^K \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. \mathcal{F} is a conditioning network that takes the condition \mathbf{c} as input. Correspondingly, the denoising process at step k is

$$p_{\theta}(\mathbf{x}^{k-1}|\mathbf{x}^k, \mathbf{c}) = \mathcal{N}(\mathbf{x}^{k-1}; \mu_{\theta}(\mathbf{x}^k, k|\mathcal{F}(\mathbf{c})), \sigma_k^2 \mathbf{I}), \tag{6}$$

where k = K, K - 1, ..., 1.

Data sampling. During inference, let the generated sample corresponding to \mathbf{x}^k be $\hat{\mathbf{x}}^k$. We first initialize $\hat{\mathbf{x}}^K$ as a noise vector from $\mathcal{N}(\mathbf{0}, \mathbf{I})$. By repeatedly running the denoising step in Equation (6) till k=1, the final generation is $\hat{\mathbf{x}}^0$.

2.2 LATENT-SPACE DIFFUSION MODELS

Latent-space diffusion models (LDMs) Rombach et al. (2022) consist of two main components: (i) pretaining process and (ii) latent diffusion. The pretraining process is commonly performed based on optimizing a representation learning task, such as masked modeling or contrastive learning. It involves an encoder, which maps time series $\mathbf{x} \in \mathbb{R}^{D \times L}$ to a lower-dimensional (fixed-length) latent space $\mathbf{r} \in \mathbb{R}^d$, and a decoder, which generates \mathbf{x} from \mathbf{r} . Subsequently, a diffusion model is applied on the latent code \mathbf{r} . The forward diffusion process in latent space is:

$$\mathbf{r}^k = \sqrt{\bar{\alpha}_k} \mathbf{r}^0 + \sqrt{1 - \bar{\alpha}_k} \epsilon. \tag{7}$$

The reverse process is learned by a denoising network \mathbf{r}_{ϕ} :

$$p_{\phi}(\mathbf{r}^{k-1}|\mathbf{r}^k) = \mathcal{N}(\mathbf{r}^{k-1}; \mu_{\phi}(\mathbf{r}^k, k), \Sigma_{\phi}(\mathbf{r}^k, k)). \tag{8}$$

The training objective minimizes the following loss:

$$\mathcal{L}_{\mathbf{r}} = \mathbb{E}_{\mathbf{r}^0, \epsilon, k} \| \mathbf{r}^0 - \mathbf{r}_{\phi}(\mathbf{r}^k, k) \|^2. \tag{9}$$

3 METHODOLOGY

Overview. The proposed cascaded diffusion model, L2D-Diff, is illustrated in Figure 1. As shown, L2D-Diff integrates two collaborative diffusion/denoising branches: one in the latent space and the other in the data space. The latent-space branch models the distribution of high-level representations in time series, offering a compressed yet structured understanding of temporal patterns. To construct the latent space, an encoder-decoder pair is pretrained using masked modeling-based representation learning optimization, ensuring that the latent representations are meaningful and informative. Then, the data-space branch models the probability density function of the time series data guided by the representation distributions, capturing fine-grained temporal details. To bridge these two branches, a latent-to-data conditioning mechanism is introduced. This module enables latent representations to guide the denoising process in the data space, ensuring seamless coordination between the representation distribution and the data distribution. This design enables L2D-Diff to effectively capture high-level temporal patterns in the latent space while achieving data detail generation in the data space, guided by the latent variables.

3.1 DUAL-BRANCH DIFFUSION DESIGN

Latent Space Construction. Given an input time series $\mathbf{x} \in \mathbb{R}^{D \times L}$, where D represents the number of channels and L the sequence length, we perform a pretraining task based on masked modeling to derive a compact, high-level representation $\mathbf{r} \in \mathbb{R}^d$, with $d \ll L \times D$.

Figure 1: Framework of the proposed L2D-Diff for time series generation.

In this process, a random subset of the input tokens is masked according to a binary mask $\mathbf{m} \in \{0,1\}^{D \times L}$, where $m_{i,j} = 1$ indicates that the token (i,j) is masked. The masked input $\mathbf{x}_{\text{masked}}$ is obtained by replacing the masked positions with special mask tokens. The encoder \mathbf{E} processes the corrupted input $\mathbf{x}_{\text{masked}}$, generating a latent representation $\mathbf{r} = \mathbf{E}(\mathbf{x}_{\text{masked}})$. The decoder \mathbf{D} reconstructs the original input \mathbf{x} from the latent representation \mathbf{r} . The optimization objective is designed to minimize the reconstruction error at the masked positions only: $\mathcal{L}_{\text{pretraining}} = \|\mathbf{m} \odot (\mathbf{x} - \mathbf{D}(\mathbf{E}(\mathbf{x}_{\text{masked}})))\|_2^2$, where \odot denotes element-wise multiplication, ensuring that only the masked positions contribute to the loss.

Latent-Space Diffusion. After pretraining, input \mathbf{x} is encoded into the representation $\mathbf{r} = \mathbf{E}(\mathbf{x})$. Intuitively, \mathbf{r} encapsulates the high-level temporal characteristics of \mathbf{x} . We then introduce a latent-space diffusion model, denoted \mathbf{r}_{ϕ} (where ϕ denotes its parameters), to model the distribution of \mathbf{r} over S diffusion steps. The diffused representation \mathbf{r}^s is obtained from \mathbf{r}^0 (= \mathbf{r}) following (7):

$$\mathbf{r}^s = \sqrt{\bar{\alpha}_s} \mathbf{r}^0 + \sqrt{1 - \bar{\alpha}_s} \epsilon, \tag{10}$$

where ϵ is the Gaussian noise, $\bar{\alpha}_s$ governs the noise level at step s ($1 \le s \le S$), and S is the total number of latent diffusion steps.

To train \mathbf{r}_{ϕ} , we minimize the denoising loss in (9), which encourages \mathbf{r}_{ϕ} to recover the original representation \mathbf{r}^{0} from its noisy counterpart \mathbf{r}^{s} :

$$\mathcal{L}_{latent} = \mathbb{E}_{\mathbf{r}^0, \epsilon, s} \| \mathbf{r}^0 - \mathbf{r}_{\phi}(\mathbf{r}^s, s) \|^2.$$
 (11)

Data-Space Diffusion. The data-space diffusion model regenerates the full-resolution series $\mathbf{x} \in \mathbb{R}^{D \times L}$, guided by the representation encoded in the latent space. This latent-to-data diffusion mechanism allows each position in the data-space series \mathbf{x}_t to attend to the latent code \mathbf{r} , effectively injecting structural priors into local refinements.

Following (4), the diffusion model is optimized by minimizing the denoising loss

$$\mathcal{L}_{data} = \mathbb{E}_{\mathbf{x}^0, \epsilon, k} \|\mathbf{x}^0 - \mathbf{x}_{\theta}(\mathbf{x}^k, k, \mathcal{F}(\mathbf{c}))\|^2, \tag{12}$$

where \mathbf{x}_{θ} is the denoising network, \mathbf{c} is the condition, and \mathcal{F} is the conditioning network. In practice, \mathcal{F} is implemented as a convolutional neural network (5 layers by default).

At each denoising step k, \mathbf{x}_{θ} takes three inputs: noisy input $\mathbf{x}^{k} \in \mathbb{R}^{D \times L}$, timestep k and the conditioning network's output $\mathcal{F}(\mathbf{c})$ (where \mathbf{c} is the condition), while producing a data estimate $\mathbf{x}_{\theta}(\mathbf{x}^{k}, k, \mathcal{F}(\mathbf{c}))$.

3.2 Latent-to-Data Conditioning

Conditioning Network. In L2D-Diff, unconditional time series generation is reformulated as conditional generation, which leverages the latent-space sampled representation $\hat{\mathbf{r}}$ as a condition for

	Stock	Energy	ETTh	River.	T.P.	ECG	M.I.	A.D.	Atrial.	J.V.	C.T.
L2D-Diff	0.31	0.53	0.45	0.32	0.21	0.11	0.08	1.29	1.15	0.46	0.28
Diffusion-TS TSDE mr-Diff	0.49 3.90 41.96	0.82 4.13 58.65	4.75 - 13.27	1.24 0.26 491.89	1.69 2.83 3.30	1.95 1723.0 4.23	3.10 0.85 2.54	1.66 2.60 8.70	2.39 - 8.09	1.93 3.97 9.86	3.57 4.70 7.45
TimeLDM EDDPM	6.17 2.31	3.51 2.89	9.52 10.76	1.01 28.29	1.40 6.72	0.76 1.11	0.88 1.01	5.99 5.40	5.48 4.63	0.99 1.40	$\frac{2.00}{3.56}$
FourierDiffusion ImagenTime	0.21 4.23	0.48 2.22	3.38 7.72	3.54 0.50	1.16 4.82	0.32 6.38	<u>0.41</u> 2.99	1.26 2.98	1.14 1.66	<u>0.49</u> 1.08	3.58 12.02
FourierFlow TimeFlow	1.15 0.41	0.38 0.85	$\frac{3.17}{3.19}$	1.843 2.177	1.21 1.17	0.98 <u>0.20</u>	1.52 0.65	2.84 8.40	2.37 173.12	0.74	5.07 3.45
TimeGAN GTGAN	0.88	0.87 2.55	20.32 26.60	2.00 3.23	2.26 25.53	3.88 3.39	0.70 2.82	4.73 16.23	6.63 3.23	1.30 2.24	3.97 10.01
KoVAE TimeVQVAE LS4 VAE	0.48 2.45 5.85 4.41	1.17 6.05 10.97 7.16	6.78 8.40 23.47 35.65	1.72 0.74 3.47 1.67	8.82 5.06 15.81 28.16	1.17 4.20 24.21 3.42	0.80 2.93 31.81 2.62	2.46 8.17 14.45 15.70	2.89 3.77 8.15 7.66	3.85 4.62 11.34 6.88	6.54 3.98 24.67 10.02

Table 2: Contextual-FID results on 11 time series datasets. The lower the better. **Bold** and <u>underline</u> indicate the best and second best performance, respectively. (T.P.=Two Patterns, M.T.=Medical Images, A.D.=Arabic Digits, J.V.=Japanese Vowels, C.T.=Character Trajectories)

the data-space diffusion process. This integration allows the representation distribution learned in the latent space to effectively guide the data-space denoising process.

During training, the conditioning network \mathcal{F} takes condition input as the latent code $\mathbf{r} \in \mathbb{R}^d$, say $\mathbf{c} = \mathbf{r}$. Then, we have intuitively, \mathcal{F} learns to map latent representations into a condition that is specifically tailored to guide the data-space diffusion process.

This latent-to-data conditioning mechanism ensures that the representation distribution captured in the latent space effectively guides the local refinements in the data space, leading to high-quality time series generation that aligns with both representation distribution and data representation.

Denoising Network. The denoising networks \mathbf{r}_{ϕ} in Equation (11) and \mathbf{x}_{θ} in Equation (12) are trained to learn to denoise the representation \mathbf{r}^{s} (or the diffused data \mathbf{x}^{k}) into \mathbf{r}^{s-1} (or \mathbf{x}^{k-1}). The key distinction between the two denoising networks lies in their conditioning mechanisms: \mathbf{x}_{θ} incorporates a latent-space-derived conditioning signal \mathbf{r} to guide the refinement process.

3.3 SYNTHETIC TIME SERIES GENERATION

On inference, we start from $\hat{\mathbf{r}}^S \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ in the latent space. Based on the data prediction strategy in (3),

$$\hat{\mathbf{r}}^{s-1} = \frac{\sqrt{\alpha_s}(1 - \bar{\alpha}_{s-1})}{1 - \bar{\alpha}_s} \mathbf{r}^s + \frac{\sqrt{\bar{\alpha}_{s-1}}(1 - \alpha_s)}{1 - \bar{\alpha}_s} \mathbf{r}_{\phi}(\mathbf{r}^s, s) + \sigma_s \epsilon, \tag{13}$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ when s > 1, and $\epsilon = 0$ otherwise. Till s = 1, we obtain the sampled representation $\hat{\mathbf{r}}^0$. Then, we have $\mathbf{c} = \hat{\mathbf{r}}^0$ to guide the data denoising process. Specifically, we start from $\hat{\mathbf{x}}^K \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ in the data space. And we have the reverse denoising step equation

$$\hat{\mathbf{x}}^{k-1} = \frac{\sqrt{\alpha_k}(1 - \bar{\alpha}_{k-1})}{1 - \bar{\alpha}_k} \mathbf{x}^k + \frac{\sqrt{\bar{\alpha}_{k-1}}(1 - \alpha_k)}{1 - \bar{\alpha}_k} \mathbf{x}_{\theta}(\mathbf{x}^k, k, \mathcal{F}(\mathbf{c})) + \sigma_k \epsilon.$$
(14)

Till k = 1, we obtain the sampled time series data $\hat{\mathbf{x}}^0$. The pseudocodes for the training and sampling procedures are in Algorithms 1 and 2 of Appendix A, respectively.

4 EXPERIMENTS

Datasets. We evaluate the proposed model on 11 multivariate time series datasets, varying in the number of variates, lengths, and number of classes. Previous works, such as Diffusion-TS (Yuan & Qiao,

2024), focus on single-modal time series datasets (*Stock, Energy, ETTh*, and *Riverflow*), which are constructed using sliding windows and lack clear class labels, limiting their ability to represent multimodal distributions. To evaluate generative performance on time series with multi-modal distributions, we include 7 well-labeled datasets from the *UCR* and *UEA* archives². These datasets are more challenging due to: i) multiple modes corresponding to classes (no label information is used in generation); ii) varying lengths (e.g., *Character Trajectories*, padded with zeros to a maximum length); iii) longer sequences and more channels, further increasing complexity. Table 3 shows statistics for the datasets.

Baselines. We include baselines from various categories: (i) Diffusion models operating in the time domain: Diffusion-TS (Yuan & Qiao, 2024), TSDE Senane et al. (2024), and mr-Diff Shen et al. (2024);³ (ii) Latent diffusion models: TimeLDM Park et al. (2024) and EDDPM Liu et al. (2019); (iii) Diffusion models operating in the Fourier domain: Fourier Diffusion Crabbé et al. (2024) and ImagenTime (Naiman et al., 2024a). (iv) Flow-based generative models: FourierFlow and its variant TimeFlows Alaa et al. (2021). (v) Generative adversarial networks (GANs): We include two popular baselines as suggested in Ang et al. (2023): TimeGAN Yoon et al. (2019) and GTGAN Jeon et al. (2022); (vi)

dataset	#training	#testing	D	L	C
Stock	2,928	733	6	24	-
Energy	15,768	3,943	28	24	-
ETTh	13,801	3,451	7	168	-
Riverflow	18,858	4,715	1	168	-
Two Patterns	1,000	4,000	1	128	4
ECG5000	500	4,500	1	140	5
Medical Images	381	760	1	99	10
Arabic Digits	6600	2200	13	93	10
Atrial Fibrillation	4,832	185	2	45	3
Japanese Vowels	270	370	12	29	9
Character Trajectories	300	2,558	3	205	20

Table 3: Summary of dataset statistics, including the number of training and testing, dimension (D), time series length (L), and number of classes C.

Variational autoencoder (VAE) models, including KoVAE Naiman et al. (2024b) TimeVQVAE Lee et al. (2023) LS4 (Zhou et al., 2023) and the original VAE Kingma & Welling (2014).

Evaluation Metrics. As in Ang et al. (2023), we evaluate generation quality using three metrics: (i) Contextual-FID (C-FID), which measures how well the synthetic time series align with the local context of the original data; (ii) Discriminative Score (DS), and (iii) Predictive Score (PS). The use of DS and PS follows Yuan & Qiao (2024). For DS, a 2-layer LSTM is trained to classify sequences as "real" (original) or "not real" (generated), with the classification error measuring dataset similarity. For PS, a 2-layer LSTM is trained on the generated data to predict next-step temporal vectors, and its mean prediction error on the original dataset reflects how well predictive patterns are preserved. However, we consider DS and PS as secondary metrics due to their sensitivities to model setup and dataset size. Besides, we also provide visualizations using t-SNE and distribution plot to compare the distributions of the original and generated time series.

Implementation Details. We train the model using Adam with a learning rate of 10^{-3} , batch size of 128, and early stopping for up to 100 epochs. We use K=100 diffusion steps with a linear variance schedule (Rasul et al., 2021) ($\beta_1=10^{-4}$ to $\beta_K=10^{-1}$). The CNN of TS2Vec (Yue et al., 2022) is pre-trained as our encoder, with a default latent dimension of 8 for high-level representation learning. The decoder utilizes a three-layer convolutional network. The masked ratio is set to be 50% as in (Dong et al., 2023). Experiments are run on an Nvidia RTX A6000 GPU with 48GB of memory.

4.1 MAIN RESULTS

Results on Contextual-FID are shown in Table 2. To validate the statistical significance of method rankings, we employ the Friedman test Friedman (1937) and Conover's post-hoc test Conover & Iman (1979). Figure 2 shows the average rankings and the corresponding critical differences for each method. The average ranking reflects the overall performance of each method, with lower ranks indicating better performance. The CD indicates the smallest difference in rankings that is statistically significant, as determined by a post-hoc test.

As can be seen, the proposed L2D-Diff achieves superior overall performance with an average rank of 1.45, significantly outperforming all the baselines. L2D-Diff is simple yet effective. As a cascaded diffusion model, it bridges the latent and data diffusion processes, transforming an

²https://www.timeseriesclassification.com/

³As mr-Diff is originally designed for forecasting, we adapt it for unconditional generation by setting its history input to zeros.

unconditional time series generation problem into a conditional one. Specifically, the latent diffusion model first captures the high-level representation distribution, which then guides the data-space denoising process. This approach not only reduces complexity but also ensures efficient and robust generation of time series, particularly when dealing with complex or multimodal distributions.

Among the baselines, FourierDiffusion Crabbé et al. (2024) ranks second with an average rank of 3.55, followed by FourierFlow Alaa et al. (2021) with an average rank of 5.36. Fourier Diffusion introduces the innovative concept of mirrored Brownian motions and performs data generation in the frequency domain, while Fourier Flow leverages a discrete Fourier transform (DFT) to convert time series into fixed-length spectral representations and applies a data-dependent spectral filter to these trans-

Figure 2: Critical difference diagram of TSG methods. The lower the better.

formed series. Moreover, TSDE and mr-Diff underperform due to their lack of high-level latent guidance, with mr-Diff further limited by its reliance on clear seasonal or trend components. Results for Discriminative Score (DS) and Predictive Score (PS) are presented in Table 7 in the Appendix.

4.2 VISUALIZATION RESULTS

Figure 3 shows the 2-D t-SNE embeddings of the proposed L2D-Diff and three popular baselines. Due to the space limit, we provide more visualization results in Appendix B. As can be seen, the *Character Trajectories* dataset is challenging due to its complex multi-modal distribution across 20 classes, limited training samples, and the need to model numerous modes effectively. The proposed *L2D-Diff* overcomes these difficulties by leveraging its latent-to-data dual-space framework, capturing global structures while preserving local fidelity, and generating time series that replicate the original data's features and patterns with high accuracy.

In contrast, FourierDiffusion, FourierFlow and Diffusion-TS partially capture the overall distribution center but struggle with data diversity. Due to the dominance of low-frequency signals in the power spectrum, their frequency-domain modeling overemphasizes low-frequency components, leading to poor representation of high-frequency details.

It is worth noting that most existing evaluations of synthetic time series generation are conducted on

(a) L2D-Diff (proposed). (b) FourierDiffusion.

Figure 3: 2D t-SNE embeddings of data (not representations) generated vs. the real data of *Character Trajectories* with multiple modes.

datasets with relatively simple distributions, such as the *Stock* dataset illustrated in Figure 6 of the Appendix. As shown, most existing methods are capable of effectively capturing the underlying distribution in such cases. This highlights the need to evaluate performance on more challenging time series datasets with complex, multimodal distributions.

4.3 ABLATION STUDY

In this section, we perform an ablation study the effectiveness of latent-space and data-space diffusion using the *Stock* and *Character Trajectories* datasets. We compare the proposed L2D-Diff with two variants: (i) *Latent-space only*, which uses only latent-space diffusion by removing the data-space branch and decoding with a pretrained decoder, and (ii) *Data-space only*, which uses only the data-space diffusion by replacing the latent condition c with zeros.

4	3	2	
4	3	3	
4	3	4	

		_
4	3	4
4	3	5
4	3	6

4	36)	
4	37	7	
4	38	3	

		Stock		Character Trajectories			
	C-FID	DS	PS	C-FID	DS	PS	
L2D-Diff (full)	0.310	0.048	0.041	0.284	0.179	0.333	
Latent-space only Data-space only	3.682 0.385	0.204 0.049	0.089 0.052	1.829 2.368	0.355 0.380	0.353 0.369	

Table 4: Effectiveness of latent or data variants.

models	type	training (ms/sample)	inference (ms/sample)	# of trainable parameters
L2D-Diff	data + latent	0.52	3.47	2.2M
mr-Diff	data	1.14	9.43	4.5M
Diffusion-TS	data	14.28	5.10	25M
TSDE	data	2.10	5.05	1.3M
TimeLDM	latent	0.51	4.85	1.9M
EDDPM	latent	0.51	3.80	1.9M
FourierDiffusion	frequency	0.36	9.66	1.6M
ImagenTime	fourier	1.22	2.82	1.1M

Table 5: Training & inference time, and number of trainable parameters on the Character Trajectories.

Table 4 shows the ablation study results. As can be seen, on Stock, the data-space variant outperforms the latent-space one. We speculate that it is because the time series is short (L=24) and the distribution is simple (as shown in Figure 3). On the other hand, for the more difficult Character Trajectories dataset, the latent-space variant performs better, indicating the effectiveness of global semantics. In both cases, L2D-Diff consistently outperforms the two variants. This demonstrates that combining latent-space and data-space diffusion is crucial for achieving both global coherence and local fidelity in time series generation.

4.4 EFFICIENCY

In this section, we evaluate the efficiency of our model against four representative diffusion models: i) mr-Diff, a multiscale diffusion model; ii) Diffusion-TS, a recent popular data-space model; iii) TimeLDM, a latent-space diffusion model; iv) FourierDiffusion, the most competitive baseline.

Table 5 summarizes their training time, inference time, and number of trainable parameters on the Character Trajectories dataset. As can be seen, compared to existing time series diffusion models, the proposed L2D-Diff is efficient because its latent-space diffusion process is learned in a low-dimensional latent space ($d \ll D \times L$). By leveraging convolution layers and the acceleration technique DPM-Solver (Lu et al., 2022), L2D-Diff achieves a significant reduction in computational costs without compromising generation quality. This demonstrates its efficiency in handling complex multi-modal time series data while maintaining a lightweight model design.

Conclusion

We proposed L2D-Diff, a simple yet efficient dual-space diffusion framework for high-fidelity time series generation. By integrating dual-space diffusion processes, L2D-Diff learns representation distribution in a compressed latent space and generation time series in the data space under latent guidance. This streamlined design effectively balances simplicity, fidelity, and efficiency, achieving state-of-the-art performance across a wide range of datasets. Extensive experiments validate L2D-Diff's ability to generate realistic and coherent time series while preserving multi-modal distribution structures. Its use of latent representations, coupled with convolutional accelerations, enables it to handle complex time series tasks with minimal computational costs, setting it apart from more complex baselines.

In summary, L2D-Diff exemplifies how a simple yet efficient approach can address the challenges of unconditional time series generation. We hope this work inspires the development of more lightweight and scalable diffusion models. The code will be released upon publication to support reproducibility and further exploration.

ETHICS STATEMENT

This study focuses on methodological advancements in modeling the distribution of time series data. All datasets utilized are widely recognized, publicly available benchmarks, and no human subjects, sensitive personal data, or proprietary information were involved. Therefore, we do not anticipate any direct ethical risks associated with this research.

That said, like other generative modeling techniques, the proposed method has potential applications in areas such as privacy preservation, data augmentation, and anomaly detection. These applications may involve ethical considerations, including fairness, privacy protection, and the risk of misuse. It is crucial that practitioners carefully assess and address these considerations to ensure the responsible and ethical deployment of the method.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by presenting a detailed mathematical description of the proposed PGBC framework in the main text, including its model formulation and experimental setup. Furthermore, we provide comprehensive implementation details, encompassing information on datasets, preprocessing procedures, evaluation metrics, model configurations, and experimental settings.

To promote transparency and facilitate reproducibility, all source code and scripts will be made publicly available upon the acceptance of this paper.

USE OF LARGE LANGUAGE MODELS

This paper employed a large language model to assist in refining writing style and grammar. All research ideas, core arguments, and intellectual contributions remain entirely the work of the authors. The language model was used exclusively for improving the clarity and presentation of the text.

REFERENCES

- Ahmed Alaa, Alex James Chan, and Mihaela van der Schaar. Generative time-series modeling with fourier flows. In *ICLR*, 2021.
- Juan Miguel Lopez Alcaraz and Nils Strodthoff. Diffusion-based time series imputation and forecasting with structured state space models. Technical report, arXiv, 2022.
- Yihao Ang, Qiang Huang, Yifan Bao, Anthony KH Tung, and Zhiyong Huang. Tsgbench: Time series generation benchmark. *Proc. VLDB Endow.*, 2023.
- Yaniv Benny and Lior Wolf. Dynamic dual-output diffusion models. In CVPR, 2022.
- Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven prediction models of energy use of appliances in a low-energy house. *Energy and buildings*, 140:81–97, 2017.
- Pu Cao, Feng Zhou, Qing Song, and Lu Yang. Controllable generation with text-to-image diffusion models: A survey. *arXiv preprint arXiv:2403.04279*, 2024.
- W.J. Conover and R.L. Iman. Multiple-comparisons procedures. Technical Report OSTI ID:6057803, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 1979.
- Jonathan Crabbé, Nicolas Huynh, Jan Pawel Stanczuk, and Mihaela van der Schaar. Time series diffusion in the frequency domain. In *ICML*, 2024.
- Abhyuday Desai, Cynthia Freeman, Zuhui Wang, and Ian Beaver. Timevae: A variational autoencoder for multivariate time series generation. *arXiv preprint arXiv:2111.08095*, 2021.
- Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. Technical report, arXiv, 2024.

- Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long. SimMTM: A simple pre-training framework for masked time-series modeling. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
 - Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. *Neural Networks*, 107:3–11, 2018.
 - Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch. Real-valued (medical) time series generation with recurrent conditional gans. Technical report, arXiv, 2017.
 - Xinyao Fan, Yueying Wu, Chang Xu, Yuhao Huang, Weiqing Liu, and Jiang Bian. MG-TSD: Multi-granularity time series diffusion models with guided learning process. In *ICLR*, 2024.
 - Shibo Feng, Chunyan Miao, Zhong Zhang, and Peilin Zhao. Latent diffusion transformer for probabilistic time series forecasting. In *AAAI*, 2024.
 - Milton Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. *Journal of the american statistical association*, 32(200):675–701, 1937.
 - Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. *NeurIPS*, 2014.
 - Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. Technical report, arXiv, 2021.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *NeurIPS*, 2020.
 - Yi Huang, Jiancheng Huang, Yifan Liu, Mingfu Yan, Jiaxi Lv, Jianzhuang Liu, Wei Xiong, He Zhang, Shifeng Chen, and Liangliang Cao. Diffusion model-based image editing: A survey. *arXiv preprint arXiv:2402.17525*, 2024.
 - Paul Jeha, Michael Bohlke-Schneider, Pedro Mercado, Shubham Kapoor, Rajbir Singh Nirwan, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Psa-gan: Progressive self attention gans for synthetic time series. In *ICLR*, 2022.
 - Jinsung Jeon, Jeonghak Kim, Haryong Song, Seunghyeon Cho, and Noseong Park. Gt-gan: General purpose time series synthesis with generative adversarial networks. In *NeurIPS*, 2022.
 - Diederik P Kingma and Max Welling. Auto-encoding variational Bayes. In ICLR, 2014.
 - Marcel Kollovieh, Abdul Fatir Ansari, Michael Bohlke-Schneider, Jasper Zschiegner, Hao Wang, and Yuyang Bernie Wang. Predict, refine, synthesize: Self-guiding diffusion models for probabilistic time series forecasting. *NeurIPS*, 2024.
 - Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. DiffWave: A versatile diffusion model for audio synthesis. In *ICLR*, 2020.
 - Daesoo Lee, Sara Malacarne, and Erlend Aune. Vector quantized time series generation with a bidirectional prior model. Technical report, arXiv, 2023.
 - Hongming Li, Shujian Yu, and Jose Principe. Causal recurrent variational autoencoder for medical time series generation. In *AAAI*, 2023.
 - Tianhong Li, Dina Katabi, and Kaiming He. Return of unconditional generation: A self-supervised representation generation method. In *NeurIPS*, 2024.
 - Xiaomin Li, Vangelis Metsis, Huangyingrui Wang, and Anne Hee Hiong Ngu. Tts-gan: A transformer-based time-series generative adversarial network. In *International conference on artificial intelligence in medicine*, pp. 133–143. Springer, 2022.
 - Guangyi Liu, Yu Wang, Zeyu Feng, Qiyu Wu, Liping Tang, Yuan Gao, Zhen Li, Shuguang Cui, Julian McAuley, Zichao Yang, et al. Unified generation, reconstruction, and representation: Generalized diffusion with adaptive latent encoding-decoding. In *ICML*, 2019.

- Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A fast ODE solver for diffusion probabilistic model sampling in around 10 steps. In *NeurIPS*, 2022.
 - AI McLeod and Hyukjun Gweon. Optimal deseasonalization for monthly and daily geophysical time series. *Journal of Environmental statistics*, 4(11):1–11, 2013.
 - Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial training. Technical report, arXiv, 2016.
 - Ilan Naiman, Nimrod Berman, Itai Pemper, Idan Arbiv, Gal Fadlon, and Omri Azencot. Utilizing image transforms and diffusion models for generative modeling of short and long time series. In *NeurIPS*, 2024a.
 - Ilan Naiman, N. Benjamin Erichson, Pu Ren, Michael W. Mahoney, and Omri Azencot. Generative modeling of regular and irregular time series data via koopman VAEs. In *ICLR*, 2024b.
 - Hao Ni, Lukasz Szpruch, Marc Sabate-Vidales, Baoren Xiao, Magnus Wiese, and Shujian Liao. Sig-wasserstein gans for time series generation. In *Proceedings of the Second ACM International Conference on AI in Finance*, pp. 1–8, 2021.
 - Jinseong Park, Seungyun Lee, Woojin Jeong, Yujin Choi, and Jaewook Lee. Leveraging priors via diffusion bridge for time series generation. Technical report, arXiv, 2024.
 - Hengzhi Pei, Kan Ren, Yuqing Yang, Chang Liu, Tao Qin, and Dongsheng Li. Towards generating real-world time series data. In *ICDM*, 2021.
 - Jian Qian, Miao Sun, Sifan Zhou, Biao Wan, Minhao Li, and Patrick Chiang. Timeldm: Latent diffusion model for unconditional time series generation. Technical report, arXiv, 2024.
 - Kashif Rasul, Calvin Seward, Ingmar Schuster, and Roland Vollgraf. Autoregressive denoising diffusion models for multivariate probabilistic time series forecasting. In *ICML*, 2021.
 - Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *CVPR*, 2022.
 - Zineb Senane, Lele Cao, Valentin Leonhard Buchner, Yusuke Tashiro, Lei You, Pawel Andrzej Herman, Mats Nordahl, Ruibo Tu, and Vilhelm von Ehrenheim. Self-supervised learning of time series representation via diffusion process and imputation-interpolation-forecasting mask. In *KDD*, 2024.
 - Ali Seyfi, Jean-Francois Rajotte, and Raymond Ng. Generating multivariate time series with common source coordinated gan (cosci-gan). *NeurIPS*, 2022.
 - Lifeng Shen and James Kwok. Non-autoregressive conditional diffusion models for time series prediction. In *ICML*, 2023.
 - Lifeng Shen, Weiyu Chen, and James Kwok. Multi-resolution diffusion models for time series forecasting. In *ICLR*, 2024.
 - Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. CSDI: Conditional score-based diffusion models for probabilistic time series imputation. In *NeurIPS*, 2021.
 - Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. NeurIPS, 2017.
 - Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. *NeurIPS*, 2017.
 - Lei Wang, Liang Zeng, and Jian Li. Aec-gan: adversarial error correction gans for auto-regressive long time-series generation. In *AAAI*, 2023.
 - Song Wang, Zhen Tan, Xinyu Zhao, Tianlong Chen, Huan Liu, and Jundong Li. Graphrcg: Self-conditioned graph generation via bootstrapped representations. In *NeurIPS*, 2024.
 - Zhen Xing, Qijun Feng, Haoran Chen, Qi Dai, Han Hu, Hang Xu, Zuxuan Wu, and Yu-Gang Jiang. A survey on video diffusion models. *ACM Computing Surveys*, 57(2):1–42, 2024.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang, Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and applications. ACM Computing Surveys, 56(4):1–39, 2023. Jinsung Yoon, Daniel Jarrett, and Mihaela Van der Schaar. Time-series generative adversarial networks. NeurIPS, 2019. Xinyu Yuan and Yan Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In ICLR, 2024. Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. Ts2vec: Towards universal representation of time series. In AAAI, 2022. Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In AAAI, 2021. Linqi Zhou, Michael Poli, Winnie Xu, Stefano Massaroli, and Stefano Ermon. Deep latent state space models for time-series generation. In *ICML*, 2023.

A SUPPLEMENTARY ON ALGORITHMS: TRAINING AND SAMPLING

In Algorithm 1, we present a pseudocode algorithm to clarify the training and sampling processes, outlining key steps to help readers quickly understand its implementation.

Algorithm 1 Training of L2D-Diff.

```
Require: Training dataset \mathcal{T}, noise schedules \{\beta_t\}_{t=1}^T.

Ensure: Trained latent-space denoising network \mathbf{r}_\phi latent-space denoising network \mathbf{x}_\theta, and the conditioning network \mathcal{F}.

while not converged do s \sim \text{Uniform}(\{1,2,\ldots,S\}), k \sim \text{Uniform}(\{1,2,\ldots,K\}); Sample \mathbf{x} \sim \mathcal{T}; Generate latent embedding \mathbf{r} = \mathbf{E}(\mathbf{x}); Generate noised latent \mathbf{r}^s = \sqrt{\bar{\alpha}_s}\mathbf{r} + \sqrt{1-\bar{\alpha}_s}\epsilon, where \epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I}) and \epsilon \in \mathbb{R}^d; Compute latent denoising loss \mathcal{L}_{\text{latent}} in Equation (11). Obtain latent-to-data condition \mathbf{c} = \mathbf{r}; Generate noised data \mathbf{x}^k = \sqrt{\bar{\alpha}_k}\mathbf{x} + \sqrt{1-\bar{\alpha}_k}\epsilon, where \epsilon \sim \mathcal{N}(\mathbf{0},\mathbf{I}) and \epsilon \in \mathbb{R}^{D\times L}; Compute data denoising loss \mathcal{L}_{\text{data}} in Equation (12); Update \phi, \theta via \nabla_{\phi,\theta}(\mathcal{L}_{\text{latent}} + \lambda \cdot \mathcal{L}_{\text{data}}) (the trade-off weight \lambda is set to be 1 by default); end while
```

Algorithm 2 Sampling of L2D-Diff.

```
Require: Trained denoising models \mathbf{r}_{\phi}, \mathbf{x}_{\theta} and the conditioning network \mathcal{F}. Ensure: Generated sample \hat{\mathbf{x}}^0. Latent-space generation:
```

Sample $\hat{\mathbf{r}}^S \sim \mathcal{N}(0, I)$. for s = S downto 1 do Denoise latent: $\hat{\mathbf{r}}^{s-1} = \mathbf{r}_{\phi}(\mathbf{r}^s, s)$ by Equation (13).

end for Data-space refinement:

Sample $\hat{\mathbf{x}}^K \sim \mathcal{N}(0, I)$. Compute the condition $\mathbf{c} = \mathcal{F}(\hat{\mathbf{r}}^0)$. for t = T downto 1 do

Denoise data: $\hat{\mathbf{x}}^{k-1} = \mathbf{x}_{\theta}(\mathbf{x}^k, k, \mathbf{c})$ by Equation (14).

end for return $\hat{\mathbf{x}}^0$

B SUPPLEMENTARY VISUALIZATION RESULTS

Figures 4 present the t-SNE embeddings visualizations of the data distributions generated by the proposed method and eight other baseline methods. These results reveal that, for the dataset with a 20-class multimodal distribution, the proposed L2D-Diff method produces data distributions that closely match the true multimodal distribution. In contrast, existing unconditional time series generation methods struggle to fit such complex data distributions effectively. This limitation arises primarily from either an inability to capture the fine-grained details of data generation or a failure to comprehensively capture the semantic structure of the data. By introducing the latent-to-data collaborative diffusion generation mechanism, the proposed method achieves superior performance in modeling complex multimodal distributions, ensuring a better match with the true data distribution.

Figure 4: Visualization of 2D t-SNE embeddings of synthetic data generated vs. the real data of *Character Trajectories*.

Figure 5 presents the kernel density estimation results, offering a detailed comparison of the data distributions generated by different methods against the original data. The proposed *L2D-Diff* demonstrates exceptional performance, consistently producing synthetic data with a distribution that closely mirrors the original, regardless of the complexity of the underlying data.

Figure 5: Data distribution using kernel density estimation on *Character Trajectories*.

C SUPPLEMENTARY RELATED WORKS OF TIME SERIES GENERATION

Generative models aim to learn intricate patterns and temporal dependencies in time series datasets, enabling the generation of new data that reflects the statistical properties of the original dataset Ang et al. (2023). In addition to the recent time series diffusion models discussed in Section 1, this section explores three major categories of classic generative models for time series generation: generative adversarial networks (GANs), variational autoencoders (VAEs), and flow-based generative models.

Generative adversarial networks (GANs) Goodfellow et al. (2014) consist of a generator and a discriminator, trained through a two-player minimax game. The generator takes random noise as input and learns to produce synthetic data that is indistinguishable from the real data, while the discriminator is tasked with classifying real and generated samples. In the context of time series generation, GANs have been enhanced by incorporating specialized generator architectures, such as LSTMs or Transformers, to improve the modeling of temporal dependencies Esteban et al. (2017); Li et al. (2022); Mogren (2016); Pei et al. (2021); Yoon et al. (2019). Additionally, various strategies have been proposed to improve the training process, including novel loss functions, extra discriminators, classification layers, and data augmentation techniques, which aim to achieve better temporal alignment and enhance performance Ni et al. (2021); Jeha et al. (2022); Seyfi et al. (2022); Wang et al. (2023). Despite their effectiveness, GAN-based models are often challenging to train due to instability in the adversarial process and are computationally expensive, requiring significant resources and time Jeon et al. (2022); Ang et al. (2023).

Variational autoencoders (VAEs) Kingma & Welling (2014) offer an alternative approach by minimizing a combination of reconstruction loss and the divergence between the learned latent distribution and a prior standard Gaussian distribution. VAEs effectively leverage variational inference to capture complex temporal relationships in time series data Desai et al. (2021); Lee et al. (2023); Li et al. (2023). A notable example is TimeVQVAE Lee et al. (2023), which integrates vector quantization Van Den Oord et al. (2017) to preserve both the general shape and fine-grained details of time series. Another recent work, LS4 Zhou et al. (2023), models latent space evolution using a state space ordinary differential equation (ODE) and is trained with standard sequence VAE objectives.

In addition to GANs and VAEs, flow-based generative models have also been extended to time series generation Dinh et al. (2024); Alaa et al. (2021). Unlike GANs and VAEs, flow-based models directly model the probability density function of time series, avoiding the computational challenges of sampling from latent representation distributions. For instance, Fourier Flow Alaa et al. (2021) employs a novel class of normalizing flows combined with discrete Fourier transforms (DFT) to convert variable-length time series with arbitrary sampling periods into fixed-length spectral representations. A data-dependent spectral filter is then applied to refine the frequency-transformed time series, enabling explicit likelihood estimation.

D SUPPLEMENTARY OF DATASETS

For the evaluation, we consider 11 datasets with varying dimensions, time lengths, and numbers of classes. These datasets are carefully selected to evaluate the proposed method's robustness and capability in handling diverse and challenging scenarios.

Existing works, such as Diffusion-TS (Yuan & Qiao, 2024), primarily focus on time series datasets that lack multi-modal distributions, such as *Stock* and *Energy*. These datasets are typically generated using sliding windows, resulting in sequences without clear class labels. Consequently, they are not well-suited for assessing the generation performance on datasets with multi-modal distributions, where distinct modes correspond to different underlying patterns or classes.

- The Stock dataset consists of daily historical Google stock data from 2004 to 2019, including six channels: high, low, opening, closing, adjusted closing prices, and volume. This dataset lacks periodicity and is dominated by random walk patterns.
- The Energy dataset contains 28 channels with correlated features and exhibits noisy periodicity along with continuous-valued measurements (Candanedo et al., 2017).
- The ETTh dataset comprises two years of electricity transformer temperature data collected in China at 1-hour intervals (Zhou et al., 2021).
- The Riverflow dataset records the mean daily flow of the Saugeen River at Walkerton, spanning the period from January 1, 1915, to December 31, 1979 (McLeod & Gweon, 2013).

Figure 6 shows the t-SNE embeddings visualization of the *Stock* dataset, along with the results of the proposed method compared to FourierDiffusion and FourierFlow on the same dataset. It can be observed that the performance of recent methods on the unsupervised generation of the sliding-window-based *Stock* dataset is generally satisfactory and not particularly challenging.

Figure 6: Visualization of 2D t-SNE embeddings of synthetic data generated vs. the true data of *Stock*.

To address this gap, we include an additional 7 datasets from the *UCR* and *UEA* time series classification archives⁴. These datasets are specifically selected to evaluate the proposed method's ability to generate multi-modal time series data. This experimental setup can be considered an innovation of our work, as these datasets have not been explored in previous research.

In addition to these four datasets, which are typically used for prediction tasks, we include seven datasets from the *UCR* and *UEA* time series classification archives⁵. These datasets are of particular interest for evaluating multi-modal time series generation due to the following challenges: 1. They exhibit multiple modes corresponding to multiple classes. Importantly, no label information is used in our time series generation tasks. 2. They feature varying time series lengths, such as the *Character Trajectories* dataset. For consistency, we pad these datasets with zeros to a predefined maximum length, as shown in Table 3. 3. They include datasets with longer time series lengths and larger numbers of channels, making the generation task significantly more challenging.

These challenges highlight the complexity of the selected datasets and underscore their suitability for evaluating the performance of the proposed method. These datasets have not been thoroughly evaluated in many previous works, further emphasizing the novelty of this study.

⁴https://www.timeseriesclassification.com/

⁵https://www.timeseriesclassification.com/

E SUPPLEMENTARY OF DENOISING PROCESSES

E.1 DIFFUSION STEP'S EMBEDDINGS

 For each diffusion step k, its d'-dimensional embedding \mathbf{p}^k is computed using two fully connected (FC) layers, following prior works (Rasul et al., 2021; Tashiro et al., 2021; Kong et al., 2020):

$$\mathbf{p}^{k} = \text{SiLU}(\text{FC}(\text{SiLU}(\text{FC}(k_{\text{embedding}})))), \tag{15}$$

where SiLU is the sigmoid-weighted linear unit activation function (Elfwing et al., 2018).

The term $k_{embedding}$ represents the sinusoidal position embedding (Vaswani et al., 2017), defined as:

$$k_{\text{embedding}} = \left[\sin(10^{\frac{0 \times 4}{w - 1}} t), \dots, \sin(10^{\frac{w \times 4}{w - 1}} t), \cos(10^{\frac{0 \times 4}{w - 1}} t), \dots, \cos(10^{\frac{w \times 4}{w - 1}} t) \right], \tag{16}$$

where $w = \frac{d'}{2}$. By default, d' is set to 128.

E.2 Denoising Network Workflow

Take the data denoising network \mathbf{x}_{θ} as an example. The input $\mathbf{x}^k \in \mathbb{R}^{D \times L}$ is first mapped to the embedding $\bar{\mathbf{z}}^k \in \mathbb{R}^{d' \times L}$ by an input projection block consisting of several convolutional layers.

The embedding $\bar{\mathbf{z}}^k$, along with the d'-dimensional diffusion step embedding \mathbf{p}^k (from Equation 15), is then passed to an encoder (a convolutional network) to produce the representation $\mathbf{z}^k \in \mathbb{R}^{d'' \times L}$. Next, the representation \mathbf{z}^k is concatenated with \mathbf{z}^c (which has a size of $d_c \times L$ after being upsampled to length L by the conditioning network \mathcal{F} , d_c represents the number of channels in \mathbf{z}^c) along the variable dimension, forming a tensor of size $(d_c + d'') \times L$. This concatenated tensor is then passed to a decoder, also implemented as a convolutional network, which outputs the denoised estimation: $\mathbf{x}_{\theta}(\mathbf{x}^k, k, \mathbf{c})$.

In the latent-space denoising network \mathbf{r}_{ϕ} , the corresponding representation \mathbf{z}^{s} is directly fed into the decoder, which outputs the final denoised estimation: $\mathbf{r}_{\phi}(\mathbf{r}^{s}, s)$.

E.3 Network Implementation

The conditioning network and the denoising network's encoder/decoder are built by stacking a number of convolutional blocks. The default configuration of each convolutional block is shown in Table 6.

layer	operator	default parameters
1	Conv1d	in channel=256, out channel=256, kernel size=3, stride=1, padding=1
2	BatchNorm1d	number of features=256
3	LeakyReLU	negative slope=0.1
4	Dropout	dropout rate=0.1

Table 6: Configuration of the convolutional block.

F SUPPLEMENTARY RESULTS REGARDING DISCRIMINATIVE SCORE (DS); BOTTOM: PREDICTIVE SCORE (PS)

For this analysis, we selected the six best-performing baselines from each category based on their rankings in Figure 2. As can be seen, L2D-Diff consistently achieves the best overall performance, outperforming all the baselines. This demonstrates the effectiveness of the L2D dual-space framework in tackling the key challenge of TSG: capturing global structures in the latent space while preserving local fidelity in the data space.

		Stock	Energy	ETTh	Riverflow	Two Patterns	ECG	Medical Images	Arabic Digits	Atrial Fibrillation	Japanese Vowels	Character Trajectories	Win/ Tie
	L2D-Diff	0.048	0.166	0.009	0.000	0.000	0.000	0.000	0.298	0.000	0.027	0.179	8
	Diffusion-TS	0.007	0.420	0.101	0.000	0.000	0.000	0.000	0.368	0.000	0.324	0.385	6
	TimeLDM	0.493	0.495	0.489	0.000	0.000	0.000	0.000	0.475	0.000	0.324	0.323	5
DS	FourierDiffusion	0.174	0.316	0.153	0.000	0.000	0.000	0.000	0.451	0.000	0.203	0.321	5
	FourierFlow	0.221	0.394	0.381	0.000	0.000	0.000	0.000	0.481	0.000	0.216	0.253	5
	TimeGAN	0.218	0.496	0.494	0.000	0.000	0.000	0.000	0.492	0.000	0.142	0.164	6
	KoVAE	0.054	0.214	0.089	0.000	0.000	0.000	0.000	0.220	0.000	0.392	0.297	6
	L2D-Diff	0.041	0.251	0.654	0.049	0.754	0.556	0.623	0.333	0.539	0.331	0.333	8
	Diffusion-TS	0.048	0.269	0.905	0.049	0.755	0.599	0.801	0.338	0.539	0.365	0.368	1
	TimeLDM	0.078	0.278	0.889	0.064	0.755	0.671	0.631	0.365	1.081	0.355	0.347	0
PS	FourierDiffusion	0.051	0.252	0.780	0.050	0.755	0.551	0.626	0.338	0.540	0.340	0.355	1
	FourierFlow	0.108	0.269	0.823	0.064	0.755	0.554	0.654	0.343	0.540	0.338	0.355	0
	TimeGAN	0.045	0.293	0.889	0.038	0.754	0.611	0.645	0.343	0.707	0.361	0.347	2
	KoVAE	0.047	0.257	0.782	0.038	0.754	0.554	0.619	0.341	0.542	0.367	0.340	3

Table 7: Results on the 11 time series datasets. Top: Discriminative Score (DS); Bottom: Predictive Score (PS). The lower the better. The last column counts the number of wins or ties for each method.

F.1 EFFECTS OF THE LATENT DIMENSION.

As L2D-Diff bridges the diffusion process in the latent and data spaces, the dimension of the latent space plays a crucial role. We study its effects by varying the dimension sizes in {4,8, 32, 64, 128}. As shown in Table 8, smaller latent dimensions, such as 8 or 32, yield promising results. This is reasonable since smaller latent spaces compress data and extract the most informative representations, effectively capturing the essential structures of the time series. In contrast, higher dimensions, such as 64 or 128, tend to increase training complexity and may lead to overfitting, as they retain more redundant or less informative details. Therefore, balancing latent dimension size is critical for achieving efficient and accurate generation.

\overline{d}		Stock		Character.			
	C-FID	DS	PS	C-FID	DS	PS	
4	0.334	0.052	0.048	0.308	0.169	0.363	
8	0.310	0.048	0.041	0.284	0.171	0.333	
32	0.339	0.078	0.047	0.304	0.165	0.342	
64	1.121	0.095	0.049	2.614	0.175	0.372	
128	0.366	0.071	0.059	2.947	0.243	0.382	

Table 8: Varying the latent dimension d.