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Abstract

Our paper studies the predictability of online speech – that is, how well language models
learn to model the distribution of user generated content on X (previously Twitter). We
define predictability as a measure of the model’s uncertainty, i.e. its negative log-likelihood.
As the basis of our study, we collect 10M tweets for “tweet-tuning” base models and a
further 6.25M posts from more than five thousand X (previously Twitter) users and their
peers. In our study involving more than 5000 subjects, we find that predicting posts of
individual users remains surprisingly hard. Moreover, it matters greatly what context is
used: models using the users’ own history significantly outperform models using posts from
their social circle. We validate these results across four large language models ranging in
size from 1.5 billion to 70 billion parameters. Moreover, our results replicate if instead
of prompting the model with additional context, we finetune on it. We follow up with a
detailed investigation on what is learned in-context and a demographic analysis. Up to 20%
of what is learned in-context is the use of @-mentions and hashtags. Our main results hold
across the demographic groups we studied.

1 Introduction

Prediction is of fundamental importance for social research Salganik (2019); Salganik et al. (2020). The
predictability of different social variables can provide a scientific window on a diverse set of topics, such as,
emotion contagion Kramer et al. (2014) and social influence Bagrow et al. (2019); Cristali & Veitch (2022);
Qiu et al. (2018), privacy concerns Garcia (2017); Garcia et al. (2018); Li et al. (2012); Jurgens et al. (2017),
the behavior of individuals and groups Tyshchuk & Wallace (2018); Nwala et al. (2023), the heterogeneity
of networks Colleoni et al. (2014); Aiello et al. (2012), information diffusion Chen et al. (2019); Weng et al.
(2014); Bourigault et al. (2014); Guille & Hacid (2012) and more. Of particular importance for the study of
digital platforms is the case of online speech. Understanding and modeling language usage on social media
Kern et al. (2016); Schwartz et al. (2013) has become of particular interest to the research community, where
Twitter is one of the most studied social media platforms Zhang et al. (2023); Qudar & Mago (2020).

We revisit the problem of predicting online speech in light of dramatic advances in language modeling. We
focus on the central question: How predictable is our online speech using large language models? Such
predictive capabilities could inform research on substantial risks – such as user profiling, impersonation and
exerting influence on real users Carroll et al. (2023); Weidinger et al. (2022). Inspired by work exploring the
possibility of user profiling through their peers Bagrow et al. (2019), we ask the following: How predictable
is a social media post given posts from the author’s peers? We contrast the answer with how predictable
social media posts are from the authors’ own posts. Through experiments spanning millions of tweets and
thousands of subjects, our study provides a detailed picture of the current state of predicting online speech
and the potential risks that stem from it.

1.1 Contributions

We investigate the predictability of online speech on the social media platform X (Twitter) using a corpus of
6.25M posts (tweets) of 5000 subjects and their peers. An additional 10M tweets was reserved for tweet-tuning
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models. We test four large language models of increasing size: GPT-2-XL-1.5B, Llama-3-8B, Falcon-40B,
and Llama-2-70B. We use these models to estimate the predictability of our subjects’ posts under various
settings. We vary the type of context we provide to our model and observe the effect on model uncertainty.
We study the following settings: no context, random context, peer context and user context. We present a
detailed analysis on what’s learned in-context and the robustness of our findings. Furthermore, we explore
how our results apply to different demographic groups. Our contributions can be summarized as follows:

• Online speech is surprisingly hard to predict In Section 4.4 we show that most users’ posts
are less predictable than posts from financial news accounts. However, even with additional context
prediction performs relatively poorly. Only our largest model with additional user context (see
Llama-2-70B with user context in Fig. 1) is able to approximate the estimated entropy rate of the
English language (1.12 bits). Subject from Nigeria are the least predictable (Section 4.5). Up to
20% of the effect size can be attributed to the model learning to predict hashtags and @-mentions
(i.e. syntax) with in-context learning (Section 4.2).

• Predictability depends largely on context In Section 4.1 show that a user’s own posts have
significantly more predictive information than posts from their close social ties. Prediction benefits
most from user context, followed by peer context, in turn followed by random context. Our prompting
experiments in Figure 1 illustrate these findings, which are robust to model choice and evaluation
strategy and even replicate across different demographic groups (Section 4.5). We find that all
types of context improve predictability significantly, with a large effect size (Fig. 3). Our finetuning
experiments from Section 4.3 suggest that whatever predictive information is inside the peer context,
can also be found in the user context.

Our results on the predictability of online speech may inspire research on a wide range of topics. These may
include research on influence and information propagation on social networks, social homophily and potential
risks. To summarize, the extent to which we can predict online speech is limited even with state-of- the-art
language models. Our observations do not suggest that peers exert an outsize influence on an individual’s
online posts. Concerns that large language models have made our individual expression predictable are not
supported by our findings.

2 Related work

Modeling online speech using language models Understanding and modeling language usage on social
media Bashlovkina et al. (2023); Kern et al. (2016); Schwartz et al. (2013) has become of particular interest to
the research community, where Twitter is one of the most studied social media platforms Zhang et al. (2023);
Qudar & Mago (2020). Many works focus on LLM’s ability to predict singular, sensitive attributes of users
based on what they post. Users’ gender, location and relationship status Staab et al. (2023) - even users’
political leaning Jiang et al. (2023), morality or toxicity Jiang & Ferrara (2023) are predictable. Our central
question is: How predictable is our online speech using large language models? Such predictive capabilities
could inform research on substantial risks – such as user profiling, impersonation and exerting influence on
real users Carroll et al. (2023); Weidinger et al. (2022). We do this through the lens of model uncertainty,
which gives us a natural information-theoretic interpretation of our results. We use the cross-entropy of the
English language Shannon (1951); Takahashi & Tanaka-Ishii (2018) as a baseline1.

Prediction based on neighbors Predicting attributes of a node from its neighbors is a well-known
paradigm in machine learning. In the context of social networks however, it often has problematic implica-
tions on privacy since it limits the user’s ability to control what can be inferred about them Garcia (2017);
Garcia et al. (2018); Li et al. (2012). Work on the feasibility of "shadow profiles" (predicting attributes of
non-users from platform users) have introduced a notion of privacy that is collective Garcia (2017); Garcia
et al. (2018). Prediction of sensitive attributes of the user such as age, gender, religion etc. is possible from
their peers Jurgens et al. (2017).

1Of course while keeping in mind that this is an imperfect comparison. Social media language differs from conventional
language Bashlovkina et al. (2023).
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(c) Average bits per character (BPC) required to predict user tweets, with 95%
confidence intervals (N = 5102). Lower values mean more predictable.

Figure 1: Predictability of a user’s tweets using LLMs. Bits per character (BPC) measures, on average, how
many bits are required to predict the next character. Predictability improves with additional context to
the model: (i) past user tweets (user context, Fig. 1b) (ii) past tweets from the user’s peers (peer context)
and (iii) past tweets from random users (control). We plot the average BPC over users in Fig. 1c and
the estimated entropy rate of the English language from Takahashi & Tanaka-Ishii (2018) as comparison.
Most of the predictive information is found in the user context, followed by peer and random
context. Our results are robust across models with different parameter sizes and tokenizers.

Bagrow et al. (2019) go beyond predicting sensitive attributes and look at the predictability of users’ online
speech. They investigate the theoretical possibility of peer-based user profiling on Twitter. They look at the
information content of tweets using a non-parametric estimator, and derive an upper bound on predictability
which shows that 8-9 peers suffice to match the predictive information contained in the user’s own posts.
This upper bound on predictability implies that there could exist some predictor which is capable of peer-
based user profiling. Our work aims to contextualize their results by empirically testing this hypothesis on
concrete predictors. We test this with 15 peers per subject and use transformer-based LLMs, which are
currently considered to be the state-of-the-art method for language modeling.

3 Experimental setup

We replicate the experimental setup of Bagrow et al. (2019) to measure the predictability of users’ online
speech using large language models. We define predictability (or rather unpredictability) as a measure of
the model’s uncertainty, i.e., its negative log-likelihood, on a specific user’s tweets. We observe how model
uncertainty changes given additional sources of context, specifically:

1. user context: past tweets of the user

2. peer context: tweets from the user’s social circle

3. random context: tweets from randomly selected users

We start by describing our data collection process (Section 3.1) and what models we used (Section 3.2).
Then, we go into detail about the implementation of our prompting and finetuning experiments (in Section
3.3 and 4.3, respectively). We don’t share the tweets we collected because of X’s Developer Policy. Our code
can be found here: https://anonymous.4open.science/r/twitter-predictability-9BA4
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Figure 2: Our data collection process can be divided into two stages. In the first stage (Fig. 2a), we collected
10M tweets in early 2023 which served as our base for sampling subjects. In the second stage (Fig. 2b), we
collected users’ timelines.

3.1 Data Collection

The data collection process consisted of two main stages: an initial sampling period where we recorded
real-time Twitter activity for a month in early 2023 and a second stage where we collected the timelines of
sampled users. For a high-level overview of the data collection process, see Figure 2. We collected tweets
from three groups of users: (i) subjects, approximately 5,000 randomly sampled Twitter users, (ii) peers of
subjects, which we take to be the top 15 people that each subject most frequently @-mentions, (iii) and
random users for control purposes.

Throughout our data collection, we only collected tweets that were written by the user who posted them
(e.g. no retweets) and were classified as English according to Twitter’s own classification algorithm. We
additionally preprocessed our tweets (removed urls, special characters, etc.). For more detailed information
on the dataset and how it was collected, we refer the reader to Appendix A.1. There we go into detail on
what methods we used to achieve a high-quality, representative dataset of English tweets.

3.1.1 Sampling stage

Sampling was done by collecting a pool of tweets whose authors would serve as our base for picking our
subjects. We collected them using the Twitter Firehose API; which allowed us to collect a 1% sub-sample
of real-time tweet activity. This collection period lasted roughly 30 days and was done in early 2023 (from
20. January to 10. February), during which we collected 10M tweets (with ∼5M unique authors). We
sampled N = 5102 subjects from this pool (0.1% of authors) for our experiments. We filtered out users that
scored high (above 0.5 on a scale of 0 to 1) on the Bot-O-Meter bot detection API Sayyadiharikandeh et al.
(2020) as well as users that had a high retweet ratio. This ensured the selection of authentic users who had
a sufficient amount of self-authored tweets for our dataset.

3.1.2 Timeline collection stage

For each subject, we collected a total of 500 tweets Tu = T eval
u ∪ T user

u from their timelines. Half of those
tweets were used for estimating predictability T eval

u , while the other half T user
u served as context. Besides

user context, we also introduce peer and random context: T peer
u and T random

u , again with 250 tweets
each. Peer context contained tweets from users that the subject most frequently @-mentioned (top-15). We
made sure that all context tweets were authored before the oldest tweet in T eval

u . In total, we collected
approximately 6.25M tweets from users’ timelines.
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Similarly to Bagrow et al. (2019), we created a second control group (temporal control). However, because
of the similarity of the results, we only report results on the random control group (social control) in the
main text. For results including the temporal control, please see Appendix B.5.

3.2 Models

We used four different model families for our experiments, namely GPT-2 Radford et al. (2019), Falcon
Almazrouei et al. (2023) as well as Llama-2 Touvron et al. (2023) and Llama-3 Dubey et al. (2024). These
represent models that share a similar transformer-based architecture that have recently become popular due
to their impressive generative capabilities. However, they differ in number of parameters (ranging between
1.5B-70B), training corpus and tokenizers. We further differentiate between base and finetuned versions of
these models:

1. base: pre-trained LLMs, no instruction-tuning (e.g. GPT-2-XL)

2. tweet-tuned: base models finetuned on the 10M tweets collected during the sampling stage (e.g.
GPT-2-XL-tt)

For more details on tweet-tuning, please see Appendix A.2. We considered using GPT-3 and GPT-4, however
the OpenAI API unfortunately does not allow access to log probabilities for all tokens (which is necessary
for our analysis), only to the top-5. We used Huggingface’s transformers library Wolf et al. (2020) to load
the models and run our experiments.

3.3 Prompting Experiments

Our first approach to measuring model uncertainty is through prompting; that is, experiments where we feed
a tweet to a model and observe the associated probabilities of outputting that exact tweet. We use negative
log-likelihood (NLL) as a measure of model uncertainty, and introduce bits per character (or BPC) to
enable comparisons across models. The NLL of a tweet T = (t1, t2, ...tm) is commonly defined as follows:
L(T ) = −

∑
ti∈T ln pθ(ti|t<i), where we use a language model with parameters θ to predict token ti based

on the preceding tokens t<i. Let L̄u be the average uncertainty associated with predicting tweets of user u:

L̄u = 1
n

∑
Tj∈T eval

u

L(Tj),

where n is the total number of tokens. A model-agnostic version of this uncertainty is bits per character
(BPC), or otherwise known as bits per byte:

bpcu = L̄u · 1
C̄u

· 1
ln 2 .

where C̄u is the average number of characters per token for user u. bpcu tells us the average number of bits
required to predict the next character of user u’s tweets. In the main text we will commonly report the
average BPC over all users, which is bpc = 1

|U|
∑

u∈U bpcu. Reported results are calculated on T eval
u .

We additionally introduce notation to distinguish what context was used to calculate: bpc
c, where subscript

c ∈ {user, peer, random}. Here, the conditional probability of token ti is based on preceding tokens t<i

as well as tokens from the appropriate context: pθ(ti|T c
u , t<i). The added context lends a convenient cross-

entropy like interpretation of the shared information between the context and evaluation tweets we are trying
to predict.

We also quantify the average effect size of different contexts on predictability relative to each other. We do
this by calculating the standardized mean difference (SMD) of the negative log-likelihoods calculated
using different sources of context, i.e. the SMD of ∆c1

c2(u) = L̄c1
u − L̄c2

u . Aggregating over all users, this
gives us a unit-free quantity to estimate the difference in model uncertainty one context offers over another.
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Figure 3: Average effect size of context c2 relative to c1 on model uncertainty. Darker green means greater
improvement in model uncertainty (the model becomes less uncertain). For example, user context signifi-
cantly improves model uncertainty by 3.1σ over having no context (top right corner). Model: Llama-2-70B.

Following established practice Cohen (1988), we characterize effect sizes up to 0.2σ to be small, up to 0.8σ
to be medium and and anything above that to be a large effect size. Larger models (>1.5B parameters) were
loaded using 8-bit precision, which has little to no impact on performance Dettmers et al. (2022). For more
details on why we use BPC, sensitivity to prompting strategy, context size, etc. please refer to Appendix
A.3.

3.4 Finetuning Experiments

In this section we present a second method for estimating model uncertainty, which has three advantages over
our previous prompting approach. First, we can fit the entire context into the model compared to prompting
where the maximum size of the input sequence is a limitation. Second, it bypasses a common ailment of
LLMs: their sensitivity to prompting strategy. Finally, it avoids any limitations in-context learning might
have.

Instead of including said context in our prompt, we finetune our model on the different types of context
we previously introduced and quantify model uncertainty using its cross-entropy loss in the final round of
finetuning. We also include experiments on finetuning on a mixture of contexts (eg. peer+random containing
tweets from both T peer

u and T random
u ). We combine them by sampling an equal amount of tweets uniformly

from each context, while keeping the total number of tweets the same (250 tweets) to enable a fair comparison.
We finetuned for 5 epochs with constant learning rate 1e−5 and batch size 1. We tracked the cross-entropy
loss on T eval

u periodically. Reported results are calculated on T eval
u .

4 Results

In our experiments, we quantify how additional context influences model uncertainty, i.e. predictability.
We used two methods of feeding additional information to our model, with complementary strengths and
weaknesses: one prompting based approach which evaluates in-context learning and one finetuning based
approach. We start with evaluating how in-context learning performs on base models (Section 4.1), and
what they learn from the additional context (Section 4.2). Next, we evaluate tweet-tuned models, where
we replicate our main findings by finetuning on different types of contexts (Section 4.3). We also show
that it is surprisingly hard to predict user tweets using large language models, even with additional context
(Section 4.4). Finally, we provide some insight into how our results extend to different subgroups within our
population (Section 4.5).
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Figure 4: Average improvement in NLL from additional user context (compared to none). The first few
tokens of a tweet benefit most from the additional context. Model: Llama-2-70B.

4.1 Added Context Reduces Uncertainty in Base Models

We start with the results of the prompting approach on base models. In Figure 1, we plot the average BPC
calculated over all of our subjects for four different models with varying parameter sizes. First token was
left out of the analysis (see Appendix B.6 for more detail). The no context case was consistently the most
unpredictable with highest BPC. Depending on what context was included, the amount of improvement
varied. We show that most of the predictive information is found in the user context, followed by peer and
random context. This trend is consistent across all of our models. For users that are hard to predict, we
observe slightly larger improvements in model uncertainty (App. B.4).

We also quantify the effect size each context had on predictability. We plot this for each context pair in
Figure 3 on Llama-2. This effect size matrix illustrates our finding that all types of context have a large
effect size (> 2.5σ) over having no context at all (last column). It also allows us to quantify the effect size
of our main finding: user context offers 1.8σ improvement over peer context — an even bigger improvement
than what peer context offers over random context (1.3σ). While these effect sizes are most pronounced on
Llama-2, we found that these results also translate to our other models (Figure 21 in Appendix).

4.2 Base Models Learn Syntax From Added Context

Next, we were curious where and how context improves predictability. Interestingly, even random context
improves predictability in a non-negligible way. We found evidence of the model learning to use the right
syntax; i.e. how long tweets are, the presence of @-mentions and hashtags, etc. Indeed, the predictability of
the ’@’ token improved the most compared to all other tokens (App. B.7) when using random context.

Predicting @-mentions and hashtags correctly plays a significant role even in the case of user and peer
context. Visualizing the improvement in predictability over individual tokens inside a tweet we noticed an
interesting phenomenon (Figure 4). Locations of greatest improvement were typically at the start and at the
end of tweets – where @-mentions and hashtags would often be located. Assuming these were indeed one of
the greatest sources of error in the no context case, removing them would make our tweets more predictable
overall, and the effect of additional context on predictability less pronounced. Indeed, in Figure 5 subjects
became more predictable on average, and the effect of context on predictability decreased (by ∼ 20% for
random context, ∼ 4% for peer context and ∼ 7% for user context on Llama-2 70b). In other words, models
learned to assign higher probability to frequently used @-mentions and hashtags from context. While in
some cases context ceases to be useful, the relative comparisons between different types of contexts remain
the same.
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4.3 Results on Tweet-Tuned Models

Next, we prompt on tweet-tuned models. We plot the model uncertainty before and after tweet tuning for
GPT-2-XL and Llama-3-8B in Figure 6. For both, tweet-tuning lowers model uncertainty in the no context
case. However, predictability does not improve anymore with additional context in most cases. This is in line
with our observations from before: base models learn typical twitter syntax from context. Our tweet-tuned
models learn this through finetuning, limiting the amount of useful information that can be leveraged from
in-context learning. For GPT-2-XL-tt, we find limited to no improvement through additional context; only
Llama-3-8B-tt is able to learn more from additional user context. To overcome these limitations we observed
in in-context learning, we instead turn to finetuning tweet tuned models on the context.

Figure 7a shows the average loss curves (computed over 1000 subjects) for finetuning GPT-2-XL-tt on
different types of contexts 2. Again, for all three contexts the loss goes down significantly. However, the final
loss they converge to is different, with large gaps between each. If we order contexts based on the achieved
loss in the final round, we get the same order as before: user context is best, followed by peer context, then
random context. Combined with the observed stability of user rankings across models (App. B.1), we believe
this result would extend to larger models as well.

We established that user context always outperforms peer context, regardless of model choice or experimental
method. Still, one might argue that by combining user and peer context, one might achieve better results.
This would suggest that there is some non-overlapping predictive information inside the peer context wrt.
the user context. We test this hypothesis by finetuning on a mixture of contexts (Fig. 7b). Combining
peer+random contexts resulted in a linear interpolation of the final losses of finetuning on either context. In
other words, mixing random and peer context outperformed the final loss of finetuning exclusively on random
context by a large margin. Here, we found evidence of additional predictive information in the peer context,
which was not contained in the random context. However, mixing peer+user contexts did not result in a
significantly lower final loss. This suggests a significant overlap in predictive information between peer and
user context, upholding our claim that user context is strictly better than peer context.

2A clarifying note on the "jumps" in the loss curves (at steps 15, 20, ... etc.): Since each T c
u contains 250 tweets of varying

lengths, 5 epochs of training resulted in different global steps for each user-context combination.

8



Under review as submission to TMLR

(a) Finetuning on user, peer and random context exclu-
sively. Again, most predictive information can be found
in the user context, followed by peer then random con-
text.

(b) Finetuning on mixtures of contexts. Mixing contexts
does not always lead to better results, suggesting overlap
in predictive information.

Figure 7: Average loss curves with standard error for finetuning experiments on GPT-2-XL-tt. For each
subject (N = 5102) we finetune on the specified context, and compute the cross-entropy loss on T eval

u . The
plotted averages are computed over the loss curves of 1000 subjects.
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Figure 8: Distribution of the average NLL of our subjects (with no additional context). As comparison we
include the average NLL of three financial news accounts: YahooFinance, CNBC and Stocktwits. Model:
GPT-2-XL.

4.4 User Tweets are Hard to Predict

In Figure 8 we present the distribution of the average model uncertainty on the tweets of our subjects. To
gain an intuition on how hard it is to predict our subjects’ tweets relative to other accounts, we included
three popular financial news accounts as comparison: YahooFinance, CNBC, and Stocktwits. Intuitively,
predicting financial news and the stock market is hard Johnson et al. (2003), which should make them less
predictable. However, Figure 8 reveals that most subjects in our pool are actually harder to predict than
those news accounts. Of course, while the content of those tweets may be hard to predict, their style and
vocabulary may not.

Finally, the absolute information content of users’ tweets is between 1.5-2 bits per character, depending on
which model we use (see ’no context’ bars in Figure 1c). As a comparison, Shannon’s upper bound on the
cross-entropy of the English language is 1.3 bits per character Shannon (1951), and recent estimates using
neural language models say it is as low as 1.12 bits Takahashi & Tanaka-Ishii (2018). These results suggest
that individual pieces of our online expression taken out of context are far from predictable using today’s
LLMs. Provided with additional user context, only our largest model (Llama-2 70b) achieves comparable
entropy, with an average of 1.1193 bits per character. While humans converge to 1.3 bits after only seeing
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(a) Results by gender. ‘masculine’: he/him (233), ‘femi-
nine’: she/her (291), and ‘diverse’ (306): mix of feminine
/ masculine or other pronouns (like they/them).

(b) Results by location. Top-5 locations: ‘US’: United
States (1555), ‘GB’: Great Britain (408), ‘CA’: Canada
(124), ‘IN’: India (70) and ‘NG’: Nigeria (64).

Figure 9: Results across different demographic groups. Model: Llama-3-8B.

∼32 characters Moradi et al. (1998), language models typically need hundreds to thousands of tokens to
converge (see Fig. 23 in Appendix B.9).

4.5 Results across groups

It is also important to analyze our results and see how they apply to different demographics. Are some
groups more predictable than others? Do we discover the same relative relationships between contexts? For
example, it may be possible that members of some group may be more likely to be profiled through their
peers. While we did not have any demographic information that covered all our subjects, we came up with
proxies that allowed us to analyze a subset of them. We analyzed our results by gender, location, and their
intersection. The latter provided similar results as the first two and can be found in Appendix B.10.

We extracted 830 users’ preferred pronouns as a proxy for gender. This was done by searching for string
matches in their profile descriptions. For example, profiles with “he/him” in their description were matched
to ‘masculine’, “she/her” to ‘feminine’, and ones that contained a mix of both or other pronouns 3 were
matched to the ‘diverse’ category. What we mean by a ‘proxy’ is that it merely implies the individual’s
preferred linguistic gender, not necessarily their social gender Devinney et al. (2022) (i.e. she/her can be
the preferred pronoun of both women and trans women). Results from Figure 9a show that LLMs achieve
similar performance across all categories. Subjects across different groups seem to be equally predictable.
Even the relative relationship between contexts is preserved — no group is significantly more likely to be
profiled through their social circle.

We further identified 2221 users’ country based on the specified location in their profile. This was mostly
done by using widely available geocoding services like Nominatim 4. We only analyzed the top-5 most
common countries (United States, Great Britain, Canada, India and Nigeria). Compared to before, results
in Figure 9b again show similar performance across countries except for Nigeria, where model uncertainty
is significantly higher. This indicates that language models perform significantly worse on tweets belonging
to Nigerian profiles. This may be in part due to Nigerian subjects speaking their own English dialects.
Our results closely mirror prior work which have found that models perform significantly worse on certain
dialects, such as African-American-English Blodgett et al. (2016).

3The full list of pronouns we matched for is in Appendix B.10.
4https://nominatim.org/
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5 Limitations

Negative-log likelihood as a measure of uncertainty While negative log-likelihood is the most popular
measure of model uncertainty, there are certain limitations to using this metric. One is that it is calculated
exclusively on tokens contained in tweet T , and does not take into account any improvements on semantically
equivalent text Kuhn et al. (2023). Another related issue is calibration Xiao et al. (2022). We also found
the models to be highly sensitive to slight changes in prompting. See the Appendix how the separator token
between tweets A.3, the first token B.6), and tweet length B.3 affect model uncertainty. While these points
might affect absolute numbers in our analysis, it does not affect our main statements about the relative
comparisons between different models and contexts.

Despite these limitations, there are compelling reasons to use negative log-likelihood. It is the metric typically
optimized during language model training (via cross-entropy loss) and is widely used in NLP as a proxy for
downstream model performance. The core assumption is that differences in loss between models reflect
differences in their underlying capabilities Saunshi et al. (2020). Directly evaluating certain capabilities –
such as the ability of large language models to impersonate individuals – can raise ethical concerns, making
NLL a valuable alternative.

Data contamination Furthermore, we cannot rule out the possibility that some tweets in our corpus were
part of the training dataset of the LLMs that we used. Contamination may result in lower model uncertainty.
However, we believe the risk and severity of data contamination to be limited; we provide more detail as to
why in Appendix A.2.

External validity Our analysis is constrained to the English-speaking population. How our results extend
to other languages and dialects would be an extremely valuable avenue for future work. Similarly, a deeper
analysis into how minorities and individuals are affected would be necessary. While Twitter is not the only
widely used social media platform, it is one of the primary text-focused ones. Our findings may extend to
other similar platforms (such as Mastodon, BlueSky and Threads), but they may apply less to platforms
that focus more on sharing image/video content (such as Instagram and TikTok).

6 Discussion

We presented the results of an investigation using state-of-the-art large language models into the predictabil-
ity of online speech by analyzing posts on X (Twitter). As the basis of our study, we collected posts from
more than five thousand users’ timelines and their peers. We used a total of 6.25M tweets for our main
experiments, plus an additional 10M for tweet-tuning.

Our main finding is that online speech is surprisingly hard to predict. Most users’ tweets are less predictable
than tweets about financial news, and even with additional context, predictability remains relatively low.
Only our largest model with additional user context is able to approximate the estimated entropy rate of the
English language. We also found that additional context improves the prediction of basic signals: specifically,
guessing the correct hashtags and @-mentions. All in all, our findings suggest that despite the impressive
capabilities of large language models in other areas, state-of-the-art models predict speech rather poorly.

Similarly, our results indicate that it matters greatly what context we use for prediction. We questioned
whether the predictive information inside peer tweets is enough to match (or even surpass) those of the
user’s own tweets, as suggested by Bagrow et al. (2019). We believe that this is unlikely. Our results show
that user context consistently outperforms peer context in a manner that is robust to model choice and
evaluation method. Additional experiments suggest that whatever predictive information is inside the peer
context, can also be found in the user context.

To summarize, we have shown that predicting online speech is rather difficult and that it depends a lot on
what information is used as context. Our findings are robust across methods (prompting vs. finetuning) and
show consistent trends across different demographic groups (gender and location).
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Studying the predictability of online speech may inform work on privacy and other ethical issues on social
networks. For example, threats such as shadow profiling or impersonation on a global scale may not be as
acute as some feared with state-of-the-art language models. However, we do find variability on the level
of the individual users (see Appendix B.2). Moreover, there may be other conceivable harms that don’t
map cleanly to questions of predictability. Future work could attempt to build a bridge between model
uncertainty and downstream capabilities that affect the individual, ensuring continued scrutiny as language
models inevitably evolve.
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A Experimental Setup

A.1 Data collection

A.1.1 Sampling stage

We used the Twitter Firehose API to query a 1% sub-sample of real time tweet activity in early 2023 (from
20. January to 10. February). We used the following filter expression to query the API:

’sample:1 followers_count:0 -is:retweet lang:en’

Where the options have following meaning:

• sample:1: Return a 1% sub-sample of the filtered tweets. (The specified number has to be between
1-100 representing a % value.)

• followers_count:0: Return tweets made by users with at least 0 number of followers. This is a
dummy filter because sample/is/lang are not standalone filters (filters that can be used on their
own) and need additional standalone filters (like followers_count) to work.

• -is:retweet: Don’t return retweets.

• lang:en: Return English tweets.

This collection phase resulted in a pool of 10M tweets, with 5M unique authors. We sampled our subjects
from this pool of authors (N = 5102 sample). Strictly speaking, our sample will be biased towards users
that have 1) been more active during our initial collection period and 2) are more active users in general.
This was the closest we could get to a random sample with the offered API endpoints. This practice follows
Bagrow et al. (2019)’s method of randomly sampling users.

Twitter had roughly ∼500M active monthly users in 2023 Yaccarino (2023) – some of which may have been
bot accounts Lee et al. (2011). To address this issue, we decided to filter out accounts that scored high (above
0.5 on a scale of 0 to 1) on the Bot-O-Meter bot detection API Sayyadiharikandeh et al. (2020). Bot-O-Meter
uses classifies users on a scale from 0-1 based on 200 of their tweets. See Figure 10 for a distribution of
these scores. We dropped users that had a score higher than 0.5. Additionally, we dropped users that had
a high retweet ratio (more than 80% of their tweets consisted of retweets). This is an additional measure
to prevent bot accounts in our subject pool (bots are known for frequently retweeting content Yang et al.
(2020); Gilani et al. (2017)) as well as a practical consideration since we only wanted to include non-retweets
in our analysis.

A.1.2 Timeline collection stage

We used the Twitter API’s Timeline endpoint to query the subjects’ most recent tweets. To get tweets
from around the same timeframe, we choose an end_time (which was the start of our sampling stage, 20.
January). Tweets made after end_time were not included. Per subject, we collected a total of 500 tweets,
half of which was reserved for evaluation, the other half served as user context. Some user tweets date back
as early as 2011, however the vast majority (95%) were authored after 2022.

From these tweets, we identified the top-15 most mentioned users (the user’s peers) and collected 50 tweets
from their timelines as well. These, as well as the user context tweets were collected such that they were
authored before the oldest evaluation tweet (t∗ in Figure 11). From these, we selected the 250 most recent
tweets. A simpler approach would have been to select exactly 250

15 ≈ 17 tweets per peer. However, not all
peers had this many tweets on their timeline before t∗, hence our choice for collecting more tweets per peer
than necessary.

In the end, we had queried the timelines of around ∼90k users, with 15M timeline tweets in our database.
We sampled from this pool of users and tweets for our social / temporal control. The social control consists
of tweets of 15 random users with 250

15 ≈ 17 tweets each. We made sure that the sampled user did not coincide
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Figure 10: Distribution of Bot-O-Meter scores. We only selected users in our subject pool that had a score
that was lower than 0.5.

user peers control
used tweets
unused tweets
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(b) User context
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.
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(c) Peer context
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(d) Social control

time

t*

(e) Temporal control

Figure 11: Data creation protocol. We evaluate predictability on a set of evaluation tweets, and how it
changes depending on what context we provide.

with the subject itself / any of their peers. The temporal control on the other hand contains tweets that
were made around the same time as the tweets inside peer control. Again, we made sure that the tweets’
authors did not overlap with the peer pool or the subject. Figure 11 illustrates all of our settings, while
Figure 12 shows the time histogram of an example dataset belonging to one of our subjects.

A.1.3 Preprocessing tweets

Before our experiments, we preprocessed our collected tweets by filtering out urls, deduplicated spaces and
fixed some special character encodings. We found that urls were not relevant in analysing the predictability
of (organic) online speech, while deduplication of spaces is a fairly common preprocessing step in NLP.
These preprocessing choices were partially inspired by an open-source project called HuggingTweets Dayama
(2022). For our experiments described in Section 4.2, we further filtered out @-mentions and hashtags.
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Figure 12: Time histogram of an example dataset of some subject u. We illustrate T eval
u , and how all

context tweets were written before the oldest tweet in T eval
u . The social control contains tweets from

random users, while the temporal control contains tweets that were authored around the same time as the
peer tweets.

(a) Loss calculated on the 5% validation split (∼ 0.5M
tweets).

(b) Loss calculated on the evaluation set of 100 subjects
(25k tweets). There is a lot more stochasticity, which in
part is due to the smaller sample size and a less diverse
pool of authors.

Figure 13: Loss curves of tweet-tuning GPT-2-XL on 10M tweets for 1 epoch. Validation loss (negative log-
likelihood) was calculated on a 5% split. To make sure that tweet-tuning also improved subject predictability,
we also selected a random subset (n = 100) of the 5k subjects. We used their evaluation tweets to calculate
the loss and since each |T eval

u | = 250, this means a total of 25000 tweets.
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Figure 14: Distribution of tweet length in tokens (Llama-2 tokenizer). Tweets are from T eval

A.2 Models

A.2.1 Training data

GPT-2 was trained on WebText with content up to December 2017 Radford et al. (2019) (95% of our subjects’
tweets were authored after 2022), Falcon was trained on RefinedWeb which is is built using all CommonCrawl
dumps until the 2023-06 one Penedo et al. (2023) (CommonCrawl typically does not contain snapshots of
Twitter com (2024)) and the authors of the Llama models claim to have “made an effort to remove data from
certain sites known to contain a high volume of personal information about private individuals.” Touvron
et al. (2023); Dubey et al. (2024). Llama-2 has a knowledge cutoff at September 2022, while Llama-3 8B has
seen data up to March 2023. Based on these facts we believe there is limited risk of data contamination.

A.2.2 Tweet-tuning on 10M tweets

We finetuned some models on the 10M tweets we collected during the sampling stage of our data collection
process (as described Section 3.1), where a 5% split was reserved for validation. Tweets were concatenated,
with the special eos token ’<|endoftext|>’ serving as a separator between them.

GPT-2-XL-tt We finetuned all parameters for 1 epoch, using a constant learning rate of 5e−5, batch size
8 and fp16 mixed precision training on a single A-100 80GB GPU with an AdamW optimizer. We used
the example finetuning script from the transformers library as our base5, where we kept most of the default
training arguments.

With a batch size of 8, it took 147279 global steps to go over the entire set of training tweets once. In
addition to the evaluation loss (NLL on the 5% validation split, which was checked periodically) we also
tracked the loss calculated on the combined evaluation set of 100 subjects (25000 tweets in total) to make
sure that the pre-finetuning improved prediction on our subjects as well. We present a figure of the loss
curves in Figure 13.

Llama-3-8b-tt We finetuned all parameters for 5 epochs, using an initial learning rate of 2e−5 and a cosine
learning rate scheduler. We used a paged AdamW optimizer with batch size 1 and gradient accumulation
steps set to 8. We used axolotl for finetuning, the base for our config was their example full finetune script6

for Llama-3-8b (only the initial learning rate and number of epochs was changed).

5run_clm.py from here: https://github.com/huggingface/transformers/tree/main/examples/pytorch/
language-modeling

6https://github.com/axolotl-ai-cloud/axolotl/blob/main/examples/llama-3/fft-8b.yaml
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A.3 Prompting experiments

Our first approach to measuring model uncertainty is through prompting; that is, experiments where we feed
a tweet to a model and observe the associated probabilities of outputting that exact tweet. It is important
to note that this approach does not involve content generation. This allows us to avoid a host of additional
modeling choices, making prompting a more robust method. We use negative log-likelihood (or NLL) as
a measure of model uncertainty, and introduce bits per character (or BPC) to enable comparisons across
models. Reported results are calculated on T eval

u .

Let us denote a single tweet as T = (t1, t2, ...tm), where ti is a single token (i = 0...m). A token is an item
in the LLM’s vocabulary, and can be thought of as a collection of characters that frequently co-occur. Each
tweet has a maximum of 280 characters7 and after tokenization most tweets have between 0-100 tokens (Fig.
19). We use a language model with parameters θ to predict token ti based on the preceding tokens t<i. The
model’s output will be a likelihood over all possible tokens in the model’s vocabulary, however we are only
interested in the conditional probability of ti: pθ(ti|t<i).

Calculating negative log-likelihood Our metric for predictability is the average negative log-likelihood
(or NLL for short from now on). We define the NLL of a tweet T in the following way: L(T ) =
−

∑
ti∈T ln pθ(ti|t<i). This gives us an estimate of the model’s uncertainty when predicting the tokens

inside tweet T . The average uncertainty over all tweets in the evaluation set T eval
u is

L̄u = 1
n

∑
Tj∈T eval

u

L(Tj),

where n is the total number of tokens. We additionally introduce notation to distinguish what context was
used to calculate: L̄c

u, where subscript c ∈ {user, peer, random}. Here, the conditional probability of token
ti is based on preceding tokens t<i as well as tokens from the appropriate context: pθ(ti|T c

u , t<i). The added
context lends a convenient cross-entropy like interpretation of the shared information between the context
and evaluation tweets we are trying to predict.

Sensitivity to prompting strategy Tweets that served as context were concatenated using the ‘newline’
token for GPT-2-XL and the ‘space’ token for the other models (they had no standalone ‘newline’ token like
GPT-2). Using low-frequency tokens as a separator between tweets (such as the eos token, which is usually
reserved for separating training documents) produced abnormally high NLLs, which is why we decided to use
more common tokens, such as space or newlines. We used the following input sequence lengths: 1024 tokens
for GPT-2-XL, 2048 for Falcon 40B and 4096 for Llama-2 and Llama-3 to calculate the token probabilities.
In case the provided context exceeded this length, the oldest tweets were discarded.

Conversion to bits per character Models with different tokenizers produce NLLs that are not com-
mensurate with each other due to a different set of tokens being used. To overcome this, we convert our
measure to a metric called bits per character, also known as bits per byte. Let ct be the number of characters
in token t. We define the number of characters inside tweet T as C(T ) =

∑
ti∈T cti . Taking the average over

all tokens in Tu we get C̄u = 1
n

∑
Tj∈Tu

C(Tj). We define bits per character (BPC) formally as

bpcu = L̄u · 1
C̄u

· 1
ln 2 .

This number tells us the average number of bits required to predict the next character in the set T eval
u .

This leads to a more interpretable variant of the common perplexity measure 8. The average BPC over all
users is bpc = 1

|U|
∑

u∈U bpcu. Similarly to before, we define bpc
c as the measure of model uncertainty where

token probabilities were calculated including tokens from some context c.

7This limit changed to 4000 characters on the 09. February 2023.
8Perplexity is the exponentiated average negative log-likelihood.
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Estimating the effect size of context on predictability Next, we are interested in measuring the
average effect size of different contexts on predictability. At a user level, we quantify the difference in
predictability between context c1 and c2 as ∆c1

c2(u) = L̄c1
u − L̄c2

u . Aggregating over all users, we define the
standardized mean difference (SMD) of ∆c1

c2 for each context pair:

SMD(∆c1
c2) =

µ
∆c1

c2
σ

∆c1
c2

This gives us a unit-free quantity to estimate the effect size. Following established practice Cohen (1988),
we characterize effect sizes up to 0.2σ to be small, up to 0.8σ to be medium and and anything above that to
be a large effect size.

A.4 Finetuning experiments

Tweet-tuned models were additionally finetuned on one of the contexts. We also experimented with using
mixtures of different contexts. Here, our proxy for unpredictability was the negative log-likelihood (or also
commonly known as the cross-entropy loss) in the final round of fine-tuning. Tweets were concatenated, with
the special eos token ’<|endoftext|>’ serving as a separator between them. Reported results are calculated
on T eval

u .

We only ran this experiment on the tweet-tuned version of GPT-2 (GPT-2-XL-tt), because of the non-
negligible amount of time and resources this experiment requires to run. Per subject there are 3 different
types of context, plus 4 mixtures of contexts. That is, we finetuned GPT-2 a total of 7 ∗ 5102 = 35714
times. Together with tweet-tuning, it cost us approximately 1.6 e19 FLOPs to run this experiment. 9 While
finetuning on larger models would certainly result in lower cross-entropy overall, we do not believe that it
would change our main conclusions. This is supported by the high agreement on the ranking of users across
models (Fig. 15) as well as the stability of our conclusions for our prompting experiments as we go up in
model size.

B Supplementary Results

B.1 High agreement on user ranking

We find that the ranking of users according to average unpredictability of their tweets is strongly correlated
between all three of our models (Figure 15). This means that a user who scores high (i.e. their tweets are
harder to predict) according to one model, will likely score high on a different model as well. This points to
a certain robustness of the negative log-likelihoods: Although the absolute numbers change from one model
to the next, the ranking of users is similar.

B.2 Individual variability

While globally there is a tendency where user context outperforms peer context, peer context outperforms
random context, etc., there is substantial variability on the individual level as illustrated in Figure 16. In
the highlighted blue example, random context improves predictability more than the peer context.

B.3 Correlation with average tweet length

In Figure 14 we show the distribution of subjects’ tweet length in tokens. Most of the tweets have between
0 and 100 tokens. We also present the relationship between model uncertainty and the average tweet length
of a given subject in Figure 19. NLL and average tweet length are correlated: users with longer tweets are
on average more predictable.

9As a comparison: it took OpenAI around e20-e21 FLOPs to finetune GPT-2 from scratch.
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Figure 15: There is high agreement on the ranking of users based on predictability across models. We
measure predictability in the no-context setting (bpcu; bits per character) for each user. A high-scoring user
(who is harder to predict) will get a similarly high score on a different model (conversely a low-scoring user
will get a lower score).
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Figure 16: Differences in predictability ∆c1
c2

using the Llama-2 model. We picked 10 random users and plot
their predictability using different contexts (y axis). Comparing across contexts we get the difference in
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c2
. While model uncertainty goes down on average as we evaluate on more predictive
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Figure 17: Average bits per character (BPC) required to predict user tweets, with 95% confidence intervals.
Here both control settings are included: (i) past tweets from random users (social control, left) and (ii) past
tweets made around the same time as the peer tweets (temporal control, right). These results are consistent
with the ones presented in Fig. 1.
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Figure 18: Average improvement in NLL from additional user context (compared to none). The deterioration
of predicting the first token correctly is an artifact of how we ran our experiments. Model: Llama-3-8B.
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Figure 19: Users with longer tweets are more predictable. On the y-axis, we plot the average NLL required
to predict a user’s tweets (no context setting). The x axis shows the user’s average tweet length (in tokens).
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Figure 20: Hard to predict users get more predictable with additional context, but only slightly. On the
x-axis, we plot the average BPC required to predict a user’s tweets (no context setting), effectively sorting
them based on how predictable they are (easy vs. hard to predict). The y axis plots the relative improvement
(decrease in BPC) with additional user context.
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Figure 21: Average effect size of c2 relative to c1 on user predictability. We look at the difference in
predictability for each user ∆c1

c2(u) = L̄c1
u − L̄c2

u , where L̄c
u is the average negative log-likelihood of user

u under context c. Plotted values are standardized mean differences (SMD) of ∆c1
c2. Darker green means

greater improvement.

B.4 Hard to predict users gain slightly more from additional context

In Figure 15 we have shown that if we rank users according to how predictable they are, there is a high
agreement across models wrt. this ranking. Now, with additional context, we analyze how the change in
predictability is influenced by this ranking (Figure 20). We find that with additional context, improvement
in predictability is larger for users who are already hard to predict. Predictability improves on average by
∼ 0.1 bits for every 1 bit increase in “difficulty to predict”.

B.5 Two control groups: social and temporal control

Bagrow et al. (2019) introduce two control groups in their experiment: a social and a temporal control. Social
control includes tweets from 15 random users. Temporal control on the other hand, selects 250 tweets that
were authored around the same time as the tweets from the peer context. See Figure 11 for an illustration
of both. The rugplot on the top of Figure 12 shows the same, but on real data of a random subject. Figure
17 shows our main results including both controls, while Figure 21 shows the corresponding effect sizes.

B.6 First token uncertainty

Adding context can help in correctly predicting the first token. This is the case for GPT-2, Falcon and
Llama-2 models (see Fig. 4), where models learn from context that a tweet often begins with an @-mention.
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Figure 22: The effect of taking the first token out of the analysis. Overall, the average model uncertainty
decreases (predictability goes up). Lighter bars are results from our original experiment.

For Llama-3, we see a slightly different picture in Figure 18: predicting the first token correctly becomes
harder because of the added context. Upon investigating this difference, we found that this is simply an
artifact of how we ran our experiments. Llama-3 assigns much higher probability to predicting ’@’ as the first
token to begin with. With the added context however, it assigns high probability to ’ @’ (a space followed
by an @), which is encoded as a single token in Llama-3 ([571]). Because of how we ran our experiments,
the space ([31]) and the subsequent @-mention ([220]) got encoded separately, resulting in tokens [31, 220]
instead of the expected [571]. Thus we decided to exclude the first token from our analysis when reporting
results on Llama-3.

Figure 22 illustrates how dropping the first token from our analysis affects model uncertainty across all four
models. Unsurprisingly, model uncertainty goes down. For models which had high negative log likelihoods
on the first token improved the most in the no context setting. On the other hand – for reasons we outlined
above – model uncertainty on the Llama-3 model improved the most outside the no context setting. Overall,
by excluding the first token from our analysis, we found that our main results from Figure 1 are nicely
replicated on Llama-3 as well.

B.7 Most improved token due to random context: @-mention

We were interested in which tokens benefited most after including random (i.e. social) context. We selected
tokens with >100 occurences, and ranked them based on how much their prediction improved on average.
Table 1 shows that the ’@’ token benefits the most across all three models, indicating that @-mentions are
locations of greatest improvement. See Table 2 for a full table on top-10 most improved token predictions
(with all possible contexts).

B.8 Falcon-40b w/o @-mentions and hashtags

We repeated our prompting experiments after removing @-mentions and hashtags from our tweets (see Figure
5). An interesting observation for our results on Falcon is that after removing @-mentions and hashtags,
additional context did not improve predictability the same way as it did before. In case of peer and random
context, it even increased model uncertainty. The effect size of the user context dropped to only 0.4σ, which
is significantly less than the 2.1σ from before. A possible explanation is that the only (useful) predictive
signal Falcon was able to pick up on was in the removed pieces of text. Another possibility is that it is
simply more sensitive to discontinuities inside the text than other models.
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GPT-2-XL Falcon Llama-2
social control

1 @ @ @
2 âG, Brit Hey
3 L, ĠAmen Ain
4 ĠARTICLE ĠNah Happy
5 ĠðŁĳ ĠBru Wait
6 ĠðŁ ĠSame tf
7 ĠâG, ĠDamn /@
8 Ġâĺ ĠWait rach
9 Ġâľ ĠDang Okay
10 ľ ĠNope Ton

Table 1: Top ten tokens whose predictability went up the most (on average) after including tweets from
random users as context (compared to no context). Notice how the @ sign is the token that got “bumped”
the most, suggesting that the additional random context helped with predicting @-mentions. (Ġ is a special
symbol for the space character in the GPT-2-XL and Falcon tokenizers.)
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Figure 23: Model uncertainty on a random subject. Increasing the context window size lowers model
uncertainty. Dashed lines are model uncertainties reached with 4096 context window size, with the specified
context. Model: Llama-2-70b.

B.9 Negative log-likelihood convergence

We illustrate how negative log-likelihood converges as we increase the context window size. In other words,
we show that the more tokens (tweets) we include, the lower NLL we get. We concatenated tweets in T eval

u

for a random user u using the ’space’ token as a separator. In Figure 23, we show how NLL converges as we
increase the context window size from 10 tokens to 4096 tokens. In the end, it converges to the same NLL
we reach when we condition on concatenated tweets from the user context T user

u . As we can see, LLMs
may need a fairly long context size for the negative log-likelihood to converge.

B.10 Results across groups

B.10.1 Gender

We applied the following regular expressions on users’ names, descriptions and location to match their
preferred pronouns. We used the ‘feminine’, ‘masculine’ and ‘diverse’ categories. Case was ignored.
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Figure 24: Intersection of gender and US. Categories: US & masculine (78), US & feminine (69) and US &
diverse (81). Model: Llama-3-8B

The regex for the ‘feminine’ category:

(\b(?:she|her|hers|herself)(?:\s*[\s/|]\s*(?:she|her|hers|herself))?\b)

The regex for the ‘masculine’ category:

(\b(?:he|him|his|himself)(?:\s*[\s/|]\s*(?:he|him|his|himself))?\b)

The regex for the ‘diverse’ category:

(\b(?:they|them|their|theirs|themself|themselves|ze|zir|zirs|zirself|fae|faer|faers|faerself \
|xe|xem|xyr|xyrs|xyrself|ey|em|eir|eirs|eirself|ve|ver|vis|verself|per|pers|perself)(?:\s*[\s \
/|]\s*(?:they|them|their|theirs|themself|themselves|ze|zir|zirs|zirself|fae|faer|faers|faerself \
|xe|xem|xyr|xyrs|xyrself|ey|em|eir|eirs|eirself|ve|ver|vis|verself|per|pers|perself))?\b)

Subjects that matched for pronouns in both the ‘feminine’ and ‘masculine’ category were also put in the
‘diverse’ group.

B.10.2 Location

Users’ location was determined using geolocating services like Nominatim. We used python libraries like
geopy and geotext to extract the country code of the location. Another method was to parse flag emojis
and convert them to the corresponding two-letter country code. The input was the specified location in
users’ profiles.

B.10.3 Intersection of gender and US

We also had enough data to analyze the intersection of US subjects and the gender category. Results are in
Fig. 24. We see similar predictability and relative relationships in these subcategories as well.
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GPT-2-XL
social temporal peer user

1 @ @ hetti ĠKraft
2 âG, âG, DOM hetti
3 L, L, 204 ĠARTICLE
4 ĠARTICLE ĠARTICLE Agg hyde
5 ĠðŁĳ ĠðŁĳ rium DOM
6 ĠðŁ ĠâG, alys ĠSag
7 ĠâG, ĠðŁ perm medium
8 Ġâĺ ĠPis Hour ĠRescue
9 Ġâľ ľ hyde ĠPis
10 ľ Ġâĺ Extra ĠKeller

Falcon
social temporal peer user

1 @ @ hyde 749
2 Brit Brit perm Ġgenealogy
3 ĠAmen ĠNah Agg Ich
4 ĠNah ĠBru 018 ildo
5 ĠBru ĠAmen 641 hyde
6 ĠSame ĠDamn atts MCA
7 ĠDamn ĠWait 576 perm
8 ĠWait ĠSame 931 ĠKeller
9 ĠDang ĠDude Chi ENV
10 ĠNope ellan 454 ĠVenue

Llama-2
social temporal peer user

1 @ @ Extra Kraft
2 Hey Ain DOM medium
3 Ain Hey member Extra
4 Happy tf zent zent
5 Wait Fil υ υ
6 tf Wait Los Via
7 /@ soft members hour
8 rach rach @ member
9 Okay Via gat DOM
10 Ton Om txt ihe

Table 2: Top ten tokens whose predictability went up the most (on average) after including tweets from
some context (compared to no context). Tokens with > 100 occurences were selected.
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