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Detection via Role Recognition and Involvement Measurement
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Abstract
The rapid development of large language models (LLMs), like Chat-
GPT, has resulted in the widespread presence of LLM-generated
content on social media platforms, raising concerns about misinfor-
mation, data biases, and privacy violations, which can undermine
trust in online discourse. While detecting LLM-generated content is
crucial for mitigating these risks, current methods often focus on bi-
nary classification, failing to address the complexities of real-world
scenarios like human-AI collaboration. To move beyond binary clas-
sification and address these challenges, we propose a new paradigm
for detecting LLM-generated content. This approach introduces
two novel tasks: LLM Role Recognition (LLM-RR), a multi-class
classification task that identifies specific roles of LLM in content gen-
eration, and LLM Influence Measurement (LLM-IM), a regression
task that quantifies the extent of LLM involvement in content cre-
ation. To support these tasks, we propose LLMDetect, a benchmark
designed to evaluate detectors’ performance on these new tasks.
LLMDetect includes the Hybrid News Detection Corpus (HNDC)
for training detectors, as well as DetectEval, a comprehensive eval-
uation suite that considers five distinct cross-context variations and
multi-intensity variations within the same LLM role. This allows for
a thorough assessment of detectors’ generalization and robustness
across diverse contexts. Our empirical validation of 10 baseline
detection methods demonstrates that fine-tuned Pre-trained Lan-
guage Model (PLM)-based models consistently outperform others
on both tasks, while advanced LLMs face challenges in accurately
detecting their own generated content. Our experimental results
and analysis offer insights for developing more effective detection
models for LLM-generated content. This research enhances the un-
derstanding of LLM-generated content and establishes a foundation
for more nuanced detection methodologies.
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1 INTRODUCTION
“On the internet, nobody knows you’re a dog AI.”

— Peter Steiner

Recent advances in generative large language models (LLMs) [15,
16, 25, 35], such as GPT-4 [35] and LLaMA [16], alongside the in-
creasing availability of tools like ChatGPT1 and Copilot2, have
significantly reshaped the landscape of social media and web plat-
forms [13]. These technologies facilitate the automated creation
of extensive content with human-like fluency [36], making LLM-
generated posts, articles, and comments widely accessible and
rapidly disseminated. The proliferation of such content has pro-
foundly expanded its reach and influence, transforming the dynam-
ics of online discourse.

However, these advancements also introduce significant risks,
both in terms of information accuracy and public trust. While LLM-
generated content can match the fluency of professional writing,
it inevitably contains hallucinations [1, 4]—misleading informa-
tion that appears credible but lacks factual accuracy. A report
by NewsGuard3 identified over 1,050 unreliable LLM-generated
news websites, further undermining the already fragile informa-
tion ecosystem. The rapid spread of such content across social
media heightens the risk of misinformation [37, 40], challenging
the accuracy and credibility of digital information. Additionally,
LLM-generated content often exhibits inherent biases [18] and can
be misused for malicious purposes [33, 47], further complicating
efforts to maintain information integrity. These risks contribute to
the erosion of public trust in media. According to the 2024 Digital
News Report [5], global trust in news media has fallen to 40%, and
the rise of LLM-generated content threatens to further weaken
this fragile trust. As distinguishing between human-written and
LLM-generated content becomes critical for preserving informa-
tion integrity [11, 52], current detection methods, which are largely
limited to binary classification [44, 46, 48, 49], fail to distinguish
the complexity of LLM-generated content like mixed human-LLM
input.

In real-world applications, LLMs play diverse roles, adapting to
various user needs [9, 10]. These models assist in different stages
of the writing process—from organizing ideas and drafting to re-
fining text—resulting in varying degrees of AI involvement across
contexts. Fully LLM-generated content is generally easier to detect

1https://chatgpt.com/
2https://copilot.microsoft.com/
3https://www.newsguardtech.com/special-reports/ai-tracking-center/
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and often lacks quality assurance, whereas human-authored drafts
refined by LLM tend to achieve higher quality standards and are
significantly harder to identify as LLM-generated [53]. This varia-
tion complicates the detection process, underscoring the limitations
of binary classification methods and the need for more advanced
frameworks capable of capturing these nuanced distinctions.

In this paper, we propose a new paradigm for detecting LLM-
generated content that moves beyond the limitations of binary
classification by considering both the LLM’s role and level of in-
volvement in content creation, as depicted in Figure 1. LLMs of-
ten play diverse roles in assisting human authors, and to capture
this complexity, we introduce two novel tasks. The first task, LLM
Role Recognition (LLM-RR), is a multi-class classification task that
identifies the specific roles played by LLMs in content generation,
distinguishing between stages such as drafting and refinement. The
second task, LLM Influence Measurement (LLM-IM), is a regression
task designed to quantify the LLM involvement ratio in content
creation, offering a nuanced measure of AI influence on the final
output.

To evaluate these tasks, we present LLMDetect, a benchmark
specifically designed to assess detection models’ performance in
real-world scenarios. LLMDetect consists of two components: the
Hybrid News Detection Corpus (HNDC), a dataset with diverse
content types for robust training and evaluation, and DetectEval, a
comprehensive evaluation suite that considers five distinct cross-
context variations and multi-intensity variations within the same
LLM role. Together, these components provide a thorough assess-
ment of detection model robustness and generalization across dif-
ferent contexts of LLM-generated content.

We validate our approach by training and evaluating 10 base-
line detection models on the HNDC, including zero-shot LLMs, as
well as supervised feature-based and Pre-trained Language Model
(PLM)-based models. Our results show that fine-tuned PLM-based
methods consistently outperform others in both tasks, while ad-
vanced LLMs face challenges in accurately detecting their own
generated content. Specifically, DeBERTa-based detectors excel in
cross-context generalization due to their advanced contextual repre-
sentation capabilities, while Longformer-basedmodels perform best
on datasets with varying intensity levels, benefiting from their abil-
ity to process longer input sequences. Additionally, we investigate
the impact of data leakage on zero-shot LLM detectors and explore
the effect of using different LLMs as feature extractors. These find-
ings demonstrate the effectiveness of our approach in handling the
complexities of LLM-generated content. Our contributions are
summarized as follows4:

• We propose a new detection paradigm that moves beyond
binary classification, introducing two novel tasks: LLM Role
Recognition (LLM-RR) and LLM Influence Measurement
(LLM-IM).

• We introduce LLMDetect, a benchmark comprising the Hy-
brid News Detection Corpus (HNDC) and DetectEval, de-
signed to evaluate model robustness and generalization
across diverse real-world content types.

4Our benchmark and trained detection models will be released.

• We empirically validate baseline detection methods, includ-
ing zero-shot LLMs, supervised feature-based and PLM-
basedmodels. Our results offer insights for developingmore
effective detection models for LLM-generated content.

2 RELATEDWORK
2.1 Detection tasks
As the growing number of LLMs continues to exhibit strong text
generation capabilities [15, 16, 25, 35], several studies have begun
to focus on the detection of AI-generated text. The early work
mainly focused on distinguishing the pairs of human answers and
GPT-generated answers for the same question, such as the HC3
dataset [21]. Subsequently, the work gradually shifted towards a
broader range of scenarios. Some works expand the samples gen-
erated by a single LLM to various LLMs (such as MGTBench [23])
in multiple domains (essays, stories, and news articles). Moreover,
since the writing style and language bring a significant challenge
to the detector [30], other work [32, 49] focuses on detecting text
generated by different LLMs in multiple languages. Recent works
start from the generation method and focus on a broader range of
AI-assisted writing methods, such as from GPT-generated to GPT
polished [53], as well as GPT-completed [31, 43].

However, existing work usually focused on binary classifica-
tion tasks [51], which determine whether it is human-written or
not, ignoring the differences in which humans integrate ChatGPT
into their creations in real-life scenarios, such as complete gener-
ation, continuation, and polishing [31, 43]. In contrast, our work
introduces a more nuanced detection framework, addressing these
complexities by accounting for different levels of LLM involve-
ment, offering a more detailed and practical understanding of LLM-
generated content.

2.2 Detection methods
Current detection methods can be broadly categorized into three
types based on the features they rely on [20]: watermarking-based
detection methods, statistical outlier detection methods, and fine-
tuning classifiers. (i) The watermark-based methods require embed-
ding the signals that are invisible to humans into the AI-generated
text and then detecting them based on these invisible token-level
secret markers [26]. However, this method not only requires pre-
editing that is not applicable to open-source models [37] but also
affects the quality of model generation due to the insertion of wa-
termarks [42]. (ii) Statistical outlier detection methods focus on
distinguishing whether a text is written by GPT based on the hu-
man features contained in the text. They adopt features ranging
from shallows (entropy [19, 28], n-gram frequencies [2], and per-
plexity [7]) to deeps such as using the absolute rank [19], the Log
Likelihood Ratio Ranking (LRR) by complementing Log Rank [41]
and the model’s log probability in regions of negative curvature
(DetectGPT) [34]. (iii) Supervised fine-tuning classifiers, trained on
annotated data [3, 24, 39], have shown effectiveness in detecting
LLM-generated text across domains, such as news [27, 54], social
media (e.g., Twitter) [17], and academic papers [53]. However, these
classifiers often overfit to specific domains, leading to poor perfor-
mance on out-of-distribution data [12, 45], and their capabilities

2
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Figure 1: The detection framework toward fine-grained LLM-generated text detection through role recognition and involvement
evaluation.

significantly degrade when applied to unseen datasets from differ-
ent domains [29].

Thus, assessing the transferability of detectionmodels is essential
for their practical application across diverse datasets and domains.
In our work, we evaluate detection methods—including zero-shot
LLMs, supervised feature-based, and PLM-based models—on our
novel tasks and dataset. Our empirical validation provides insights
into improving detection models for LLM-generated content, par-
ticularly with respect to enhancing generalization and robustness
in diverse, real-world scenarios.

3 METHODOLOGY
Figure 1 illustrates our proposed detection framework for fine-
grained detection of LLM-generated text, encompassing two pro-
posed novel detection tasks (§3.1), and the LLMDect Benchmark
(HNDC & DetectEval) for training and evaluation detection models
(§3.2).

3.1 Detection Paradigm Definition
The current task of detecting LLM-generated text primarily relies on
binary classification, determining whether a text is LLM-generated
or not. In this traditional binary LLM detection task, given a dataset
{(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑥𝑖 denotes the text content and 𝑦𝑖 ∈ {0, 1}
indicates whether the text is LLM-generated. However, this ap-
proach focuses only on identifying LLM-generated content and
is unable to distinguish more complex scenarios. For example, in
LLM-assisted writing, users may employ LLMs to refine or slightly
modify sentence structures for improved fluency, which is different
from cases where the LLM generates the entire text. To overcome
these limitations, we propose two new detection tasks: LLM Role
Recognition (LLM-RR), a multi-class classification task, and LLM
Involvement Measurement (LLM-IM), a regression task.

3.1.1 LLM Role Recognition. LLM-RR aims to identify the specific
role that LLMplays in text generationwhen used as an LLM-assisted
writing tools. Unlike binary detection, where labels are binary, the
label for each 𝑥𝑖 is defined as 𝑦𝑖 ∈ {𝐶1,𝐶2, . . . ,𝐶𝑘 }, indicating the

specific role 𝐶𝑖 the LLM plays in generating text 𝑥𝑖 . Examples of
such roles include fully human-written text, LLM-generated content
withminor human editing, human-led creationwith LLM assistance,
or fully LLM-generated text without human involvement, among
others. The LLM-RR task can be defined as follows:

min
𝑓

E(𝑥,𝑦)∼D [1{𝑓 (𝑥) ≠ 𝑦}] (1)

where our objective is to find an optimal classifier 𝑓 (·) that mini-
mizes the overall average misclassification rate. The indicator func-
tion 1{𝑓 (𝑥𝑖 ) ≠ 𝑦𝑖 } equals 1 when the classifier 𝑓 assigns an incor-
rect label to the input 𝑥𝑖 , and 0 if the label is correct. The text 𝑥𝑖
follows a distinct distribution ℱ𝑘 conditioned on its category label
𝑦𝑖 :

𝑥𝑖 | 𝑦𝑖 = 𝐶 𝑗 ∼ ℱ𝑗 , 𝑗 ∈ {1, 2, 3, . . . , 𝑘} (2)

3.1.2 LLM Involvement Measurement. While LLM-RR provides
greater granularity compared to binary detection, it also has limita-
tions. First, user interactions with LLMs in real-world applications
are complex, making it challenging to accurately define all possible
LLM roles. Additionally, even within the same LLM role, the degree
of the LLM’s contribution can vary, adding further complexity to
detection. Therefore, we propose a new task, LLM InvolvementMea-
surement (LLM-IM), to address these challenges. LLM-IM quantifies
the degree of LLM involvement in the generated text and is framed
as a regression task. In this task, the dataset {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 features
labels 𝑦𝑖 that represent a continuous value rather than discrete role
categories. We define this value label as the LLM Involvement
Ratio (LIR), a metric ranging from 0 to 1, where 0 indicates no
LLM involvement, and 1 signifies that the text is entirely generated
by the LLM. Specifically, it is calculated as follows:

𝐿𝐼𝑅 =
𝑇𝐿𝐿𝑀

𝑇𝑡𝑜𝑡𝑎𝑙
(3)

where 𝑇𝐿𝐿𝑀 represents the portion of the text generated or edited
by the LLM, 𝑇𝑡𝑜𝑡𝑎𝑙 represents the total length of the final text. The
LLM-IM task can be defined as follows:

3
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min
𝑓

E(𝑥,𝑦)∼D
[
(𝑓 (𝑥) − 𝑦)2

]
, 𝑦 ∈ [0, 1] (4)

where our objective is to minimize the expected loss over the data
distribution D.

By integrating the LLM-RR and LLM-IM tasks, this framework of-
fers a comprehensive and scalable approach to understanding both
the roles and the extent of LLM involvement in content creation.

3.2 LLMDect Benchmark
To validate the effectiveness of our proposed detection paradigm,
we construct LLMDect, a benchmark specifically designed to eval-
uate detection models across varying levels of LLM involvement.
This benchmark encompasses four distinct roles in content creation:
Human-Author, LLM-Creator, LLM-Polisher, and LLM-Extender.
Each of the four roles represents a distinct level of LLM participa-
tion:

• Human-Author: Content created entirely by a human,
without any LLM intervention.

• LLM-Creator: Text fully generated by the LLM, with no
human contribution.

• LLM-Polisher: Human-authored text that has been edited,
refined, or improved by the LLM.

• LLM-Extender: Text where the LLM extends or continues
an initial human-authored draft.

Specifically, the LIR is defined as 0 for Human-Author text and 1 for
LLM-Creator text, while for LLM-Polisher and LLM-Extender text,
the LIR falls between 0 and 1. For LLM-Extender, the LIR value can
be directly calculated using Equation 3. However, for LLM-Polisher,
directly extracting 𝑇𝐿𝐿𝑀 is not feasible. Therefore, following the
approach of Yang et al. [53], we use the Jaccard distance to calculate
the polish ratio, which serves as the LIR for this role.

In LLMDect, each Human-Author text is paired with three ver-
sions generated by the other LLM roles. Each text is annotated with
its corresponding LLM role and associated LIR value. This dual
annotation framework enables a comprehensive evaluation of both
the role and extent of LLM involvement in content creation. The
constructed LLMDetect benchmark comprises two key components:
the Hybrid News Detection Corpus (HNDC), a diverse dataset
designed for robust training and evaluation of detection methods,
and DetectEval, a comprehensive evaluation suite featuring five
distinct out-of-distribution settings and varying intensity levels
within the same LLM role.

3.2.1 HNDC. The HNDC consists of 16,076 human-written arti-
cles, leading to a total dataset size of 64,304 articles. For training
supervised detection methods, we randomly split the HNDC into
training, validation, and test sets in a 7:2:1 ratio, ensuring balanced
data distribution across all sets. The test set is used to evaluate the
performance of all baseline models.

a. Human-Author News Collection. The human-written news ar-
ticles, categorized as Human-Author, are sourced from two rep-
utable newspapers, the New York Times and the Guardian, both
known for their commitment to high-quality journalism. Specif-
ically, we extract news samples directly from the existing data

sources N24News [50] and Guardian News Articles5, concentrating
only on three domains: business, education, and technology. Each
news article includes a headline and the publication date, while
New York Times articles also include an abstract. To ensure that
the articles are purely human-authored, we limit our selection to
articles published before 2019, prior to the emergence of ChatGPT.
In total, we collect 6,882 articles from the New York Times and 9,194
articles from the Guardian.

b. LLM-Assisted News Generation. To generate LLM-generated
news articles, we design distinct prompts based on the three pro-
posed roles: (1) For LLM-Creator news, the prompt includes the
title, available summary, topic category, and publication date to
ensure factual reliability. (2) For LLM-Polisher news, the entire
original article is provided. If the article is too long, it is segmented
for polishing to avoid overly shortened outputs that may result
from processing lengthy articles in one go. (3) For LLM-Extender
news, we retain the first three sentences or up to one-third of the
original text and instruct the LLM to generate the remaining con-
tent. To ensure high-quality generation, we employ role-playing
prompts, assigning the LLM the role of a journalist. This approach
leverages social role assignment, which has been shown to im-
prove LLM performance consistently [55].6 We select LLaMa3 [16]
(Meta-Llama-3-8B-Instruct) as the writing assistant LLM.

3.2.2 DetectEval. DetectEval is a comprehensive evaluation suite
designed to assess the transferability and robustness of detection
models, specifically focusing on Cross-context variations and Multi-
intensity Variations.

a. Cross-context variations. Cross-context variations examine
data diversity across five dimensions: content publication time,
prompts for generation, source LLM, cultural differences, and con-
tent domain, resulting in five out-of-distribution settings: cross-
time, cross-prompt, cross-source, cross-cultural, and cross-domain.
The first four settings, similar to those in the HNDC, focus on
LLM-generated content within the news domain, cross-prompt and
cross-source settings are directly expanded based on the test dataset
from HNDC.

Cross-time: HNDC’s pre-2019 articles reduce LLM involvement,
but data leakage is still possible. To address this, we scrape 2024
New York Times articles and generate LLM content for different
roles using the same method as HNDC.

Cross-prompt: LLM-assisted writing varies by prompt, even
for the same role. We design five distinct prompts per LLM-assisted
news role and pair them with news articles to create a diverse test
set. Prompts are listed in Appendix B.

Cross-source:While HNDC initially used Llama-3-8B-Instruct,
real-world scenarios involve stronger LLMs. We supplement HNDC
test data with content generated from four more powerful models:
Deepseek-v2, Meta-LLaMA-3-70B-Instruct, Claude-3.5-Sonnet,
and GPT-4o.

Cross-cultural: Considering that writing and expression styles
can vary across cultural contexts even within the same domain,
we constructed a cross-cultural test set using news platforms [14]

5https://www.kaggle.com/datasets/adityakharosekar2/guardian-news-articles
6The prompts used for HNDC construction are provided in the Appendix A.
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Feature Human-Author LLM-Creator LLM-Polisher LLM-Extender

Average Word Count 558.98±254.31 377.09±61.05 475.83±215.63 511.78±107.56
Average Sentence Count 23.94±12.46 16.27±3.41 20.40±9.92 21.58±5.00
Sentiment Polarity Score 0.09±0.07 0.12±0.08 0.10±0.08 0.11±0.07
Grammatical Errors 16.07±11.89 6.58±9.74 10.99±11.30 11.02±9.79
Syntactic Diversity 1.52±0.50 1.38±0.40 1.40±0.42 1.48±0.37
Vocabulary Richness 0.59±0.07 0.52±0.06 0.61±0.07 0.51±0.06
Readability Score 17.26±3.11 18.92±2.05 18.63±2.37 18.53±2.26

Table 1: Feature differences between news articles. The value in the corresponding cell indicates the mean ± standard deviation.

from Germany, China, and Qatar. These countries reflect significant
cultural diversity, especially in terms of language and values.

Cross-domain: Writing styles differ across domains. We con-
struct a cross-domain dataset with text from thesis, story, and essay
domains, sourced from CUDRT [43], MGTBench [23], and CDB [30].
Specifically, we extract relevant text types from each dataset and
supplement the missing categories using our defined methodology.

b. Multi-intensity variations. Multi-intensity variations are intro-
duced to address the fact that, even within the same LLM-assisted
writing role, the level of LLM involvement can differ. We specifically
construct test data with varying degrees of LLM involvement ratio
for the LLM-extender and LLM-polisher roles.

Variable-Length Extension: For LLM-Extender role, we set
up three truncation lengths to create variable-length extensions,
allowing us to evaluate whether the detectors can identify the
differing levels of content expansion. For the given text 𝑥 , this
process can be described as: 𝐸 (𝑛) (𝑥), 𝑛 ∈ {𝐿𝑜𝑤,𝑀𝑒𝑑𝑖𝑢𝑚,𝐻𝑖𝑔ℎ}7 ,
where 𝑛 denotes the truncation state of the text, and 𝐸 represents
the process of text extension by LLMs.

Multi-Staged Polish: For LLM-polisher role, we apply a multi-
staged polish process, iterating the text polishing up to six times to
evaluate whether the detection methods can identify the increas-
ing levels of refinement. For the given text 𝑥 , this process can be
described as: 𝑃𝑚 (𝑥), where𝑚 denotes the number of polish times,
and 𝑃 represents the polishing process by LLMs.

3.2.3 Linguistic Feature Comparison. To systematically illus-
trate the differences in content across various LLM roles, we intro-
duce seven linguistic feature metrics. Table 1 presents a comparison
of these linguistic features across the four types of news content
in HNDC. Average word and sentence count measure the number
of words and sentences in a news article. Sentiment polarity score
represents the emotional tone of a text, ranging from -1 to 1, with
higher values indicating more positive sentiment, and lower values
reflecting more negative sentiment. Grammatical errors measure
the number of grammatical mistakes that occur per 1,000 words.
Syntactic diversity measure the structural complexity by analyz-
ing clause patterns. Vocabulary richness measures lexical diversity,
ranging from 0 to 1, with higher values indicating greater lexi-
cal variation. Readability score measures the complexity of a text,

7We randomly retain part of an article’s initial sentences and ask LLMs to complete
it. Low refers to retaining [3, 𝑙/3] sentences, Medium retains [𝑙/3, 2𝑙/3], and High
retains [2𝑙/3, 𝑙 − 3], where 𝑙 is the total number of sentences.

with higher values indicating greater reading difficulty. The de-
tailed calculation methods for the linguistic features are provided
in Appendix C.

As shown in Table 1, we observe that LLM-generated news arti-
cles are generally shorter and contain fewer sentences compared to
human-written news. In contrast, LLM-polished and LLM-extended
news, incorporating more human inputs, are significantly richer
and more comprehensive. The various types of news exhibit trivial
differences in their sentiment polarity scores. From other linguistic
features, human writing shows greater lexical and syntactic vari-
ation with lower reading difficulty, whereas LLM writing is more
standardized, featuring fewer grammatical errors and minimal use
of informal writing styles.

4 EXPERIMENTS
In this section, we evaluate the performance and generalization of
10 baseline detection methods (§4.1) in our LLMDect framework
across the two proposed detection tasks. FirstlyWe train supervised
detection methods on the HNDC and evaluate their test set perfor-
mance, while also reporting the zero-shot LLM detector’s results
(§4.2). Then we evaluate the generalization and robustness of the
best-performing detection models on the HNDC across two dimen-
sions in DetectEval: cross-context (§4.3) and multi-intensity(§4.4).
Furthermore, we discuss the data leakage issue when using LLMs as
zero-shot detectors (§4.5) to ensure fairness in detection outcomes.
Finally, we evaluate their effectiveness by using them as feature
extractors (§4.6). We report the F1 score for each LLM role and
evaluate the performance of each detection method on the LLM-RR
task using the weighted F1 score. We report the Mean Squared Error
(MSE) and Mean Absolute Error (MAE) on the LLM-IM task.

4.1 Baseline Detection Methods
We consider 10 baseline detection methods. To illustrate the diffi-
culty of the two proposed detection tasks, we first focus on decoder-
only LLMs, which have demonstrated exceptional performance
across a range of NLP tasks, including four recent advanced models
Mistral [25] (Mistral-7B-Instruct-v0.3), DeepSeek [15] (DeepSeek-
V2-Chat as of June 28, 2024), LLaMa-3 [16] (Meta-LLaMA-3-70B-
Instruct), and GPT-4o [35] (as of May 05, 2024). We utilize these
models in a zero-shot detection pattern using specifically designed
prompts, as shown in Appendix D.

Additionally, we adopt two types of supervised detection meth-
ods: feature-based classifiers and PLM-based classifiers. For feature-
based methods, we adopt Linguistic, Perplexity [7], and Rank
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Type Model LLM-RR (F1 ↑) LLM-IM (↓)

Human Creator Polisher Extender Overall MSE MAE

Zero-shot LLM-based

Mistral-7B 40.01 0.12 0.12 0 10.07 0.4334 0.5678
Deepseek-v2 43.58 21.76 8.56 0.25 18.54 0.4297 0.5479
LLaMA3-70B 44.21 49.31 1.58 8.95 26.01 0.2488 0.4353
GPT-4o 59.32 64.89 7.86 29.09 40.29 0.3079 0.4447

Supervised

Feature-based
Linguistic 66.16 80.40 60.60 71.75 69.75 0.0590 0.1936
Perplexity 60.99 77.90 59.21 64.06 65.54 0.0663 0.1984
Rank 61.65 87.37 61.30 81.17 72.87 0.0540 0.1841

PLM-based
RoBERTa 99.71 99.93 99.81 99.78 99.81 0.0019 0.0222
DeBERTa 99.75 99.87 99.72 99.93 99.82 0.0027 0.0281
Longformer 99.88 99.94 99.88 99.94 99.91 0.0013 0.0168

Table 2: Detection Performance of 10 Baseline Methods on the HNDC Test Set. Assuming a detector predicts an LIR of 0 for all
cases in the LLM-IM task, indicating no detection capability, we can get MSE(base)=0.46 and MAE(base)=0.57.

(GLTR) [19]. Linguistic refers to the seven linguistic features dis-
cussed in §3.2.3. Perplexity, an exponential form of entropy, assesses
the model’s confusion, where lower values suggest a better under-
standing of the text and more accurate predictions. Intuitively, and
as confirmed by Gehrmann et al. [19], LLM-generated texts exhibit
lower entropy since they are typically more “in-distribution”. Addi-
tionally, rank feature evaluates the absolute rank of words by count-
ing how many falls within different Top-k ranks from the LLM’s
predicted probability distributions. Following the classical GLTR
detection method, we adopt GPT2-small [38] to extract the Per-
plexity and Rank features. For PLM-based methods, we choose the
widely adopted models as the detectors, including RoBERTa [56],
DeBERTa [22], and Longformer [6].

4.2 HNDC Performance Evaluation
Table 2 shows the detection performance of 10 baseline methods
on the HNDC test set for the two tasks. The results show that su-
pervised methods outperform the zero-shot LLM detector, with
fine-tuned PLM-based models consistently achieving superior per-
formance across both tasks. In contrast, advanced LLMs face chal-
lenges in accurately detecting content they have generated them-
selves. In the zero-shot LLM detector setting, Mistral and Deepseek
show almost no detection capability, particularly compared to a
base detector that predicts an LIR of 0 for all cases, indicating a
total inability to detect LLM-generated content in the LLM-IM task.
GPT-4o, while demonstrating limited ability to differentiate be-
tween human-authored and LLM-generated content, struggles to
detect human-LLM collaboration. When providing detection ra-
tionales, GPT-4o tends to classify content as human-authored if it
includes specific details, such as citations or data, while fluent and
structured content is more likely to be identified as LLM-generated.
Consequently, GPT-4o encounters significant challenges in detect-
ing complex cases of human-LLM collaboration when relying on
surface-level features alone. Feature-based models show intermedi-
ate performance, with varying detection capabilities across different
LLM-generated content types. Notably, detectors using only lin-
guistic features, without language models involved, still achieve
objective results, indicating discernible linguistic differences be-
tween human-authored and LLM-assisted content, providing an

Figure 2: t-SNE visualization of representations from three
non-fine-tuned PLMs on theHNDC test data. DeBERTa shows
clearer cluster separation, reflecting stronger discriminative
ability.

interpretable basis for detection. In contrast, fine-tuned PLM-based
detectors exhibit outstanding detection performance across all LLM
roles, indicating that traditional methods remain highly effective
in detecting LLM-generated content, even in the current era of
advanced LLMs.

4.3 Cross-context Generalization Evaluation
We apply the three best-performing PLM-based detectors trained
on HNDC to five distinct types of cross-context variations in De-
tectEval to assess their generalization capability. Table 3 presents
the generalization evaluation results. Except for the cross-domain
scenario, the PLM-based detectors demonstrated strong generaliza-
tion across the other four variations, achieving 90% overall. Notably,
the F1 score reached 95% in the cross-time, cross-prompt, and cross-
source scenarios. The high performance in these scenarios suggests
that PLM-based detectors are adaptable across different contexts.
Specifically, in the cross-source scenario, detectors trained on cor-
pora generated by weaker LLMs can effectively detect content from
stronger LLMs, reducing computational resources while maintain-
ing accuracy. Interestingly, in cross-cultural settings, we find that
news from countries with higher visibility, such as Germany and
China, is easier to identify, while news from Qatar presents more
challenges. Besides, the lower performance in the cross-domain
scenario likely results from differences in language structures and
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Test Origin LLM-RR (F1 ↑) LLM-IM (MSE ↓)

RoBERTa DeBERTa Longformer RoBERTa DeBERTa Longformer

Base HNDC Test 99.81 99.84 99.91 0.0027 0.0013 0.0019

cross-time Post-release 97.20 98.76 97.05 0.0150 0.0100 0.0077

cross-prompt Diverse Prompts 95.49 95.04 96.48 0.0126 0.0119 0.0108

cross-source

LLaMa3-70B 99.66 99.81 99.72 0.0035 0.0019 0.0022
Deepseek 97.96 98.36 98.94 0.0019 0.0024 0.0027
Claude 98.18 98.93 99.02 0.0050 0.0055 0.0049
GPT-4o 94.57 97.54 97.30 0.0029 0.0027 0.0040

Average 97.59 98.66 98.75 0.0033 0.0031 0.0035

cross-cultural

German 96.22 94.87 98.18 0.0159 0.0135 0.0066
China 97.70 89.24 98.50 0.0135 0.0079 0.0046
Qatar 87.96 89.22 75.34 0.0245 0.0161 0.0291

Average 93.96 91.11 90.67 0.0180 0.0125 0.0134

cross-domain

Thesis 68.29 85.88 81.10 0.0170 0.0179 0.0207
Story 78.61 90.05 77.57 0.0357 0.0310 0.0296
Essay 50.34 60.66 56.66 0.0598 0.0752 0.0749

Average 65.75 78.86 71.78 0.0375 0.0414 0.0417

Overall Group Average 90.00 92.49 90.95 0.0173 0.0158 0.0154

Table 3: Generalization performance of PLM-based baseline methods across five cross-context variations.

Figure 3: Average LLM Involvement Ratio Predictions and
Golden Label of Variable-Length Extension Experiments

terminologies, highlighting the challenge of achieving robust cross-
domain adaptability and the need for domain adaptation techniques
to improve detection. By averaging the generalization performance
of PLM-based detectors across various cross-context groups, we
find that the DeBERTa-based detector exhibit the strongest gener-
alization capability. We hypothesize that this may be attributed to
DeBERTa’s use of relative position encoding, which improves its
ability to capture long-range dependencies more effectively [22].
Furthermore, we input the test data from HNDC into three original,
non-fine-tuned PLMs to extract their inherent learned representa-
tions, which were then visualized using t-SNE after dimensionality
reduction, as shown in Figure 2. Figure 2 shows that DeBERTa
achieves clearer cluster separation compared to the other PLMs,
indicating stronger discriminative ability. This suggests that De-
BERTa captures relevant features more effectively, explaining its
superior generalization in the cross-context evaluations.

Figure 4: Average LLM Involvement Ratio Predictions and
Golden Label of Multi-Staged Polish Experiments

4.4 Multi-Intensity Robustness Evaluation
To evaluate the trained PLM-based detectors’ sensitivity to LLM-
generated content with different LIR levels within the same role, we
apply them to the multi-intensity variations in DetectEval, assess-
ing their robustness.8 Figure 3 presents the results of the variable-
length extension experiments.9 Intuitively, as more original text is
retained, the LLM involvement ratio decreases during text continu-
ation. For short texts, the LIR predictions from the three PLM-based
detectors generally align with the true labels, but as more origi-
nal text is retained, the prediction discrepancies increase. For long
texts, due to the input length limitations of RoBERTa and DeBERTa,
their predicted LIR values are significantly lower than the actual
values, while Longformer continues to closely match the true labels.
8Our HNDC used for training detectors only considers 𝐸 (𝐿𝑜𝑤) (𝑥 ) for LLM-Extender,
and 𝑃1 (𝑥 ) for LLM-Polisher.
9Due to the 512-token input length limit of RoBERTa and DeBERTa, some LLM-
generated texts may be truncated. Texts are categorized as long or short depending on
whether they exceed 500 words.
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Architecture Models Params. LLM-RR (F1 ↑) LLM-IM (↓)

Human Creator Polisher Extender Overall MSE MAE

Encoder-only
RoBERTa 125M 47.41 68.00 41.74 51.87 52.25 0.1101 0.2784
DeBERTa 140M 47.55 57.67 52.85 63.05 55.28 0.1291 0.3154
Longformer 149M 46.67 62.47 36.94 50.12 49.05 0.1126 0.2815

Decoder-only

GPT2-small 117M 61.65 87.37 61.30 81.17 72.87 0.0540 0.1841
GPT2-medium 345M 72.79 91.92 73.97 82.71 80.35 0.0546 0.1858
GPT2-large 774M 72.82 92.25 74.38 83.06 80.63 0.0544 0.1853
Mistral-7b 7B 59.00 95.29 54.40 52.79 65.37 0.0682 0.2040
LLaMa3-8b 8B 65.09 94.33 63.01 86.51 77.24 0.0570 0.1847

Table 4: Features-based Detectors From Different Language Models

Figure 5: Comparison of ConfusionMatrices of LLM-RRTask

Figure 4 shows the results of the multi-staged polish experiments.
As the number of polishing stages increases, the LIR value rises
accordingly. Longformer provides the best fit for predicting LIR
compared to the other two models. This is because accurately es-
timating the LIR of human-LLM collaborative content requires a
comprehensive evaluation of the entire input text. Longformer’s
ability to handle longer inputs allows it to extract more complete
features, making its LIR estimates more robust.

4.5 Data Leakage analysis
A key concern when using LLMs as detectors to distinguish human-
author and LLM-generated content is that the LLMs’ training cor-
pus may include these news data sources. To address this issue
and ensure fairness in evaluation, we select the HNDC test set as a
pre-release dataset and cross-time data from DetectEval as a post-
release dataset10, using the best-performing zero-shot LLM, GPT-4o,
to conduct LLM-RR experiments on both datasets. As shown in Fig-
ure 5, which presents confusion matrices for GPT-4o’s performance
on pre-release and post-release data, we find that data leakage issue
actually reduces performance. In the pre-release dataset, almost all
LLM-Polished news articles are misclassified as human-authored.
In the post-release dataset, the proportion decreases, likely due to
GPT-4o’s prior exposure to human-authored news, proving that
data leakage affects LLM judgment. Furthermore, as shown in the
confusion matrices, the proportion of misclassifications in the post-
release dataset has decreased. This suggests that exposure to news
10GPT-4o has a knowledge cutoff date of October 2023, and since the selected news
data comes from 2024, it helps to avoid the data leakage issue.

during trainingmisleads the judgment of zero-shot detectors, which
could also explain the poor performance reported in the litera-
ture [8] when using LLMs to distinguish LLM-generated news from
human-authored news.

4.6 LLMs Feature Extractors Analysis
Although generative decoder-only LLMs perform poorly in zero-
shot detection, fine-tuning these models is computationally ex-
pensive, and PLM-based detection models have already achieved
outstanding performance. Nevertheless, we can explore the poten-
tial of using these LLMs directly as feature extractors. Specifically,
drawing on the GLTR [19] approach, we train detection models
using rank-based features extracted from different LLMs. The detec-
tion performance of each model when used as a feature extractor
is presented in the Figure 4. We observe that decoder-only models,
such as GPT-2, significantly outperform encoder-only models like
RoBERTa, DeBERTa, and Longformer, even with comparable param-
eters11. Among categories of LLM-assisted writings, LLM-creator
texts are easiest to distinguish, whereas distinguishing between
LLM-Polisher and Human-Author texts remains challenging. Ad-
ditionally, comparisons among different size of GPT-2 reveal that
larger models demonstrate better feature effectiveness.

5 Conclusion
In this paper, we introduce a new detection paradigm that moves be-
yond binary classification by considering both the role and level of
LLM involvement in content creation. We proposed two novel tasks:
LLM Role Recognition (LLM-RR) and LLM Influence Measurement
(LLM-IM), offering a more fine-grained approach to detecting LLM-
generated content. To support these tasks, we develop LLMDetect, a
benchmark combining the Hybrid News Detection Corpus (HNDC)
and DetectEval, designed to assess model robustness and generaliza-
tion across diverse contexts. Our empirical evaluation of 10 baseline
detectionmodels demonstrated that fine-tuned PLM-based methods
outperform others, with DeBERTa excelling in cross-context gener-
alization and Longformer performing best with varying intensity
levels. As LLM-generated content becomes more prevalent, partic-
ularly on social media, these findings highlight the importance of
developing more effective and fine-grained detection models. Our
approach provides valuable tools for detecting LLM involvement,
contributing to improved content integrity in digital platforms.
11https://huggingface.co/transformers/v4.11.3/pretrained_models.html
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A Prompts for HNDC Construction
The designed role-playing prompts for HNDC construction are
shown in Table 5.

B Diverse Prompts
We assign five prompts to each role, with each news in the test
set paired with a single prompt and call LLaMA-3 to generate the
cross-prompt dataset. The prompts are shown in Table 6.

C Supplement on Linguistic Features
The detailed calculation methods of linguistic features are as fol-
lows: (1) Sentiment polarity score: We use the VADER sentiment
analysis package to calculate sentiment polarity score. (2) Gram-
matical errors: We use the LanguageTool package to check for
grammatical errors. (3) Syntactic diversity: Specifically, it is mea-
sured by calculating the ratio of the number of subordinate clauses
to the total number of sentences. We use the spacy package to seg-
ment clauses. (4) Vocabulary richness: We assess lexical diversity
using the Type-Token Ratio (TTR), which is the ratio of unique
tokens to total tokens in a text. (5) Readability score: We use Fog
Index to assess readability, which indicates the number of years of
education required to understand the text. A higher Fog Index value
represents lower readability, calculated using the average sentence
length and the percentage of words with three or more syllables.

D LLM Detectors Prompt
Table 7 presents the instruction prompts used by the zero-shot LLM
detector for the two detection tasks.

E GLTR Visualization
Figure 6 shows a visualization of the absolute ranks of words in
news articles generated by different methods. Human-authored
news, as shown in (a), contains a large number of red or purple
words, indicating low ranks. In contrast, LLM-created news, as
shown in (b), features few red or purple words, with most words
marked in green or yellow, indicating higher ranks. LLM-polished
news, depicted in (c), shows a significant decrease in the proportion
of high-rank words. Meanwhile, LLM-extended news, illustrated
in (d), shows that the initial human-authored part contains many
low-rank words, while the subsequent LLM-generated continuation
predominantly uses high-rank words. This partly explains the dif-
ferences in the texts generated through the different roles of LLMs
in content creation.
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LLM-Creator

System
Prompt:

You are an AI assistant tasked with generating news articles. Given a news article title and its
description, your task is to craft a well-structured and informative news article. Aim for a
balanced and informative article that provides context and clarity to the reader. Adapt the tone and
style to fit the nature of the news, whether it’s business, education, or scientific to engage the target
audience effectively.

User Prompt: Here is a news article title: <title> and its description <description>, write a <category> news article
based on this news article title and description I gave you and return news article as well as your title
with the format Title: __ ### Article: __ (make sure to use ### as the delimiter). The article should
reflect information available up to <publish date>.

LLM-Polisher

Prompt: Please rewrite the following sentences.
”’<news articles>”’

LLM-Extender

System
Prompt:

You are an AI assistant tasked with generating news articles. Your task is to continue writing
from the given incomplete news article and ensure the continuation is well-structured and
informative. Aim for a balanced and informative article that provides context and clarity to the reader.
Adapt the tone and style to fit the nature of the news, whether it’s business, education, or scientific to
engage the target audience effectively.

User Prompt: Please complete the following news article. Don’t return the given text.
The news begin with:
”’<beginning text>”’
Continue from here:

Table 5: The Designed Prompts for HNDC Construction
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LLM-Creator

Prompt1: Here is a news article title: <title> and its description <description>, write a <category> news article
based on this news article title and description I gave you and return news article as well as your title
with the format Title: __ ### Article: __ (make sure to use ### as the delimiter). The article should
reflect information available up to <publish date>.

Prompt2: Here is a news article title: <title> and its description <description>, write a <category> news article
based on this news article title and description I gave you and return news article as well as your title
with the format Title: __ ### Article: __ (make sure to use ### as the delimiter).

Prompt3: Please write a news about <title>, <description>. Return news article as well as your title with the
format Title: __ ### Article: __ (make sure to use ### as the delimiter).

Prompt4: Here is a news article title: <title> and its description <description>, write a news article in an expert
confident voice. Return news article as well as your title with the format Title: __ ### Article: __ (make
sure to use ### as the delimiter).

Prompt5: Please write a news about <title>, <description> in a formal scientific writing voice. Return news article
as well as your title with the format Title: __ ### Article: __ (make sure to use ### as the delimiter).

LLM-Polisher

Prompt1: Please polish the following sentences.
”’<news article text>”’

Prompt2: Please enhance fluency of the following sentences.
”’<news article text>”’

Prompt3: Please adjust structures of the following sentences.
”’<news article text>”’

Prompt4: Please rewrite the following sentences in a formal scientific writing voice.
”’<news article text>”’

Prompt5: Please polish the following sentences in a humorous voice.
”’<news article text>”’

LLM-Extender

Prompt1: Please complete the following news article. Don’t return the given text.
The news begins with:
”’<beginning text>”’
Continue from here.

Prompt2: Please directly continue to write the news (not repeat my provided content):
”’<beginning text>”’

Prompt3: Please complete the following news article. Don’t return the given text.
The text begin with:
”’<beginning text>”’

Prompt4: Complete the following unfinished news article. Don’t return the given text.
The news begin with:
”’<beginning text>”’
Continue from here.

Prompt5: Please directly continue to write the news (not repeat my provided content):
The news begin with:
”’<beginning text>”’
Continue from here.

Table 6: The Diverse Prompts for Cross-prompt of DetectEval
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LLM-RR Prompt

Your task is to identify the generated method of the provided <Article>.
The candidate options include:
A. Human-Written: The article is written entirely by humans without any AI assistance;
B. AI-Created: The article is generated by AI entirely from a given topic;
C. AI-Polished: The article is polished by AI from a human-written draft;
D. AI-Extended: The article is initially written by humans, and then additional content is
generated by AI to expand on the original material.

Please directly give the answer with answer-rationale pair in JSON format, with the structure:
"answer": ..., "rationale": ...."
Please directly give the "answer" with "A", "B", "C", or "D", and explain your choice in two or
three sentences (string format) in "rationale".

LLM-IM Prompt

Your task is to evaluate the extent of AI-assisted writing in the provided article.

The evaluation scores range from 0 to 1, where 0 indicates the article is completely human-
written, and 1 indicates it is entirely AI-created.
Please directly give the answer with score in JSON format, with the structure: "score": ...

Table 7: The Prompts for LLMs as Zero-shot Detectors

(a) Human-Author
(b) LLM-Creator

(c) LLM-Polisher

(d) LLM-Extended

Figure 6: GLTR visualization results of sample texts. A word that ranks within the top 10 probability is highlighted in green,
top 100 in yellow, top 1,000 in red, and the rest in purple.
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