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Abstract

Because meaning can often be inferred from001

lexical semantics alone, word order is often a002

redundant cue in natural language. For exam-003

ple, the words cut, chef, and onion are more004

likely used to convey “The chef cut the onion,”005

not “The onion cut the chef.” Recent work has006

shown large language models to be surpris-007

ingly word order invariant, but crucially has008

largely considered natural prototypical inputs,009

where compositional meaning mostly matches010

lexical expectations. To overcome this con-011

found, we probe grammatical role representa-012

tion in BERT and GPT-2 on non-prototypical013

instances. Such instances are naturally occur-014

ring sentences with inanimate subjects or an-015

imate objects, or sentences where we system-016

atically swap the arguments to make sentences017

like “The onion cut the chef”. We find that,018

while early layer embeddings are largely lexi-019

cal, word order is in fact crucial in defining the020

later-layer representations of words in seman-021

tically non-prototypical positions. Our exper-022

iments isolate the effect of word order on the023

contextualization process, and highlight how024

models use context in the uncommon, but crit-025

ical, instances where it matters.026

1 Introduction and Prior Work027

Large language models create contextual embed-028

dings of the words in their input, starting with a029

static embedding of each word and progressively030

adding more contextual information in each layer031

(Devlin et al., 2019; Brown et al., 2020; Man-032

ning et al., 2020). While these contextual em-033

bedding models are often praised for capturing034

rich grammatical structure, a spate of recent work035

has shown that they are surprisingly invariant to036

scrambling word order (Sinha et al., 2021; Hes-037

sel and Schofield, 2021; Pham et al., 2019; Gupta038

et al., 2021; O’Connor and Andreas, 2021) and039

that grammatical knowledge like part of speech,040

often attributed to contextual embeddings, is actu-041

ally also captured by fixed embeddings (Pimentel042
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Figure 1: Probabilities of probes trained to differen-

tiate subjects from objects in BERT embeddings. We

separate our evaluation examples by prototypicality:

whether the grammatical role is what we would expect

given the word out of context. The majority of natural

examples are prototypical (solid lines), and so if we av-

erage all cases we cannot see that grammatical informa-

tion is gradually acquired in the first half of the network

for cases where lexical information is non-prototypical.

The equivalent figures for GPT-2 are in Appendix A.

et al., 2020). These results point to a puzzle: how 043

can syntactic contextual information be important 044

for language understanding when the words them- 045

selves, not their order, are what matter? 046

We argue that this apparent paradox arises be- 047

cause of the redundant structure of language itself. 048

Lexical distributional information alone captures 049

a great deal of meaning (Erk, 2012; Mitchell and 050

Lapata, 2010), and the local coherence of words 051

is crucial for constructing meaning in both hu- 052

mans (Mollica et al., 2020) and machines (Cloua- 053

tre et al., 2021). Viewing this redundancy from 054

the perspective of grammatical role (whether a 055

noun is the subject or the object of a clause), 056

most clauses are prototypical: in a sentence 057

like “the chef cut the onion”, the grammatical 058

roles of chef and onion are clear to humans from 059

the words alone, without word order or context 060

(Futrell et al., 2019, experiments in English and 061

Russian). This means syntactic word order is re- 062
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dundant with lexical semantics. Whether hand-063

constructed or corpus-based, most studies probing064

contextual representations have used prototypical065

sentences as input, where syntactic context does066

not have much information to contribute to core067

meaning beyond the words themselves.068

Yet human language can use syntax to deviate069

from the expectations generated by lexical items070

alone: we can also understand the absurd mean-071

ing of a rare non-prototypical sentence like “The072

onion cut the chef” (Gibson et al., 2013).073

In this paper we evaluate BERT and GPT-21 on074

these rare non-prototypical examples, where the075

meaning of words in context is different from what076

we would expect from looking at the words alone.077

We train grammatical role probes on layer embed-078

ding spaces to examine the progression of gram-079

matical representation through the layers. We fo-080

cus on grammatical role since it is used to en-081

code the basic compositional semantic structure082

of a sentence (Dixon, 1979; Comrie, 1989; Croft,083

2001). While fixed lexical semantics contain in-084

formation about grammatical role (animate nouns085

are likely to be subjects, etc), the grammatical role086

of a word in English is ultimately defined by syn-087

tactic word order. Probing grammatical role lets us088

examine the interplay between syntax and lexical089

semantics in forming compositional meaning.090

Our experiments highlight two key findings.091

First, lexical semantics play a key role in orga-092

nizing embedding space in early layer represen-093

tations, and non-lexical compositional features are094

only expressed in later layers (Experiment 1, Fig-095

ure 1). Second, if we control for distributional co-096

occurence factors by creating argument swapped097

sentences (like “The onion cut the chef”, real098

sample in Appendix B), embeddings still repre-099

sent meaning that is imparted only by syntactic100

word order, overriding lexical and distributional101

cues (Experiment 2, Figure 2). More generally,102

we highlight the importance of examining models103

using non-prototypical examples, both for under-104

standing the strength of lexical influence in con-105

textual embeddings, but also for accurately isolat-106

ing syntactic processing where it is taking place.107

2 Why non-prototypical probing?108

As opposed to more general syntactic probing109

tasks (e.g., dependency parsing), grammatical role110

1Results are similar for the two models, so we visualize
BERT results here, and include GPT-2 figures in App. A.

is a linguistically significant yet specific task that 111

is both syntactic and semantic. As such, we can 112

choose these linguistically-informed sets of non- 113

prototypical examples where lexical semantics do 114

not match the compositional meaning implied by 115

the syntax. 116

Non-prototypical examples give us a unique 117

perspective on how syntactic machinery like word 118

order influences compositional meaning represen- 119

tation independently from lexical semantics. Stud- 120

ies in probing have controlled for lexical seman- 121

tics by substituting content words for nonce words 122

(“jabberwocky” sentences, as in Maudslay and 123

Cotterell, 2021; Goodwin et al., 2020) or ran- 124

dom real words (“colorless green idea” sentences, 125

as in Gulordava et al., 2018). A tradeoff is 126

that these methods lead to out-of-distribution sen- 127

tences whose words are unlikely to ever co-occur. 128

Rather than bleaching any effect of lexical seman- 129

tics, our setup lets us examine the interplay be- 130

tween lexical semantics and syntactic represen- 131

tation in a controlled environment, isolating the 132

effects of syntactic word order while using in- 133

distribution examples. 134

Recent work on representation probing has fo- 135

cused on improving probing methodologies to 136

make sure that extracted information is not spu- 137

rious or not simply lexical (Hewitt and Liang, 138

2019; Belinkov, 2021; Voita and Titov, 2020; 139

Hewitt et al., 2021; Pimentel et al., 2020). 140

Our experiments are a complementary approach, 141

where we use standard probing methods, but use 142

linguistically-informed data selection to address 143

the ambiguity of what classifiers are extracting. 144

3 Experiment 1: Grammatical 145

Subjecthood Probes 146

In Experiment 1, we evaluate grammatical role 147

probes on prototypical instances, where grammat- 148

ical role lines up with lexical expectations, and 149

non-prototypical instances, where it does not. 150

3.1 Methods 151

We train a 2-level perceptron classifier probe with 152

64 hidden units to distinguish the layer embed- 153

dings of nouns that are transitive subjects from 154

nouns that are transitive objects, as in Papadim- 155

itriou et al. (2021). We train a separate classifier 156

for each model layer, as well as training a classifier 157

on the static word embedding space of the mod- 158

els without the position embeddings added (be- 159
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fore layer 0). Our classifiers are binary, taking the160

layer embedding of a noun and predicting whether161

it is a transitive subject or a transitive object. Our162

probe training data comes from Universal Depen-163

dencies treebanks: we pass single sentences from164

the treebanks through the models, and use depen-165

dency annotations to label each layer embedding166

for whether it represents a transitive subject, a167

transitive object, or neither (not included in train-168

ing). The training set is balanced to include an169

equal number of subjects and objects (1728 ex-170

amples total). We use bert-base-uncased and171

gpt2. For our analysis, we call a noun a proto-172

typical subject if the probe probability for its word173

embedding (pre-layer 0) is greater than 0.5, and a174

prototypical object if it is less 2.175

3.2 Results176

Prototypical and non-prototypical arguments dif-177

fer in probing behavior across layers, as demon-178

strated in Figure 1. For prototypical instances179

(solid lines), syntactic information is conflated180

with type-level information and so probe accu-181

racy is high starting from layer 0 (word embed-182

dings + position embeddings), and stays consistent183

throughout the network. However, when we look184

at non-prototypical instances (dashed lines), we185

see that the embeddings from layer to layer have186

very different grammatical encodings, with type-187

level semantics dominating in the early layers and188

more general syntactic knowledge only becoming189

extractable by our probes in later layers.190

Crucially, since prototypical examples domi-191

nate in frequency in any corpus, the average probe192

accuracy across all examples is high for all lay-193

ers, and the grammatical encoding of subjecthood,194

which is accurate only after the middle layers of195

the model, would be hidden. Separating out non-196

prototypical examples illustrates how the syntax of197

a phrase can arise independently from type-level198

information through transformer layers, while also199

showcasing the importance of lexical semantics200

in forming embedding space geometry in the first201

half of the network.202

4 Experiment 2: Controlling for203

Distributional Information by204

Swapping Subjects and Objects205

In Experiment 1 we show that the contextualiza-206

tion process consists of gradual grammatical infor-207

2We plan to release our code for reporoducibility

mation gain for non-prototypical examples, even 208

though this is largely obscured in the majority pro- 209

totypical examples where lexical semantics also 210

contains accurate syntactic information. In this 211

experiment, we ask: does this contextualized in- 212

formation about grammatical role stem from word 213

order and syntax, or from distributional (bag-of- 214

words) effects when seeing all words in the sen- 215

tence? We answer this question by creating ex- 216

ample pairs where we control for distributional in- 217

formation by keeping all the words the same, but 218

swapping the positions of the subject and the ob- 219

ject. Such pairs of the type “The chef cut the 220

onion” → “The onion cut the chef” have identi- 221

cal distributional information. To accurately clas- 222

sify grammatical role in both sentences, the model 223

we’re probing would have to be attuned to the 224

ways in which small changes in word order glob- 225

ally affect meaning. 226

4.1 Methods 227

We use the same probing classifiers from Experi- 228

ment 1, and evaluate on a special test set of pairs 229

of sentences that have the subject and direct ob- 230

ject of a clause swapped. To create the swapped 231

sentences, we search for verbs that have lexical 232

direct subjects and direct objects, check that the 233

subject and object have the same number (singu- 234

lar or plural), and also check that neither of them 235

are part of a compound word or a flat dependency 236

word that would be separated. If a sentence con- 237

tains a verb where its arguments fulfill all of these 238

requirements, we swap the position of the subject 239

and the object to create a second, swapped sen- 240

tence, and add the sentence pair to our evaluation 241

set. A random sample of our swapped sentences is 242

in Appendix B. 243

4.2 Results 244

When testing our probes on pairs of normal and 245

swapped sentences, we find that our probes from 246

Experiment 1 correctly classify both the normal 247

and the swapped sentences with high accuracy in 248

higher layers. Since we test our probes on con- 249

trolled pairs that have the same distributional in- 250

formation, we can isolate effect of syntactic word 251

order in influencing meaning representation. This 252

is demonstrated in Figure 2, where probe predic- 253

tions for the same set of words in the same distri- 254

butional context diverges significantly depending 255

on whether the word is in subject or object posi- 256

tion. Our results indicate that, separate from dis- 257
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Figure 2: Probe probabilities for the same words when

they are the object of an original treebank sentence

(eg. “The chef cut the onion”, blue line) versus being

the subject of that sentence after manual swapping (eg.

“The onion cut the chef”, dashed red line). When prob-

ing the geometry of grammatical role, the same words

in the same distributional contexts are clearly differ-

entiated throughout contextualization in BERT layers,

due to the impact of syntactic word order.

tributional effects, models have learnt to represent258

the ways in which syntactic word order can inde-259

pendently affect meaning.260

4.3 Are these results just due to general261

position information?262

Our results in Experiment 2 indicate that syntac-263

tic word order information can affect model repre-264

sentations of word meaning, even when we keep265

lexical and distributional information constant. A266

question still remains: does the divergence demon-267

strated in Figure 2 stem from the fine-grained ways268

in which word order influences syntax in English,269

or from heuristics based on primacy (whether a270

word is earlier or later in a sentence)? To further271

investigate this, we train and test probes on sen-272

tences where word order is locally scrambled so273

that no word moves more than 2 slots, and so gen-274

eral primacy is preserved. As shown in Figure 3,275

probes trained on these locally shuffled sentences276

do not fare better than chance on non-prototypical277

examples. This demonstrates that general primacy278

information is not sufficient to cause the non-279

prototypical representation we see in Figure 2.280

5 Discussion281

While recent work has shown that large language282

models come to rely on distributional semantic in-283

formation, we consider a rare but important case:284

the representation’s ability to overcome these dis-285

tributional cues. Research showing that models286
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Figure 3: Probe accuracies for sentences where the

words have been locally scrambled such that no word

moves more than 2 slots. Probe performance for non-

prototypical sentences is close to chance, indicating

that general positional information (still available after

local scrambling) is not enough to recover grammatical

role. However, lexical semantics is preserved through

layers in these scrambled instances as evidenced by the

steady probe performance on prototypical sentences.

rely on lexical and distributional information is not 287

at odds with our findings that this can be over- 288

ridden. In fact, even though humans can accu- 289

rately understand non-prototypical sentences, hu- 290

man syntactic processing is often influenced by the 291

lexical semantics of words, as evidenced by stud- 292

ies on human subjects (Frazier and Rayner, 1982; 293

Rayner et al., 1983; Ferreira and Henderson, 1990) 294

as well as by lexically-influenced syntactic pro- 295

cesses in human languages, like differential object 296

marking (Aissen, 2003)—a phenomenon whereby 297

non-prototypical grammatical objects are marked. 298

What for human language processing is an im- 299

portant source of redundancy—the fact that syn- 300

tactic cues are often redundant with the infor- 301

mation supplied by word meaning—can be, for 302

model interpretability studies, a confound. We 303

have shown that it is easy for a straightforward 304

probing approach to conclude that grammatical 305

role information is available to the lowest layers 306

of BERT. But, by separately analyzing prototypi- 307

cal and non-prototypical arguments, it is clear that 308

the picture is more complicated. At lower lay- 309

ers, BERT representations can classify subjects 310

and objects most of the time, but when a non- 311

prototypical meaning is expressed, accurate classi- 312

fication is not available until the higher layers. In- 313

sofar as being able to understand non-prototypical 314

meanings is a hallmark of human language pro- 315

cessing (Hockett, 1960), we urge future probing 316

studies to consider non-prototypical meanings. 317
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A Figures for GPT-2 Experiments465

We ran our experiments on both BERT and GPT-466

2 embeddings, and both models had similar be-467

haviors that we discuss in the paper. For clarity,468

figures in the paper only visualize the BERT re-469

sults, and we’re including the GPT-2 versions of470

those same figures for comparison. Figure 4 shows471

the GPT-2 results of Figure 1, Figure 5 shows the472

GPT-2 results of Figure 2, and Figure 6 shows the473

GPT-2 result of Figure 3.474

B Sample of argument-swapped 475

sentences 476

A random sample (not cherry-picked) of our 477

argument-swapped evaluation set, where the sub- 478

ject and the object of clauses are automatically 479

swapped. The original subject is in bold and the 480

original object is in bold and italics. The process 481

for creating these sentences is detailed in Section 482

4.1 483

On Thursday, with 110 days until the start of the 484

2014 Winter Paralympics in Sochi, Russia, Pro- 485

fessor interviewed Assistant Wikinews in Educa- 486

tional Leadership, Sport Studies and Educational / 487

Counseling Psychology at Washington State Uni- 488

versity Simon Ličen about attitudes in United 489

States towards the Paralympics. 490

This approach shows a more realistic video to 491

playing Quidditch. 492

Second, aggregate view provides only a high- 493

level information of a field, which can make it 494

difficult to investigate causality [23]. 495

A hand raises her girl. 496

area of the Mississippi River and the destruc- 497

tion of wetlands at its mouth have left the Alter- 498

ation around New Orleans abnormally vulnerable 499

to the forces of nature. 500

It was known that a moving energy exchanges 501

its kinetic body for potential energy when it gains 502

height. 503

Thus, when ACPeds issued a statement con- 504

demning gender reassignment surgery in 2016 505

[21], many beliefs mistook the organization ’s 506

political people for the consensus view among 507

United States pediatricians — although the 508

peak body for pediatric workers, the American 509

Academy of Pediatrics, has a much more positive 510

view of gender dysphoria [22]. 511

His painting perfectly combines art and Chi- 512

nese calligraphy. 513

When the inches become a few plants tall and 514

their leaves mature, it ’s time to transplant them to 515

a larger container. 516

Since the television series’ inception, reviews at 517

The AV Club have written two critical writers for 518

each episode: 519
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Figure 4: Equivalent to Figure 1 from the main paper,

on GPT-2 embeddings
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Figure 5: Equivalent to Figure 2 from the main paper,

on GPT-2 embeddings. Grammatical representation in

GPT-2 embedding also diverges for the same words in

the same distributional contexts.
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Figure 6: Equivalent to Figure 3 from the main paper,

on GPT-2 embeddings. As shown by the dashed line

being close to chance, grammatical role information is

not extractable from locally shuffled sentences in the

non-prototypical cases where lexical semantics do not

help

.
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