
Bit-by-Bit: Investigating the Vulnerabilities of Binary Neural
Networks to Adversarial Bit Flipping

Shamik Kundu∗1, Sanjay Das∗1, Sayar Karmakar2, Arnab Raha3, Souvik Kundu3, Yiorgos
Makris1, Kanad Basu1
1University of Texas at Dallas, 2University of Florida, 3Intel Corporation

Abstract

Binary Neural Networks (BNNs), operating with ultra-low precision weights, incur a sig-
nificant reduction in storage and compute cost compared to the traditional Deep Neural
Networks (DNNs). However, vulnerability of such models against various hardware attacks
are yet to be fully unveiled. Towards understanding the potential threat imposed on such
highly efficient models, in this paper, we explore a novel adversarial attack paradigm per-
taining to BNNs. In specific, we assume the attack to be executed during deployment phase,
prior to inference, to achieve malicious intentions, via manipulation of accessible network
parameters. We aim to accomplish a graceless degradation in BNN accuracy to a point,
where the fully functional network can behave as a random output generator at best, thus
subverting the confidence in the system. To this end, we propose an Outlier Gradient-based
Evolutionary (OGE) attack, that learns injection of minimal amount of critical bit flips in
the pre-trained binary network weights, to introduce classification errors in the inference
execution. To the best of our knowledge, this is the first work that leverages the outlier gra-
dient weights to orchestrate a hardware-based bit-flip attack, that is highly effective against
the typically resilient low-quantization BNNs. Exhaustive evaluations on popular image
recognition datasets including Fashion-MNIST, CIFAR10, GTSRB, and ImageNet demon-
strate that, OGE can drop up to 68.1% of the test images mis-classification, by flipping
as little as 150 binary weights, out of 10.3 millions in a BNN architecture. Code is open
sourced at: https://github.com/isnadnr/OGE.

1 Introduction

A commitment to reducing size and compute demands has led to ultra-low-precision BNNs, featuring one-
bit weights and activations (-1 or +1). Introduced by Courbariaux et al. (2016), BNNs drastically improve
power efficiency and inference latency by minimizing memory access and using fast bit-wise operations in-
stead of complex matrix multiplications. These improvements maintain classification accuracy compared to
high-precision Deep Neural Networks (DNNs) (Qin et al., 2020; Yuan & Agaian, 2021). BNNs are favored
for Machine Learning as a Service (MLaaS) across hardware platforms (Sanyal et al., 2018). Recent ad-
vancements in Deep learning have integrated low-precision DNNs into critical domains like facial recognition
(Dong et al., 2019) and autonomous driving (Eykholt et al., 2018).

However, this widespread adoption of DNNs has ushered in a concerning surge in adversarial attempts,
exploiting network vulnerabilities through backdoor and inference attacks (Saha et al., 2020; Xie et al., 2019;
Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2017). In contrast to these known attack vectors, there exists
a relatively uncharted territory: an innovative attack paradigm centered on the manipulation of pre-trained
model weights (Breier et al., 2018). Executing such an attack hinges on a rather menacing threat model,
assuming that the adversary possesses unrestricted access to a device’s memory, enabling direct parameter
alterations within a deployed model to serve adversarial objectives. Given that the deployed DNN is stored
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in a binarized format in the memory, attackers can tamper with model parameters employing techniques
like the Row-Hammer Attack (Agoyan et al., 2010; Kim et al., 2014b) and the Laser Beam Attack (Selmke
et al., 2015), as illustrated in Figure 1. While bit-flip attacks have demonstrated their potential to wreak
havoc at the system level, those targeting the control path are comparatively easier to address, as they
are integral to the overall system’s integrity. Conversely, datapath attacks, which surreptitiously manipulate
accuracy, operate in stealth mode, posing a significant challenge in detection. An instance of misclassification
during inference may be erroneously dismissed as an intrinsic network characteristic, when it is, in fact, a
consequence of a stealthy bit-flip attack.

Figure 1: Threat model demonstrating Bit Flip attack.

Existing research have demonstrated that it is fea-
sible to change the model weights via bit flipping
to accomplish malicious intentions (Rakin et al.,
2019; 2020; 2022; Bai et al., 2021). However, these
techniques are either based on heuristic strategies
(Rakin et al., 2019), or focused on identifying criti-
cal weights in high precision DNNs (Bai et al., 2021).
Since BNNs are emerging as promising candidates to
be deployed in security-critical high assurance envi-
ronments, exploring the vulnerability of such low
precision networks is imperative to estimate its ad-
versarial impacts. These BNNs are generally apprehended to be resilient against bit flip attacks owing to
their limited parameter space (Rakin et al., 2021). This resiliency may be attributed to the fact that the
magnitude of error by flipping a bit in a BNN is minimal. Since the massive degradation is inherently
circumvented in case of BNNs, existing attack strategies that exploit the large bit-width of the weights to
orchestrate the attack are not effective in case of these ultra low-precision binary weights in a BNN. Such
inherent tolerance can only be disrupted with a significant number of bit flips (usually, over 39×, compared
to a DNN, as we have demonstrated in this paper) (Rakin et al., 2019; 2021). However, manipulating a
plethora of bits disrupts the stealthiness of the attack. As a result, attacking such extremely low precision
networks becomes particularly challenging.1

Our Contributions: In this paper, we challenge the conventional wisdom of treating BNNs to be in-
herently robust against malicious bit-flips. we devise a technique to determine a diminutive set of most
vulnerable binary weights in the BNN, flipping which furnishes a significant reduction in accuracy to a point
where the network is deemed as a random output generator. In this direction, we propose a novel Outlier
Gradient-based Evolutionary (OGE) attack framework, that systematically identifies the most vulnerable
set of binary weights to be attacked in a pre-trained BNN. To this end, we reformulate the task of obtaining
the most vulnerable layers in the BNN by ranking the network loss for top-k gradient bit flips in each layer.
Subsequently, the outlier gradients from the vulnerable layers are isolated to be provided as input to an evo-
lutionary algorithm. This accomplishes the search space optimization using an entropy-based objective loss
function in iterations. Optimization of this loss function caters to the drop in inference accuracy of the BNN.
In our proposed OGE framework, the subset selection of outlier gradient weights aids in circumventing the
challenge posed while attacking a BNN, by enabling the evolutionary algorithm to obtain the critical weights
from this vulnerable search space. To the best of our knowledge, this is the first work that systematically
explores the vulnerability in a BNN via adversarial bit flipping, instead of a heuristic strategy. This paper
specifically makes the following key contributions:

• We, for the first time, have discovered the significance of outlier gradient weights in a binary context
and linked their influence to substantial reductions in classification accuracy within a Binary Neural
Network (BNN) due to bit flips.

• Based on the understanding from the outlier gradients, we propose an Outlier Gradient-based Evolu-
tionary (OGE) attack, a novel bit-flip attack framework, hat utilizes an evolutionary search approach,

1As the weights in a BNN are binarized to be represented using a single bit (+1 or −1), flipping a bit corresponds to a
weight flip in the network. Hence, we use both these terms interchangeably in the remaining paper.
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coupled with an isolation forest-based outlier detection framework for furnishing the most critical
set of binary weights in a BNN.

• We perform extensive experiments on complex image recognition datasets including ImageNet, and
evaluate the efficiency of our OGE attack on both binary convolution neural networks and binarized
vision transformers. Our results demonstrate that up to 68.1% of the test images could be misclassi-
fied to an incorrect class, by flipping as little as 150 binary weights, out of 10.3 millions in the BNN
architecture, which is almost 84% less than the state-of-the-art bit flip attack.

2 Background & Related Works

2.1 Binary Neural Networks (BNNs)

BNNs are gaining prominence as highly promising candidates for deployment in resource-constrained edge
devices, primarily due to their exceptional efficiency in terms of storage and computation. Unlike full-
precision networks that demand a 32-bit floating-point representation, BNNs operate with one-bit weights
and neuron activations, taking the form of -1 or +1. To shed light on the inner workings of this innovative
approach, consider the binarization function employed in BinaryNet, a state-of-the-art binary convolutional
neural network as introduced by Courbariaux et al. (2016). This function meticulously considers the sign
bit of the real-valued variable, and its representation can be articulated as follows:

xb = sign(x) =
{

+1 if x ≥ 0
−1 otherwise

where xb is the binarized variable (weight or activation) and x the real-valued variable. This function, which
binarizes network parameters into -1 and +1, paves the way for a significant departure from traditional
compute-intensive multiplication operations. Instead, it replaces these operations with a simple one-bit
XNOR operation, followed by a simple bit-counting operation for accumulation. Consequently, the Multiply-
Accumulate (MAC) operation, which is highly compute intensive in the realm of neural networks, is executed
with remarkable efficiency in Binary Neural Networks (BNNs). This efficiency stands in stark contrast to
the computationally demanding floating-point operations prevalent in full-precision Deep Neural Networks
(DNNs). In addition to these computational advantages, BNN also delivers substantial energy savings and
remarkable speedups, with reported improvements of up to 7× (Courbariaux et al., 2016). Remarkably, these
performance gains do not come at the cost of classification accuracy, as demonstrated by various studies (Yuan
& Agaian, 2021). These combined attributes position BNN as an optimal solution for edge-based inference
tasks, where the trifecta of efficiency, speed, and accuracy is of paramount importance. Furthermore, in
addition to the computational and efficiency advantages, the inherent reduced precision in BNNs contributes
to enhancing the network’s resilience. To illustrate, a weight of +1 can eventuate to −1, or vice-versa,
thereby furnishing a maximum error magnitude of 2. On the other hand, in case of a high precision DNN,
e.g., an 8-bit quantized network, a bit flip in the most significant bit (sign bit) can manipulate a specific
weight value of +123 to −5, thus engendering a massive error magnitude. This resilience extends over and
above that of traditional high-precision DNNs, especially when faced with attacks aimed at injecting errors
by tampering with the network parameters (as we demonstrate later in this paper).

2.2 Bit-flip Attacks

Memory bit-flip attacks, often executed through techniques like the Row-Hammer Attack, have garnered
recognition as an established threat model. This threat has been extensively investigated and documented
in existing literature, as exemplified by Kim et al. (2014a); Razavi et al. (2016). Given that the pre-
trained network parameters of a Deep Neural Network (DNN) reside in memory before deployment at the
edge, the occurrence of such bit-flip attacks raises legitimate concerns and presents substantial challenges
concerning the security and reliability of DNNs. This threat becomes even more pressing in security-critical
edge applications, where implementing sophisticated defense mechanisms becomes a formidable task due to
resource limitations.
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Within the existing body of literature, researchers have explored various methods for injecting faults in
neural networks, targeting elements such as biases, weights, and activation functions, with the ultimate aim
of inducing both targeted and untargeted misclassifications during the inference process. It’s worth noting
that these prior techniques were primarily designed to attack full-precision Deep Neural Network (DNN)
models. At the edge, however, many DNN implementations operate in quantized precision, as emphasized
by Wu et al. (2016), rendering them inherently robust to variations in network parameters. In response to
this challenge, efficient algorithms have been developed and put into practice to identify the most vulnerable
bits within a quantized DNN, as demonstrated in Rakin et al. (2019; 2022); Bai et al. (2021). The Bit Flip
Attack (BFA) utilizes a heuristic progressive search strategy, wherein network layers are iteratively examined
to pinpoint the layer that contributes the most to network loss for a certain number of bit flips during each
iteration, as elucidated in Rakin et al. (2019). Subsequently, the selected bits are flipped within the most
influential layer, and the model is updated, thereby undermining network accuracy. Targeted-BFA (TBFA)
represents an extension of the BFA technique, aiming to manipulate data samples with the intent of targeting
specific classes, employing the same progressive search approach, as documented in Rakin et al. (2022); Bai
et al. (2021).

It’s important to emphasize that the bit flip attacks discussed earlier primarily employ heuristic strategies
and are tailored for high-precision Deep Neural Networks (DNNs). These attacks indeed rely on exploiting
computations that involve network parameters with high-precision values to achieve their intended goals,
such as manipulating the network’s behavior and causing misclassifications. However, it’s worth noting
that these attacks are not effective when directed at low-precision binary network weights, which operate
using only one-bit values, as opposed to the multi-bit values present in high-precision DNNs. The unique
characteristics of BNNs, including their limited precision and binary parameters, make them less susceptible
to the types of attacks that target high-precision DNNs. While few recent research has focused on mitigating
adversarial noise at the input of BNNs by leveraging characteristic hardware attributes, the impact of bit
flip-based attacks has largely been ignored (Bhattacharjee & Panda, 2020; Kim et al., 2022).

3 Proposed OGE Attack Framework

In this section, we begin by defining the threat model, which outlines the standard assumptions regarding
the capabilities of the adversary. We then propose a novel bit flip attack framework, pertaining to BNNs,
that furnish the most critical binary weights in the pre-trained network, which when flipped, cause significant
degradation in classification accuracy.

3.1 Threat Model

Within the realm of Machine Learning as a Service (MLaaS), individuals upload their DNN models to a
platform that may carry inherent security risks due to the desire for increased computational resources. In
this setting, DNN inferences and other applications, which may be under the control of potential attackers,
often share server hardware components, such as the last-level cache and main memory. While attackers
lack explicit permission to read or write data within the user’s memory, the existing tools empower them
to exploit side channels, thereby gaining access to sensitive information. This discussion categorizes threats
into three levels based on the extent of knowledge that attackers can extract from the victim.

3.1.1 Full Knowledge Attack

A full-knowledge attack represents the most critical scenario. In this scenario, attackers can harness powerful
tools, such as Cache Side-Channel Attacks targeting the Last-Level Cache (LLC), as detailed in Yarom &
Falkner (2014); Kayaalp et al. (2016), to retrieve memory data stored in the cache. Although the throughput
of such a channel is limited (less than 1 MB/s as noted in Hong et al. (2018)), it poses a significant risk to the
model, especially if sensitive data within the memory is exposed. In this context, we assume that the model’s
weights may become vulnerable to the attackers. Moreover, attackers are well-informed about the proposed
defense methods, like randomized rotation, and have the capability to enhance their attack strategies if any
leakage persists. Given the impracticality of a full-knowledge attack due to the limited throughput of this
channel, it remains a severe but technically challenging threat.
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3.1.2 White Box Attack

The attackers lack the ability to directly access data within the memory, but they can make educated estima-
tions regarding the locations of the most susceptible bits, allowing them to potentially execute rowhammer
attacks. There are two primary reasons for this: 1) The majority of commercial models and datasets are
open source, and model users often download pre-trained models, customizing them through transfer learning
(Marcelino, 2018). These customized models inherit vulnerabilities from the open-source models, effectively
providing attackers with a source of information. 2) Attackers can employ hardware tools to monitor memory
access patterns, as documented in Hu et al. (2020); Yan et al. (2020), enabling them to accurately deduce
the model’s architecture. Armed with this knowledge, attackers can locally train their own models, which
would also share the same vulnerabilities as the user’s model. This white-box attack approach is inherently
perilous and practical, and it serves as the baseline attack model for the rest of this paper.

3.1.3 Black Box Attack

When attackers are unable to acquire any knowledge about the model, an alternative approach known as
the Black-box adversarial attack (Cheng et al., 2018) becomes a viable option. In the black-box attack,
the objective is to compromise the model without any prior understanding of its architecture or weight
distribution. However, this method demands a substantial number of attempts to be effective. One effective
attack within this category harnesses the Rowhammer vulnerability and is termed the Random High-Bit-
Flip Attack. In this attack, the attacker randomly selects weights within the DNN model and flips the Most
Significant Bit (MSB) or sign bit. Since these attacks are inherently random in nature, they necessitate a
substantial number of bit flips to achieve a notable decrease in classification accuracy of the network, as we
demonstrate later in this paper.

Following this description of our threat model, we introduce our proposed Outlier Gradient-based Evolu-
tionary (OGE) attack. This attack is characterized by a systematic weight selection process, which unfolds
through a three-step approach. The details of each step, which collectively constitute the OGE attack, will
be elaborated in subsequent sections.

3.2 Gradient-based Layer Selection

A traditional BNN architecture is composed of several convolution and fully connected layers, consisting of
millions of parameters. An exhaustive search from this plethora of binary weights would be computationally
impractical from an adversarial perspective. To this end, we reformulate the task of obtaining the most
vulnerable layers in the BNN by ranking the network loss for top-k gradient bit flips in each layer. In order
to obtain the gradients with respect to the latent weights for each mini-batch in the test dataset, we adopted
the cost function as a standard categorical cross-entropy loss for c classes, which can be represented as:

C = C(Y, g(X, w)) = − 1
n

n∑
i=1

c∑
r=1

I(Yi = r) log(pir) = − 1
n

n∑
i=1

c∑
r=1

yr
i log ŷr

i (1)

where yr
i is the one-hot coded vectors and ŷr

i = pir is the softmax probability for the ith observation to fall
in rth class depending on the feature values X and weights w. In particular, for classic multinomial logit
regression with c classes, w is replaced by the coefficient vector and pir takes the following form:

ŷr
i = pir = P(Yi = r) = exp β′

rXi∑c
s=1 exp(β′

sXi)
(2)

Here, Xi is the feature vector. However, it has been a common practice to replace the simplistic multinomial
logit structure β′

SXi using feature vectors by a suitable neural network structure. In this paper, we consider
the same with g(X, w), assuming a DNN structure. This is further extended to accommodate binary weights
pertaining to BNNs. First, we demonstrate how to compute the gradients for a proxy real-valued network
structure. The corresponding classification probability takes the following form:

ŷr
i = pir = P(Yi = r) = exp{(NNW,b(Xi))r}∑c

s=1 exp{(NNW,b(Xi))s}
(3)

5



where (NNW,b(X))r refers to the r-th co-ordinate of

NNW,b(X) = W1σ1(W2 ··σd−1(WdX + bd)) ··)) + b1 (4)

Here NNW,b(X) is a d−layer neural network with c-dimensional output and σi are the corresponding acti-
vations for the connection between layer i and i + 1. To calculate the gradient of C in Equation 1 for any
entry of the d layers of weight matrices, let us consider a particular weight w. Let us fix i and consider n = 1
case for the cost function C. We write ŷr

i = pir = exp(zr)/
∑

s exp(zs) where zr = (NNW,b(X))r. Then,

δC

δzr
= −yr

ŷr

δŷr

δzr
+

∑
s̸=r

−ys

ŷs

δŷs

δzr
= −yr

ŷr
(ŷr − ŷ2

r) +
∑
s̸=r

−ys

ŷs
(−ŷrŷs) = yr

∑
s

ys − ŷr = yr − ŷr (5)

Thus, by chain rule, we can easily compute δC
δw as following:

δC

δw
=

c∑
t=1

δC

δzt

δzt

δw
(6)

Here, we omit the detail of computing δzt

δw , as it heavily depends on network structure involving the specific
weight w. Note that, for a BNN, the gradient computation is difficult, since the sign function is not even
continuous, let alone differentiable. However, we adopt a similar strategy, as delineated in Helwegen et al.
(2019), to argue that the computation for the real-valued proxy network suffices all practical purposes.

Upon training the model, gradient calculation of all the trainable convolutional and dense layers with the
test data is evaluated. The corresponding weights in each layer are ranked from the highest to the lowest,
based on their absolute gradient values. To understand the rationale behind this ranking keeping the layer
fixed, consider a specific example of a 3-depth neural net. In light of Equation 6, it suffices to compute δzt

δw .
We rewrite z as:

z = W1v1 + b1, v1 = σ1(v2), v2 = W2v3 + b2. (7)

Now choose w to be one of the entry from W2, say w2,1,1. The entries of δz
δw2,1,1

vector looks as following:

δzt

δw2,1,1
= δzt

δW1

δσ1(v2)
δv2

δv2

δw2,1,1
. (8)

This calculation clearly shows that for all entries of W2 matrix, the other two factors will remain the same;
whereas if we choose a weight from a different layer, then the number of components will vary significantly,
making two different layers seemingly incomparable. Thus, for our loss/cost gradient computations in Equa-
tions 5 and 6, we select the weights having the highest absolute gradient values to flip.

Therefore, in this step, top-k (k is a pre-determined integer value) gradient weight bits of each layer are flipped
simultaneously, while keeping all the other layers unaffected. The corresponding effect on the network is
evaluated based on loss (Equation 1). Similarly, we calculate these losses for all the other layers independently.
Next, the layers are ranked to detect those that contribute the most network loss. This process is executed
with different k-values and the results are analyzed to detect the most vulnerable layers, as demonstrated
later in Section 4.2.1.

3.3 Outlier Weight-subset Selection

Once the vulnerable layers are detected, a weight subset is selected from those layers to be provided as input
to the next step in the evolutionary framework, as described in Section 3.4. To this end, isolation forest, an
outlier detection technique on multivariate data (Liu et al., 2008), is applied on the weights of a layer to find
these weights with outlying absolute gradients.

In this step, we iterate the isolation forest applied on the computed δC/δw at the final ŵ. For every mini-
batch bk and bit i, we compute δCk/δw|w=ŵ

′
i

for i ∈ {1, · · · n},k∈ {1, · · · , B} where ŵ
′

i denotes flipping the

6



Algorithm 1 Evolutionary Optimization
Input: Generated Outliers locations W = [w1, · · · , wn0 ], MaxGen, P, Q, R, S
Output: ResultSolution

1: SolutionList = EmptyList
2: for i in 1....Q do
3: Solution = choose P weights randomly from W
4: Append Solution to SolutionList
5: end for
6: while MaxGen ̸= 0 do
7: MaxGen = MaxGen − 1
8: LossList = EmptyList
9: for i in 1....Q do

10: Loss = CalculateLoss(Q[i])
11: Append Loss to LossList
12: end for
13: Sort SolutionList in descending order using LossList
14: SolutionList = SolutionList[: R]
15: for i in 1....S do
16: a1 = Random choice(SolutionList)
17: a2 = Random choice(SolutionList)
18: W ′ = Set (a1 + a2)
19: Solution = choose P items randomly from W ′

20: Append Solution to SolutionList
21: end for
22: Q = R + S
23: end while
24: ResultSolution = SolutionList[0]

i-th bit of the final gradient vector ŵ ∈ Rn and δCk/δw denotes the gradient computed for k−th mini-batch.
Here, C from Equation 1 will be modified by replacing the index belonging in the specific mini-batch. For
any bit x and batch b, we compute the outlier score sx,b as follows: sx,b = 2− E(hb(x))

c(n) , where E(hb(x)) is the
average tree height across the isolation forest for x, when the data input is restricted to the batch b and
c(n) = 2Hn−1 − 2(n − 1)/n, with Hn denoting n-th harmonic number. For each fixed bit x, we define the
aggregated outlier-based frequency score as:

sfx = #{b : sx,b ≥ sy,b for all y ̸= x}. (9)

The scores sf1, · · · , sfn are sorted in descending order as:

sf(n) > sf(n−1) > · · · > sf(1). (10)

We denote their corresponding bits as vn, vn−1, · · · , v1, where this nomenclature means that vn is the most
vulnerable bit, vn−1 is the second most, and so on.

We obtain a specific number of outliers by modifying the contamination parameter in the algorithm. The
value of the parameter depends on the size of the weight subset. For instance, if we want to select n0-weights
from the total number of weights N , then the contamination parameter provided is k0 = n0/N and we select
{vn, · · · , vn−n0+1}. Once these vulnerable weights are selected, we proceed to the following step, where this
subset of weights is provided as input to the evolutionary algorithm.

3.4 Weight Search Space Optimization

Inspired by Darwinian natural evolution, various algorithms have been designed to solve constrained and un-
constrained optimization problems with an adaptive heuristic approach based on natural selection (Vikhar,
2016; Slowik & Kwasnicka, 2020). The randomness associated with generating new solutions, coupled with
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their qualitative ranking and ability to obtain the acceptable solution within a limited search space makes
this evolutionary approach an algorithm of choice over other conventional optimization techniques (Ka-
chitvichyanukul, 2012).

In this paper, we design an evolutionary algorithm for optimizing a search space to contain the most vul-
nerable binary weight indices. The outlier-set detected in Section 3.3 is taken as the solution space for the
optimization. We consider the cross entropy loss in Equation (1) as the fitness function and evaluate it for
each generated solution by flipping all its binary weight bits simultaneously.

The proposed evolutionary optimization approach is outlined in Algorithm 1. The subset of selected binary
weight indices (W ) and the variables (defined as follows) MaxGen, P, Q, R, and S are provided as inputs
to the algorithm. First, the evolutionary algorithm generates Q solutions by randomly choosing P weight
indices from W for each solution (lines 1-4). Following this, the network loss (fitness value) for each generated
solution is evaluated and collected in a list (LossList) (lines 8-11). Specifically, the CalculateLoss is
computed by fitting the Neural Network Y, X, NN(W, b) as argument in Equation 1, where the weight bits
in a specific solution are flipped. Thereafter, the solutions are ranked based on their fitness values and
the best R solutions are kept for the next iteration (lines 13-14). These R solutions are then leveraged to
generate S new solutions by randomly selecting two solutions (a1, a2) from the entire set of R solutions.
The weight indices contained in these solutions are pooled together (W ′), from which P items are randomly
selected to generate the new solution (lines 15-21). Here we adopt a traditional two-parent solution in
accordance with existing research (Lee, 2002; Sivanandam & Deepa, 2008). Subsequently, the total R + S
solutions are used for the next iteration (line 22). The algorithm execution stops after MaxGen iterations,
to obtain a solution that contains the most critical binary weights in the network (lines 6-7, 23).

4 Experimental Results

4.1 Experimental Setup

To assess the effectiveness of our proposed OGE attack framework, we have chosen to employ the widely
used Binary Neural Network architecture, BinaryNet (Courbariaux et al., 2016). This network has been
trained on three distinct image recognition datasets: Fashion-MNIST, CIFAR10, and GTSRB. The initial
classification accuracy obtained upon training with these datasets is as follows: Fashion-MNIST yields a
baseline accuracy of 92%, CIFAR10 achieves 80%, and GTSRB reaches an impressive 98%. To gauge the
efficiency of the OGE attack scheme, we employ the following key metrics: the number of bit flips (Nflip)
and Relative Accuracy Drop (RAD). The RAD quantifies the classification accuracy of the network after
it has been subjected to Nflip bit flips. This metric is evaluated in relation to the baseline classification
accuracy of the specific network-dataset configuration under consideration. Our objective is to identify the
minimum number of weight flips (Nflip) that maximally degrades the classification accuracy of the BinaryNet
architecture, thereby revealing the vulnerability of the model to this form of attack.

4.2 Efficiency of the Proposed OGE Attack

4.2.1 Gradient-based Layer Selection

In this experiment, we vary the parameter k in selecting top-k gradient values from each layer of the
BinaryNet architecture. Subsequently, by flipping the corresponding binary weights, we observe the network
loss to obtain the most vulnerable layers for each network-dataset configuration. The results are outlined
in Figure 2. As demonstrated in Figure 2a, top-200 weight flips furnish a cumulative network loss of 0.79
and 0.67 in layers conv1 (first convolution layer) and fc3 (last fully connected layer), respectively, on the
Fashion-MNIST dataset. Except these two, all other layers in the network furnish a loss below 0.5, which is
denoted in the figure as Other Layers. The network loss increases with k; BinaryNet furnishes losses of 2.31
and 1.22 for layers conv1 and fc3, respectively for top-800 weight bit flips. An identical trend is observed for
the other two datasets, as shown in Figures 2b and 2c. Since the layers conv1 and fc3 exhibit the maximum
network loss compared to all other layers in the network, we consider the binary weights from these two
layers of the network to obtain the critical weight bits, flipping which will accomplish the adversarial intent.
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Figure 2: Variation of network loss for increasing top-k bit flips across different layers in BinaryNet.
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(b) Dataset: CIFAR10
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Figure 3: Variation in Accuracy w.r.t. iterative generations for different number of outlier gradient weights.
4.2.2 Weight-subset Selection using Isolation Forest

In this experiment, we vary the subset of binary weights (n) to be selected from the vulnerable layers of
the network, obtained in Section 4.2.1. The contamination parameter that determines the cardinality of the
subset is varied to obtain the weights with outlier gradients. Correspondingly, this binary weight subset
is utilized to analyze the efficiency of the evolutionary search algorithm, by providing this subset as its
input solution space. Figure 3a demonstrates the solution optimization space that furnishes the increase in
network loss and reduces the accuracy with increasing number of outlier gradient weights on Fashion-MNIST
dataset. After 100 iterations, the network exhibits a RAD of 55.32% with 1000 outliers and 300 bit flips.
Under identical bit flips, the RAD reaches to 50.56% and 47.34% for 2000 and 3000 outliers, respectively.
We observe similar trends for CIFAR10 and GTSRB datasets as well, as represented in Figures 3b and 3c,
respectively. The solution with 1000 outliers saturates the search optimization algorithm faster than the
remaining outlier sets, and furnishes higher reduction in accuracy compared to the rest. Hence, we choose
this configuration to be provided as input to the evolutionary algorithm in the subsequent step.

4.2.3 Weight Search Space Optimization

In this section, we first showcase the impact of tuning the evolutionary algorithm, highlighting its capability
to optimize the attack strategy. Subsequently, we present the effectiveness of the attack across a range of
scenarios involving different numbers of bit flips within the Binary Neural Network (BNN) architecture,
illustrating its capacity to induce significant reductions in classification accuracy.

Tuning the Evolutionary Algorithm: In this experiment, we vary the maximum number of itera-
tions (MaxGen) to execute the evolutionary algorithm, as discussed in Section 3.4. Setting an appropriate
MaxGen factor is highly crucial, since early termination of the evolutionary algorithm will result in a non-
optimal solution. Fig. 4a demonstrates the variation in accuracy drop with the increase in the number of
iterating generations for all three datasets. As outlined in the figure, on Fashion-MNIST dataset, a solution
of size containing 200 weight indices from both the conv1 and fc3 layers, when flipped, furnishes a RAD
of 36.85% after 10 iterations, which further increases to 50.9% after 80 iterations. Similarly, for CIFAR10
and GTSRB datasets, we observe an analogous trend in the accuracy drop. The reduction in accuracy
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saturates beyond 80 iterations in all three datasets. This motivates us to utilize 80 MaxGen iterations for
the evolutionary algorithm.
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Figure 4: Relative Accuracy degradation for
varying number of (a) iterations of the evolu-
tionary algorithm and (b) weight bit flips in
the OGE attack.

Accuracy Drop with Varying Nflip: In this experiment,
we vary the number of binary weights (Nflip) to be flipped,
as obtained from our proposed OGE attack. As shown in
the Figure 4b, the accuracy relatively drops 31.5% for 100
Nflip in Fashion-MNIST dataset, which further increases to
64.56% by flipping 400 weights, out of 10.3 million parame-
ters in the model. CIFAR10 furnishes a similar accuracy re-
duction trend to reach 50.625% RAD for 400 Nflip. Similarly,
With GTSRB, on flipping 400 binary weights, the BinaryNet
furnishes only a minimal classification accuracy of 0.625%
with RAD of 99.4%, at which the model can be termed as a
random output generator at best. Therefore, our proposed
OGE framework is able to subvert the confidence of the sys-
tem, thereby demonstrating the efficiency of the adversarial
bit flip attack.

4.3 Comparison with State-of-the-art

In this section, we compare the OGE attack with existing
attack strategies, as captured in Table 1. We first compare our strategy with a random bit flip attack
that randomly selects weights from the BinaryNet architecture. The corresponding reduction in accuracy is
observed for all three datasets. In the case of Fashion-MNIST, as high as 50000 random bit flips furnishes a
minuscule 0.2% degradation in accuracy, while our proposed OGE approach, with only 200 bit flips, renders
a relative accuracy drop of 54.3%. Identical trends are observed for the other two datasets as well. Therefore,
random bit flips are ineffective in reducing the confidence in BNNs, which can be attributed to their inherent
robustness arising from limited parameter space.

Table 1: Comparing the efficiency of the proposed OGE attack on BNNs against existing adversarial bit
flip-based attacks.

Dataset O-Acc(%) Methods Affected vulnerable layers Nflip PA-Acc(%) RAD(%)

Fashion-MNIST 92.07
Random attack All layers 50000 91.9 0.2

BFA (Rakin et al., 2019) conv1, fc3, conv3 500 45.2 50.8
OGE conv1, fc3 200 42.1 54.3

CIFAR10 80.3
Random attack All layers 50000 80.05 0.3

BFA (Rakin et al., 2019) conv1, fc3, conv2, fc1 740 38.1 52.5
OGE conv1, fc3 400 39.5 50.6

GTSRB 98.7
Random attack All layers 50000 98.5 0.2

BFA (Rakin et al., 2019) conv1, fc3, fc1, conv3 950 42.8 56.6
OGE conv1, fc3 150 31.48 68.1

The state-of-the-art technique in the domain of un-targeted adversarial bit flipping in DNNs is proposed
in Bit flip Attack (BFA) (Rakin et al., 2019). BFA iteratively searches for the most vulnerable layer in
the network in a progressive heuristic manner using gradient-based bit flips. Next, on flipping the weight
bits in the chosen layer, the model is updated with the modified weights and used for the next iteration.
Thus, network loss increases with each loop, which in turn, degrades the overall classification accuracy of the
network. We adopted this BFA strategy to attack BNNs, and compare its efficacy with our proposed OGE
attack. While BFA requires approximately 500 binary weight flips to obtain a relative accuracy drop (RAD)
of 50.8% in the case of Fashion-MNIST, the OGE approach achieves higher accuracy reduction with only 200
bit flips. We observe an identical trend for CIFAR10 dataset as well. The efficiency of our proposed OGE
attack is best observed in the case of GTSRB dataset. While BFA requires 950 bit flips to furnish 56.6%
relative degradation in accuracy, our OGE attack engenders a much higher RAD of 68.1% with a minimal
150 bit flips in the BinaryNet architecture. Hence, with almost 84% less bit flips, OGE attack achieves even
higher degradation in network accuracy, compared to the state-of-the-art, which demonstrates the efficiency
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of our proposed attack. The proposed OGE framework furnishes an attack runtime advantage of 3.56× on
average over this state-of-the-art BFA method.

4.4 Alternate BNN Architectures on ImageNet

In order to evaluate the prowess of our proposed OGE attack framework, we have performed experiments
on recent state-of-the-art BNN architectures(as demonstrated in Figure 5), that are trained on ImageNet
dataset (Deng et al., 2009). The corresponding baseline classification accuracies are 73.6% for QuickNet,
58.7% for XNORNet, 65.4% for BiRealNet, 61.38% for LQNet (ResNet-18), 62.73% for BinaryResNet18 and
60.6% for BinaryAlexNet. Quicknet demonstrates the highest vulnerability among all the networks, owing to
inherent model attributes arising from depthwise separable convolutions and parametric ReLU operations.
XNORNet, on the contrary exhibits highest resilience against OGE bit flip attack. This can be attributed
to the approximate convolutions using binary operators, that mask the impact of attack on the ensuing
classification accuracy of the network. The proposed attack, when compared against BFA and random bit
flip attacks, furnishes the highest RAD over the other two attack strategies, thereby demonstrating the
efficiency of our proposed approach.

0 20 40 60 80 100
Number of weights

0

20

40

60

80

100

Re
la

tiv
e 

ac
cu

ra
cy

 d
ro

p 
(%

)

BFA
OGE
Random

(a) QuickNet on ImageNet
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(b) XNORNet on ImageNet
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(c) BiRealNet on ImageNet
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(d) LQNet on ImageNet
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(e) BinaryResNet18 on ImageNet
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(f) BinaryAlexNet on ImageNet

Figure 5: Efficiency of OGE attack on state-of-the-art BNN architectures trained on ImageNet.

4.5 Evaluations on Novel Architectures

To evaluate the effectiveness of OGE on novel architectures like transformers used in natural language
processing (NLP) tasks such as sequence classification, we implement the framework on a Binary precision
BERT architecture, termed BinaryBert (Bai et al., 2020). We analyze BinaryBert’s performance on MRPC
and MNLI datasets (Wang et al., 2018). We assess performance using relative accuracy drop (RAD) and
relative drop in F1 score, indicating the model’s performance degradation. Higher F1 and RAD drops signify
lower model performance. Our attack scheme significantly reduces model accuracy, achieving a 50.8% RAD
in Binary-Bert on the MNLI dataset with just 1500 bit-flips (0.000018% of total parameters). Additionally,
it consistently yields over 90% relative drop in F1 score, with bit-flips totaling less than 0.000014% of total
parameters. This highlights the effectiveness of OGE.
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4.6 Effectiveness Against State-of-the-Art (SOTA) Defences

We have identified SOTA defenses against bit-flip attacks on deep neural networks (DNNs) (He et al., 2020;
Özdenizci & Legenstein, 2022; Wang et al., 2023; Chitsaz et al., 2023). These approaches aim to safeguard
full-precision DNNs by either quantizing the model (He et al., 2020; Chitsaz et al., 2023), encrypting the
output coding scheme (Özdenizci & Legenstein, 2022), or modifying the model architecture (Wang et al.,
2023). However, in the subsequent discussion, we elaborate on why these defenses prove ineffective against
our proposed OGE attack framework designed specifically for targeting binary neural networks (BNNs).

The approach outlined in He et al. (2020) suggests using binarization-aware training to convert DNNs into
binary form as a defense against bit-flip attacks. However, the OGE framework has shown that binary neural
networks can still be effectively attacked with minimal bit-flips, rendering this defense strategy insufficient
against our proposed attack. On the other hand, the defense method proposed in Özdenizci & Legenstein
(2022) employs an output code-matching strategy to make targeted class attacks more challenging. Yet,
the OGE framework takes a broader approach, targeting all classes, making the defense tactic ineffective
against our OGE attack. Similarly, the Aegis defense strategy advocated in Wang et al. (2023) proposes a
multi-exit approach using multiple internal classifiers. However, if the adversary targets the initial layers
before any internal classifier, erroneous activations occur across all classifiers, rendering the Aegis defense
ineffective against our OGE strategy. Furthermore, the defense mechanism outlined in Chitsaz et al. (2023)
suggests using learned quantization of DNN layers to enhance resilience during inference. Despite this, our
study, OGE, reveals that even fully binarized models remain vulnerable to bit-flip attacks. While a defense
strategy based on multiple quantization levels may not directly apply to our investigation, considering its
implementation is plausible given that targeting a BNN represents the most extreme scenario.

4.7 Comparison with Recent Bit-flip Attack Baselines

The research outlined in Chen et al. (2021); Bai et al. (2022) illustrates Trojan attacks on DNNs employing
bit-flip methodologies. These attacks pinpoint critical bits within a DNN, which, when attacked by metic-
ulously crafted Trojan patterns, lead to misclassifications into alternative target classes, serving adversarial
intentions. In the search for these critical bits within the model, these works rely on the magnitude of high
precision (Float16, float32, int8, etc.) weights, which certain optimization techniques exploit to identify
these crucial bits. Conversely, BNN weights are solely restricted to +1 or -1, which are represented by a
single bit. This renders the optimization techniques utilized in previous studies ineffective in converging
and uncovering critical bits within BNNs. Additionally, the attacks discussed in Chen et al. (2021); Bai
et al. (2022) are targeted attacks, aiming at input patterns of specific classes or patterns, which causes the
overall model accuracy drop to be minimal. However, in our OGE strategy, the attack targets all classes
indiscriminately throughout, resulting in substantial drops in model accuracy, and thus demonstrating the
efficacy of the attack.

5 Ablation Studies

In order to evaluate the efficiency of our OGE attack framework, we performed an extensive ablation study
by varying the different design parameters of our algorithm. As summarized in this section, OGE attack
furnishes identical trends for various ablation studies on all three datasets – Fashion-MNIST, CIFAR10 and
GTSRB. The corresponding results are demonstrated in Figures 6, 7 and 8 respectively.

Ablation study for layer selection: In this experiment, we performed ablation study for layer selection,
as demonstrated in Figure 7a for CIFAR10 dataset. We observed that, executing OGE attack on selected
layers furnishes much higher degradation in classification accuracy, when compared to a scenario where the
attack is executed without layer selection. Identical results are obtained for other two datasets as well. This
demostrates the importance of layer selection in order to orchestrate an effective bit flip attack on the BNN.

Ablation study on outlier detection: In this experiment, we varied the outlier detection approach
to select a subset of the binary weights, by considering 4 different techniques – (1) random weight selec-
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Figure 6: Ablation studies performed by varying OGE design parameters for Fashion-MNIST dataset.
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Figure 7: Ablation studies performed by varying OGE design parameters for CIFAR10 dataset.
tion, (2) weights with top-k gradients, (3) gradient based outlier detection with One-class SVM (OCSVM)
with standard rbf kernel and, (4) Isolation Forest, that is originally used in the proposed OGE attack.
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Figure 9: Variation in classification accu-
racy under OGE attack, for different kernels
of OCSVM, which is compared with the
performance of isolation forest technique.

As demonstrated in Figure 7b, outlier detection with isolation
forest exhibits the highest RAD, compared to other weight sub-
set selection techniques. When evaluated on Fashion-MNIST
and GTSRB datasets, OGE demonstrated similar results for
the isolation forest technique, thereby demonstrating the effi-
ciency of the proposed approach.

Furthermore, we performed experiments with different kernels
of OCSVM – (1) poly, (2) sigmoid and (3) rbf, and observed
that rbf kernel furnishes the highest RAD among other two
kernels in OCSVM (as demonstrated in Figure 9 of the Ap-
pendix). However, our isolation forest method furnishes even
higher degradation in accuracy, when compared to OCSVM
method with rbf kernel.

Ablation study with optimization algorithms: We also
performed an ablation study on 3 optimization techniques – (1)
Particle Swarm Optimization (PSO) and (2) Grey Wolf Opti-
mization (GWO) along with the proposed (3) evolutionary op-
timization algorithm, as shown in Figure 7c. The evolutionary
approach furnishes the lowest RAD over 100 iterations, compared to PSO and GWO respectively across all
three datasets. Similar results are obtained, when we iterated identical experiments on Fashion-MNIST and
GTSRB datasets as well.

These comprehensive ablation studies conducted serve to substantiate our design choices for the proposed
OGE attack framework, which has proven its efficiency in targeting and compromising the robust binary
weights found within a BNN.
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Figure 8: Ablation studies performed by varying OGE design parameters for GTSRB dataset.
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Figure 10: (a) Impact of Bit Flip attack and (b) the proposed defense against OGE attack on BNNs.

6 Discussion

Since a BNN demands extremely low amount of resources at the edge, it has the potential to be deployed in
the next generation mission-critical applications, e.g., in an autonomous vehicle, as represented in Figure 10a.
The decisions ascertained by this network, for instance, detecting a street sign with a speed limit of 35 MPH,
enable the automotive to drive as intended. However, under such an adversarial bit-flip attack, the network
might incorrectly infer the limit to be 85 MPH, which would direct the vehicle to reach uncontrollable speeds.
Since the decisions furnished by such networks are beyond human control, the impact of such attacks can
end in catastrophic circumstances, including the loss of human lives. Therefore, it is imperative to explore
the vulnerabilities in such extremely low-precision networks and address the manifestation of adversarial
attempts that can subvert the confidence of the system.

In order to thwart such attacks, we propose an adaptive defense mechanism. When manifested in a network,
this defense strategy aims to jeopardize the underlying strategy of the OGE attack and hence is termed as
adaptive. The proposed defense utilizes the concept of XOR-cipher, inspired by the concept of logic locking
(Yasin & Sinanoglu, 2017). Once the BNN is trained, a critical subset of vulnerable BNN parameters can be
encrypted with XOR-cipher, which, on providing the correct set of keys, will furnish the original accuracy
during inference. However, an incorrect key set will exhibit a graceless degradation in accuracy. There-
fore, the attacker, without knowing the key, will obtain a network having extremely low baseline accuracy,
beyond which, attacking the network further is impractical from an adversarial perspective. Figure 10b
demonstrates a high-level representation of this proposed defense strategy. As exhibited in existing research,
the multiplication operation in a BNN is accomplished by a logical XNOR operation between the activation
(A) and the binary weight (W), thereby resulting in a product of A

⊕
W (Courbariaux et al., 2016). With

the implementation of the defense strategy, the weight W will be XOR-ed with a key-bit (k), prior to its
multiplication with the input activation. Hence, the product obtained can be represented as A

⊕
(W

⊕
k).

Reverse engineering the key is also highly improbable in this scenario; locking m vulnerable binary weights
will furnish a probability of 1/2m (e.g. approximately 7 × 10−46 for 150 encrypted weights). Hence, with
this infinitesimal probability, it is almost impossible for the adversary to obtain the correct keys, and subse-
quently, the accurate set of pre-trained network weights to execute the attack.
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Bottlenecks: While the defense approach holds the promise of countering the OGE attack, there is a
practical hurdle to implementing this defense. The issue stems from the fact that implementing this defense
would require provisions at the system level where Binary Neural Networks (BNNs) are executed. Specifically,
every position where the weights are mapped would need provisions to encrypt those particular weights. Since
BNNs are designed to achieve efficient multiplication operations using XNOR gates, adding XOR gates
corresponding to each XNOR gate would substantially increase the area and power overheads necessary for
implementing this defense strategy. This addition would nearly double the resources required for processing,
significantly compromising the efficiency and effectiveness of such BNNs.

The primary motivation for using BNNs is to make them well-suited for deployment at the edge, where
resource constraints and efficiency are paramount. Consequently, implementing a defense strategy that
introduces such substantial overhead would undermine the very purpose of deploying BNNs at the edge.
This underscores the challenge in developing defense mechanisms for these types of attacks that are both
effective and practical, without sacrificing the key advantages that BNNs offer. It highlights the urgent need
for innovative defense strategies that can effectively thwart such carefully crafted attacks while remaining
compatible with inherently robust BNNs and practical for edge deployment.

7 Conclusion

In this work, we propose OGE, an adversarial bit flip attack designed specifically for Binary Neural Net-
works (BNNs). Our attack aims to disrupt the classification accuracy of these networks, even within their
low-precision settings, consequently undermining the system’s confidence in its predictions. Our results
demonstrate that it’s possible to significantly subvert the classification accuracy of a BNN, achieving a Rel-
ative Accuracy Drop (RAD) of 68.1% using the OGE methodology. Impressively, this level of disruption can
be achieved by flipping as few as 150 weights within a BNN. We achieve this through a systematic approach
based on outlier gradients and evolutionary techniques, emphasizing the efficiency of our proposed attack. To
defend against such attacks, a potential mitigation strategy could involve the use of XOR-cipher to protect a
critical subset of vulnerable bits. However, it’s important to note that this defense approach may introduce
significant computational and resource overheads, as discussed earlier. Nonetheless, it represents a potential
avenue for further exploration in future research, as we continue to grapple with the challenge of securing
low-precision networks like BNNs against sophisticated adversarial attacks.
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