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ABSTRACT

In this challenge, we transformed the task of detecting gene pairs with causal
relationships into a supervised learning problem. We constructed a dataset for
all gene pairs, with initial labels determined by gene expression correlations. A
LightGBM model was trained and applied to the same data for prediction. The top
1001 pairs with the highest prediction scores were selected. In local experiments,
this solution achieved a 0.3779 AUC score in the RPE1 data and a 0.3265 score in
the K562 data.

1 NOTATIONS

In addition to standard notations, we defined several custom notations listed below to describe the
method more efficiently.

(9i,95) A directed gene pair from g; to g;

My, g, Select the rows for g; and the columns for g; from the ex-
pression matrix M

M0 The column-wise mean value of the expression matrix

OM0 The column-wise standard deviation of the expression ma-

trix

2 METHODS

2.1 CALCULATE THE CORRELATIONS

We calculated correlations for all possible gene pairs (g;,g;), where g; and g; belonged to the
columns of the expression matrix My ; and @ # j. The input expression data were the concate-
nation of the interventional data (Mg, 4,, My, 4,) and the samples from the observational data
(Mpon—targeting,g:» Mnon—targeting,g;)- The observational data samples had the same lengths as
the interventional data. If g, related cells were not present in the expression matrix due to partial
selection, the input data would be M,on—targeting,g; ad Mpon—targeting,g;- The resulting corre-
lation matrix was asymmetric and had the shape of (1, 1).

2.2 CONSTRUCT THE DATASET

The initial labels of gene pairs were determined using a correlation threshold 7'. Pairs with corre-
lation scores higher than 0.1 were labeled as positive samples. To generate the features, we first
normalized the expression matrix using (M — Tiaz,0)/0ar,0- For each gene pair (g;, g;), we ex-
tracted four features from the matrix: My,on—targeting,g;» Mnon—targeting,g; (average observational

expression of g; and g;), and My, 4,, My, 4. (average intervened expression by g;). If g; related
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Table 1: LightGBM hyper-parameters

Parameter Value

boosting_type gbdt

objective binary

metric binary_logloss
num_leaves 5

max_depth 2
min_data_in_leaf 5

learning rate 0.05
min_gain_to_split  0.01
num_iterations 1000

cells were missing in the expression matrix, the last two features would be 0 and NaN. The output
dataset would have [ x (I — 1) rows and 5 columns.

2.3  TRAIN THE MODEL AND PREDICT

The LightGBM model was set up using the hyperparameters listed in Table [T] and trained on the
entire dataset. Predictions were from applying the model to the same data used for training. We
selected the top 1001 gene pairs with the highest prediction scores as our final outputs.

3 EXPERIMENTS

To determine the details of training parameters, including methods for initializing positive samples
(K and T'), the number of negative samples (R), the number of output gene pairs (/V), normalization
methods, and ensembles, we established two stages of experiments on partial intervention data with
one partial seed and five partial seeds.

K and T were parameters for selecting positive samples. We labeled the top K correlated pairs or
those with scores higher than 7" as positive samples. In some experiments, we randomly selected
K x R negative samples and trained the model alongside the positive ones. We also attempted
to train multiple models for the ensemble by selecting different negative samples. The ensemble
prediction scores were the averages from these models.

Evaluation scores were AUCs. In the first stage, we observed that top-performing methods might
have controversial results in K562 and RPE1 and close scores (Table [2)). These methods were se-
lected for the second stage evaluation, where we determined the final submission (Table .

4 DISCUSSION

In summary, we developed a supervised algorithm to solve the unsupervised gene causality pre-
diction problem. Our experiments demonstrated the model’s ability to learn the relationships that
determined causalities from the expression data and correct false positive and false negative samples
from initial labels. The model might benefit from the uncertainty of the initial labels, as including
more moderately correlated pairs as positive samples could improve performance. We observed
about 0.1 to 0.2 AUC score improvements compared to GRNBoost and DCDI baseline models, in
which we also selected the top 1000 pairs as outputs.

We attempted to incorporate the correlation matrix into the baseline algorithms. Since GRNBoost
had the highest Wasserstein scores when only considering observational data, we first selected
20,000 candidates with the highest feature importance scores from the model trained on observa-
tional data and chose 1000 based on correlation scores. However, this approach failed to surpass
direct correlation usage. As the number of candidates in the first selection increased, performance
approached the correlation results, suggesting that the GRNBoost model might not provide infor-
mation beyond correlations.
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Table 2: Performances of 1 partial seed data

KorT N R Normalize Ensemble K562 RPE1
Top 1000 absolute correlation (baseline) 0.2890 0.3397
500 1000 2 / / 0.1861 0.3040
2000 1000 2 / / 0.2393  0.3352
2000 1000 3 / True 0.2561 0.3608
2000 2000 3 / / 0.2278 0.2767
5000 1000 2 / / 0.2524  0.3552
5000 1000 2 / True 0.2614 0.3541
5000 1000 3 / True 0.2635 0.3598
7000 1000 3 / / 0.2684  0.3608
7000 1000 AllNeg / / 0.2826 0.3846
7000 1000 AllNeg normalize / 0.3023 0.3744
7000 1000 AllNeg quantile / 0.2843 0.3768
0.1 1000 AllNeg normalize / 0.3148 /
0.2 1000 AllNeg normalize / 0.3072  /

Table 3: Performances of 5 partial seeds data

KorT N R Normalize Ensemble K562 RPE1

Top 1000 absolute correlation (baseline) 0.2922 0.3255
5000 1000 AllNeg / / 0.2930 0.3672
5000 1000 AllNeg normalize / 0.3062 0.3655
5000 1000 AllNeg quantile / 0.2992 0.3632
7000 1000 AllNeg / / 0.2944 0.3659
0.1 1000 AllNeg normalize / 0.3265 0.3780
0.2 1000 AllNeg normalize / 0.3138 0.3614

For the DCDI algorithms, we tried replacing the initial adjacency matrix and the Gumbel adjacency
matrix with knowledge from the correlation matrix. The improvement over the baseline was nearly
0.1 but still worse than directly using the correlation matrix. Additionally, the algorithm seemed
vulnerable to node numbers. We were unable to increase gene numbers for each partition as the
program reported overflow issues.
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