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Abstract

Instrumental variable (IV) analysis is a crucial tool for causal inference across
diverse domains—from genetics to chemistry—in the presence of unobserved
confounders, but discovering true IVs from observed covariates is challenging.
Recent approaches have focused on synthesizing representations that can serve
as IVs, but under restrictive assumptions and settings. We propose CoCoIV to
tackle a more challenging yet realistic problem of learning IV representations from
observed covariates, potentially correlated with unobserved confounders. CoCoIV
utilizes latent variable models to learn representations for both IVs and non-IVs
from confounded covariates, guided by a dual prediction network with mutual
information regularization, allowing both discrete and continuous treatments. Ex-
tensive experiments across various configurations of estimators and treatment types
show the effectiveness and wide applicability of our framework.

1 Introduction

When randomized experiments are infeasible, instrumental variable (IV) analysis provides a principled
way to address unobserved confounding, widely applied in natural sciences including biology and
chemistry [Katan, 1986, Von Hinke et al., 2016, Rajput and Gupta, 2020, Ludl and Michoel, 2021].
An IV influences the treatment X but affects the outcome Y only through X and remains independent
of unobserved confounders. However, identifying valid IVs is demanding, especially from high-
dimensional data and it is impossible to test the validity conditions without strong assumptions.

Table 1: Comparison: IV representation methods.

Method Treatment (X)
type

Unknown
IV

Confounded
Covariates

UAS (2013) Both ✗ ✗
WAS (2016) Both ✗ ✗

Ivy (2020) Discrete-only
(+Discrete Y ) ✓ ✓

AutoIV (2022) Both ✓ ✗
CIV.VAE (2023) Discrete-only ✓ ✗
DVAE.CIV (2023) Discrete-only ✓ ✗
VIV (2024) Both ✓ ✗

CoCoIV (Ours) Both ✓ ✓

Recent work in IV representation learning aims to
address this by synthesizing representations that
serve as IVs rather than selecting explicit variables
[Burgess and Thompson, 2013, Burgess et al., 2016,
Kuang et al., 2020, Yuan et al., 2022, Cheng et al.,
2023b,a, Wu et al., 2023, Li and Yao, 2024]. These,
however, often rely on restrictive assumptions: they
assume covariates are independent of unobserved
confounders, or they support only binary treatment
settings. Such assumptions rarely hold in practice,
limiting the reliability of these methods in real-world
applications (See Table 1).

In this paper, we tackle a more realistic yet underexplored scenario: learning IV representations
when observed covariates themselves potentially are correlated with unobserved confounders (i.e.
confounded covariates). We introduce CoCoIV (Instrumental Variable Representation Learning with
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Confounded Covariates), a framework that uses latent variable modeling to learn distinguishable
representations from confounded covariates, each for IV and non-IV. The key components are a dual
prediction network and regularization of mutual information between the representations, enforcing
they encapsulate information regarding IVs and non-IVs, respectively. Importantly, our method
handles both discrete and continuous treatments, highlighting its broad applicability.

We summarize our contributions as follows: (i) To the best of our knowledge, we propose the
first framework for IV representation learning under confounded covariates, a challenging yet
common scenario in practice; (ii) We introduce a dual prediction network with mutual information
regularization, emulating estimation process of widely-accepted IV estimators during the training;
(iii) Extensive experimental results demonstrate the effectiveness of our method on generating IV
representations from confounded covariates, leading to more reliable causal effect estimation across a
wide range of scenarios.

2 Methods
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Figure 1: Illustration of our framework. (a) True data generating process. The dotted lines represent
the potential correlation between D2 and U . (b) Inference of Z and C. (c) Prediction of X and Y .

Problem Setup. We consider a dataset {D(i),X(i),Y (i)}ni=1, where D ∈ Rp denotes a set of
pre-treatment covariates, X the treatment (binary or continuous), and Y the outcome. Valid IVs are
not directly observed, but are assumed to be embedded in D. We assume D can be partitioned into
two latent subsets: D1 containing valid IVs, and D2 containing non-IVs. This partition is unknown
and our goal is to infer IV representation Z from D that can be used with usual IV estimators (e.g.
2SLS [Angrist et al., 1996], KernelIV [Singh et al., 2019]) to estimate the causal effect of X on Y .

The causal structure is illustrated in Figure 1a: D1 and Z influence X; D2 and C affect both X
and Y , with possible correlation to unobserved confounders U . This setup extends prior works by
explicitly allowing confounded covariates, a setting rarely considered in early IV representation
learning methods.

2.1 Overall Framework and Uniqueness

Our proposed framework, CoCoIV, learns representations of Z (IVs) and C (non-IVs) from the
dataset {D(i),X(i),Y (i)}ni=1, composed of three components.

Two encoders (q(z | d), q(c|d)) and shared decoder(p(d|z, c)) are trained to reconstruct D,
yielding candidate IV (Z) and non-IV (C) representations (See Figure 1b). After the whole training,
we sample IV representation Z ∼ q(z | d) to obtain {Z(i),X(i),Y (i)}ni=1, ready for estimating
causal effect.

Dual prediction networks (Figure 1c) for treatment X (f(x|z, c), p(x|z)) are designed to bypass
the confounding bias when estimating Y during the training. Unlike other IV representation methods
using a single prediction network for X , our method uses x̂ derived solely from z for predicting Y ,
i.e., f(y|x̂, c) where x̂ ∼ p(x|z).
Mutual information (MI) regularization that minimizes dependence between Z and C, encourages
the model to disentangle Z and C respectively from D1 and D2 with the prediction networks.

Our unique component is dual prediction networks. Other IV representation methods with a single
prediction network for X , predict Y using X inferred from both Z and C. As C is learned to represent
confounded covariates, this may inadvertently include confounding effects from U . In contrast, our
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method leads to the estimation of causal effect robust to the influence of confounding, which can
be viewed as mimicking IV estimators. Moreover, CoCoIV supports both binary and continuous
treatments, extending applicability beyond prior methods limited to specific data types.

2.2 Learning Objective

The training objective integrates three terms.

ELBO loss LELBO ensures D can be reconstructed from IV and non-IV representation Z,C.

LELBO, = −Eq

[
log p(d | z, c)]+

∫
c

q(c | d)DKL(q(z | d)||p(z))dc+
∫
z

q(z | d)DKL(q(c | d)||p(c))dz

Prediction loss Lpred is designed to learn two separate prediction networks for X , i.e., p(x | z) and
f(x | z, c), and a prediction network for Y , i.e., f(y|x̂, c).

Lpred = −Eq(z,c|d)

[
log p(x | z) + MSE(f(x | z, c),x) + MSE(f(y | x̂, c), y)

]
,

Mutual information loss LMI minimizes statistical dependence between Z and C, using tractable
approximations under Gaussian priors.

LMI = I(Z;C | D) = −1

2

∑
zj ,ck

log(1−Q2
zj ,ck

),

The final objective is a weighted sum with balancing coefficients α and β.

Ltotal = LELBO + α·Lpred + β·LMI,

3 Empirical Evaluation

We evaluate CoCoIV on both synthetic and real-world datasets, comparing computed treatment
effect estimates against baseline IV representation learning methods (UAS [Burgess and Thompson,
2013], WAS [Burgess et al., 2016],DVAE.CIV [Cheng et al., 2023a], AutoIV [Yuan et al., 2022])2 by
applying IV representations from each method to well-known IV estimators (2SLS [Angrist et al.,
1996], Ortho [Syrgkanis et al., 2019], KernelIV [Singh et al., 2019]).

Our experiments aim to answer three questions: (i) Can CoCoIV learn reliable IV representations
under confounded covariates so that it elicits exact estimate of causal effect? (ii) How does it perform
across binary vs. continuous treatments and linear vs. non-linear response functions? (iii) What is the
contribution of key component for quality of learned IV representation? Please refer to Appendix B
for the details of (i), (ii) with a broader set of estimators and Appendix. C.1 for (iii).

3.1 Synthetic datasets

We conduct experiments with both low-dimensional synthetic data and high-dimensional dataset
based on MNIST. Settings vary across binary vs. continuous treatments and linear vs. non-linear
response functions. Performance is measured by mean absolute error (MAE) between estimated and
true causal effects, while for continuous treatment, we compare MAE between estimated and true
potential outcomes. We report MAE with its standard deviation within parentheses in Table 2. For
reference, we did not report standard deviations for UAS and WAS since they do not involve learning.

As summarized in Table 2, CoCoIV yields more accurate estimates of causal effects for most of the
IV-based estimators. In the low-dimensional settings with linear response function, our model tends
to attain clear gains when combined with 2SLS and Ortho, while demonstrating modest MAE with
KernelIV, which is designed to capture non-linear relationships. In contrast, for non-linear response
function, our model obtains the best MAE with KernelIV, owing to its effectiveness in capturing
non-linear relationships.

2We chose the models where we can access official implementation codes.
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Table 2: Compact results (MAE) with different baselines per setting.

Low-dim High-dim

Linear Nonlinear Linear Nonlinear

2SLS Ortho KernelIV 2SLS Ortho KernelIV 2SLS Ortho KernelIV 2SLS Ortho KernelIV

Bin.

UAS 2.96 3.92 0.22 1.63 3.92 0.58 0.52 17.17 0.22 4.06 6.78 2.41
WAS 2.25 2.12 0.21 2.78 2.12 0.64 0.37 1.74 0.13 2.74 4.41 2.10
DVAE.CIV 1.43 (0.24) 1.99 (1.74) 1.24 (0.02) 0.83 (0.67) 1.17 (0.71) 0.79 (0.01) 1.87 (1.72) 3.75 (8.24) 0.66 (0.13) 9.31 (28.3) 14.2 (32.48) 0.70 (0.1)
COCOIV 0.26 (0.09) 1.3 (1.25) 0.38 (0.31) 1.12 (0.17) 0.37 (0.47) 0.33 (0.02) 0.07 (0.03) 0.54 (0.44) 0.24 (0.2) 0.76 (0.06) 3.11 (0.42) 1.68 (0.29)

Cont.

UAS 1.75 0.5 5.85 2.41 1.34 4.87 0.52 17.17 0.22 4.06 6.76 2.41
WAS 0.79 0.24 3.51 1.57 1.51 5.18 0.37 1.74 0.13 2.74 4.4 2.10
AutoIV 4.15 (9.41) 0.16 (0.2) 0.7 (0.79) 25.25 (63.06) 1.67 (0.45) 4.26 (1.33) 0.62 (0.76) 1.71 (0.96) 0.32 (0.25) 9.84 (32.47) 2.11 (0.59) 0.96 (0.34)
COCOIV 0.07 (0.09) 0.02 (0.01) 3.51 (0.55) 1.38 (0.1) 1.37 (0.1) 3.82 (1.16) 0.05 (0.01) 0.1 (0.08) 0.26 (0.12) 0.60 (0.05) 1.89 (0.12) 0.82 (0.12)

Table 3: Estimates of causal effect on two real-world datasets.

401(k) (Bin. treatment) Police Force (Cont. treatment)

2SLS Ortho KernelIV 2SLS Ortho

UAS 2.23 2.26 0.24 6.96 6.99
WAS 1.68 1.69 0.24 6.96 6.99
DVAE.CIV 0.01 (0.18) -0.17 (0.71) 0.24 (0.00) – –
AutoIV – – – N/A N/A

COCOIV 0.72 (0.08) 1.14 (0.64) 0.24 (0.00) 6.91 (0.07) 6.59 (1.23)

In the high-dimensional settings with linear response function, similar to those with low-dimensional
datasets, CoCoIV demonstrates the best performance when estimated with 2SLS and Ortho.They
achieve the lowest MAE with the smallest standard deviation. Note that simple schemes such as
UAS/WAS can appear competitive in certain cases owing to the pixel-level sparsity of MNIST-like
covariates, where averaging methods of UAS/WAS effectively down-weights irrelevant zero-pixels.
In continuous treatment with non-linear response function, which is the most complex settings, our
model records the lowest MAEs among all the estimators. These results confirm that the CoCoIV
learns IV representation effectively when facing with complex high-dimensional datasets.

3.2 Real-world datasets

We test on two empirical datasets summarized in Table 3 reporting estimated effects. Although known
IVs exist, we ignore this information and our model takes the full set of covariates as input, showing
that CoCoIV still recovers plausible estimates consistent with prior studies.

For the 401(k) dataset of Abadie [2003], where the true effect on IRA participation is small and
positive (0.03–0.07), our method returns values below 1 and avoids the sign reversals observed in
DVAE.CIV. On the police force dataset of Chalfin et al. [2022], where the documented effect of
police size on quality-of-life arrests is ≈ 5.03, CoCoIV yields estimates in the range 6.5–7.5, closer
to the reported effect, while AutoIV produces unstable and explosive values3.

3.3 Detailed analysis

We investigate the contributions of our key component and quality of learned Z (See Appendix. C.1).

Dual prediction network and MI regularization Prior approaches often use both IV and non-IV
representations to predict X . Our dual design separates p(x|z) and f(x|z, c), using only the IV-based
x̂ for modeling Y , reducing estimation bias by 50% on average compared to a single prediction
network. Furthermore partial derivative sensitivity analysis shows that with MI (β > 0), the encoder
q(z|d) focuses more on true IVs D1, confirming its role in valid IV representation learning.

Quality of learned Z. It is critical to validate whether the learned IV representation Z satisfies the
IV conditions. Mutual information analysis provides an indirect validation, showing that the learned
Z overall has weak association with C and D2 (correlated with unobserved confounders) but strong
association with genuine IVs D1.

3KernelIV is not applicable as the researchers utilize estimators assuming a linear model.
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4 Conclusion

In this work, we tackled the under-explored problem of learning IV representations directly from con-
founded covariates, as outlined in Table 1. By modeling two distinct latent variables and introducing
novel components such as a dual prediction network, our method learns representations for both IVs
and non-IVs. A key contribution of our approach is its flexible compatibility with diverse data types,
enabling robust causal effect estimation across various estimators, treatment types, and functional
relationships. Given its effectiveness in high-dimensional datasets, we expect that our method would
be applicable to complex observational data in natural science domains, such as climate science
datasets, where confounding is pervasive and reliable IV constuction remains a challenge.
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A Appendix for Method

For reference, Appendix consists of Appendix. A (for method), Appendix. B (for experimental
settings and full results of main experiments), and Appendix. C (for additional experiments).

A.1 Formal definition of IV and Real-world example on our DGP

Definition of IV. We define instrumental variables Z in the relationships with treatment X , outcome
Y and unobserved confounders U (adopted from Angrist and Pischke [2009]).

Definition 1 (Instrumental Variables). a variable Z is called an instrumental variable (IV) if three
conditions below hold:

1. Z ̸⊥⊥ X (relevance),

2. Z ⊥⊥ Y | X,U (exclusion),

3. Z ⊥⊥ U (unconfoundedness).

We say that Z is a (valid) IV if all three conditions hold; otherwise, it is a non-IV.

Real-world example. We would like to refer to an interesting example of the study on whether
granting a patent leads to follow-on innovations [Sampat and Williams, 2019]. Here, it is infeasible to
randomly assign patent acceptance, and further, unobserved confounders (e.g., the innate originality
of patent candidates) would distort causality between the treatment and the outcome. The authors
used as an IV the assignment of patent examiners, which is nearly random, and its impact rarely
directly affects follow-on innovations.

Recall the setting described in Figure. 1a. The assignment of patent examiners (D1) and their latent
technological preferences (Z) influence the treatment (X). On the other hand, research records (D2)
that can be represented by patent-related research trend (C), affect both treatment and outcome,
follow-on research (Y ) and some of them could be correlated with the era’s latent investment trends
(U ).

A.2 Details on the Model Components

We will introduce details on learning components of the model, especially on the pair of posterior
q(z | d) and prior p(z) ≈ p(z | d), and of posterior q(c, ec | d) and prior p(c, ec). Then, we will
introduce the derivation of our ELBO objective. Finally, model components regarding prediction loss
and mutual information regularization will be elaborated.

Modeling regarding Z. we employ different architectures for each encoder, considering the data
generating process of Z and C in realistic settings where non-IVs are more prevalent and exhibit
a more complex structure. We approximate distribution of latent variable Z through VAE-based
framework [Kingma and Welling, 2013, Sohn et al., 2015] considering association between Z and D1.
We model a prior distribution of Z as p(z | d); for implementation, we chose a normal distribution as
a prior following practice [Sohn et al., 2015, Lopez-Martin et al., 2017]:

p(z | d) = N(µd,σ
2
dI).

We use p(z) =
∑

d p(z|d)p(d) ≈ 1
N

∑N
i=1 p(z | d(i)) where d(i) ∼ p(d). We chose N = 1 and

intend to learn the prior p(z) ≈ p(z | d).
Then, encoder q(z | d) defined as a variational posterior distribution is trained to be close to p(z | d).

q(z | d) ≈ N(µz|d,σ
2
z|dI).

Modeling regarding C. we aim to encode C that can capture likely complex structure of non-IV
D2 which usually have a number more than that of true IVs in observed covariates in real-world
scenarios. By accommodating the mixture model prior, we aim to learn C expressing complex latent
structures of the observed data. Thus, we utilize Variational Deep Embedding (VaDE) [Jiang et al.,
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2017], which assumes prior p(c) following a Gaussian Mixture Model. We derive both c and its
component ec as

p(ec) ∼ Cat(π)

p(c | ec) ∼ N(µec ,σ
2
ecI),

where π = (π1, ...,πK) ∈ RK . The Loss term related to ELBO in Eq. 2.2 implies that q(c, ec | d)
is trained to be close to its prior p(c, ec). As VaDE originally assumes, we model q(c, ec | d) to be
a meanfield distribution that can be factorized into q(c, ec | d) = q(c | d)q(ec | d). Then, we will
model q(c | d) as,

q(c | d) = N(µc|d,σ
2
c|dI).

For q(ec | d), we compute it as p(ec | c) following the same logic in Jiang et al. [2017]. This is
because, as shown in the following rewritten forms,

LELBO

= −Eq(z,c,ec|d)

[
log

p(d1,d2, z, c, ec)

q(z, c, ec | d)

]
= −

∫
z,c

∑
ec

q(z | d)q(c | d)q(ec | d)

·
[
log

p(d1, z)p(d2 | c)p(c)
q(z | d)q(c | d)

+ log
p(ec | c)
q(ec | d)

]
dzdc

= −
∫
z,c

q(z | d)q(c | d) log
p(d1, z)p(d2 | c)p(c)

q(z | d)q(c | d)
dzdc

+

∫
z,c

q(z | d)q(c | d)DKL(q(ec | d) ∥ p(ec | c))dzdc

to optimize LELBO, DKL(q(ec | d) ∥ p(ec | c)) should be 0.

Modeling of the decoder p(d|z, c). A shared decoder p(d|z, c) is trained to have Ẑ ∼ q(z|d) and
Ĉ ∼ q(c|d) obtaining enough dependence with D. As we have two distinct architectures for the
encoders, the reconstruction term Eq[p(d|z, c)] can be collapsed in the early stage of the training.
Thus, we pretrain the shared decoder and encoders q(z|d) and q(c|d) with 30 epochs.

Details on ELBO of D. We can derive the negative ELBO of log p(d) with the components above.

− log p(d) ≤ −Eq(z,c,ec|d)

[
log

p(d, z, c, ec)

q(z, c, ec | d)

]
= −Eq(z,c,ec|d)

[
log

p(d | z, c)p(z)p(c | ec)p(ec)
q(z, c, ec | d)

]
= −Eq

[
log p(d | z, c, ec)]

+

∫
c

∑
ec

q(c, ec | d)DKL(q(z | d) ∥ p(z))dc

+

∫
z

q(z | d)DKL(q(c, ec | d) ∥ p(c, ec))dz

≈ −Eq

[
log p(d | z, c)]

+

∫
c

∑
ec

q(c, ec | d)DKL(q(z | d) ∥ p(z | d))dc

+

∫
z

q(z | d)DKL(q(c, ec | d) ∥ p(c, ec))dz

= L̂ELBO.

As we approximate p(z) with p(z | d), the derived term incorporates the components of the model
p(d | z, c), p(z | d), p(c, ec), q(z | d), q(c, ec | d).
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Modeling p(x | z). We parameterize it to approximate p(x | z) assumed to follow distribution in
regular exponential family.

pθ(x | z) =

{
Bern(sigmoid(θ1(z))) for binary x

N(µθ2(z),σ
2
θ2(z)

). for continuous x

One can further model it with more complex exponential family, but for simplicity we select the two
distributions each of which covers either binary or continuous variable.

Tractable MI regularization. Since we model both q(z | d) and q(c | d) as normal distributions,
we can obtain tractable MI as follows [Gelfand and Yaglom, 1959]:

I(Zj ;Ck|D) = −1

2
log(1−Q2

zj ,ck
),

for all zj ∈ Z and ck ∈ C, where Qzj ,ck = corr(zj , ck) can be replaced with the sample correlation
Q̂zj ,ck from mini- batch. Thus, we can formulate the training objective in terms of MI as follows:

L3 = −1

2

∑
j,k

log(1− Q̂2
zj ,ck

). (1)

Instead, we use a simplified version of the formula, L3,simple =
∑

j,k Q̂
2
zj ,ck

, which has the same
global optimum when Q̂zj ,ck = 0 for all zj and ck, but does not explode.

A.3 Discussion on identification of latent variable models

In general, identifiability of latent variable models often requires auxiliary variables or additional
conditions [Hyvarinen et al., 2019, Khemakhem et al., 2020].

Here, we provide conditions for the model identifiability and how we considered them in our
architectural design:

• When the prior distribution of latent variable Z,C follows a Gaussian Mixture Model
(possibly, a number of components can be one or more);

• When D1,D2 are fed into respectively learned encoders; and

• When the function that maps latent variables to observed variables is injective;

It is known that the model is identifiable up to affine transformations without auxiliary variables if
the above conditions are satisfied [Kivva et al., 2022]. As such conditions are often too strict and
infeasible, prior works [Zhang et al., 2021, Yuan et al., 2022, Cheng et al., 2023b,a, Li and Yao, 2024]
also lack the guarantee of the model identifiability. In our work, we employed ReLU activations
[Stock and Gribonval, 2023] and MI constraints to impose them in practice where its effectiveness is
demonstrated in Sec. 3, Appendix. C.

A.4 Discussion on identification of causal effect

If the IV representation model recovers Z in underlying graphical model Fig. 1a, causal effect of X
on Y is identified by following the existing works of IV analysis. The conditions for the identification
can be listed as follows; the influence of the treatment on the outcome is clearly separable from those
of confounders [Terza et al., 2008, Kawakami et al., 2023]; specifically, when the relationships among
variables are linear, it is sufficient that the dimension of Z is more than that of X , which is usually
called rank condition [Cameron and Trivedi, 2005, Newey, 2013]. For a non-parametric setting, the
completeness of a set of distributions conditioned on Z (i.e., X|Z) should be considered. [Newey
and Powell, 2003, Wong, 2022].

Although these conditions vary among the different IV estimators, we tried our best to reflect the
conditions when generating synthetic datasets for empirical validations.
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B Appendix for Experiment

Here, we report the full results on synthetic datasets with more IV estimators in Table 4, 5. The
results involve three more IV estimators (IVGMM, DML, Poly2SLS). The details of dataset and
experiment settings are described below.

B.1 Dataset Details

Synthetic Datasets We create synthetic datasets with sample sizes of 5000. In order to make the
setting more realistic, in both low-dimensional and high-dimensional cases, approximately the half of
the variables in D2 are correlated with an unobserved confounder denoted as U . Additionally, the
number of instrumental variables (IVs) in D is less than the half of all the observed covariates.

Datasets are generated based on the following process. The dimensions of D1,Z,D2,C are denoted
as m, k, l, o, respectively. Distributions of exogenous variables and variables without parents is
ϵD1 ∼ N(0, 10Im), ϵZ ∼ N(0, 0.01Ik), ϵD2 ∼ N(0, 0.25Il), U ∼ N(0, 1), and C ∼ N(0, Io).
The rest are determined as

D1 = fD1(ϵD1),Z = fZ(D1) + ϵZ,

D2 = A⊤C+ ϵD2
+ U · 1(p > 0.5),

where, pi ∼ Bern(0.5), i = 1, 2, . . . , l,

X =

1

[
1

1 + exp(fX(Z) +B⊤[C : D2] + U)
> 0.5

]
(binary)

fX(Z) +B⊤[C : D2] + U (continuous)

Y = g(X) + fY (C,D2) + U ,

where [C : D2] is the concatenation of C and D2.

We apply an affine transformation of C and D2 by using coefficient matrices A and B sampled from
a normal distribution, respectively. Other arbitrary functional relationships between variables are
introduced by sampling f(.) ∼ GP(0, kRBF), i.e., a Gaussian Process prior with zero mean function
and RBF kernel with its length scale set to 1. The function sampler is intended to incorporate the
complexity of real-world scenarios.

We generate X and Y using the same process in the low-dimensional and high-dimensional case. For
the response function relating X to Y , denoted as g(X), we investigate two specific cases: a linear
relationship, where g(X) = 3X , and a non-linear relationship, where g(X) = exp(0.5X). In other
words, in the linear case, the true ATE is 3, while in the non-linear case, the true APCE is given by
∂xE[Y (X = x)] = 0.5 exp(0.5x).

In low-dimensional scenarios, each dimension of the variable, i.e., m, k, l, o is set to 2, 2, 4, 3, and in
high-dimensional scenarios, we utilize the MNIST dataset [LeCun et al., 1998]. Images in the dataset
are represented by D ∈ R28×28=784, i.e. m+ l = 784. Due to the lack of specific information about
which variables (pixels) are D1 or D2, we implicitly assume that D1 is a set of pixels corresponding
to digit. However, in this case, D1 can be changed by each image, which is more challenging. In
terms of assumption about distinguishable D, we can consider it as an even more general setting that
should learn the representation of Z from indistinguishable D. Additionally, we set Z as the label of
each image, thus establishing an intuitive relationship between D1 and Z. To create distinctive values
for D2, the first 100 pixels are selected and noise U is injected, which can serve as a confounding
variable for digit recognition.

For each dataset, we conduct 20 independent replications with the training and test datasets, divided
in a 7:3 ratio.

Relationships between Participation in Tax-deferred Programs [Abadie, 2003]. The dataset is
composed of 11 variables with 9,275 units. Except for the treatment (participation in 401(k)) and the
outcome (participation in IRA), income, net family financial assets, family size, age, gender etc. were
collected. Among 11 variables, we use 6 numerical variables that are suitable for averaging methods
such as UAS and WAS. As the outcome variable is binary, we extend our model to binary outcome
by introducing binary cross entropy to model f(y | x̂, c). The dataset is available in R package.4

4https://cran.r-project.org/web/packages/wooldridge/wooldridge.pdf
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Table 4: Experimental results on low-dimensional synthetic datasets.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV
B

in
ar

y UAS 2.96 2.96 4.99 3.92 1.96 0.22 1.63 1.63 4.63 3.92 1.96 0.58
WAS 2.25 2.25 3.61 2.12 1.06 0.21 2.78 2.78 2.92 2.12 1.05 0.64
DVAE.CIV 1.43 (0.24) 1.43 (0.24) 1.99 (1.74) 1.64 (2.7) 1.12 (0.88) 1.24 (0.02) 0.83 (0.67) 0.83 (0.67) 0.88 (0.42) 1.17 (0.71) 1.8 (2.4) 0.79 (0.01)
CoCoIV 0.26 (0.09) 0.31 (0.07) 1.59 (1.17) 1.3 (1.25) 1.66 (3.24) 0.38 (0.31) 1.12 (0.17) 1.06 (0.2) 0.4 (0.56) 0.37 (0.47) 0.47 (0.18) 0.33 (0.02)

C
on

tin
uo

us UAS 1.75 1.75 0.52 0.5 1.4 5.85 2.41 2.41 1.34 1.34 6.28 4.87
WAS 0.79 0.79 0.25 0.24 0.69 3.51 1.57 1.57 1.52 1.51 4.95 5.18
AutoIV 4.15 (9.41) 4.15 (9.41) 0.23 (0.47) 0.16 (0.2) 0.7 (0.79) 3.18 (0.9) 25.25 (63.06) 25.25 (63.06) 1.65 (0.41) 1.67 (0.45) 4.99 (0.94) 4.26 (1.33)
CoCoIV 0.07 (0.09) 0.08 (0.09) 0.03 (0.03) 0.02 (0.01) 0.35 (0.07) 3.51 (0.55) 1.38 (0.1) 0.3 (0.15) 1.35 (0.12) 1.37 (0.1) 4.13 (0.32) 3.82 (1.16)

Table 5: Experimental results on high-dimensional synthetic datasets.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV

B
in

ar
y UAS 0.52 0.52 N/A 17.17 14.57 0.22 4.06 4.06 7.06 6.78 3.08 2.41

WAS 0.37 0.37 1.74 1.74 0.85 0.13 2.74 2.74 4.35 4.41 2.09 2.1
DVAE.CIV 1.87 (1.72) 1.87 (1.72) 1.96 (2.05) 3.75 (8.24) 0.5 (0.13) 0.66 (0.11) 9.31 (28.3) 9.31 (28.3) 2.48 (4.08) 14.2 (32.48) 0.75 (0.11) 0.7 (0.1)
CoCoIV 0.07 (0.03) 0.05 (0.02) 0.78 (0.8) 0.54 (0.44) 0.61 (0.49) 0.24 (0.2) 0.76 (0.06) 0.7(0.07) 3.19 (0.5) 3.11 (0.42) 1.37 (0.19) 1.68 (0.29)

C
on

tin
uo

us UAS 0.52 0.52 16.92 17.1 14.57 0.22 4.06 4.06 6.79 6.76 3.08 2.41
WAS 0.37 0.37 1.76 1.72 0.85 0.13 2.74 2.74 4.43 4.4 2.09 2.1
AutoIV 0.62 (0.76) 0.62 (0.76) 1.65 (0.94) 1.71 (0.96) 1.19 (0.5) 0.32 (0.25) 9.84 (32.47) 9.84 (32.47) 2.14 (0.59) 2.11 (0.59) 0.93 (0.32) 0.96 (0.34)
CoCoIV 0.05 (0.01) 0.02 (0.01) 0.23 (0.21) 0.1 (0.08) 0.24 (0.06) 0.26 (0.12) 0.6 (0.05) 0.6 (0.05) 2.0 (0.19) 1.89 (0.12) 0.85 (0.07) 0.82 (0.12)

Police Force Size and Civilization Race [Chalfin et al., 2022]. The dataset is composed of 195
columns with 1037 units. Among 195 columns, regardless of methods, we use city id (with one-hot
encoding), interacted state by year, power of population, detailed data for city’s race, gender and
age composition, median household income, poverty rate, and unemployment rate except for the
treatment (number of sworn police officers) and outcome (Quality of life arrests for white). We
also included IV (variation in the timing of federal block grants provided by the US Department of
Justice’s Community Oriented Policing Services (COPS) office) in those covariates. The dataset is
available on replication package.5

B.2 Baselines

UAS. Unweighted Allele Score (UAS) [Burgess and Thompson, 2013] was devised for Mendelian
randomization [Katan, 1986]. The model calculates the average of each covariate per unit and uses
the value as an IV. The model assumes that all averaged covariates satisfy the conditions of IVs, but
they are weak. We implement UAS with basic functions of average provided by python packages
pytorch and numpy by following the instructions in the original papers.

WAS. Weighted Allele Score (WAS) [Burgess et al., 2016] takes a similar approach with UAS, but
it calculates a weighted average of values of each covariate. The weights are calculated from the
correlation between the covariates and treatment. WAS also assumes that all the covariates satisfy the
conditions of IVs. We implement WAS in a similar way to UAS.

DVAE.CIV DVAE.CIV [Cheng et al., 2023a] learns a representation of conditional IV and its
conditioning set. Conditional IV requires conditioning set to function as IV. DVAE.CIV learns the
two representations by leveraging disentangling Variational Autoencoder. For implementation, we
use the code provided by the authors.6

B.3 Estimators

For IV-based estimators, 2SLS and IVGMM [Hansen, 1982] are implemented with python package
linearmodels. We use the implementation of DML [Chernozhukov et al., 2018], Ortho [Syrgkanis
et al., 2019] in python package econml. As Ortho and DML do not provide a prediction method, we
use the value of response function when the treatment value is 1 and 0. Default parameters are used for
each class. For Poly2SLS and KernelIV [Singh et al., 2019], we used open sourced implementation.

5https://www.aeaweb.org/articles?id=10.1257/aeri.20200792 and https://www.
openicpsr.org/openicpsr/project/135761/version/V1/view.

6As DVAE.CIV is an advanced version of CIV.VAE, we omitted experiments on CIV.VAE.
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Table 6: Hyperparameters of the model.

Parameters Low-dimensional High-dimensional

binary continuous binary continuous

Dim of Z 3 3 25 25
Dim of C 2 2 25 25

Number of components 4 4 4 4
Hidden dim 200 200 150 or 200 150 or 200

Hidden layers 1 or 3 1 or 3 1 or 3 1 or 3
Activation Function (ReLU, Sigmoid) (ReLU, Sigmoid) (ReLU, Sigmoid) (ReLU, Sigmoid)

Table 7: Hyperparameters for training.
Dim. of Z (low-dim) 3 Dim. of C (low-dim) 2
Dim. of Z (high-dim) 25 Dim. of C (high-dim) 25

Prediction loss weight α 5 Weight decay 0.0001
MI loss weight β 5 Optimizer Adam

Batch size 512 Training epochs 128
Learning Rate 0.001 LR Decay 0.01
LR Scheduler StepLR

B.4 Implementation

Our method have VaDE architecture to learn complex distributions. We used open-sourced imple-
mentation of VaDE.

As VaDE method did, we also pretrain our encoder and decoder to avoid the problem that the
reconstruction term would be weak [Jiang et al., 2017]. Additionally, we select Adam optimizer
and apply early stopping for efficient learning. All layers are fully connected, including encoders,
decoder, and auxiliary nets. Hyperparameter details are on the Table 6 and Table 7 according to
the experiment settings with dimensions and type of treatment. In the Table 6, "or" in "Number of
components" statement means that we applied both values with linear or non-linear case respectively.
"or" in "Hidden layers" means that we chose either one or three layers when constructing networks.
On the other hand, in the Table 7, early stopping epochs are applied with 3 when training most of
low-dimensional cases. High dimensional case is trained with early stopping epochs 10. We tuned the
hyperparameters with grid search within a specific range. The dimensions of latent variable Z are
selected from [1, 2, 3] for low-dimensional setting and [10, 20, 25] for high-dimensional setting. The
dimensions of C are selected from the same range, and the number of its component is selected from
[2, 3, 4]. Experiments were executed on NVIDIA RTX 6000 with 48GB memory.

C Additional Experimental Results

Full results of the ablation study on various estimators are reported in Table 8. The results indicate
the importance of each component in our model. (1) The lack of auxiliary regression networks leads
to a significant decline in performance. (2) The dual prediction nets take an important role for the
inference of unconfounded representation from the perspective of performance decline. We also
provide the results of experiments on various latent model architectures for representation Z and C,
which is elaborated in the last part of the section.

C.1 Detailed Analysis on key components and learned representations

We now provide a detailed analysis of the quality of learned IV representation Z (Figure 3), the
importance of key components of CoCoIV. This part is an extended illustration of Sec. 3.3.

Dual vs. single prediction network for X (Figure 2, Table. 8) Our model intends to mimic usual
causal inference with IVs through a dual prediction network p(x|z), f(x|z, c), which is one of the
key components of the model. To examine its effectiveness, we devise a model using only a single
prediction network for treatment X , i.e., f(x|z, c). This approach, estimating Y with X ∼ f(x|z, c),
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Table 8: Experiment results on ablation study.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV
B

in
ar

y Ours 0.26 (0.09) 0.31 (0.07) 1.59 (1.17) 1.3 (1.25) 1.66 (3.24) 0.38 (0.31) 1.12 (0.17) 1.06 (0.2) 0.4 (0.56) 0.37 (0.47) 0.47 (0.18) 0.33 (0.02)
w/o pred 0.26 (0.08) 0.32 (0.08) 3.33 (1.8) 3.42 (1.47) 2.82 (2.22) 0.42 (0.44) 1.46 (0.11) 1.37 (0.1) 3.78 (1.87) 3.71 (1.52) 34.41 (143.74) 0.5 (0.23)
w/o aux 0.23 (0.06) 0.29 (0.06) 5.67 (6.8) 3.13 (1.71) 2.17 (1.2) 0.38 (0.4) 1.49 (0.1) 1.41 (0.1) 4.97 (5.25) 3.13 (1.71) 2.12 (1.24) 0.68 (0.3)

C
on

tin
uo

us Ours 0.07 (0.09) 0.08 (0.09) 0.03 (0.03) 0.02 (0.01) 0.35 (0.07) 3.51 (0.55) 1.38 (0.1) 0.3 (0.15) 1.35 (0.12) 1.37 (0.1) 4.13 (0.32) 3.82 (1.16)
w/o pred 1.42 (1.69) 1.48 (1.69) 0.69 (0.72) 0.35 (0.48) 2.37 (2.75) 4.78 (1.63) 1.42 (0.55) 1.31 (1.99) 1.75 (0.75) 1.54 (0.6) 4.95 (0.77) 6.6 (1.29)
w/o aux 1.4 (1.17) 1.47 (1.14) 0.92 (1.21) 0.38 (0.24) 1.96 (2.02) 4.96 (1.51) 1.72 (1.67) 2.12 (2.79) 2.52 (2.68) 1.43 (0.77) 5.19 (1.01) 6.4 (1.59)
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Figure 2: Ablation on the dual prediction network with binary treatment. Green and purple bars
indicate MAE from the model with dual and single prediction networks, respectively.

poses a risk of introducing confounding derived from c, which was employed by prior works such
as AutoIV and DVAE.CIV. As expected, Figure 2 demonstrates that employing a dual prediction
network mitigates bias in causal effect estimates with generated Z.

Mutual Information regularization (Figure 3) Our model aims at learning representations of Z
from unknown IVs in D. In real-world data, we have no access to information on which variable is
genuinely valid IV. Thus, to verify our model learning representation of Z from IVs, we examine how
the model is sensitive to observed covariates when encoding Z. We execute sensitivity analysis for
each covariate in synthetic data where we know which variable is true IV. Specifically, we measure

partial derivative sensitivity Pizarroso et al. [2022] for each dl ∈ D, i.e., 1
np

∑n
i=1

∑p
j=1

∣∣∣∣∂z(i)
j

∂d
(i)
l

∣∣∣∣,
where n is a number of test data and p is the dimension of Z. A large value of sensitivity indicates
that the output highly depends on the changes in the corresponding covariate.

As shown in Figs. 3a and 3b, with MI regularization (β > 0), the learned encoder for Z is more
sensitive to IVs than to non-IVs. Fig. 3b implies that when β = 0, i.e., without MI regularization,
generated Z can be highly influenced by non-IVs in D2. These results indicate that by regularizing
MI between the two latent variables sufficiently, encoder q(z | d) may derive z depending more on
valid IVs in D1.

Quality of learned representation Z (Table. 9) Furthermore, we investigate whether the learned
IV representation Z genuinely satisfy conditions of IV and whether Z and C are well disentangled.
Specifically, to examine whether Z is independent of unobserved confounders U (unconfoundedness),
we use D2 (which is partially correlated with U ) as a proxy.7

7We examined the results on low-dimensional datasets, because in high-dimensional datasets, where D1

refers to the pixels that make up each digit label, we cannot directly access or specify D1.
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Figure 3: Ablation analysis for MI regularization coefficient β in datasets with binary treatment. Red
and blue lines are sensitivity for IVs and non-IVs in covariates, respectively.

Table 9: Mutual Information Comparison among Variables.
Average Mutual Information

Treatment Response Function Z vs C Z vs D1 Z vs D2 C vs D2 C vs D1

Binary Linear 0.12 (0.09) 0.26 (0.23) 0.17 (0.17) 0.39 (0.16) 0.12 (0.11)
Non-linear 0.11 (0.06) 0.25 (0.24) 0.21 (0.18) 0.41 (0.19) 0.13 (0.12)

Continuous Linear 0.09 (0.03) 0.22 (0.13) 0.04 (0.04) 0.29 (0.16) 0.07 (0.12)
Non-linear 0.29 (0.12) 0.34 (0.11) 0.05 (0.05) 0.26 (0.1) 0.08 (0.06)

As described in Table. 9, we calculate the average mutual information between Zi ∈ Z and variables
in D2, as well as with components in C.

Results show that while the model struggles in the continuous treatment with nonlinear response—our
most complex experimental setting, in general Z has weak association with both C and D2, but
stronger association with D1, indicating that Z effectively aligns with true IVs.

As shown in Figs. 3a and 3b, with MI regularization (β > 0), the learned encoder for Z is more
sensitive to IVs than to non-IVs. Figure 3b implies that when β = 0, i.e., without MI regularization,
generated Z can be highly influenced by non-IVs in D2. These results indicate that by regularizing
MI between the two latent variables sufficiently, encoder q(z | d) may derive z depending more on
valid IVs in D1.

C.2 Experiments on robustness and architecture choice.

Experiments on assumption violation. We assess how robust our model is to dependence among
observed covariates D. This is a violation of assumption D1 ⊥⊥ D2 in Sec. 2. In this case, as
mentioned in Sec. 3.3, learned representation Z may not be a valid IV because the variables in D1

are not IVs anymore. However, in real-world settings, IVs are seldom perfectly unconfounded but
are more often in a corrupted state, influenced by other variables. The main goal of our experiment
is thus to determine whether our model could robustly estimate the causal effect even within such
compromised circumstances.

We execute experiments on the datasets assuming the existence of unobserved common causes
between D1 and D2. The generating process is similar with that in Sec. B.1 except for the presence
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Table 10: Experiment results on low-dimensional synthetic datasets within dependency.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV
B

in
ar

y UAS 3.73 3.73 5.53 3.64 1.75 0.58 2.37 2.37 5.0 3.64 1.77 0.45
WAS 0.52 0.52 2.29 1.39 0.65 0.43 1.35 1.35 1.8 1.39 0.67 0.45
DVAE.CIV 1.52 (0.23) 1.52 (0.23) 2.78 (2.27) 3.17 (6.92) 1.14 (0.2) 1.27 (0.03) 0.76 (0.5) 0.76 (0.5) 1.49 (1.3) 2.48 (3.32) 0.93 (0.1) 0.94 (0.02)
CoCoIV(Ours) 0.33 (0.1) 0.34 (0.12) 2.02 (1.07) 2.01 (1.05) 1.0 (0.52) 0.57 (0.32) 1.19 (0.25) 1.17 (0.29) 1.37 (1.17) 1.37 (1.2) 1.02 (0.7) 0.48 (0.1)

C
on

tin
uo

us UAS 1.52 1.52 0.46 0.42 1.24 6.79 2.76 2.76 0.83 0.88 5.97 9.19
WAS 0.38 0.38 0.17 0.15 0.7 3.18 1.64 1.64 1.81 1.84 8.11 8.74
AutoIV 2.25 (2.68) 2.25 (2.68) 0.27 (0.24) 0.24 (0.23) 0.89 (0.68) 3.06 (1.58) 32.79 (52.83) 32.79 (52.83) 2.64 (1.85) 2.65 (1.61) 6.96 (0.44) 10.52 (2.06)
CoCoIV(Ours) 0.27 (0.16) 0.29 (0.16) 0.11 (0.09) 0.1 (0.05) 0.48 (0.16) 1.87 (0.83) 2.43 (0.53) 0.64 (0.53) 2.32 (0.65) 2.28 (0.53) 7.49 (1.13) 10.77 (2.33)

Table 11: Experiment results on assumption violation with low-dimensional synthetic datasets.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV

B
in

ar
y UAS 1.23 1.23 1.78 1.35 0.69 0.3 1.23 1.23 1.57 1.35 0.64 0.48

WAS 0.91 0.91 1.4 1.25 0.65 0.39 1.15 1.15 1.34 1.25 0.6 0.51
DVAE.CIV 1.5 (0.09) 1.5 (0.09) 1.31 (1.18) 1.37 (1.18) 0.98 (0.15) 1.11 (0.05) 1.12 (1.65) 1.12 (1.65) 0.6 (0.47) 1.32 (0.78) 0.88 (0.05) 0.88 (0.01)
CoCoIV (Ours) 0.15 (0.14) 0.16 (0.15) 1.46 (0.48) 1.31 (0.5) 0.59 (0.23) 0.35 (0.17) 1.46 (0.35) 1.4 (0.34) 0.8 (0.95) 0.81 (0.9) 0.42 (0.39) 0.32 (0.19)

C
on

tin
uo

us UAS 0.47 0.47 0.12 0.14 0.43 1.7 4.39 4.39 3.79 3.78 9.69 6.23
WAS 0.44 0.44 0.11 0.13 0.41 1.11 4.18 4.18 3.79 3.79 9.86 7.62
AutoIV 0.51 (0.65) 0.51 (0.65) 0.14 (0.27) 0.14 (0.27) 0.66 (0.81) 2.3 (0.86) 18.41 (34.71) 18.41 (34.71) N/A (N/A) 5.25 (5.61) 24.23 (55.97) 15.71 (14.5)
CoCoIV (Ours) 0.13 (0.04) 0.13 (0.03) 0.03 (0.01) 0.04 (0.01) 0.24 (0.01) 2.1 (0.33) 3.85 (0.39) 1.22 (0.59) 3.77 (0.41) 3.85 (0.43) 10.66 (0.3) 19.49 (12.01)

of UD1,D2
:

UD1,D2
∼ N(0, 1),

D1 = fD1
(ϵD1

) + UD1,D2
,

D2 = A⊤C+ ϵD2
+ U · 1(p > 0.5) + UD1,D2

.

Table 118 depicts the results on the modified datasets. Despite the violation of assumption D1 ⊥⊥ D2,
our model records the lowest MAEs on half of the estimators with binary treatment. In addition, the
decrease in performance with our model is quite mild, as shown in Table 11 compared to Table 4. All
the estimators with binary treatment and linear response function even yield lower MAEs than MAEs
shown in Table 4 in the paper. When MAEs are higher than in the original setting, the difference is
lower than 0.1 for 2SLS, IVGMM, and Ortho with continuous treatment and linear response function.
However, in the most challenging case with continuous treatment and non-linear response function,
as mentioned in Sec. 3.1, all the models, including our own, yield biased estimates, leading to higher
MAEs than the original setting.

Extended experiment on dependence within D1 and D2. We extend our experiments on depen-
dence within D1, D2. As we do not assume independence within variables in D1 or within variables
in D2, we assess how our model works in such setting.

Synthetic datasets are generated in steps similar to Sec. B.1, but we imposed dependence within D1

and within D2 as sampling

ϵD1
∼ N

(
0, 10

[
1 0.5
0.5 1

])
, ϵD2

∼ N

(
0, 0.25

[
1 0.5
0.5 1

])
.

As illustrated in Table 10, our model demonstrates better or similar MAEs for IV-based estimators
2SLS and IVGMM. In particular, our model showed relatively better performance on continuous
treatment with a linear response function. Aligned with the conclusions in the previous part, per-
formance does not decline abruptly compared to MAEs in Table 4 except for some estimators in
non-linear response function.

Experiment on architecture choice As we propose a framework of generating representation of
IVs, one can select a range of architectures with the same framework. For reference, we provide
results of different combinations of latent variable models: 1) VAEs for encoders of Z,C, 2) VaDEs
for encoders of Z,C. Table 12 demonstrates that, regardless of the choice of architecture, the models
derive a similar range of estimates for each estimator. In real-world applications, the choice of
architecture can be varied according to the property of underlying data.

8Here the result of DML with AutoIV on continuous treatment and non-linear response function shows
significantly high MAE over 100,000, likely due to the sensitivity of DML mentioned in Sec. 3.1
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Table 12: Experiment results on various latent variable models.

Linear response function Non-linear response function

Method 2SLS IVGMM DML Ortho Poly2SLS KernelIV 2SLS IVGMM DML Ortho Poly2SLS KernelIV
B

in
ar

y Ours 0.26 (0.09) 0.31 (0.07) 1.59 (1.17) 1.3 (1.25) 1.66 (3.24) 0.38 (0.31) 1.12 (0.17) 1.06 (0.2) 0.4 (0.56) 0.37 (0.47) 0.47 (0.18) 0.33 (0.02)
only VAE 0.43 (0.36) 0.45 (0.36) 1.96 (1.68) 1.75 (1.48) 0.99 (0.58) 0.51 (0.36) 1.23 (0.84) 1.14 (0.85) 1.15 (0.95) 1.28 (1.54) 0.75 (0.36) 0.4 (0.12)
only VaDE 0.28 (0.06) 0.31 (0.05) 2.32 (2.0) 2.0 (1.37) 1.06 (0.86) 0.34 (0.2) 1.28 (0.11) 1.26 (0.09) 1.26 (1.08) 1.06 (0.88) 0.6 (0.43) 0.38 (0.14)

C
on

tin
uo

us Ours 0.07 (0.09) 0.08 (0.09) 0.03 (0.03) 0.02 (0.01) 0.35 (0.07) 3.51 (0.55) 1.38 (0.1) 0.3 (0.15) 1.35 (0.12) 1.37 (0.1) 4.13 (0.32) 3.82 (1.16)
only VAE 0.09 (0.1) 0.11 (0.12) 0.03 (0.04) 0.03 (0.02) 0.37 (0.11) 3.61 (0.38) 1.33 (0.1) 0.35 (0.3) 1.32 (0.07) 1.35 (0.07) 4.24 (0.4) 3.59 (0.87)
only VaDE 0.16 (0.17) 0.17 (0.19) 0.05 (0.04) 0.06 (0.05) 0.44 (0.27) 3.61 (0.54) 1.47 (0.13) 0.26 (0.16) 1.43 (0.11) 1.44 (0.08) 4.3 (0.47) 4.09 (1.56)

In our case, we adopt a VAE-based framework with flexible prior [Sohn et al., 2015] to encode Z that
are associated with D1. For the prior, we use p(z) ≈ 1

N

∑N
i=1 p(z | d(i)) where d(i) ∼ p(d). We

chose N = 1 and intended to learn the prior p(z) ≈ p(z | d). Also, we aim to encode representation
C that can capture likely a complex structure of non-IV D2, which usually have a number more
than that of true IVs in observed covariates in real-world scenarios. Thus, we model prior p(c) as a
Gaussian Mixture Model, adopting Jiang et al. [2017]. By accommodating the mixture model prior,
we aim to learn C expressing complex latent structures of the observed data.
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