
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a workshop paper at ICLR 2025

RLMEDUSA: REINFORCEMENT LEARNING FOR MUL-
TIPLE DECODING HEADS TO ACCELERATE LLM IN-
FERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional transformer inference requires step-by-step generation of tokens in
which each step is dependent on the previous one, presenting a bottleneck in in-
ference speed. The Medusa technique used LoRA fine-tuning to train multiple
decoding heads, each predicting a different number of tokens in advance in or-
der to generate multiple tokens in parallel as part of a draft model that the base
model can verify. In this paper, we propose a reinforcement learning based ap-
proach to training multiple decoding heads. Our method proposes a reward model
scheme that leverages feed-forward networks to estimate token probabilities based
on context hidden states and candidate token embeddings. We provide commen-
tary comparing our interpretation of reinforcement learning in language modeling
research and how this contrasts with traditional, RLHF-centric interpretations, as
well as discuss our experiments with RLMedusa.

INTRODUCTION

Recent years have seen a surge in the capabilities of large-scale language models (LMs) across a
wide variety of natural language processing tasks, including machine translation, summarization,
and interactive dialogue systems (1; 2; 3). Much of this progress can be attributed to advances in
model architectures such as the Transformer (4), the expansion of training data (5; 6), and inno-
vations in hardware accelerators (7; 8). Despite these improvements, the autoregressive nature of
many state-of-the-art LMs presents a significant bottleneck for real-time applications. Traditional
left-to-right decoding necessitates generating each token sequentially, which can be computation-
ally expensive and slow, especially for lengthy sequences (9; 10). Consequently, there is a growing
interest in strategies to accelerate inference without sacrificing fluency or coherence (11; 12).

A promising approach to mitigating slow inference is multi-token parallel prediction—where the
next k tokens are predicted in fewer autoregressive steps (13). Notably, Medusa (14), introduced
by Together AI, demonstrated that one can fine-tune lightweight “heads” on top of a base language
model to predict subsequent tokens at different offsets in parallel. This idea draws inspiration from
prior work on non-autoregressive generation (15; 16), where partial or full parallel decoding has
been explored for tasks such as machine translation. By expanding a “next-token predictor” into a
family of “multi-step lookahead” modules, Medusa-style systems can generate multiple tokens con-
currently, leading to throughput improvements on modern hardware. The practical impact of such
methods has become evident with integration into widely used inference frameworks like vLLM (17)
and TensorRT-LLM (18).

However, effectively training multiple heads to predict tokens at different positions—while main-
taining the base model’s linguistic fidelity—remains a core challenge (19; 14). Previous approaches
have largely relied on supervised learning or knowledge distillation from the base model’s distribu-
tions (20). Although these methods work well in practice, they often require careful hyperparameter
tuning and may suffer from exposure bias when predicting tokens far into the future (21; 22). Re-
inforcement learning (RL) offers a compelling alternative for optimizing multi-step policies, as it
enables direct optimization of sequence-level objectives that align with inference speed and qual-
ity (23; 24). Indeed, RL-based approaches have a long history in text generation, from policy gra-
dient training of dialogue systems (25; 26) to reward shaping for summarization tasks (27). More

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a workshop paper at ICLR 2025

recently, Proximal Policy Optimization (PPO) has become a de facto standard for large-scale RL
optimization of language models, offering stability and robustness (28; 29).

In this work, we propose an RL-based methodology for training multiple decoding heads, each
capable of predicting tokens at an offset of k steps from the current position in the sequence. Our
method is conceptually inspired by Medusa (14) but introduces a two-phase reinforcement learning
process designed to simultaneously capture accurate token distributions and preserve the stylistic
and contextual fidelity of the base model. Specifically, we first fit a reward model to estimate the
probability of a candidate token occurring k steps ahead, given the current hidden state. This reward
model is trained on sampled trajectories produced by a base GPT-style language model (1), using a
mixture of likely and unlikely token candidates to ensure broad coverage of plausible outputs. We
then fine-tune a “second decoding head” via Proximal Policy Optimization, leveraging the reward
model to guide the selection of actions (i.e., tokens) that are most likely to align with the base
model’s multi-step predictions. A KL divergence penalty from the base model is incorporated to
retain high-quality, human-like text generation (28; 30).

By combining an RL objective with a carefully constructed reward model, our approach aims to
address two key limitations of prior multi-offset decoding systems: (1) insufficient exploration of
tokens that are underrepresented by standard supervised training, and (2) excessive drift in style or
content when the auxiliary heads deviate from the base model’s distributions. We show that this
method leads to a more robust “two-tokens-ahead” predictor, reducing the number of autoregres-
sive steps and thereby accelerating inference. While conceptually straightforward, our experiments
demonstrate that RL training can effectively adapt large language models to multi-step prediction
tasks without degrading their overall coherence.

METHODOLOGY

PROBLEM FORMULATION

Consider a standard language modeling setting where xi represents the i’th token in a sequence, we
want to learn a distribution p(xt+1|x1:t), where x1:t represent the sequence x1, x2, . . . xt. However,
a restriction of this is that tokens must be generated one at a time. To make sampling quicker, we
seek to train two distributions, p1(xt+1|x1:t) and p2(xt+2|x1:t), that can be executed independently
and concurrently in order to speed up inference. For our purposes, we assume we possess p1(as most
modern transformer architectures represent this distribution), and we seek to learn p2.

OVERVIEW OF REINFORCEMENT LEARNING APPROACH

We seek to train a reward model r(e, h), where e represents the embedding of a proposed token and
h represents the final hidden state of a sequence after processing a sequence of tokens x1, x2 . . . xt

through a transformer. We want our reward model r(e, h) to take in this hidden state as well
as the proposed embedding of the t + 2’th embedding, and output the probability of this token
actually being the t + 2’th token in a sequence generated by p1(as we would like p2 to follow
p1’s distribution when 2 tokens are generated). We model this via a standard feed-forward neural
network outputting a singular scalar value from 0 to 1.

Now, utilizing this reward function, we initialize p2 to p1 and began a training process on the final
decoding head of p2 (note that all other weights are frozen). Assume we have context x1:t, and let h
represent the final hidden state of this context after processing via a transformer(in our case, we use
GPT 2). The RLMedusa objective R can be written as:

R(e, h) = r(e, h)− βKL(p2(xt+2|x1:t), p1(xt+1|x1:t)). (1)

Note that h represents the final hidden state from processing x1:t through the transformer p1(though
since we freeze all non-decoding head weights of p2, this should also equal the final hidden state
in p2). At each step e is selected by taking the argmax of p2’s output token probability vector and
finding the embedding of this token in p1’s embedding table (which is identical to p2’s embedding
table).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a workshop paper at ICLR 2025

TRAINING METHODOLOGY AND DATA COLLECTION

To train the reward function, we desired to create a diverse mix of (proposed t + 2’nd token,
hidden state) pairs in order. We utilized the Hugging Face Wikipedia dataset and generated
GPT-2 completions of 20 tokens for each used sample in the dataset. At each generation step, we
maintained the final hidden state, and the probabilities of 9 tokens. These 9 tokens include the
highest probability token, 3 of the top 50 probability tokens, and 5 random tokens. This is done
in order to ensure that the reward model has a good understanding of which types of tokens have
high weightage and low weightage in the final vector. Depsite this, with more compute we would
have preferred to train our reward model on more steps and with every candidate token at each step.
Then, to train the reward model, we consider pairs, for some k, of the final hidden state for the
first k tokens and the token probability for a candidate k + 2’nd token in one of our generations.
We can then pass in the embedding of this candidate token and the hidden state to our reward
model feed-forward neural network, and then use an MSE Loss to compare this with the real token
probability and update the reward model.

To train the language model/policy, we utilize our RLMedusa objective on p2’s completions for
more Wikipedia base prompts. We train this with gradient ascent.

RESULTS

Despite promising reward curves, we were unable to see strong generations from our multiple
decoding heads approach. We suspect this to be the result of constrained compute, as we were only
able to train p2 for 40 epochs on an NVIDIA RTX 2080. In addition, our reward model was trained
an Apple M3 Chip. We provide an example of our generations below:

Base Context: The early signs of AML are often vague and nonspecific , and may be similar to
those of influenza or other common illnesses . Some generalized symptoms include fever , fatigue ,
weight loss or loss of appetite , shortness of breath , anemia , easy bruising or bleeding , petechiae
(flat , pin @-@ head sized spots under the skin caused by bleeding) , bone and joint pain , and
persistent or frequent infections .

RLMedusa Continuation: TheThe symptoms symptoms of of AM AMLL are are similar usually
to to those those of of influenza influenza or or other other common common illnesses illnesses .
. Some Some generalized generalized symptoms symptoms include include fever fever , , fatigue
fatigue , , short shortnessness of of breath breath , , an anemiaemia , , easy easy bruising bruising or
or bleeding bleeding , , pet petechechiaeiae ((flat flat , , pin pin @ @–@@ head head sized sized

While some behavior may be attributed to GPT-2’s inabilities compared to modern language models,
the repeated tokens clearly indicate insufficient distinction between p1 and p2. In the commentary
section we discuss the β term on the KL divergence and the more stable training that we observed
as a result of it.

Figure 1: RLMedusaReward Curve

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a workshop paper at ICLR 2025

COMMENTARY

A NOTE ON THE KL TERM

The KL term should not be interpreted as if we desire p1 and p2 to have similar output distributions.
p1 and p2 are different distributions trying to model different concepts. However, including a KL
term often assists in preventing overfitting on the reward function and unstable training behavior.
Note that we desire to keep our β coefficient on the KL term small so it does not misguide the model
to train this model.

POTENTIAL REWARD MODELING ALTERNATIVES

In compute-rich environments, instead of fitting a reward model r(e, h), one could directly process
the input sequence via p1, generate two more tokens, and simply reward the model based on the
probability of the token corresponding to that selected by p2. This is much more expensive as
running transformer inference is requires orders of magnitudes more FLOPs than inference from
our small FFNN for r(e, h), it can provide a degree of exactness that may be plausible in scenarios
where one has access to these extra FLOPs. This removal of an approximated reward function has
parallels with early, small-scale experiments in RLHF (31), where instead of reward model fitting,
human feedback was used as a brute force reward mechanism for each step in the training process.
While both direct transformer inference to access token probabilities and direct human feedback are
clearer reward signals, they are difficult to scale which is why many elect for fitting a reward model,
though the latter is more viable to brute force.

INTERPRETATION AND COMPARISON WITH OTHER RL METHODS IN NLP

RLMedusa’s direct analogies with traditional RL make it an intuitive method to understand when
considered at a token level. The final hidden state of the context can be interpreted as a state in a
traditional RL context, as it is a information-rich, comprehensive representation of the base tokens
in a sequence. In addition, the selected token/embedding represents an action in the traditional
RL interpretation, as policy (e.g. p2) must select an appropriate action/token given the current
state (context hidden state). Most reinforcement learning work in the realm of language modeling
surround RLHF, which utilizes on a multi-arm bandit interpretation of the task at a response level.
While token-level RL has not gained much traction in language modeling due to its inability to
model larger concept rewards, we believe that token level RL is a natural extension of the Medusa
method. Splitting up token generations amongst different heads calls for fine-grained rewards on
exactly how each head should interpret a given context, as they each have different tasks and need
to generate different types of tokens.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, et al., “Language Models are Few-Shot Learners,” in NeurIPS,
2020.

[2] C. Raffel, N. Shazeer, A. Roberts, et al., “Exploring the Limits of Transfer Learning with a
Unified Text-to-Text Transformer,” JMLR, 2020.

[3] J. Zhang, Y. Zhao, M. Saleh, et al., “PEGASUS: Pre-training with Extracted Gap-sentences
for Abstractive Summarization,” in ICML, 2020.

[4] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention Is All You Need,” in NeurIPS, 2017.

[5] L. Gao, S. Biderman, S. Black, et al., “The Pile: An 800GB Dataset of Diverse Text for
Language Modeling,” arXiv preprint arXiv:2101.00027, 2021.

[6] H. Touvron, T. Lavril, G. Izacard, et al., “LLaMA: Open and Efficient Foundation Language
Models,” arXiv preprint arXiv:2302.13971, 2023.

[7] N. Jouppi, C. Young, N. Patil, et al., “In-Datacenter Performance Analysis of a Tensor Pro-
cessing Unit,” in ISCA, 2017.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a workshop paper at ICLR 2025

[8] S. Rajbhandari, J. Rasley, O. Ruwase, et al., “ZeRO-Infinity: Breaking the GPU Memory Wall
for Extreme Scale Deep Learning,” in SC, 2021.

[9] A. Fan, E. Grave, A. Joulin, “Reducing Transformer Depth on Demand with Structured
Dropout,” in ICLR, 2020.

[10] J. Gu, J. Bradbury, C. Xiong, et al., “Non-autoregressive Neural Machine Translation,” in
ICLR, 2018.

[11] J. Li, Y. Liang, D. Li, et al., “Accelerating Autoregressive Decoding of Transformers via
Token-level and Phrase-level Caching,” in EMNLP, 2022.

[12] E. Cho, W. Chang, S. Yun, “Mixing Past and Future Context for Autoregressive Generation,”
in ACL, 2023.

[13] S. Welleck, I. Kulikov, S. Roller, et al., “Neural Text Generation with Unlikelihood Training,”
in ICLR, 2020.

[14] Together AI, “Medusa: Parallel Multi-Offset Decoding for Efficient Language Model Infer-
ence,” arXiv preprint, 2023.

[15] J. Gu, Y. Bai, S. Chang, et al., “Fully Non-Autoregressive Neural Machine Translation: Tricks
of the Trade,” in ACL, 2019.

[16] Y. Qian, Y. Bisk, “Teaching Models New Tricks: A Study on Updating Transformer Models
to Predict Non-autoregressive Outputs,” in EMNLP, 2021.

[17] G. Xiao, G. Zeng, J. Tao, et al., “vLLM: A High-Throughput and Memory-Efficient Inference
and Serving Engine for LLMs,” GitHub Repository, 2023.

[18] NVIDIA, “TensorRT-LLM: High-Performance Deep Learning Inference Optimizer and Run-
time Library,” NVIDIA Developer Blog, 2023.

[19] X. Ren, J. Liu, J. Chen, et al., “Distilling Multi-offset Language Models for Resource-
Constrained Devices,” arXiv preprint, 2022.

[20] G. Hinton, O. Vinyals, J. Dean, “Distilling the Knowledge in a Neural Network,” arXiv
preprint arXiv:1503.02531, 2015.

[21] S. Bengio, O. Vinyals, N. Jaitly, et al., “Scheduled Sampling for Sequence Prediction with
Recurrent Neural Networks,” in NeurIPS, 2015.

[22] M. Ranzato, S. Chopra, M. Auli, et al., “Sequence Level Training with Recurrent Neural
Networks,” in ICLR, 2016.

[23] D. Bahdanau, P. Brakel, K. Xu, et al., “An Actor-Critic Algorithm for Sequence Prediction,”
in ICLR, 2017.

[24] R. Paulus, C. Xiong, R. Socher, “A Deep Reinforced Model for Abstractive Summarization,”
in ICLR, 2018.

[25] J. Li, W. Monroe, T. Shi, et al., “Adversarial Learning for Neural Dialogue Generation,” in
EMNLP, 2017.

[26] N. Jaques, S. Gu, D. Bahdanau, et al., “Sequence Tutor: Conservative Fine-Tuning of Se-
quence Generation Models with KL-control,” in ICML, 2017.

[27] N. Stiennon, X. Ouyang, J. Wu, et al., “Learning to Summarize from Human Feedback,” in
NeurIPS, 2020.

[28] J. Schulman, F. Wolski, P. Dhariwal, et al., “Proximal Policy Optimization Algorithms,” arXiv
preprint arXiv:1707.06347, 2017.

[29] X. Ouyang, J. Wu, E. Ward, et al., “Training Language Models to Follow Instructions with
Human Feedback,” arXiv preprint arXiv:2203.02155, 2022.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a workshop paper at ICLR 2025

[30] D. M. Ziegler, N. Stiennon, J. Wu, et al., “Fine-Tuning Language Models from Human Pref-
erences,” arXiv preprint arXiv:1909.08593, 2019.

[31] Timo KaufmannB, Sarah Ball, Jacob Beck, et al., “On the Challenges and Practices of Rein-
forcement Learning from Real Human Feedback,“ Manuscript, 2023.

6

