UNITS: A Unified Multi-Task Time Series Model

Shanghua Gao Teddy Koker
Harvard University MIT Lincoln Laboratory
shanghua_gao@hms.harvard.edu tekoker@mit.edu

Owen Queen Thomas Hartvigsen Theodoros Tsiligkaridis
Harvard University University of Virginia MIT Lincoln Laboratory
owen_queen@hms.harvard.edu hartvigsen@virginia.edu ttsili@ll.mit.edu

Marinka Zitnik
Harvard University
marinka@hms.harvard.edu

Abstract

Although pre-trained transformers and reprogrammed text-based LLMs have shown
strong performance on time series tasks, the best-performing architectures vary
widely across tasks, with most models narrowly focused on specific areas, such
as time series forecasting. Unifying predictive and generative time series tasks
within a single model remains challenging. We introduce UNITS, a unified multi-
task time series model that utilizes task tokenization to integrate predictive and
generative tasks into a single framework. UNITS employs a modified transformer
block to capture universal time series representations, enabling transferability
from a heterogeneous, multi-domain pre-training dataset—characterized by di-
verse dynamic patterns, sampling rates, and temporal scales—to a wide range of
downstream datasets with varied task specifications and data domains. Tested on
38 datasets across human activity sensors, healthcare, engineering, and finance,
UNITS achieves superior performance compared to 12 forecasting models, 20
classification models, 18 anomaly detection models, and 16 imputation models,
including adapted text-based LLMs. UNITS also demonstrates strong few-shot and
prompt capabilities when applied to new domains and tasks. In single-task settings,
UNITS outperforms competitive task-specialized time series models. Code and
datasets are available at https://github. com/mims-harvard/UniTS,

1 Introduction

Foundation models, particularly large language models (LLMs), have transformed deep learning
by enabling a single pre-trained model to support multiple tasks, eliminating the need for task-
specific models. Language and vision models [9, [101} |92} 150} 32]] can be adapted to new tasks
with minimal additional training through approaches such as multi-task learning [125]], few-shot
learning [[108}, 186], and prompting [66]. Beyond language and vision, there is a growing need for
similarly versatile models in time series that can accommodate data from diverse domains—including
medicine [34], engineering [[102]], and science [48]—and support a wide range of tasks, such as
forecasting, classification, imputation, and anomaly detection.

Developing multi-task time series models that unify predictive and generative tasks under a single
framework remains an open challenge. Time series datasets span multiple domains and exhibit varied
temporal scales, sampling rates, and dynamic patterns, making them complex to manage [124,[78]].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/mims-harvard/UniTS

Existing models often fall short in adaptability, as they either struggle to handle samples with varying
numbers of variables [[112} 167, |14] or treat each variable as independent, overlooking important
interdependencies [82]]. Time series tasks are also highly diverse, encompassing distinct objectives
and specifications across generative and predictive tasks. For example, generative forecasting tasks
aim to produce future values within a time series, while predictive tasks may involve making discrete
predictions for entire samples. Additionally, task requirements can vary significantly even within the
same task type; for instance, generative tasks may involve different forecast lengths, and predictive
tasks may feature multiple classification categories. As a result, time series models have mainly
remained task-specific, with unique architectures typically designed and trained from scratch for
forecasting [[67, 182} [119]], classification [30} [113]], or other specialized tasks [116}[112]. Recent efforts
to pre-train unified models [36} [22]] or adapt LL.Ms for time series [118} 12} 129} 47,197, [100] still
heavily depend on extensive fine-tuning or the addition of task- and dataset-specific modules. Some
models have explored generative pre-training transformers specifically for time series forecasting [[10}
118} 147, 28], reporting strong results but focusing exclusively on forecasting without addressing
other types of time series tasks. Consequently, these approaches require users to design and train
new modules for each task or limit their application to a single type of tasks. To achieve a versatile,
unified time series model—akin to foundational models in vision and language that operate across
unified task spaces—a model must accommodate both generative and predictive tasks. Such a unified
model would leverage a single set of weights for multiple tasks, removing the need to develop
task-specific models from scratch. This approach would support a broad range of tasks and facilitate
rapid adaptation to new datasets.

Present work. To address these challenges, we

introduce UNITS, a unified multi-task time se- & by
Cloudy

ries model capable of handling a broad spec- W N v iy &
trum of time series tasks. We rigorously com- Forecasting Imputation Anomaly Detection Glassffcation
pare UNITS against 12 forecasting methods, 4 4 4 4

20 classification methods, 18 anomaly detec-

tion methods, and 16 imputation methods, in- (UniTS]

cluding transformer-based, LLM-based, RNN-
based, and traditional approaches, to highlight
UNITS’s generalizability to new tasks. This ca- Forasing W‘f
pability is achieved through the following model Vg :
design: 1) Task tokenization: UNITS encodes ‘ Domain: Weathr - "‘A”"
task specifications into a unified token repre- 56 Datacots 6 Domain: ECG
sentation, enabling universal task specification . !
without post-hoc architectural modifications. 2) Figure 1: UNITS is a unified multi-task time series
Unified time series architecture: UNITS pro- model for predictive and generative tasks.

cesses heterogeneous time series data with vary-

ing numbers of variables and sequence lengths without altering its network structure. To accomplish
this, UNITS employs self-attention across time and variable dimensions to adapt to diverse temporal
dynamics. We introduce a dynamic linear operator to model complex relationships between data
points along the time dimension and a module to reduce interference in the feature space of hetero-
geneous data. 3) Support for generative and predictive tasks: The combination of universal task
specification and a unified time series architecture allows UNITS to share weights across tasks by
co-training on multiple datasets. We use a masked reconstruction pre-training approach, enabling
UNITS to be jointly optimized for generative and predictive tasks.

T A Tytimesteps
T; time steps

C, channels
—

speuueyo Ny

In the single-task setting, where models are trained individually for each dataset, UNITS outper-
forms task-specialized time series models and repurposed LLMs across forecasting, classification,
anomaly detection, and imputation. In a challenging multi-domain, multi-task setting, we find that a
single shared-weight UNITS model successfully handles 38 tasks, demonstrating its versatility as
a multi-task time series model. UNITS surpasses top baselines that rely on data- and task-specific
modules, achieving the highest average performance across tasks and excelling in 27 out of 38 tasks.
Additionally, UNITS supports prompt-based learning and direct multi-step forecasting with flexible
sequence lengths, capabilities not offered by models using task- and data-specific heads. In direct
multi-step forecasting, UNITS outperforms the strongest baseline (which uses a sliding-window
approach) by 10.5%. UNITS can also adapt to new tasks through parameter-efficient prompting,
achieving results comparable to its fully fine-tuned counterpart. For example, across 20 forecasting
datasets, prompted UNITS slightly outperforms the fully fine-tuned model, reducing MAE from 0.381

to 0.376. Furthermore, UNITS demonstrates effective few-shot transfer, successfully addressing
tasks like imputation, anomaly detection, and out-of-domain forecasting and classification without
requiring specialized modules. For instance, UNITS improves on the strongest baseline by 12.4%
in MSE on imputation and 2.3% in F1-score on anomaly detection. UNITS paves the way toward
unified time series models, offering strong performance and adaptability across tasks and domains.

2 Related Work

Traditional time series modeling. Time series analysis has been extensively explored in both the
statistics and machine learning communities for many years [45, (103} [123} 118} I80]. Numerous neural
architectures have been developed for specific time series tasks such as forecasting [[114, 65 68,
67, 107, classification [115} |71} [70], anomaly detection [25} 156} [16], and imputation [17} |49, 13]].
Task-specific models are typically trained via supervised learning on individual datasets, necessitating
specialized modules. For example, a classification model requires a classification head with a specific
number of classes, while data processing modules must handle a predetermined number of variables.
In contrast, UNITS aims to unify various tasks into a universal task specification, enabling the
handling of diverse data with a single, unified network architecture. This approach facilitates training
a multi-task model capable of addressing multiple time series tasks.

General time series modeling. Foundation models, including language models [9,[101]] and vision
models [62, 50]], are trained on broad data at scale to address diverse tasks with no or minimal
additional training [8]]. Recent studies in time series analysis have sought to develop models with
similar capabilities. This includes developing novel architectures to capture diverse time series
signals. For instance, TimesNet [112] uses multiple frequency-based features obtained through
Fourier transform to capture complex time series signals. There have been several efforts to reprogram
LLMs for time series tasks [[81, 12} 129,147, 10]. Models such as GPT4TS [[129] and Time-LLM [47]
adapt LLMs by fine-tuning their embedding layers or aligning time series samples with LLM-based
text prototypes (e.g., GPT-2 [89]). Unlike these models, UNITS is trained exclusively on time series
data rather than relying on LLM architectures. Another approach, Lag-Llama [90], pre-trains a
model on time series data from multiple domains specifically for forecasting tasks. Similarly, the
Moment model [36] is pre-trained on a diverse range of time series data. However, these approaches
still require task-specific modules and tuning for each task. In contrast, our UNITS model supports
generative and predictive tasks without requiring extensive task-specific model adjustments.

Prompt learning. Prompt learning has emerged as an efficient method for task adaptation in large
models [55} 188} [121] |13} 142]]. Some approaches construct prompts directly in the model’s input
domain, such as text prompts for LLMs [2]]. Other methods involve tuning soft token inputs to frozen
language models [S8]]. In time series, PromptCast [118] and LLMTime [81] convert time series data
into prompts for LLMs to facilitate forecasting. TEMPO [10]] is another prompt-based approach
that uses a learned set of prompts for LLM-based forecasting applications, while GPT4MTS [46]
integrates both textual and numerical data to fine-tune LLMs for forecasting. In contrast, UNITS is
trained exclusively on time series data, eliminating the need for computationally expensive pre-trained
LLMs. Moreover, the universal task tokenization enables a frozen UNITS to adapt to new tasks
beyond forecasting, such as classification and imputation. Further discussion of related work can be
found in Appendix

3 Problem Formulation

Notation. We are given a set of multi-domain datasets D = {D;|i = 1,...,n}, where each dataset
D; can have a varying number of time series samples; samples can be of varying time lengths and
have varying numbers of sensors/variables. Each dataset is described as D; = (X},);), where X;
denotes time series samples and)); specifies a task defined on X;. Let X and) be collections,
definedas X = {X;|li =1,...,n}and Y = {);]i = 1,...,n}, respectively. A time series sample
in datasets is denoted as x € R**?, where ¢ and v are the length of the time series sample and the
number of variables, respectively. We use time dimension and variable dimension to indicate the row
and column dimensions in x.); contains four common time series tasks: forecasting, classification,
anomaly detection, and imputation. Further, each task type can be instantiated in numerous ways,
e.g., forecasting over different time lengths and classification with varying numbers of classes. We
use F'(X, 6) to denote a multi-task model trained on X'. See Table|12|for notation details.

1 Forecasting . Class
embeddlngs
Yi = Forecastin,
9 : Y; = Classification
— | units | = | | — | UniTs | > Dlstance >V
Unpatchlfy | Matchlng Healthy

a) Generative Tasks b) Predictive Tasks

Types of tokens

GEN M
Il Prompt token :
. Sample token ’\ —|—>
& GEN token o
O cLstoken

c) UniTS Architecture

Figure 2: a) UNITS for forecasting; input is tokenized, and GEN tokens are un-patchified to infer the
forecast horizon. b) UNITS for classification; a CLS token is used to represent class information and
then compared to class tokens to get prediction class. ¢) Architecture of UNITS model.

Desiderata for a unified multi-task time series model. Unlike specialized time series models
designed and separately trained for each specific dataset D;, a unified time series model F'(X, 0) is
a single model with weights 6 that are shared across all types of tasks and satisfies the following
three desiderata: 1) Heterogeneous time series: To process time series from all sources, the model
F must be agnostic with any input samples in X, given the heterogeneity in time series lengths ¢
and variable counts v in time series samples x from various sources. 2) Universal task specification:
For easy multi-task support and swift adaption to new tasks, the model F' should adopt a universal
task specification F'(X',) —) applicable across all type of tasks). 3) One shared model: Sharing
weights 6 across tasks enables the unified model F' to handle multiple tasks simultaneously. It
contrasts with existing methods that typically train separate models on task-specific datasets, often
involving elaborately tuned training parameters.

To realize the above desiderata, UNITS supports multi-task, prompt-based, and few-shot learning.
Multi-task learning: UNITS specifies a single model F'(X,6) —) for tasks) defined on datasets
X. Multi-task learning showcases the flexibility of the model to learn across time series domains
and tasks. Prompt learning: By leveraging prompt tokens, UNITS supports prompt learning,
Prompting{ F(X,0),token} — Y, across tasks while keeping the model frozen. Additionally,
UNITS can be trained in a single-task manner, following the same setup as used by many existing
models. Other settings are described in Appendix

4 UNITS Model

UNITS is a multi-task model with a unified network architecture. It uses a token-based format to
describe tasks and time series from different domains. We introduce a novel approach with three
distinct token types: sample, prompt, and task tokens, each serving a unique purpose in time series
analysis. The input time series sample is tokenized into sample tokens. Prompt tokens provide
essential context for the task, guiding the model to accomplish the user-specified task. Task tokens
(GEN and CLS) are combined with other tokens and used for generative and predictive tasks. UNITS
then converts task tokens into task predictions to produce the final model output. Unlike transformers
such as PatchTST [82]], UNITS introduces new token types: sample tokens allow for modeling of
multivariate time series, prompt tokens enable efficient multi-task and prompt learning [[101]], and
task tokens unify predictive and generative tasks into one format.

4.1 Prompting UNITS with Unified Time Series Data Tokens

We introduce how to use unified tokens to unify different task types and data for inference. Tokens
on different network layers have the same shape, so we omit the layer index for simplicity.

Sample tokens. We divide time series input sample x € R!*? into patches along the time dimension
using a non-overlapping patch size of k. A linear layer projects each patch into an embedding vector
of length d, obtaining sample tokens z, € R**?*?, where s = t/k. Since v and s vary across time

series data domains, we keep the variable and time dimension in tokens. zy are then added with
learnable positional embeddings.

Prompt tokens. Prompt tokens z, € RP*"*? are defined as learnable embeddings, where p is the
number of tokens. In a multi-task setting, each dataset has its own set of prompt tokens. These
tokens incorporate the specific context related to the data and the task the model needs to complete.
For each sample in the dataset, these prompt tokens are appended to the sample tokens and sent to
the network to provide context information about the current sample. For prompt learning, with
the pre-trained model weights being frozen, UNITS adapts to new tasks by utilizing prompt tokens
learned with the prompt tuning. Prompt learning is more efficient than tuning new data/task-specific
heads and achieves comparable performance to full model fine-tuning, as shown by few-shot learning
experiments on new tasks (Tables @ and[5) and new datasets (Table[3).

Task tokens. In Figure [2hb, we categorize task tokens into two types: 1) GEN (Generation) tokens
used in forecasting, imputation, and anomaly detection, and 2) CLS (Classification) tokens, which are
used for classification tasks (in a given task, the number of CLS tokens corresponds to the number of
classes in the task). Task tokens define a general format for representing tasks and support flexible
adaptation to new tasks. For tasks involving forecasting, in Figure , the GEN token z,, € R1*v*4,
is replicated f-times based on desired forecasting length to get Z,, € Rf*?*?_ These tokens Z,,, are
then concatenated with the sample and prompt tokens and fed into the UNITS network:

ZFore = CA(Zp,Zx, Zm) c R(p+s+.f)><v><d’ n

where CA is the concatenation operation along the time dimension. At the output of the model,
embedding vectors with length d in Z,,, are unpatchified to patches with size e to obtain the forecasting
sample %, i.e. X = Proj(2,,) € RU*¢)*v_ This approach allows the UNITS model to perform direct
multi-step forecasting [99, 76| [119] over arbitrary time lengths, as illustrated in Figure [3] For
classification, in Figure 2b, CLS token z, € R'*”*? is concatenated along the time dimension with
the prompt and sample tokens, resulting in:

Zprea = CA(2p, 2x,2.) € R(pHs+1)xvxd 2)

which is then fed into the model. We define class embeddings z, € R¢*"*? for each of e classes in
the task. These class embeddings are either trained or generated by averaging CLS tokens of training
samples in each class. Finally, the class for sample x is predicted by finding the class embedding
vector in z. that is the closest to the CLS token z. from the model output:

Class = argmin ||z, — z.,||%,i € [0, ¢). 3)
7

For imputation, missing values are imputed using the GEN tokens. For anomaly detection, the model
takes a time series sample containing any number of potentially anomalous values, generates the
output sample by reading out the sample tokens, and then determines anomalous values based on the
reconstruction error between the input sample and the generated sample. Details on using tokens for
imputation and anomaly detection are in Appendix[C.2] All tokens and embeddings are trained to
achieve their functions.

4.2 Unified Network Architecture in UNITS

Time series samples can have varying numbers of variables, temporal dynamics, and time lengths
across different domains and types of tasks. UNITS uses a modified transformer architecture [[104]
to handle heterogeneous multi-domain data with varying dynamics and the number of variables
(Figure2k). In the following, we describe key modules of UNITS architecture. Note that UNITS can
also be used with other backbones, such as Mamba [38]].

Time and variable self-attention. We use a two-way self-attention to both variable and time
dimensions. This approach contrasts with previous methods that apply self-attention to either
time [82]] or variable dimension [67]], but not to both dimensions. Time and variable self-attention
effectively handle time series samples with various numbers of variables v and different time lengths ¢.

DyLinear. We modify the transformer block by adding a dynamic operator (DyLinear) into the
feed-forward network layer (FFN). This modification enables the FFN to capture dependencies
between tokens. In contrast to the standard FFN, which processes embedding vectors on a point-wise
basis, DyLinear uses weight interpolation to accommodate varying time lengths. Given a sequence of

sample tokens z; € Ri"*9, DyLinear interpolates weights w € R%o«X"n to accommodate varying
time lengths as follows:

DyLinear(z;, w) = Winerp2: € Rlouxd, Winerp = Interp(w) € Rlowxlin ()

where Interp is a bi-linear interpolation to resize w from shape wgy; X Win t0 Loy X lin to match the
input and output length. DyLinear captures dependency patterns across time series samples, which
leads to improved performance on generative tasks (Table [23).

Gating module. We add a gating module after each layer to mitigate interference in the latent repre-
sentation space caused by multi-domain and multi-task datasets (Figure[J). This module dynamically
re-scales features in layer-wise latent spaces and promotes the stability of latent representations.

Generative and predictive towers. We design a shared GEN tower (Hggy) and CLS tower (H¢ps) for
transferring GEN/CLS tokens to generate time series samples and classification classes, as introduced
in Section Unlike existing works that use standalone, task-specific heads for individual datasets,
our approach leverages GEN tower and CLS tower for all generative and predictive tasks, respectively,
ensuring a more unified and efficient model architecture.

The UNITS architecture includes the backbone network composed of N modified transformer
blocks described above, a CLS tower, and a GEN tower. Implementation details are in Appendix [C.3}
Ablations in Appendix [verify the effectiveness of this architecture.

4.3 UNITS Model Training

Unified masked reconstruction pre-training. To enhance UNITS’s abilities to 1) learn general
features applicable to both generative and predictive tasks and 2) efficiently adapt to downstream tasks
via prompt learning, we introduce a unified mask reconstruction pre-training scheme. It leverages
the semantics of both prompt and CLS tokens (Section [4.1)) for masked reconstruction pre-training,
therefore learning representations for both generative and predictive capabilities. This is distinct
from pre-training strategies that use either generative [82} 120 26} 154] or predictive [[72} 109} 117,
29,1124} 87] approach. Unlike these approaches that pre-train only the model backbone, our strategy
pre-trains all components of UNITS, including the backbone and GEN/CLS towers (Section .2,
enabling prompt and zero-shot learning over a frozen pre-trained model. For each time-series sample
x, a handful of sample tokens get masked and replaced with GEN tokens. These masked sample tokens
is then concatenated with prompt tokens and CLS tokens, sent to the UNITS backbone network. In
the unified pre-training loss, tokens from the backbone network output are sent to the CLS/GEN towers
to reconstruct the input sample x, formulating as follows:

Lprelrain = LMSE(HGEN(Zp7 Zx)yx) + LMSE(I:IGEN(HCLS (ZPred)7 zx)a X)- (5)

Lk is the MSE loss to predict the full sample x. For the left side of the loss, prompt token z,
is sent along with sample token zy to GEN tower Hggy to help with the reconstruction. For the
right side of the loss, to leverage the semantics of the CLS token and train the CLS tower H¢ps for
predictive tasks, zp.q (Eq.[2) from the model output is processed by the CLS tower H¢rs to get

classification-related embedding vectors Zpreq = Hers(Zpred), and another GEN tower ﬁGEN takes in

Zpred and zy to predict the full sample. fIGEN is only used for pre-training and will be removed for
downstream tasks. This unified pre-training strategy involves pre-training both tokens, the backbone
network, and the GEN/CLS towers for both generative and predictive abilities.

Training UNITS models. We implement and evaluate two UNITS models, each trained in a
different regime. We start with a pre-trained UNITS that is optimized using self-supervised Lyretrain
in Eq. 5]and trained across a collection of multi-domain datasets. Given a self-supervised pre-trained
UNITS whose weights are frozen, we consider a fine-tuned model where only tokens for predictive
or generative tasks are fine-tuned (denoted as UNITS-PMT in Experiments). We also consider a
standard multi-task supervised learning regime, where a single UNITS model is trained from scratch
to simultaneously perform many tasks (denoted as UNITS-SUP in Experiments). These two regimes
use a multi-task setup, where a single model is trained and tested on multiple tasks and datasets.
During multi-task training, we sample batches of time series samples and aggregate dataset-centric
loss values: L = Zle MiL;(D;), where L; is the loss of batch i,); is the weight for each loss,
and I denotes the number of batches. We follow [112] and use the MSE loss for forecasting and
cross-entropy loss for classification. For fair comparison with models trained in a single-task manner,
we follow the experimental setup of [112}167] and benchmark UNITS in a single-task setting (denoted
as UNITS-ST in Experiments), where the model is trained separately on each dataset/task.

Forecasting UniTS-ST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
36 datasets (Ours) 671 59 82] (1261 211 {1zl 119 (641 (1281 69 (114
Metric MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE |MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE
ETTml 0377 0.395]0.407 0.410 |0.414 0.407|0.387 0.400[0.513 0.496 [0.419 0.419]0.400 0.406|0.403 0.407|0.485 0.481|0.448 0.452|0.481 0.456(0.588 0.517
ETTm2 0275 0.323]0.288 0.332 |0.286 0.327(0.281 0.326|0.757 0.610 [0.358 0.404|0.291 0.333(0.350 0.401|0.571 0.537(0.305 0.349|0.306 0.347(0.327 0.371
ETThl {0.403 0.424(0.454 0.447 0.446 0.434|0.469 0.454|0.529 0.522|0.541 0.507|0.458 0.450|0.456 0.452|0.747 0.647|0.440 0.460|0.570 0.5370.496 0.487
ETTh2 {0.366 0.395(0.383 0.407 |0.374 0.398|0.387 0.407|0.942 0.684 |0.611 0.550|0.414 0.427|0.559 0.515|0.954 0.7230.437 0.449|0.526 0.516/0.450 0.459
ECL 0.163 0.258(0.178 0.270 [0.219 0.298(0.205 0.290(0.244 0.334 |0.251 0.344|0.192 0.295]0.212 0.300|0.268 0.365|0.214 0.327|0.193 0.296|0.227 0.338
Exchange |0.297 0.376(0.360 0.403 [0.378 0.4170.367 0.404|0.940 0.707 [0.370 0.413|0.416 0.443|0.354 0.414]0.750 0.626(0.519 0.429|0.461 0.454|0.613 0.539
Traffic 0452 0.289]0.428 0.282 |0.626 0.378|0.481 0.304|0.550 0.304 [0.760 0.473|0.620 0.336(0.625 0.383|0.804 0.509(0.610 0.376|0.624 0.340(0.628 0.379
Weather (0.235 0.266(0.258 0.278 |0.272 0.291/0.259 0.281]0.259 0.315 [0.271 0.320]0.259 0.287(0.265 0.317|0.292 0.363[0.309 0.360|0.288 0.314(0.338 0.382

Solar-Energy [0.225 0.254/0.233

0.262

0.369 0.356|0.270 0.307|0.641 0.639

0.347 0.417|0.301 0.319]0.330 0.401|0.282 0.375[0.291 0.381{0.261 0.381|0.885 0.711

Best Count | 28 27 |

4 4]0

1]o

0] o0

0] o0

ojo oo o

0 010

0] o0

0] o0

0

Classification|
10 datasets

AccuracyT (Ours)

Freq.

MLP

Transformers

TCN RNN

Classic methods

[112] [122]

[L19

UniTS-ST TimesNet LightTS. DLinear Flow. ETS. FED. Station. Auto. Pyra. In.
[L13] (111 (1281

169

Re. Trans.
[L14] [65] [127] (511 [104]

TCN LSSL LSTNet LSTM Rocket XGBoost DTW

130] [39] [33]

141]

124]

151

161

Avg. | 75.0

73.6 70.4

67.5 73.0 71.0 70.7 72.7 71.1 70.8 72.1 71.5 71.9

703709 71.8 48.6 72.5 66.0 67.0

Anomaly Det.| UniTS-ST TimesNet FED LightTS ETS. DLinear Station.
F11)

LSSL Auto. Pyra. Anomaly

Info. Refo. TCN LogTrans Trans.

LSTM

(Ours) [112] [1281 (1221 [Ii0 (1191 (691 (391 [114] [65] [L16] {1271 (50 [30] [571 [104] [&1]
SMD 88.09 84.62 8508 82.53 83.13 77.10 84.62 71.31 85.11 83.04 8549 81.65 75.32 81.49 7621 79.56 71.41
MSL 83.46 81.80 7857 7895 85.03 84.838 77.50 82.53 79.05 84.86 83.31 84.06 84.40 78.60 79.57 78.68 81.93
SMAP 83.80 69.50 70.76 69.21 69.50 69.26 71.09 66.90 71.12 71.09 71.18 69.92 70.40 7045 69.97 69.70 70.48
SWaT 93.26 93.00 93.19 9333 8491 87.52 79.88 85.76 92.74 91.78 83.10 81.43 82.80 85.09 80.52 80.37 84.34
PSM 97.43 97.38 97.23 97.15 91.76 9355 97.29 77.20 93.29 82.08 79.40 77.10 73.61 70.57 76.74 76.07 81.67
Avg. | 89.21 8526 8497 84.23 82.87 8246 82.08 76.74 84.26 82.57 80.50 78.83 77.31 77.24 76.60 76.88 77.97
Impu. UniTS-ST TimesNet ~ ETS. LightTS DLinear ~ FED. Sttion. Auto. Pyra. I LogTrans Re. LSTM TCN LSSL
(Ours) [[12 [T 2z (e (28 [14 [27 57 BI [z [0 (&3
Metric _ MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE
ETTm1 0.019 0.087|0.027 0.107]0.120 0.253|0.104 0.218]0.093 0.206|0.062 0.177]0.036 0.126/0.051 0.150|0.717 0.570|0.071 0.188|0.050 0.154/0.055 0.166|0.989 0.786|0.516 0.497|0.113 0.254
ETThl 0.043 0.136(0.078 0.1870.202 0.329|0.284 0.373|0.201 0.306|0.117 0.246{0.094 0.20110.103 0.214/0.842 0.682(0.161 0.279]0.219 0.332/0.122 0.245|1.225 0.873|0.621 0.571|0.424 0.481
ECL 0.0380.124(0.092 0.210|0.214 0.339/0.131 0.262/0.132 0.260|0.130 0.259]0.100 0.21810.101 0.225(0.297 0.382(0.222 0.328/0.175 0.303|0.200 0.313|0.277 0.365|0.582 0.597|0.222 0.293
Weather 0.026 0.045(0.030 0.054/0.076 0.171]0.055 0.117/0.052 0.110/0.099 0.203]0.032 0.059]0.031 0.057|0.152 0.235/0.045 0.104/0.039 0.076/0.038 0.087|0.365 0.434/0.183 0.291/0.045 0.108
BestCount 16 16 [0 0][0 0] 0 0|0 0[]0 0]0 0]0 00 0[]0 0[]0 0]O0 0]0 0[]0 0]0 0

Table 1: Single-task comparison with existing methods on forecasting, classification, anomaly
detection, and imputation tasks where each model is separately trained on each dataset. Full results
are shown in Table [30] Table[31] Table[32] and Table 33}

5 Experiments

Datasets. For multi-task learning on forecasting and classification, we compiled 38 datasets from
several sources [79} 33| |82]. These datasets span domains including human activity, healthcare,
mechanical sensors, and finance domains and include 20 forecasting tasks of varying forecast lengths
ranging from 60 to 720, as well as 18 classification tasks featuring from 2 to 52 categories. Time series
samples have varying numbers of readouts (from 24 to 1,152) and sensors (from 1 to 963). Details are
in Table[7} When evaluating multi-task few-shot learning on new datasets, a novel dataset collection
comprising 6 classification tasks and 9 forecasting tasks (Table [§) is utilized. For multi-task few-shot
learning on new tasks, we use the 6 datasets (Table [T0) for imputation tasks and 5 datasets (Table [TT)
for anomaly detection tasks. On the single-task setting, we following existing works [[112}167] to
use 36 datasets for forecasting (Table |315[), 10 datasets for classification (Table @), 4 datasets for
imputation (Table[T0), and 5 datasets for anomaly detection (Table [TT).

Baselines. We conduct an extensive comparison between UNITS and 12 time series forecasting
methods, 20 classification methods, 18 anomaly detection methods, and 16 imputation methods, as
listed in Table[T3] For comparison on the challenging multi-task setting, we excluded methods that
overly rely on task-specific modules and lack a shared backbone, and we select 6 strong time series
methods: iTransformer [67], TimesNet [82], PatchTST [82]], Pyraformer [65]], Autoformer [114], and
the LLM-reprogrammed method GPT4TS [129]. Many of these methods are designed and evaluated
only for one type of tasks, e.g., GPT4TS and iTransformer are forecasting models. To include these
methods in our benchmarking, when necessary, we add task-specific input/output modules to support
multiple tasks. Training and evaluation details are shown in Appendix

5.1 Benchmarking UNITS on Single-Task Learning

Setup. For fair comparisons with baseline methods, we benchmark single-task UNITS-ST on
forecasting, classification, anomaly detection, and imputation. Models are separately trained from
scratch with configuration tailored to datasets. Details are in Appendix

MULTI-TASK| UNITS-SUP UNITS-PMT ITRANS. TIMESNET PATCHTST PYRAFORMER AUTOFORMER ~ GPT4TS TA ~ A c
FORECAST |MSE| MAE| MSE| MAE||MSE| MAE| MSE| MAE| MSE] MAE| MSE| MAE| MSE| MAEL|MSE | MAE | MULTI-TASK CLASSIFICATION (ACCURACYT)

Crass. | UNITS ITRA. TIM. PAT. PYRA. AUT. GPT.

NN5p112 622 .546 | .623 .554 .629 .541 .634 .568 1.07 .791 1.23 .903 - .
ECL pos 258 | 204 288 184 289 212 299 .390 456 262 .364 /Num. |-SUP-PMT]| (671 [82] (821 [65] [LL41]120
ECLp1g2 173 272 | 208 294 204 .307 213 303 .403 463 34 421

ECLp33s 185 284 | 224 310 217 320 228 317 .417 466 .624 .608 217 73.1 73.1]72.4 73.070.8 61.5 66.2]73.1
ECL pra0 219 314 | 265 341 284 363 270 348 439 483 758 687 N
ETTHI pos 390 411 |.382 399 478 .448 389 .400 .867 .702 .505 .479 3/1 79.7 81.4|79.4 78.079.2 81.4 69.9|79.4
ETTHl p1g2 | .429 436 432 438 | 431 .426 .561 .504 .440 .43 931 .751 .823 .60l 4/1 96.0 99.0|79.0 91.0 77.0 74.0 60.0|96.0
ETTHI pasg | 466 457 480 .460 | .476 .449 612 .537 482 453 .96 .763 .731 .580 . .
ETTHIprao | .494 .483 542 508 | 495 487 .601 .541 .486 .479 .994 .782 .699 .590 5/1 92.8 92.4193.3 92.694.3 91.4 91.9193.0
EXC.pig2 | 243 351 200 .320 |.175 297 259 370 .78 .301 1.22 916 .306 .409 95.1 95.8|93.6 90.675.8 88.7 30.2|96.
EXC.pazs | .431 476 346 .425(.322 .409 478 501 .328 .415 122 917 .462 .508 o 95.1 95.893.6 90.675.8 887 302196
ILIpgo 1.99 878 2.372 .945 | 1.99 .905 2.367 .966 2.307 .970 4.791 1.46 3.812 1.33 72 72.7 72.6|70.2 63.571.6 74.3 67.7|71.1
TRAF.pgs | .47 .318 465 .298 | 606 389 611 .336 .643 .405 .845 465 744 452 5 5
TRAF.p1o2 | 485 .323 .484 .306 | 592 382 643 .352 .603 .387 .883 .477 1.09 .638 81 822 85.3182.2 84.481.9 72.2 42.2) 819
TRAF.paas | 497 325 .494 312 | .600 384 .662 363 .612 .389 907 488 1.19 .692 9/1 92.2 90.3]95.9 97.6 94.1 85.4 94.1|94.6
TRAF.p720 | 53 .34 .534 .335|.633 401 .678 .365 .652 .406 .974 .522 134 .761 <y
WEA. pog | .158 308 157 206 | 193 232 .169 220 .194 233 239 323 351 315 1072°192.2 89.7193.5 97.288.9 72.2 86.1195.8
WEA pro2 | 207 .253 208 .251 | 238 269 .223 264 238 268 .323 399 289 335 52/1 [89.6 80.8|88.2 88.986.5 21.4 21.7|89.
WEA.pass | .264 .294 .264 .291 | 291 306 .279 .302 .290 .304 .333 386 .329 .356

WEA p7a0 | -341 384 344 344 | 365 354 359 355 363 35 424 447 39 387 BesT |3/18 7/18 | 0/18 4/18 3/18 4/18 0/18|2/18
BEST COUNT| 8/20 2/20 9/20 12/20|3/20 5/20 0/20 1/20 1/20 1/20 0/20 0/20 0/20 0/20 | 1/20 1/20 AvG. |81.6 81.2|80.3 80.9 78.1 68.8 65.6|82.0
AVERAGE 439 381 .453 .376 | .466 .394 525 .412 488 401 .931 .623 .809 .571 449 386

SHARED v v v X X X X X X X X X X X X SHARED| v/ v x X X X X
Table 2: Multi-task benchmarking across 20 forecasting tasks and 18 classification tasks. Both
UNITS-SUP and UNITS-PMT process all 38 tasks using a single model. GPT4TS reprograms a
pre-trained LLM (GPT-2) to time series and has dataset/task-specific modules, thus, it is excluded

from best count evaluations to ensure fair comparisons.

“p” is forecasting length. “Class./Num.” denotes the “number of classes in each task”/*“number of
datasets”.

Results. Table[I]shows the single-task performance for four types of tasks. On forecasting tasks with
forecasting lengths of 92, 196, 336, and 720, compared with 11 forecasting methods, UNITS-ST
achieves the best results on 28 out of 32 datasets for MSE and 27 out of 32 for MAE, surpassing the
previous best method, iTransformer, by a clear margin. In Table[34] we demonstrate that UNITS-
ST outperforms the concurrent MOMENT [36] model, which was trained on a large and diverse
collection of time series data. Additionally, UNITS-ST achieves stronger performance than LLM-
reprogrammed methods that are pre-trained with extensive natural language data, e.g. GPT4TS [129],
TEST [97], LLMA4TS [[12], and TEMPO [10]. On 10 classification datasets, UNITS-ST outperforms
19 classification methods on the average accuracy, such as the transformer/MLP/frequency-based
methods. It has a gain of 1.4% compared to the previous best TimesNet model. On 5 anomaly
detection datasets, UNITS-ST has a clear gain of 3.95% in F1 score compared to the TimesNet
and also beat other 15 anomaly detection methods, such as Anomaly Transformer [116]]. On 16
imputation datasets with a mask ratio of 12.5%, 25%, 37.5%, UNITS-ST has the best results on all
datasets in terms of MSE and MAE, outperforming 14 baseline methods. UNITS-ST has the SoTA
performance on these single-task benchmarks, showing its effectiveness.

5.2 Benchmarking UNITS for Multi-Task Learning

Setup. In a multi-task setting, we benchmark a single UNITS model co-trained and evaluated on 38
datasets, comprising 20 forecasting tasks and 18 classification tasks, with variations in the number
of variables/sensors, classification classes, and forecasting lengths. We consider two variants of
UNITS; the fully supervised UNITS-SUP and the more challenging UNITS-PMT with prompting, as
introduced in Section[4.3] Baselines use the same fully supervised multi-task training as our approach
but cannot handle differences across data types and task specifications with a single model. To
benchmark them, a shared backbone is used for all tasks, augmented by data-specific input modules
and task-specific output modules.

Results: Model benchmarking. Table[2]shows multi-task learning performance. UNITS consistently
outperforms baseline methods, achieving the best results in 17 out of 20 forecasting tasks (MSE) and
10 out of 18 classification tasks (accuracy). Performance gains are especially remarkable because
UNITS has one fully shared model, whereas all existing methods require task or dataset-specific
modules. We find that baseline methods encounter difficulties performing well across different types
of tasks. For example, TimesNet, which excels in classification tasks, underperforms in forecasting
tasks. Conversely, iTransformer, the top-performing forecaster, struggles with classification tasks. In
contrast, the UNITS model exhibits robust performance across classification and forecasting. On
forecasting, UNITS-SUP surpasses the leading baseline, iTransformer, by 5.8% (0.439 vs. 0.466)
in MSE and 3.3% (0.381 vs. 0.394) in MAE. On classification, UNITS-SUP has an average gain of
0.7% accuracy (81.6% vs. 80.9%) over the strongest baseline (TimesNet). UNITS shows promising
potential to unify data and task diversity across time series domains.

Recent research has adapted pre-trained LLMs to time series [47} [12} [129] [37]]. Most approaches
[47,112,129], such as GPT4TS, incorporate additional task-specific modules to align the modalities
of time series and natural language. We compare UNITS with GPT4TS that reprograms pre-trained
GPT-2 model [89]. Despite the substantial data amount and model scale gap, e.g., GPT4TS is 48 x
larger than UNITS-SUP (164.5M vs. 3.4M), UNITS-SUP still compares favorably to GPT4TS. On
forecasting tasks, UNITS-SUP even outperforms GPT4TS by 2.2% (0.439 vs. 0.449; MSE).

Results: Prompting is competitive with supervised training. Using tokens to prompt a frozen
UNITS, the SSL-pre-trained UNITS achieves performance comparable to its fully supervised counter-
part (Table[2). UNITS-PMT even outperforms the supervised model in forecasting, with a lower MAE
score (0.379 vs. 0.381), highlighting the effectiveness of prompt learning in UNITS. Furthermore,
prompt learning with UNITS surpasses the performance of supervised baseline methods with separate
modules. This indicates that the SSL-pre-trained model captures valuable time series representations
and that prompt learning allows the model to efficiently adapt to target tasks.

5.3 UNITS for Direct Multi-Step Forecasting

Setup. Direct multi-step forecasting predicts across varying time horizons by adjusting from the
original trained length, with offsets ranging from O to 384. We use 14 out of 20 forecasting datasets
with varying lengths. UNITS achieves this flexibility by repeating the GEN token, as described
in Section[4.1] a capability not supported by existing methods. For comparison with baseline models,
we implement a sliding-window approach for forecasting. In this method, predictions are made over
a fixed window size, which then shifts forward incrementally to cover progressively extended time
horizons. This sliding mechanism allows us to adapt the model to forecast over new, unseen time
periods while maintaining consistency with the evaluation setup used by baseline methods.

Results: Direct multi-step inference outperforms sliding window approach. In Figure[3] UNITS
demonstrates improved performance over baseline models across various forecasting lengths when
using the sliding-window approach. For example, in the longest forecasting extension of +384,
UNITS outperforms the iTransformer by 8.7% in MSE, achieving a score of 0.451 compared to
0.494. When using direct multi-step inference, UNITS gains an even larger advantage over the
iTransformer, reducing MSE by 10.5% (0.442 vs. 0.494). This approach also reduces the average
number of inference steps from 3.66 to 1, resulting in a 3x speedup.

5.4 UNITS for Few-Shot Learning on New Datasets and Tasks

For transfer learning on new tasks and datasets, we load the model weights pre-trained on 38 datasets
and apply them in a multi-task setting. We evaluate two approaches: the fully fine-tuned UNITS-FT
model and the prompted UNITS-PMT model, in which task-specific tokens are trained.

Setup: Few-shot classification and forecasting. Pre-trained models, undergo fine-tuning using 5%,
15%, and 20% of the 11 training set shown in Table|8| Average performance is reported.

Results. UNITS achieves superior performance compared to iTransformer across all training data
ratios (Table[3)). At the 20% data ratio, UNITS-FT achieves a gain of 8.8% in classification accuracy
and a reduction of 5.7% in forecasting MSE. UNITS-PMT surpasses the fully supervised iTrans-

0.65

veol - unTs@nty s untseieng | Table 3: Few-shot multi-task learning on 9

. A iTransformer (unify) Unsupported =& iTransformer (sliding) ~ _ . . :

0.55 PatchTST (unify) Unsupported =¥— PatchTST (sliding) /V fOrecaStlng and 6 ClaSSlﬁCﬁthn taSkS on Out_Of_
050 TimesNet (unify) Unsupported TimesNet (sliding) domain datasets. Ratio is the data ratio of the
2 o R " dataset used for training. Full results in Table[29]

0.40 1 /v/"f o — Model Ratio AcctT MSE| MAE] Best Count Shared

x/""—'
0.35 iTransformer-FT 5% 56.4 0.598 0.487 1/24 X
030" UNITS-PMT 5% 557 0508 0440 16724
S H P ® S P P P S 5 P UNTSFT 5% 574 0530 0448 724 v

) _ Trained length + A new length iTransformer-FT 15% 56.5 0524 0447 424 x
Figure 3: Direct multi-step forecasting on new UNITS-PMT 15% 59.5 0496 0435 4/24 v

. : UNITS-FT 15% 618 0487 0428 1624 v
lengths. UNITS achieves any new forecasting length

: : : : : : iTransformer-FT 20% 59.9 0.510 0.438 4/24 X
with unified dlrect. rr.lultl—s'tep qurence. Baseline [mspmr 20% 636 0494 0435 34 7
methods use the sliding windows inference as they UNITS-FT 20% 652 0481 0425 1724 <

do not support direct multi-step inference.

Table 4: Few-shot multi-task learning for block-wise Table 5: Few-shot multi-task learning on
imputation on 6 datasets. Full results are in Table@ anomaly detection tasks on 5 datasets.

Impu. (MSE) Ratio ECL ETThl ETTh2 ETTml ETTm2 Weather Avg Best Shared Anomaly (F11) MSL PSM SMAP SMD SWAT Avg Best Shared

TimesNet-FT' 3060 0398 0413 o211 0607 010 0198 0388 D6 X Anomaly Trans. 78.0 902 68.3 77.8 815 792 0/5 x
25% 0.195 0315 0147 0309 0092 0089 0.191 0/6 x : ;

PatchTST-FT 509, 0230 0353 0.075 0442 0111 0105 0236 0/6 X TimesNet-FT' 339 910 68.5 840 934 742 155 x

. 25% 0.174 0.301 0.185 0.254 0.113 0.087 0.186 0/6 X iTransfomer-FT 80.4 96.5 67.2 824 89.0 83.1 0/5 X

iTrans-FT 509 0203 0332 0205 0372 0.136 0.106 0226 0/6 x PatchTST-FT 799 96.6 687 838 92.6 843 0/5 x
25% 0117 0281 0177 0247 0.095 0075 0.165 2/6

UNITS-PMT 5039 0.135 0,%%; 0.242 034‘3‘ 0.131 0'032 0%12 ‘3‘/6 v UNITS-PMT 754 955 658 823 925 823 0/5

UNITS-FT 504 0161 0315 0255 0398 0419 0006 0200 Y6 Y UNITS-FT 812 97.3 760 847 925 863 45 v

former, leading to 6.2% increase in classification accuracy and 3.1% decrease in forecasting MSE.
When trained under a 5% data ratio,UNITS-PMT exceeds UNITS-FT performance for forecasting,
suggesting that prompt learning is effective for transfer learning when training data is scarce.

Setup: Few-shot imputation. Models are fine-tuned with 10% of 6 imputation training data listed
in Table[I0] asked to impute 25% and 50% of missing data points.

Results. A unified UNITS-FT outperforms models that use separate task-specific modules (Table[4),
indicating that UNITS has robust few-shot imputation performance. Specifically, on a 25% masking
ratio, UNITS-FT exceeds the top-performing baseline iTransformer by 12.4% in MSE and 7.9% in
MAE. The margin remains notable at a 50% masking ratio, where UNITS-FT surpasses iTransformer
by 8.8% in MSE and 6.8% in MAE. UNITS-PMT, the fixed model with appropriate prompt tokens,
outperforms all baseline methods and achieves results comparable to its fully fine-tuned counterpart,
suggesting that prompting can adapt UNITS for imputation.

Setup: Few-shot anomaly detection. The pre-trained models have been fine-tuned using 5% of five
training datasets as listed in Table The average F1-score is used as the metric.

Results. UNITS outperforms the top-performing baseline (PathTST) across all metrics (Table [5)).
UNITS-FT achieves an Fl-score of 86.3 compared to PathTST’s F1-score of 84.3. UNITS-PMT also
outperforms specialized models (Anomaly Transformer) trained from scratch.

Additional results and ablations. Zero-shot learning is significantly more challenging than few-shot
learning. Our work primarily focuses on few-shot learning, with some initial exploration of zero-shot
learning for forecasting tasks of UniTS on new datasets in Appendix [G] Additional analysis and
ablation results are in Appendix [Fand Appendix [E}

6 Conclusion

We have developed UNITS, a unified model for time series that uses a universal specification of
time series tasks. UNITS handles multi-domain time series data with heterogeneous representations,
outperforming task-specific models and reprogrammed LLMs on 38 multi-domain and multi-task
datasets. UNITS also shows strong few-shot and prompt-based performance and can generalize
to new domains and tasks. The unified token scheme in UNITS allows it to represent data and
tasks in a general manner. UNITS uses a transformer architecture, and we plan to explore other
types of backbones, such MLP-based blocks [[107} 14] and Mamba [38]], to further enhance UNITS.
Limitations and future directions are discussed in Appendix [M]

Acknowledgments

S.G., 0.Q., and M.Z. gratefully acknowledge the support of NIH RO1-HD108794, NSF CAREER
2339524, US DoD FA8702-15-D-0001, awards from Harvard Data Science Initiative, Amazon
Faculty Research, Google Research Scholar Program, AstraZeneca Research, Roche Alliance with
Distinguished Scientists, Sanofi iDEA-ITECH, Pfizer Research, Chan Zuckerberg Initiative, John and
Virginia Kaneb Fellowship at Harvard Medical School, Biswas Computational Biology Initiative in
partnership with the Milken Institute, Harvard Medical School Dean’s Innovation Fund for the Use of
Artificial Intelligence, and Kempner Institute for the Study of Natural and Artificial Intelligence at
Harvard University. T.H. acknowledges the support of the National Security Data & Policy Institute,
Contracting Activity 2024-24070100001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect the views of the
funders.

10

DISTRIBUTION STATEMENT: Approved for public release. Distribution is unlimited. This material
is based upon work supported by the Under Secretary of Defense for Research and Engineering under
Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
Under Secretary of Defense for Research and Engineering.

References

(1]

(2]

3

[}

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]
(16]

Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous
multivariate time series anomaly detection and localization. In Proceedings of the 27th ACM
SIGKDD conference on knowledge discovery & data mining, pages 2485-2494, 2021.

Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia, Ines
Chami, and Christopher Re. Ask me anything: A simple strategy for prompting language
models. In The Eleventh International Conference on Learning Representations, 2023.

Arjun Ashok, Etienne Marcotte, Valentina Zantedeschi, Nicolas Chapados, and Alexandre
Drouin. Tactis-2: Better, faster, simpler attentional copulas for multivariate time series. In
International conference on learning representations, 2024.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large, Aaron Bostrom,
Paul Southam, and Eamonn Keogh. The uea multivariate time series classification archive,
2018. arXiv preprint arXiv:1811.00075, 2018.

Mouldi Bedda and Nacereddine Hammami. Spoken Arabic Digit. UCI Machine Learning
Repository, 2010. DOI: https://doi.org/10.24432/C52C9Q.

Donald J. Berndt and James Clifford. Using dynamic time warping to find patterns in time
series. In KDD Workshop, 1994.

Niels Birbaumer, Nimr Ghanayim, Thilo Hinterberger, Iver Iversen, Boris Kotchoubey, Andrea
Kiibler, Juri Perelmouter, Edward Taub, and Herta Flor. A spelling device for the paralysed.
Nature, 398(6725):297-298, 1999.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the
opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language
models are few-shot learners. Advances in neural information processing systems, 33:1877—
1901, 2020.

Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu.
TEMPO: Prompt-based generative pre-trained transformer for time series forecasting. In The
Twelfth International Conference on Learning Representations, 2024.

CDC. Illness.

Ching Chang, Wen-Chih Peng, and Tien-Fu Chen. Llm4ts: Two-stage fine-tuning for time-
series forecasting with pre-trained llms. arXiv preprint arXiv:2308.08469, 2023.

Guangyi Chen, Weiran Yao, Xiangchen Song, Xinyue Li, Yongming Rao, and Kun Zhang.
PLOT: Prompt learning with optimal transport for vision-language models. In The Eleventh
International Conference on Learning Representations, 2023.

Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O Arik, and Tomas Pfister. Tsmixer: An
all-mlp architecture for time series forecasting. arXiv preprint arXiv:2303.06053, 2023.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. KDD, 2016.

Xuanhao Chen, Liwei Deng, Yan Zhao, and Kai Zheng. Adversarial autoencoder for unsuper-
vised time series anomaly detection and interpretation. In Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining, pages 267-275, 2023.

11

(17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

Yu Chen, Wei Deng, Shikai Fang, Fengpei Li, Nicole Tianjiao Yang, Yikai Zhang, Kashif
Rasul, Shandian Zhe, Anderson Schneider, and Yuriy Nevmyvaka. Provably convergent schr\"
odinger bridge with applications to probabilistic time series imputation. In International
Conference on Machine Learning, 2023.

Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Con-
tiformer: Continuous-time transformer for irregular time series modeling. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Kelvin Ortiz Chicaiza and Marco E Benalcazar. A brain-computer interface for controlling iot
devices using eeg signals. In 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM),
pages 1-6. IEEE, 2021.

Marco Cuturi. Fast global alignment kernels. In Proceedings of the 28th international
conference on machine learning (ICML-11), pages 929-936, 2011.

Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting
with tide: Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation
model for time-series forecasting. arXiv preprint arXiv:2310.10688, 2023.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu,
Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Be-
gum, Anthony Bagnall, Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time
series classification archive, October 2018. https://www.cs.ucr.edu/ eamonn/time_
series_data_2018/|

Angus Dempster, Franccois Petitjean, and Geoffrey I. Webb. Rocket: exceptionally fast and
accurate time series classification using random convolutional kernels. Data Min. Knowl.
Discov., 2020.

Chaoyue Ding, Shiliang Sun, and Jing Zhao. Mst-gat: A multimodal spatial-temporal graph
attention network for time series anomaly detection. Information Fusion, 89:527-536, 2023.

Jiaxiang Dong, Haixu Wu, Haoran Zhang, Li Zhang, Jianmin Wang, and Mingsheng Long.
Simmtm: A simple pre-training framework for masked time-series modeling. arXiv preprint
arXiv:2302.00861, 2023.

Joy O Egede, Siyang Song, Temitayo A Olugbade, Chongyang Wang, C De C Amanda,
Hongying Meng, Min Aung, Nicholas D Lane, Michel Valstar, and Nadia Bianchi-Berthouze.
Emopain challenge 2020: Multimodal pain evaluation from facial and bodily expressions. In
2020 15th IEEFE International Conference on Automatic Face and Gesture Recognition (FG
2020), pages 849-856. IEEE, 2020.

Vijay Ekambaram, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M
Gifford, and Jayant Kalagnanam. Ttms: Fast multi-level tiny time mixers for improved zero-
shot and few-shot forecasting of multivariate time series. arXiv preprint arXiv:2401.03955,
2024.

Archibald Fraikin, Adrien Bennetot, and Stéphanie Allassonnieére. T-rep: Representation
learning for time series using time-embeddings. In The Twelfth International Conference on
Learning Representations, 2024.

Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. Unsupervised scalable repre-
sentation learning for multivariate time series. In NeurIPS, 2019.

Shanghua Gao, Ming-Ming Cheng, Kai Zhao, Xin-Yu Zhang, Ming-Hsuan Yang, and Philip
Torr. Res2net: A new multi-scale backbone architecture. IEEE transactions on pattern analysis
and machine intelligence, 43(2):652-662, 2019.

Shanghua Gao, Zhijie Lin, Xingyu Xie, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan.

Editanything: Empowering unparalleled flexibility in image editing and generation. In Pro-
ceedings of the 31st ACM International Conference on Multimedia, pages 9414-9416, 2023.

12

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

(33]

[34]

(35]

[36]

(37]

(38]

[39]

(40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo
Montero-Manso. Monash time series forecasting archive. In Neural Information Processing
Systems Track on Datasets and Benchmarks, 2021.

A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley. PhysioBank,
PhysioToolkit, and PhysioNet: Components of a new research resource for com-
plex physiologic signals. Circulation, 101(23):e215-e220, 2000. Circulation Elec-
tronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:
10.1161/01.CIR.101.23.e215.

Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M Hausdorff, Plamen Ch Ivanov,
Roger G Mark, Joseph E Mietus, George B Moody, Chung-Kang Peng, and H Eugene Stanley.
Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215-e220, 2000.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: A family of open time-series foundation models. arXiv preprint arXiv:2402.03885,
2024.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language mod-
els are zero-shot time series forecasters. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.
arXiv preprint arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. In ICLR, 2022.

Richard N Henson, Daniel G Wakeman, Vladimir Litvak, and Karl J Friston. A parametric
empirical bayesian framework for the eeg/meg inverse problem: generative models for multi-
subject and multi-modal integration. Frontiers in human neuroscience, 5:76, 2011.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 1997.

Qian Huang, Hongyu Ren, Peng Chen, Gregor KrZzmanc, Daniel Zeng, Percy Liang, and Jure
Leskovec. PRODIGY: Enabling in-context learning over graphs. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soder-
strom. Detecting spacecraft anomalies using Istms and nonparametric dynamic thresholding.
In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery &
data mining, pages 387-395, 2018.

RJ Hyndman. expsmooth: Data sets from “forecasting with exponential smoothing”. R
package version, 2, 2015.

Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice. OTexts,
2018.

Furong Jia, Kevin Wang, Yixiang Zheng, Defu Cao, and Yan Liu. Gpt4mts: Prompt-based
large language model for multimodal time-series forecasting. In Proceedings of the AAAI
Conference on Artificial Intelligence, pages 23343-23351, 2024.

Ming Jin, Shiyu Wang, Lintao Ma, Zhixuan Chu, James Y Zhang, Xiaoming Shi, Pin-Yu
Chen, Yuxuan Liang, Yuan-Fang Li, Shirui Pan, et al. Time-1lm: Time series forecasting by
reprogramming large language models. arXiv preprint arXiv:2310.01728, 2023.

Julia Kaltenborn, Charlotte Emilie Elektra Lange, Venkatesh Ramesh, Philippe Brouillard,
Yaniv Gurwicz, Chandni Nagda, Jakob Runge, Peer Nowack, and David Rolnick. Climateset:
A large-scale climate model dataset for machine learning. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

13

[49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

[57

[—

(58]

[59

—

[60]

[61]

[62]

[63]

[64]

SeungHyun Kim, Hyunsu Kim, EungGu Yun, Hwangrae Lee, Jachun Lee, and Juho Lee.
Probabilistic imputation for time-series classification with missing data. In International
Conference on Machine Learning, pages 16654—16667. PMLR, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything.
arXiv preprint arXiv:2304.02643, 2023.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
ICLR, 2020.

Mineichi Kudo, Jun Toyama, and Masaru Shimbo. Multidimensional curve classification using
passing-through regions. Pattern Recognition Letters, 20(11-13):1103-1111, 1999.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-
term temporal patterns with deep neural networks. In The 41st international ACM SIGIR
conference on research & development in information retrieval, pages 95-104, 2018.

Seunghan Lee, Taeyoung Park, and Kibok Lee. Learning to embed time series patches
independently. In The Twelfth International Conference on Learning Representations, 2024.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Marie-Francine Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau
Yih, editors, Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 3045-3059, Online and Punta Cana, Dominican Republic, November 2021.
Association for Computational Linguistics.

Gen Li and Jason J Jung. Deep learning for anomaly detection in multivariate time series:
Approaches, applications, and challenges. Information Fusion, 91:93-102, 2023.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In NeurIPS, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli, editors, Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 4582—4597,
Online, August 2021. Association for Computational Linguistics.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An
investigation on linear mapping. arXiv preprint arXiv:2305.10721, 2023.

Jason Lines, Anthony Bagnall, Patrick Caiger-Smith, and Simon Anderson. Classification of
household devices by electricity usage profiles. In Intelligent Data Engineering and Automated
Learning-IDEAL 2011: 12th International Conference, Norwich, UK, September 7-9, 201 1.
Proceedings 12, pages 403—412. Springer, 2011.

Chengyu Liu, David Springer, Qiao Li, Benjamin Moody, Ricardo Abad Juan, Francisco J
Chorro, Francisco Castells, José Millet Roig, Ikaro Silva, Alistair EW Johnson, et al. An open
access database for the evaluation of heart sound algorithms. Physiological measurement,
37(12):2181, 2016.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In
Advances in neural information processing systems, 2023.

Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave: Accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mobile Computing,
5(6):657-675, 2009.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu.

Scinet: time series modeling and forecasting with sample convolution and interaction. NeurIPS,
2022.

14

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and
forecasting. In International conference on learning representations, 2021.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang. P-
tuning: Prompt tuning can be comparable to fine-tuning across scales and tasks. In Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 61-68, 2022.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting. In Interna-
tional Conference on Learning Representations, 2024.

Yong Liu, Chenyu Li, Jianmin Wang, and Mingsheng Long. Koopa: Learning non-stationary
time series dynamics with koopman predictors. In Advances in neural information processing
systems, 2023.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers:
Rethinking the stationarity in time series forecasting. In NeurIPS, 2022.

Zhen Liu, Peitian Ma, Dongliang Chen, Wenbin Pei, and Qianli Ma. Scale-teaching: Ro-
bust multi-scale training for time series classification with noisy labels. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Wang Lu, Jindong Wang, Xinwei Sun, Yigiang Chen, and Xing Xie. Out-of-distribution
representation learning for time series classification. In The Eleventh International Conference
on Learning Representations, 2023.

Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu,
Xuchao Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, et al. Time series contrastive
learning with information-aware augmentations. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pages 4534-4542, 2023.

A Ian MacLeod and Hyukjun Gweon. Optimal deseasonalization for monthly and daily
geophysical time series. Journal of Environmental Statistics, 2012.

Maggie, Oren Anava, Vitaly Kuznetsov, and Will Cukierski. Web traffic time series forecasting,
2017.

Mohammad Malekzadeh, Richard G Clegg, Andrea Cavallaro, and Hamed Haddadi. Mobile
sensor data anonymization. In Proceedings of the international conference on internet of
things design and implementation, pages 49-58, 2019.

Massimiliano Marcellino, James H Stock, and Mark W Watson. A comparison of direct
and iterated multistep ar methods for forecasting macroeconomic time series. Journal of
econometrics, 135(1-2):499-526, 2006.

Aditya P Mathur and Nils Ole Tippenhauer. Swat: A water treatment testbed for research and
training on ics security. In 2016 international workshop on cyber-physical systems for smart
water networks (CySWater), pages 31-36. IEEE, 2016.

Mike A Merrill, Mingtian Tan, Vinayak Gupta, Tom Hartvigsen, and Tim Althoff. Language
models still struggle to zero-shot reason about time series. In Empirical Methods for Natural
Language Processing, 2024.

Matthew Middlehurst, Patrick Schifer, and Anthony Bagnall. Bake off redux: a review
and experimental evaluation of recent time series classification algorithms. arXiv preprint
arXiv:2304.13029, 2023.

Ilan Naiman, N Benjamin Erichson, Pu Ren, Michael W Mahoney, and Omri Azencot. Gen-

erative modeling of regular and irregular time series data via koopman vaes. International
conference on learning representations, 2024.

15

[81] Shikai Qiu Nate Gruver, Marc Finzi and Andrew Gordon Wilson. Large Language Models Are
Zero Shot Time Series Forecasters. In Advances in Neural Information Processing Systems,
2023.

[82] Yugqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In International Conference on
Learning Representations, 2023.

[83] NREL. Solar power data for integration studies.

[84] Robert Thomas Olszewski. Generalized feature extraction for structural pattern recognition
in time-series data. Carnegie Mellon University, 2001.

[85] PeMS. Traffic.

[86] Farhad Pourpanah, Moloud Abdar, Yuxuan Luo, Xinlei Zhou, Ran Wang, Chee Peng Lim,
Xi-Zhao Wang, and QM Jonathan Wu. A review of generalized zero-shot learning methods.
IEEE transactions on pattern analysis and machine intelligence, 2022.

[87] Owen Queen, Thomas Hartvigsen, Teddy Koker, Huan He, Theodoros Tsiligkaridis, and
Marinka Zitnik. Encoding time-series explanations through self-supervised model behavior
consistency. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

[88] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

models from natural language supervision. In International conference on machine learning,
pages 8748-8763. PMLR, 2021.

[89] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2019.

[90] Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
Rishika Bhagwatkar, Marin Bilo§, Hena Ghonia, Nadhir Vincent Hassen, Anderson Schneider,
et al. Lag-llama: Towards foundation models for time series forecasting. arXiv preprint
arXiv:2310.08278, 2023.

[91] Umaa Rebbapragada, Pavlos Protopapas, Carla E Brodley, and Charles Alcock. Finding
anomalous periodic time series: An application to catalogs of periodic variable stars. Machine
learning, 74:281-313, 2009.

[92] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer.
High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684-10695, 2022.

[93] Davide Roverso. Plant diagnostics by transient classification: The aladdin approach. Interna-
tional Journal of Intelligent Systems, 17(8):767-790, 2002.

[94] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn Keogh. Gener-
alizing dtw to the multi-dimensional case requires an adaptive approach. Data mining and
knowledge discovery, 31:1-31, 2017.

[95] Ikaro Silva, Joachim Behar, Reza Sameni, Tingting Zhu, Julien Oster, Gari D Clifford, and
George B Moody. Noninvasive fetal ecg: the physionet/computing in cardiology challenge
2013. In Computing in cardiology 2013, pages 149-152. IEEE, 2013.

[96] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detec-
tion for multivariate time series through stochastic recurrent neural network. In Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data mining,
pages 2828-2837, 2019.

[97] Chenxi Sun, Yaliang Li, Hongyan Li, and Shenda Hong. Test: Text prototype aligned
embedding to activate llm’s ability for time series. arXiv preprint arXiv:2308.08241, 2023.

16

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

[114]

Souhaib Ben Taieb, Gianluca Bontempi, Amir F Atiya, and Antti Sorjamaa. A review
and comparison of strategies for multi-step ahead time series forecasting based on the nn5
forecasting competition. Expert systems with applications, 39(8):7067-7083, 2012.

Souhaib Ben Taieb, Rob J Hyndman, et al. Recursive and direct multi-step forecasting: the
best of both worlds, volume 19. Department of Econometrics and Business Statistics, Monash
Univ., 2012.

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are
language models actually useful for time series forecasting? In Advances in Neural Information
Processing Systems, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Artur Trindade. ElectricityLoadDiagrams20112014. UCI Machine Learning Repository, 2015.
DOI: https://doi.org/10.24432/C58C86.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun
Kim, Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A
survey. arXiv preprint arXiv:2401.03717, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Jose R Villar, Paula Vergara, Manuel Menéndez, Enrique de la Cal, Victor M Gonzélez, and
Javier Sedano. Generalized models for the classification of abnormal movements in daily
life and its applicability to epilepsy convulsion recognition. International journal of neural
systems, 26(06):1650037, 2016.

Huigiang Wang, Jian Peng, Feihu Huang, Jince Wang, Junhui Chen, and Yifei Xiao. Micn:
Multi-scale local and global context modeling for long-term series forecasting. In The Eleventh
International Conference on Learning Representations, 2022.

Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y. Zhang,
and JUN ZHOU. Timemixer: Decomposable multiscale mixing for time series forecasting. In
The Twelfth International Conference on Learning Representations, 2024.

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. Generalizing from a few
examples: A survey on few-shot learning. ACM computing surveys (csur), 53(3):1-34, 2020.

Yihe Wang, Yu Han, Haishuai Wang, and Xiang Zhang. Contrast everything: A hierarchical
contrastive framework for medical time-series. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Wetterstation. Weather.

Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven C. H. Hoi. Ets-
former: Exponential smoothing transformers for time-series forecasting. arXiv preprint
arXiv:2202.01381, 2022.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference
on Learning Representations, 2023.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Lin-
earizing transformers with conservation flows. In ICML, 2022.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition

transformers with auto-correlation for long-term series forecasting. Advances in Neural
Information Processing Systems, 34:22419-22430, 2021.

17

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Qiao Xiao, Bogian Wu, Yu Zhang, Shiwei Liu, Mykola Pechenizkiy, Elena Mocanu, and
Decebal Constantin Mocanu. Dynamic sparse network for time series classification: Learning
what to “see”. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho,
editors, Advances in Neural Information Processing Systems, 2022.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time
series anomaly detection with association discrepancy. In ICLR, 2021.

Maxwell A Xu, Alexander Moreno, Hui Wei, Benjamin M Marlin, and James M Rehg.
Retrieval-based reconstruction for time-series contrastive learning. In The Twelfth International
Conference on Learning Representations, 2024.

Hao Xue and Flora D Salim. Promptcast: A new prompt-based learning paradigm for time
series forecasting. IEEE Transactions on Knowledge and Data Engineering, 2023.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
forecasting? In Proceedings of the AAAI conference on artificial intelligence, volume 37,
pages 11121-11128, 2023.

George Zerveas, Srideepika Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten
Eickhoff. A transformer-based framework for multivariate time series representation learning.
In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, KDD 21, page 2114-2124, New York, NY, USA, 2021. Association for Computing
Machinery.

Haotian Zhang, Pengchuan Zhang, Xiaowei Hu, Yen-Chun Chen, Liunian Harold Li, Xiyang
Dai, Lijuan Wang, Lu Yuan, Jenq-Neng Hwang, and Jianfeng Gao. GLIPv2: Unifying
localization and vision-language understanding. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information Processing Systems,
2022.

T. Zhang, Yizhuo Zhang, Wei Cao, J. Bian, Xiaohan Yi, Shun Zheng, and Jian Li. Less is
more: Fast multivariate time series forecasting with light sampling-oriented mlp structures.
arXiv preprint arXiv:2207.01186, 2022.

Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided
network for irregularly sampled multivariate time series. In International Conference on
Learning Representations, ICLR, 2022.

Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. Self-supervised
contrastive pre-training for time series via time-frequency consistency. Advances in Neural
Information Processing Systems, 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge
and Data Engineering, 34(12):5586-5609, 2021.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension depen-
dency for multivariate time series forecasting. /CLR, 2023.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
Proceedings of the AAAI conference on artificial intelligence, volume 35, pages 11106-11115,
2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In International
Conference on Machine Learning, pages 27268-27286. PMLR, 2022.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power general
time series analysis by pretrained LM. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

18

A Extended Related Work

Comparison of the abilities required by a unified time series model. We evaluate whether existing
works in time series possess the necessary capabilities for constructing a unified time series model,
as outlined in Table[6] Most methods fail to support these requirements. For instance, PatchTST
[82] processes each variable independently, enabling it to handle multi-domain time series datasets
without the need for data-specific heads. However, it still requires task-specific heads for tasks like
making forecasts over a fixed length or performing classifications within a predetermined number of
classes.

Table 6: Key features of a unified multi-task time series model include the capability to handle
heterogeneous time series samples with different numbers of variables and time lengths. Additionally,
it should support both generative and predictive time series tasks within the same model.

Method Multi-domain time series Universal task specification One model
TimesNet [112] X X X
PatchTST [82] v X X
iTransformer [67]] X X X
Dlinear [119] X X X
FEDFormer [128]] X X X
MICN [106] X X X
Pyraformer [65] X X X
Autoformer [114] X X X
UNITS v v v
B Datasets

Dataset details. We introduce the details of the multi-task dataset collection used by our work
in Table[/] The dataset collection used for few-shot learning on classification and forecasting are
listed in Table 8] the collection used for zero-shot forecasting are listed in Table[9] the collection used
for imputation is listed in Table[I0] and the collection used for anomaly detection is listed in Table
Datasets were aggregated from the Monash Forecasting Repository [33]], Time Series Classification
Website [[79]], and Time Series Library [[112]]. The combined training set consists of over 35 million
timesteps and over 6,000 variables. For subsets of a dataset such as ETTh1, we start by splitting
the data into training and testing sets based on distinct time intervals of a long time series sequence,
following splits in [[112]. Within these training and testing intervals, we generate samples using
various sliding windows, ensuring that there is no data leakage between the training and testing sets.
Dataset for direct multi-step forecasting on new forecasting lengths. For evaluating zero-shot
learning capabilities over new forecasting lengths, we initially consider 20 forecasting datasets utilized
in the multi-task setting, as detailed in Table [/l However, to adapt to 384 additional forecasting
lengths that the model was not trained on, we exclude specific datasets that are incompatible with
this requirement. These datasets include NN5 p112, ECL p7og, ETTh1 p7og, ILI pgg, Traffic p72g, and
Weather p720. Consequently, our analysis is conducted using 14 remaining forecasting datasets.

C Further information on UNITS

C.1 Alllearning settings supported by UNITS

UNITS incorporates multi-task, prompt, few-shot, and zero-shot learning, as well as the single-task
learning same to existing methods. We introduce the multi-task and prompt learning in the manuscript,
here we introduce the other settings supported by UNITS.

Notations for zero-shot/few-shot learning. X is an out-of-domain dataset collection not included in
X, and) is used to denote a new type of tasks not contained in).

Zero-shot learning. UNITS has zero-shot learning ability where model F'(X, 6) trained on all
datasets in D is tested on multiple types of new tasks that are not trained for, i.e. F(X,0) —

X , X ¢ X. New zero-shot learning tasks include direct multi-step forecasting with a new length and
forecasting on out-of-domain datasets with a new number of variables. Zero-shot learning shows the
adaptability of UNITS to different time series tasks.

19

Table 7: Multi-task datasets for classification and forecasting. Prediction length or number of classes
are indicated in parenthesis for Forecast and Classification respectively.

Name Train Size ~ Sequence Length ~ Variables Task Class
NN5p112 (98] 409 112 111 Forecast (112) Finance
ECL pgg [102] 18221 96 321 Forecast (96) Electricity
ECLpig2 [102] 18125 96 321 Forecast (192) Electricity
ECL p336 [102] 17981 96 321 Forecast (336) Electricity
ECL p720 [102] 17597 96 321 Forecast (720) Electricity
ETThl pgg [127] 8449 96 7 Forecast (96) Electricity
ETThl p19o [127] 8353 96 7 Forecast (192) Electricity
ETThl p3se [127] 8209 96 7 Forecast (336) Electricity
ETThl p720 [127] 7825 96 7 Forecast (720) Electricity
Exchange p1g2 [53] 5024 96 8 Forecast (192) Finance
Exchange p336 [53] 4880 96 8 Forecast (336) Finance
ILIpgo [LL] 581 36 7 Forecast (60) Illness
Traffic pos [85] 12089 96 862 Forecast (96) Traffic
Trafficp1g2 [85] 11993 96 862 Forecast (192) Traffic
Traffic p336 [85] 11849 96 862 Forecast (336) Traffic
Traffic p720 [85] 11465 96 862 Forecast (720) Traffic
Weather pgg [[110] 36696 96 21 Forecast (96) Weather
Weather p192 [110] 36600 96 21 Forecast (192) Weather
Weather p336 [110] 36456 96 21 Forecast (336) Weather
Weather p720 [1L10] 36072 96 21 Forecast (720) Weather
SharePricelncrease [79] 965 60 1 Classification (2) Finance
JapaneseVowels [52] 270 29 12 Classification (9) Audio
SpokenArabicDigits [5] 6599 93 13 Classification (10) Audio
Heartbeat [61] 204 405 61 Classification (2) Audio
ECGS5000 [35] 500 140 1 Classification (5) ECG
NonlnvasiveFetalECGThorax1 [95] 1800 750 1 Classification (52) ECG
Blink [19] 500 510 4 Classification (2) EEG
FaceDetection [40] 5890 62 144 Classification (2) EEG
SelfRegulationSCP2 [7] 200 1152 7 Classification (2) EEG
ElectricDevices [60] 8926 96 1 Classification (7) Sensors
Trace [93] 100 275 1 Classification (4) Sensors
FordB [23] 3636 500 1 Classification (2) Sensors
MotionSenseHAR [75] 966 200 12 Classification (6) Human Activity
EMOPain [27] 968 180 30 Classification (3) Human Activity
UWaveGestureLibrary [63] 120 315 3 Classification (8) Human Activity
Chinatown [23] 20 24 1 Classification (2) Traffic
MelbournePedestrian [23] 1194 24 1 Classification (10) Traffic
PEMS-SF [20] 267 144 963 Classification (7) Traffic

Table 8: Datasets for few-shot learning on classification and forecasting tasks. Prediction length or
number of classes are indicated in parenthesis for Forecast and Classification respectively.

Name Train Size ~ Sequence Length ~ Variables Task Class
ECG200 [84] 100 96 1 Classification (2) ECG
SelfRegulationSCP1 [7] 268 896 6 Classification (2) EEG
RacketSports [4] 151 30 6 Classification (4) Human Activity
Handwriting [94] 150 152 3 Classification (26) Human Activity
Epilepsy [103] 137 207 3 Classification (4) Human Activity
StarLightCurves [91]] 1000 1024 1 Classification (3) Sensor
ETTh2 pog [127] 8449 96 7 Forecast (96) Electricity
ETTh2p1g2 [127] 8353 96 7 Forecast (192) Electricity
ETTh2 p3se [127] 8209 96 7 Forecast (336) Electricity
ETTh2 p720 [127] 7825 96 7 Forecast (720) Electricity
ETTml pog [127] 34369 96 7 Forecast (96) Electricity
ETTml p1g2 [127] 34273 96 7 Forecast (192) Electricity
ETTml p3se [127] 34129 96 7 Forecast (336) Electricity
ETTml p7oo [127] 33745 96 7 Forecast (720) Electricity
SaugeenRiverFlow [73] 18921 48 1 Forecast (24) Weather

Few-shot learning. UNITS model F'(X, §) pre-trained on X, can be fine-tuned on a few samples on
new data X" and new tasks), i.e., Few-Shot{ F(X,0), X} = F(X,0) —). We verify the few-shot
learning ability of UNITS on forecasting and classification tasks on new, out-of-domain datasets and
on new types of tasks, including imputation and anomaly detection.

Single-task learning. UNITS model can also conduct the single-task learning same as the existing
works, where each model is separately trained on each dataset D; = (X;,);), i.e., F(X;,6;) — V;.

20

Table 9: Datasets for zero-shot forecasting. Prediction length is indicated in parenthesis. Note that
only the first 500 variables are used for the Web Traffic and Temperature Rain datasets.

Name Sequence Length Variables Task Class
Solar [83] 128 137 Forecast (64) Electricity
SaugeenRiverFlow [73] 256 1 Forecast (128) Weather
Hospital [44] 32 767 Forecast (16) Healthcare
Web Traffic [74] 160 500 Forecast (80) Web
Temperature Rain [33] 96 500 Forecast (48) Weather

Table 10: Datasets for imputation tasks.

Name Sequence Length Variables Task Mask ratio Class
ETTml [127] 96 7 Imputation 12.5%, 25%, 37.5%,50% Electricity
ETTh1 [127] 96 7 Imputation 12.5%, 25%, 37.5%,50% Electricity
ECL[102] 96 321 Imputation 12.5%, 25%, 37.5%,50% Electricity
Weather [[110] 96 21 Imputation 12.5%, 25%, 37.5%,50% Weather

Table 11: Datasets for anomaly detection tasks.

Name Sequence Length (Multi-task) Sequence Length (Single-task) Variables Task Class
SMD [96] 96 100 38 Anomaly detection ~ Machine
MSL [43] 96 100 55 Anomaly detection Spacecraft
SMAP [43] 96 100 25 Anomaly detection Spacecraft
SWaT [77] 96 100 51 Anomaly detection Infrastructure
PSM [1] 96 100 25 Anomaly detection ~ Machine

Table 12: Additional notation.

Variable Description
D Multi-domain dataset collection
n Number of datasets in D
D; The 2y, dataset in D
X; All time series samples in the dataset D;
X A collection of X;
Vi A time series task defined on X;
N A collection of tasks ;
x One time series sample from the dataset
t The length of time series sample x
v The number of variables/sensors of sample x
F(X,0) A multi-task model with weights 6 trained on collection of samples X’
k Patch size of a sample token
d Number of embedding dimension of tokens
Zx Sample tokens converted from input sample x
s Number of sample tokens, and s = t/e
zp Prompt tokens with number of p
D Number of prompt tokens
Zom A GEN token
f Desired number of prediction tokens of forecasting tasks
Zm Replicated GEN tokens with the number of f
x The foretasted time series data points projected from the output Z,,,
Z A CLS token
Ze Class embeddings for e classes of a classification task
Hgey The GEN tower in UNITS
Hers The CLS tower in UNITS

C.2 Generalizing Task Tokens to Various Tasks

We introduce how to use tokens for forecasting and classification tasks in the manuscript. Here we
present the implementation of using tokens for imputation and anomaly detection tasks.

Imputation task. In tasks that require imputation, GEN token z,, is inserted in the positions where
sample tokens zx are missing. This process creates an augmented sequence of tokens represented by
Zx. These augmented tokens are then concatenated along the time dimension with prompt tokens,
forming the input tokens for the network:

ZImp — CA(ZP7 zx) c R(p+S)XUXd’ (6)

21

[
[

Dynamic FFN E
:
: e

g K= caie |
: T

Class
Embeddings

T —

Hidden
state CLS

CLS Tower

I: Gate
Time MHSA

UniTS Block X N

|—

. Prompt token . GEN token
. Sample token |:| CLS token

Figure 4: The network architecture of UNITS. Shared GEN tower and CLS tower transform task tokens
to the prediction results of generative and predictive tasks.

where CA denotes the concatenation operation along the time dimension. Similar to the approach in
forecasting tasks, the output for augmented sample tokens Zx are unpatchified to obtain the imputed
sample X, i.e. X = Proj(2x).

Anomaly detection task. For the anomaly detection task, we follow TimesNet [112]] to form it as a
generative task, where the model is trained to reconstruct the time series sample using reconstruction
error as the anomaly criterion. The prompt tokens and the sample tokens are concatenated along the
time dimension to form the input tokens for the network:

Zano = CA(zy, 2y) € RPFS)Xvxd, @)

The output for sample tokens z, is unpatchified to obtain the predicted sample X. During inference,
following the approach in [112]], we determine a threshold of reconstruction error from the training
and testing data, which is then used to detect anomalous time series points. Specifically, we sort the
reconstruction errors between the input and output samples from our model across all training and
testing sets. A predefined anomaly ratio is then applied to determine the threshold that distinguishes
normal from anomalous data points.

C.3 Implementation of UNITS Network Architecture

The UNITS network architecture is composed of N UNITS blocks, one CLS tower, and one GEN
tower. We introduce more implementation details of UNITS network architecture, including the
Time MHSA, Variable MHSA, Dynamic FFN, and Gate Module in the UNITS block, as well as the
GEN/CLS towers shared for generative and predictive tasks.

UNITS block: time and variable MHSA. For attention across the time dimension, the standard
MHSA is applied as done by [82]. For variable MHSA, to capture relations among variables across
all time points while minimizing the computational overhead associated with long time lengths, we
average the (Q and K over the time dimension to get shared Q and K as follows:

QK = mean;(Q, K); Q, K,V = Linear(zi,),)
where mean; is the mean along the time dimension. Then, Output = Attn, V' = Softmax (Q—f/(;) \%

is obtained where Attn,, € RY*" is the attention map among variables, which is shared for all time
points. The notations for multi-head attention are omitted for simplicity. We show the effectiveness
of both time and variable MHSA in Table 221

22

UNITS block: Dynamic FFN. By argument the FFN layer in transformers with the proposed
DyLinear operator, we present the Dynamic FFN module, as shown in Figure 5] In the Dy-
namic FFN, we replace the first linear layer in the standard FFN layer with a 3-kernel convo-
Iution across the time dimension to capture the local details. The second linear layer is kept
the same as the standard FFN layer, and the DyLinear is inserted in between the input convo-
Iution and the output linear layer. Specifically, after processed by the convolution layer, the
embeddings with d dimension are split into two groups, resulting in (z! ., z2.,) € Rs*v*4/2,
zl .4 and z2, are processed as follows:

Zow = Linear(Concat(DyLinear ; (z.), 22:4)), ©)

where DyLinear,, processes the sample and prompt tokens in z ., with
two DyLinear operators, while CLS token is skipped to ensure consistency
for all tasks. z2., is kept unprocessed. This separation of routes for
zl ., and z2,; leads to a scale combination effect, enhancing multi-scale
processing ability [31].

UNITS block: gate module. The gate module is placed as the output
of each component in the UNITS block, including time MHSA, variable
MHSA, and Dynamic FFN. Specifically, given an input z;, € R**v*¢, a
linear layer maps it to a scaling factor x, € R**?*! along the embedding
dimension. This is followed by a Sigmoid function to ensure the scaling
factor lies between 0 and 1. The final gating operation involves element-
wise multiplication of the input by the Sigmoid-activated scaling factor,
ie.,

Splitd /2
?

Dynamic FFN

Zout = Sigmoid(xy) - Zin, X, = Linear(zi,). (10)
Figure 5: The dynamic

GEN tower. The GEN tower Hggy is designed to transform tokens into FFN in UNITS.

time points prediction results. One GEN tower is shared by all generative

tasks, including forecasting, imputation, and anomaly detection. As shown in Figure] take the
forecasting task as an example, the zgoe € RPH5H)xvxd from Eq.|1]is processed by the GEN tower
to get the full time-series sample as follows:

% = Proj(MLP((zpore + DyLinear(zpor))), (11

where the MLP is composed of two linear layers with an activation layer in between, and Proj is
the unpatchify operation that transfers the embedding back to the time series patch as introduced
in Section .1} For imputation and anomaly detection tasks, only the tokens are modified while the
GEN tower remains unchanged.

CLS tower. The CLS tower H¢ g transforms CLS tokens into classification classes. The CLS tower is
shared across all classification tasks from different datasets. As illustrated in Figure[d] the CLS tower
processes Zpreq € R(PT5H1)xvxd from Eq.[2| which includes the CLS token z/c, to produce the final
CLS token z,. as follows:

Z. = ZZ + MLP(ZZ), 7z, = z/c + CrossAtt(Query = zlc7 K=V = zpq), (12)

C
where the CLS token z; serves as a query to perform cross-attention with all tokens in zpq. Subse-

quently, the processed CLS token z. is matched with class embeddings to determine the predicted
class as described in Eq. 3]

D Implementation Details

D.1 Model Details

By default, in a multi-task setting, the UNITTS network comprises three UNITS blocks, one GEN tower,
and one CLS tower. For each data source, the prompt tokens and task tokens are defined. Forecasting
tasks on the same data source but with different forecast lengths share the same prompt and GEN
token. For zero-shot learning on new datasets, we use a shared prompt and GEN token across all data
sources to facilitate zero-shot learning. Tokens are trained to achieve their functions. The number
of embedding dimensions, d, is set to 64 for UNITS-SUP and 128 for UNITS-PMT. All blocks in
UNITS maintain the same feature shape, following the Transformer architecture.

23

Table 13: Baseline methods used for comparison in this paper.

Task Method Types Method
LLM-reprogrammed TEMPO [10] TIME-LLM [47] LLMATS [12] TEST [97] GPT4TS [129]
Transformer-based MOMENT [36] iTransformer [67]] PatchTST [82] Crossformer [126]
Forecasting FEDformer [128]] Stationary [69] Autoformer [114]
i MLP-based TSMixer [[14] RLinear [59] DLinear [119]
Frequency-based TimesNet [112]
Conv-based TiDE [21] SCINet [64]
LLM-reprogrammed GPTA4TS [129]
Frequency-based TimesNet [112]
MLP-based DLinear [119] LightTS [122]
iTransformer [[67] PatchTST [82] Transformer [104] Reformer [51]]
Classification Transformer-based Informer [[127]] Pyraformer [65] Autoformer [[114] Stationformer [69]
FEDformer [[128]] ETSformer [111] Flowformer [113]
TCN-based TCN [30]
RNN-based LSTM [41] LSTNet [53] LSSL [39]
Classical methods DTW [6] XGBoost [15] Rocket [24]
Frequency-based TimesNet [112]
MLP-based DLinear [119] LightTS [122]
iTransformer [67]] PatchTST [82] Reformer [51]]
Imputation Transformer-based Informer [127] Pyraformer [65] Autoformer [114] Stationformer [69]

TCN-based
RNN-based

FEDformer [128] ETSformer [111] LogTransfomer [S7]
TCN [30]
LSTM [41]] LSSL [39]

Frequency-based

TimesNet [112]

MLP-based DLinear [[119] LightTS [122]
iTransformer [67] PatchTST [82] Transformer [104] Reformer [51]
Anomaly Transformer [116] Informer [127] Pyraformer [65] Autoformer [114]
Stationformer [69] FEDformer [128]] ETSformer [111] LogTransfomer [57]
TCN [30]
LSTM [41] LSSL [39]

Transformer-based
Anomaly detection
TCN-based
RNN-based

D.2 Training Details

For multi-task settings, all models are jointly trained on multiple tasks following the same training
protocol. To match the size of the largest dataset, samples from each dataset are repeated in every
training epoch. In each inference step, datasets are randomly sampled with equal probability, utilizing
a batch size of 32. Supervised training involves 5 epochs using gradient accumulation for an effective
batch size of 1024, starting with a learning rate of 3.2e-2 and adjusted with a multi-step decayed
schedule. The \; in Ly, are all set to 1 in this work. For self-supervised pre-training, the models are
trained over 10 epochs with an effective batch size of 4096 and an initial learning rate of 6.4e-3, using
a cosine decay schedule. All experiments are conducted using A100-40G GPUs. Each experiment is
conducted with one or two GPUs, and the maximum running time is under 48 hours.

Since all models are jointly trained across multiple tasks, we report the average performance for each
task type. For tasks involving forecasting and imputation, model performance is assessed using Mean
Squared Error (MSE) and Mean Absolute Error (MAE). In classification tasks, accuracy is used as
the primary evaluation metric. For anomaly detection tasks, performance is measured using precision,
recall, and the F1-score.

No task-specific hyper-parameter tuning. UNITS is designed for multi-task settings where tasks
share the same model weights. In UNITS, we do not need to perform any task-specific hyper-
parameter tuning. The baseline methods follow the same training setting as our method to ensure a
fair comparisons.

D.3 Further Information on Pre-training

During the unified pre-training, we introduce two distinct masking schemes: the random masking
scheme and the right masking scheme. The time series sample is initially truncated to a length
randomly selected within the range of 50% to 100% of its original length. Subsequently, in the
random masking scheme, a certain proportion panq of tokens are masked at random positions within
the time dimension. For the right masking scheme, designed to enhance the model’s forecasting
ability, a random proportion pyign, of tokens on the right side of the sample is masked. Both p,,q and
Dright are set to 70%-80%. Each training step randomly utilizes one of these two schemes with equal
probability.

24

D.4 Implementation Details of Baselines

The baseline methods used in this paper are summarized in Table[T3] Unlike UniTS, which can handle
diverse data and tasks within a single model, baseline methods cannot be directly used for unified
training because: 1) To accommodate data with varying numbers of variables, baseline methods
typically use a data-specific input head to project features from the variable count to a fixed number
of embedding dimensions. 2) Similarly, to manage different tasks, such as classification with various
classes and forecasting with different lengths, baseline methods employ task-specific output heads
to transform the features into the appropriate task outputs. Since baseline methods are designed for
single-task training, in their original setting, data/task-specific heads are used for each data and task.
In the multi-task learning setting, to make baseline methods support unified training, we add separate
input heads to project data into a shared embedding space and separate output heads to convert the
shared model output into task-specific outputs. However, using separate input and output heads
makes it hard to generalize to new datasets and tasks. We employ the same fully supervised multi-task
training approach as UniTS. In this setting, model networks are stacked with 3 basic building blocks,
except for GPTATS, which utilizes the prescribed setting of 6 GPT blocks. For both the proposed
method and patch-based baseline approaches, the patch size and stride are fixed at 16. The input
and output heads of baseline methods are duplicated for each task to create data/task-specific heads
tailored for each data source and task. For single-task learning settings, we follow the original settings
of baseline methods and compare results reported in their papers.

E Additional Results: Prompt Learning and Pre-training

We do more analysis on the prompting and pre-training of UNITS. The average performance under
38 datasets with the multi-task setting is reported.

Prompt learning with model scaling. In Table we further explore the capabilities of prompt
learning in the SSL pre-trained UNITS model across different model sizes. As UNITS model size
grows, we observe consistent improvements in performance for both classification and forecasting,
suggesting that larger SSL models contain more robust representations for prompt learning.

Table 14: Enhancing prompt learning capability of pre-trained UNITS through model scaling.
Average performance on 20 forecasting tasks and 18 classification tasks are reported.

Promot Learnin Par Classification Forecasting

P g ' Acct MSE| MAE]
UNITS-SUP x 64 3.41M 81.6 0.439 0.381
UNITS-PMT x 32 1.57M 78.0 0.471 0.388
UNITS-PMT x4 3.41M 79.0 0.460 0.383
UNITS-PMT 96 5.67TM 79.2 0.458 0.382
UNITS-PMT x 128 8.24M 81.2 0.453 0.376

Table 15: Ablation on the number of prompt tokens.

Prompt token Num. AccavgT MSE Avgd MAE 4vg44
No 81.0 0.460 0.391
5 81.5 0.455 0.387
10 81.6 0.439 0.381

Table 16: Ablation on using shared/unshared prompt tokens in UNITS network.

AccavgT MSE Avgd MAE 4044
Unshared prompt tokens 81.6 0.439 0.381
Shared prompt tokens 81.4 0.450 0.387

Effect of prompt tokens. Prompt tokens learn the contextual information related to the given data
source and task types. By default, we use 10 prompt tokens for each task. We present an ablation

25

study on the use of different numbers of prompt tokens in Table[T3] Utilizing prompt tokens leads to
notable improvements in both forecasting and classification tasks. The average classification accuracy
improves from 81.0% to 81.6%, and the average MSE and MAE improve from 0.460 to 0.439 and
0.391 to 0.381, respectively. Employing 10 instead of 5 prompt tokens results in greater gains in
forecasting tasks and a marginal improvement of 0.1% in classification accuracy, indicating that
forecasting tasks benefit more from the contextual information provided by the prompt tokens. We
also evaluate the case where all prompt tokens are shared among tasks in Table [T6] Using shared
prompt tokens across different tasks results in a performance decline, yet this approach still surpasses
the performance of models that do not utilize prompt tokens.

Table 17: Ablation on the pre-training scheme.

UNITS-PMT AccavgT MSE Avgd MAE vl
Unified Pre-training 78.0 0.471 0.388
Without CLS token based reconstruction loss 33.1 0.484 0.393
Without Prompt token based reconstruction loss 76.8 0.967 0.656

Unified pre-training. In Equation[5] the proposed unified mask reconstruction pre-training loss is
detailed, consisting of two components: the mask reconstruction loss associated with prompt tokens
and the mask reconstruction loss related to CLS tokens. Table [I7] presents the results where either the
CLS token-based reconstruction loss or the prompt token-based reconstruction loss is omitted. The
performance of prompt learning is reported. The results highlight the impact of each loss component
on the learning performance.

Specifically, excluding the CLS token-based loss resulted in a significant decline in classification
performance, dropping sharply from 78.0% to 33.1%. This substantial drop underscores the critical
role of the CLS token-based pre-training loss in enabling the model’s classification capabilities. Con-
versely, the removal of the prompt token-based loss adversely affected the forecasting performance.
For instance, the MSE drops from 0.471 to 0.967. This deterioration in performance demonstrates
the importance of prompt token-based pre-training in generative tasks.

Pre-training with scaled numbers of epochs and data sizes. To evaluate the effect of scaling effect
of pre-training, we conduct experiments of pre-training UniTS by varying the size of the pre-training
dataset and the amount of training epochs. As demonstrated in Table[I8] increasing the number of
pre-training epochs improves performance on both forecasting and classification tasks. Similarly,
increasing the size of pre-training dataset improves performance on both forecasting and classification
tasks, as shown in Table[T9]

Table 18: Performance of UniTS under different pre-training epochs, average performance on 20
forecasting and 18 classification are reported.

Pre-training steps 1 epoch 3 epochs 5 epochs 8 epochs 10 epochs
AccavgT (Cls.) 75.1 76.8 78.2 77.0 79.0
MSE 4.4 (Fore.) 0.493 0.479 0.484 0.473 0.460
MAE 4.4 (Fore.) 0.410 0.391 0.389 0.386 0.383

Table 19: Performance of UniTS under different pre-training data sizes, average performance on 20
forecasting and 18 classification are reported. Pre-training data size refers to the proportion of the
total training set used.

Pre-training data size 10% 30% 50% 80% 100%
AccavgT (Cls.) 74.2 76.3 77.6 78.8 79.0
MSE 444 (Fore.) 0.502 0.462 0.483 0.465 0.460
MAE 4.4 (Fore.) 0.417 0.385 0.391 0.384 0.383

Cross-task pre-training. We evaluate the effect of cross-task pre-training by pre-training a model us-
ing our pre-training strategy on either generative tasks (forecasting) or predictive tasks (classification).
Table[20]shows that UniTS, pre-trained solely on forecasting datasets, achieves similar performance
to the model pre-trained on both forecasting and classification data. Despite not encountering any

26

classification datasets during pre-training, it still performs well on classification tasks. When the
model is pre-trained exclusively on classification datasets, performance on both classification and
forecasting tasks drops significantly compared to the model pre-trained on both types of data. Given
that the data amount of forecasting datasets is larger than classification datasets (22920 vs. 5022 iter-
ations per epoch), this suggests that the larger amount of data plays a more crucial role in pre-training
effectiveness than the data type.

Table 20: Cross-task pre-training evaluation on UniTS, average performance on 20 forecasting and
18 classification tasks are reported.

Evaluation data

Pre-training data type Accaug? (Cls.) MSE 4.4 (Fore.) MAE 4.4 (Fore.)
20 forecasting datasets 78.5 0.454 0.379
18 classification datasets 74.1 0.583 0.807
Full 38 datasets 79.0 0.460 0.383

Cross-domain pre-training. We evaluate the effect of cross-domain data pre-training, where the
model is pre-trained on either Weather-domain datasets or Traffic-domain datasets. In Table
compared to joint pre-training on both domains, the performance decreases with single-domain
pre-training, where pre-training is conducted solely on the downstream dataset’s domain, showing the
advantage of joint pre-training. For instance, the MSE on Weather datasets goes from 0.253 to 0.259.
Compared to single-domain pre-training, cross-domain pre-training leads to larger performance
drops, e.g., pre-training on Traffic datasets and then evaluating on Weather datasets results in an
MSE increase from 0.259 to 0.289. Interestingly, pre-training on Weather datasets achieves better
performance across both domains, suggesting that data from certain domains might be more beneficial
for pre-training.

Table 21: Cross-domain pre-training evaluation on UniTS, average performance on 4 Weather or
Traffic dataset domains are reported.

Weather datasets (4 sets) Traffic datasets (4 sets)
Pre-training data MSE 4v4/MAE 44,4/ (Fore.) MSE 4,4/MAE 4.4/ (Fore.)
Weather domain (4 datasets) 0.259/0.287 1.338/0.768
Traffic domain (4 datasets) 0.289/0.314 0.680/0.438
Weather + Traffic domains (8 sets) 0.253/0.282 0.511/0.320

F Additional Results: Ablation Studies of UNITS

We conduct an ablation study to verify the effectiveness of the key designs in UNITS. The average
performance under 38 datasets with the multi-task setting is reported.

Table 22: Ablation on the MHSA in UNITS.
AccavgT MSE Avgd MAE 404l

UNITS-SUP 81.6 0.439 0.381
Without Time MHSA 80.7 0.449 0.380
Without Variable MHSA 80.8 0.444 0.383

Effect of time and variable MHSA. In Table 22] we present an ablation study to assess the impact
of both Time and Variable MHSA on the UNITS model. When the Time MHSA is removed from the
UNITS model, we observe a decrease in performance, where the average accuracy drops to 80.7%,
and the MSE drops to 0.449. Similarly, eliminating the Variable MHSA from the UNITS model
results in diminished performance. This scenario yields a decreased accuracy of 80.8%, a decrease in
MSE to 0.444, and a reduction in MAE to 0.383. These experimental findings highlight the crucial
role that both Time and Variable MHSA play in the efficacy of the UNITS model.

Effect of Dynamic FFN. In Table [23] we present an ablation study on the Dynamic FFN layer in
the UNITS network. The UNITS, which incorporates the Dynamic FFN, achieves the highest per-
formance with an average accuracy of 81.6%, demonstrating effectiveness in handling classification

27

Table 23: Ablation on the MLP layer in UNITS network.

AccavgT MSE Avgd MAE gvgd
UNITS-SUP 81.6 0.439 0.381
Dynamic FFN — MLP 81.3 0.462 0.394
Without Dynamic FFN 80.8 0.465 0.396

tasks. It also shows superior results in terms of MSE and MAE in forecasting tasks, with scores of
0.439 and 0.381 respectively. The model variant where the Dynamic FFN is replaced with a standard
MLP layer exhibits a decrease in performance. The average accuracy dropped to 81.3%, and MSE
and MAE dropped to 0.462 and 0.394, respectively. This variation suggests the effect of Dynamic
FFN for the UNITS. The performance is observed when the Dynamic FFN is completely removed
from the model, highlighting the importance of Dynamic FFN layers in UNITS network.

Table 24: Ablation on the gate module in UNITS network.

AccavgT MSE Avgd MAE 4vgd
UNITS-SUP 81.6 0.439 0.381
Without Gate module 81.1 0.459 0.387

Effect of gate module. In Table[24] we present a comparison of the UNITS model with and without
the inclusion of the gate module. Incorporating the gate module yields consistent enhancements
relative to the baseline model that lacks it. Specifically, the addition of the gate module results in an
increase in classification accuracy, moving from 81.1% to 81.6%. For the forecasting task, the MSE
sees an improvement from 0.459 to 0.439, and the MAE decreases from 0.387 to 0.381. These results
show the effectiveness of the gate module in mitigating task interference by adjusting the scaling of
embedding vectors.

Table 25: Zero-shot multi-task learning on forecasting tasks on 5 out-of-domain data with new
forecasting length and new number of variables. We set shared prompt tokens and GEN tokens for
UNITS. One sample from each dataset is used following [81]].

Var. Pred. UNITS-Zero-shot LLMTime
MSE] Inf. Time = MSE] Inf. Time
Solar 137 64 0.030 6.8 3 0.265 2.0e3
River 1 128 0.456 142 0.832 3.5¢t
Hospital 767 16 1.045 59¢73 1319 2.9¢3
Web Tr. 500 80 1.393 5.9e3 1.482 9.5¢3
Temp. Rain 500 48 11.51 1.6e 1 5.69 5.3e3

Comparison with Transformer. To verify the effectiveness of UNITS structure, we compare the
original Transformer with UNITS. The unified tokenization and co-training strategy are applied to
both models. The results shown in Table 26]indicate that UNITS clearly outperforms the Transformer
in both classification and forecasting tasks, suggesting that merely using a transformer structure is
insufficient for achieving robust multi-task performance on time series datasets.

G Additional Results: UNITS for Zero-Shot Forecasting on New Datasets

Setup. When UNITS is trained with shared prompt and GEN tokens across all forecasting tasks,
it acquires the ability to perform zero-shot forecasting on datasets with new lengths and variable
numbers that were not part of its training domain. We evaluate UNITS in a zero-shot setting on five
new forecasting tasks as referenced in Table [0} These tasks have varying forecasting lengths and
numbers of variables compared to those seen by UNITS during pre-training. We benchmark against
LLMTime [81]], a model designed for zero-shot forecasting using LLMs. Following LLMTime, we
utilize one sample from each dataset to manage the extensive inference costs. We exclude a related
method, Time-LLM [47], from experiments. Time-LLM supports zero-shot learning but requires that
the forecasting length and the number of variables/sensors for zero-shot prediction are the same as
those used for training.

28

Table 26: Comparison between UNITS and Transformer structure. The unified tokenization and
co-training strategy are applied to both models.

Accapg? MSEaugl MAEau.l

Transformer-network 80.2% 0.468 0.397
UNIT S-network 81.6% 0.439 0.381

Table 27: Multi-task learning comparison with existing networks under 20 forecasting tasks and 18
classification tasks. UNITS handles all tasks with a unified model and no task-specific head. While
baseline models have a shared backbone but task-specific input/output heads for each dataset/task.
Bold indicates best-performing model for that dataset while underline is second-best.

CLASSIFICATION UNITS-SUP UNITS-PMT 1TRANSFORMER TIMESNET PATCHTST PYRAFORMER AUTOFORMER GPTA4TS
DATASETS ACCURACYT ACCURACY?T| ACCURACYT ACCURACYT ACCURACYT ACCURACYT ACCURACYT | ACCURACYT
HEARTBEAT 0.639 0.654 0.668 0.727 0.659 0.727 0.717 0.698
JAPANESEVOWELS 0.922 0.903 0.959 0.976 0.941 0.854 0.941 0.946
PEMS-SF 0.832 0.827 0.832 0.775 0.838 0.832 0.792 0.792
SELFREGULATIONSCP2 0.489 0.572 0.489 0.528 0.489 0.567 0.45 0.456
SPOKENARABICDIGITS 0.968 0.955 0.978 0.987 0.975 0.921 0.973 0.975
UWAVEGESTURELIBRARY 0.822 0.853 0.822 0.844 0.819 0.722 0.422 0.819
ECG5000 0.928 0.924 0.933 0.926 0.943 0.914 0.919 0.93
NONINVASIVEFETALECGTHORAX1 0.896 0.808 0.882 0.889 0.865 0.214 0.217 0.897
BLINK 0.976 0.916 0.933 0.876 0.896 0.882 0.631 0.924
FACEDETECTION 0.654 0.58 0.66 0.662 0.639 0.673 0.592 0.661
ELECTRICDEVICES 0.622 0.624 0.573 0.495 0.595 0.654 0.561 0.629
TRACE 0.96 0.99 0.79 0.91 0.77 0.74 0.6 0.96
FOrRDB 0.759 0.78 0.727 0.689 0.614 0.553 0.664 0.777
MOTIONSENSEHAR 0.951 0.958 0.936 0.906 0.758 0.887 0.302 0.962
EMOPAIN 0.797 0.814 0.794 0.78 0.792 0.814 0.699 0.794
CHINATOWN 0.98 0.98 0.974 0.977 0.977 0.274 0.968 0.965
MELBOURNEPEDESTRIAN 0.876 0.839 0.893 0.957 0.804 0.523 0.75 0.94
SHAREPRICEINCREASE 0.618 0.638 0.619 0.65 0.68 0.631 0.615 0.637
BEST COUNT 3/18 7/18 0/18 4/18 3/18 4/18 0/18 2/18
AVERAGE SCORE 0.816 0.812 0.803 0.809 0.781 0.688 0.656 0.820
FULLY SHARED MODEL v v X X X X X X

Results. UNITS considerably surpasses LLMTime across most of the tested datasets, demonstrating
superior performance in handling different forecasting lengths and variable numbers (Table 25). For
example, UNITS achieves a 45.2% improvement in MSE over LLMTime (0.456 vs. 0.832) on River.
Remarkably, UNITS exhibits an inference speed approximately 10° times faster than LLMTime.

H Additional Results: Relation among Prompt Tokens

We calculate the similarity between prompt tokens across datasets, as illustrated in Figure|/| Datasets
within the same class, for instance, FaceDetection and SelfRegulationSCP2, which both consist of
EEG data, demonstrate a higher similarity. While some out-of-domain datasets still exhibit strong
similarities, indicating that they share certain similar requirements.

To compare the difference among tokens before and after training, beyond similarity comparison,
we show UMAP plots generated with the prompt tokens before and after training, in Figure 8| and
Figure[9] Before training, the prompt tokens from all datasets are dispersed. In contrast, the UMAP
of prompt tokens after training reveals that tokens from the same datasets are clustered. However,
some tokens from different datasets remain closely positioned, indicating that data from different
domains share similar information.

I Additional Results: Classification Performance Stratified by Datasets

We present the performance of multi-task classification on each dataset in Table

29

Table 28: Full results of few-shot multi-task learning of block-wise imputation tasks on 6 datasets.

Imputation Mask ECL ETThl ETTh2 ETTml1 ETTm2 Weather Avg Best Shared
Ratio MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE Count
TimesNet-FT 25% 0.245 0.339 0.369 0.403 0.193 0.292 0.442 0.418 0.119 0.229 0.106 0.152 0.246 0.305 0/12 X
50% 0.258 0.350 0.412 0.420 0.211 0.302 0.607 0.485 0.140 0.247 0.125 0.171 0.292 0.329 0/12 X
PatchTST-FT 25% 0.195 0.297 0.315 0.361 0.147 0.251 0.309 0.337 0.092 0.193 0.089 0.122 0.191 0.260 0/12 X
50% 0.230 0.323 0.353 0.382 0.175 0.271 0.442 0.400 0.111 0.214 0.105 0.139 0.236 0.288 0/12 X
{Trans-FT 25% 0.174 0.275 0.301 0.359 0.185 0.293 0.254 0.319 0.113 0.227 0.087 0.127 0.186 0.266 0/12 X
50% 0.203 0.300 0.332 0.376 0.205 0.307 0.372 0.382 0.136 0.252 0.106 0.150 0.226 0.295 0/12 X
UNITS-PMT 25% 0.117 0.231 0.281 0.339 0.177 0.281 0.247 0.308 0.095 0.198 0.075 0.113 0.165 0.245 5/12 v
50% 0.135 0.248 0.323 0.365 0.246 0.331 0.343 0.364 0.131 0.237 0.093 0.139 0.212 0.281 4/12 v
UNITS-FT 25% 0.143 0.255 0.277 0.341 0.194 0.284 0.204 0.281 0.088 0.186 0.074 0.105 0.163 0.242 7/12 v
50% 0.161 0.273 0.313 0.361 0.252 0.322 0.295 0.334 0.119 0.223 0.096 0.135 0.206 0.275 8/12 v

J Additional Results: Direct Multi-step Forecasting on New Forecasting
Lengths

Average inference steps comparison. In Table[6] we present a comparison of the average number
of inference steps required by our direct multi-step inference method and the multi-step sliding
window-based inference approach. Contrary to the direct multi-step inference, which is completed in
a single step, the sliding window-based method necessitates multiple inference steps. Specifically,
for the maximum extra inference length of 384, the sliding window-based approach demands, on
average, 3.66 times more inference steps.

K Additional Results: Benchmarking in the Single-Task Regime

Setup. As we are the first work that focuses on time series multi-task learning with one model, to make
fair comparisons with existing time series methods, we compare them with the single-task setting.
In this setting, for each dataset, one model is independently trained with tuned hyperparameters.
Following existing works [112}67,[14], we tune the following hyperparameters, including number of
channels, patch size, number of layers, learning rate, and dropout ratio. The baseline methods for
time series forecasting, classification, anomaly detection, and imputation, are listed in Table We
following existing works [[112}167]] to use 36 commonly used datasets for forecasting (Table|30), 10

Table 29: Full results of few-shot multi-task learning on 9 forecasting and 6 classification tasks on
out-of-domain datasets. Ratio is the data ratio of the dataset used for training.

Classification (Acc?) 5% 15% 20%

(6 datasets) iTrans-FT UNITS-PMT UNITS—FT\iTrans—FT UNITS-PMT UNITS—FT\iTrans—FT UNITS-PMT UNITS-FT
ECG200 0.780 0.790 0.790 0.810 0.760 0.820 0.810 0.820 0.820
Handwriting 0.054 0.044 0.061 0.098 0.089 0.080 0.118 0.087 0.081
SelfRegulationSCP1 0.928 0.816 0.758 0.679 0.648 0.672 0.771 0.676 0.737
RacketSports 0.375 0.316 0.487 0.546 0.474 0.618 0.546 0.539 0.586
Epilepsy 0.399 0.514 0.522 0413 0.732 0.681 0.500 0.797 0.855
StarLightCurves 0.851 0.862 0.826 0.842 0.869 0.834 0.848 0.895 0.833
Average 0.564 0.557 0.574 0.565 0.595 0.618 0.599 0.636 0.652
Best Count 1/6 1/6 4/6 2/6 2/6 2/6 2/6 2/6 2/6
Forecast 5% 15% 20%

(9 datasets) iTrans-FT UNITS-PMT UNITS-FT iTrans-FT UNITS-PMT UNITS-FT iTrans-FT UNITS-PMT UNITS-FT
MSE MAE MSE MAE MSE MAE|MSE MAE MSE MAE MSE MAE|MSE MAE MSE MAE MSE MAE

ETTh2pgs 0.554 0.500 0.397 0.406 0.414 0.419(0.441 0.440 0.390 0.404 0.400 0.409|0.418 0.426 0.387 0.403 0.396 0.407
ETTh2p192 0.440 0.438 0.385 0.399 0.390 0.401{0.398 0.410 0.390 0.403 0.376 0.393]0.395 0.407 0.394 0.406 0.378 0.395
ETTh2p336 0.478 0.467 0.425 0.434 0.431 0.434(0.436 0.441 0.434 0.436 0.425 0.430{0.431 0.438 0.425 0.435 0.420 0.428
ETTh2p720 0.483 0.480 0.438 0.451 0.431 0.444(0.438 0.453 0.442 0.452 0.427 0.444(0.431 0.449 0.428 0.448 0.424 0.442
RiverFlow pa4 1.141 0.514 1.111 0.504 1.160 0.521|1.067 0.467 1.074 0.489 1.096 0.501|1.056 0.462 1.084 0.494 1.078 0.495
ETTmlpgs 0.504 0.462 0.370 0.397 0.412 0.417|0.423 0.419 0.360 0.392 0.353 0.385|0.408 0.410 0.357 0.391 0.346 0.382
ETTmlp1g2 0.555 0.485 0.416 0.421 0.453 0.434(0.464 0.439 0.402 0.415 0.394 0.406{0.444 0.428 0.398 0.414 0.386 0.401
ETTml p33e 0.567 0.496 0.467 0.451 0.509 0.465(0.492 0.457 0.446 0.441 0.425 0.425[0.471 0.445 0.442 0.439 0.417 0.421
ETTml p720 0.659 0.539 0.565 0.500 0.573 0.499|0.558 0.493 0.529 0.484 0.490 0.460|0.536 0.482 0.527 0.483 0.481 0.454

Average 0.598 0.487 0.508 0.440 0.530 0.448|0.524 0.447 0.496 0.435 0.487 0.428|0.510 0.438 0.494 0.435 0.481 0.425
Best Count 09 09 89 7/9 19 29|19 19 19 1/9 79 79|19 1/9 19 09 79 89

30

Table 30: Full results of the single-task long-term forecasting task where the model is separately
trained on each dataset. The input time series sequence length is set to 96 to ensure fair comparisons.
Baseline results are obtained from [67]).

UniTS-ST iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) [67 (591 (82 [126 [21 [112 [119 [64 [128 169 (114

Models

Metric MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

96 (0.310 0.351|0.334 0.368 [0.355 0.376|0.329 0.367]0.404 0.426|0.364 0.387(0.338 0.375|0.345 0.372|0.418 0.438|0.379 0.419|0.386 0.398|0.505 0.475
192 10.357 0.382]0.377 0.391{0.391 0.392|0.367 0.385|0.450 0.451{0.398 0.404|0.374 0.387|0.380 0.389|0.439 0.450(0.426 0.441|0.459 0.444|0.553 0.496
336 |0.392 0.408|0.426 0.420(0.424 0.415|0.399 0.410(0.532 0.515]0.428 0.425(0.410 0.411|0.413 0.413]0.490 0.485|0.445 0.459/0.495 0.4640.621 0.537
720]0.447 0.439(0.491 0.459|0.487 0.450|0.454 0.439|0.666 0.589|0.487 0.461|0.478 0.450|0.474 0.453|0.595 0.550|0.543 0.490(0.585 0.516|0.671 0.561

ETTml

Avg [0.377 0.395]0.407 0.410]0.414 0.407|0.387 0.400|0.513 0.496/0.419 0.419]0.400 0.406|0.403 0.407|0.485 0.481(0.448 0.452]0.481 0.456|0.588 0.517

96 10.171 0.255|0.180 0.264|0.182 0.265|0.175 0.2590.287 0.366(0.207 0.305|0.187 0.267|0.193 0.292|0.286 0.377|0.203 0.287|0.192 0.274|0.255 0.339
192 10.238 0.298|0.250 0.309[0.246 0.304(0.241 0.302|0.414 0.492|0.290 0.364|0.249 0.309(0.284 0.362|0.399 0.445|0.269 0.328|0.280 0.339|0.281 0.340
336 10.299 0.342(0.311 0.348|0.307 0.342{0.305 0.343|0.597 0.542|0.377 0.422|0.321 0.351]0.369 0.427{0.637 0.5910.325 0.366|0.334 0.361{0.339 0.372
720 {0.393 0.395|0.412 0.407|0.407 0.398|0.402 0.400(1.730 1.042]0.558 0.524|0.408 0.403|0.554 0.522(0.960 0.735]0.421 0.415|0.417 0.413]|0.433 0.432

ETTm2

Avg ‘0.275 0.323‘04288 0.332]0.286 0.327|0.281 0326‘0,757 0.610/0.358 0.404|0.291 0.333|0.350 0.401]0.571 0.537(0.305 0.349|0.306 0.347|0.327 0.371

96 (0.367 0.393|0.386 0.405[0.386 0.395/0.414 0.419]0.423 0.448|0.479 0.464|0.384 0.402(0.386 0.4000.654 0.599|0.376 0.419{0.513 0.491|0.449 0.459
192 |0.404 0.425]0.441 0.436(0.437 0.424|0.460 0.445|0.471 0.474]0.525 0.492|0.436 0.429|0.437 0.432(0.719 0.631]0.420 0.448|0.534 0.504|0.500 0.482
336 {0.405 0.422|0.487 0.458|0.479 0.446|0.501 0.466(0.570 0.546[0.565 0.515(0.491 0.469|0.481 0.459(0.778 0.659|0.459 0.465|0.588 0.535|0.521 0.496
720]0.437 0.454(0.503 0.491{0.481 0.470|0.500 0.488|0.653 0.621|0.594 0.558|0.521 0.500{0.519 0.516[0.836 0.699|0.506 0.507|0.643 0.616|0.514 0.512

ETThl

z
0

‘0.403 0.424‘().454 0.447)0.446 ().434‘0.469 ().454‘0.529 0.522|0.541 0.507|0.458 0.450‘0.456 0,452‘0.747 0.647]0.440 0.460(0.570 0.537|0.496 0.487

96 10.283 0.337|0.297 0.349]0.288 0.338|0.302 0.348|0.745 0.584|0.400 0.440(0.340 0.374|0.333 0.387|0.707 0.621|0.358 0.397|0.476 0.458|0.346 0.388
192 10.367 0.389|0.380 0.400[0.374 0.390(0.388 0.400|0.877 0.656|0.528 0.509|0.402 0.414(0.477 0.476|0.860 0.689|0.429 0.439|0.512 0.493|0.456 0.452
0.404 0.421]0.428 0.432(0.415 0.426|0.426 0.433/1.043 0.731|0.643 0.571|0.452 0.452|0.594 0.541{1.000 0.744|0.496 0.487|0.552 0.551{0.482 0.486
720 |0.411 0.434|0.427 0.445|0.420 0.440|0.431 0.446(1.104 0.763|0.874 0.679|0.462 0.468|0.831 0.657|1.249 0.838|0.463 0.474|0.562 0.560|0.515 0.511

ETTh2
g

z
us

‘0.366 0.395‘0383 0.407)0.374 0.398|0.387 0.407|0.942 0.684|0.611 0.550|0.414 0.427|0.559 0.515]0.954 0.723|0.437 0.449|0.526 0.516|0.450 0.459

96 (0.132 0.228|0.148 0.240(0.201 0.281|0.181 0.270]0.219 0.314]0.237 0.329(0.168 0.272|0.197 0.282]0.247 0.345|0.193 0.308|0.169 0.273|0.201 0.317
192 10.158 0.2520.162 0.25310.201 0.283|0.188 0.274|0.231 0.322]0.236 0.330{0.184 0.289(0.196 0.285|0.257 0.355]0.201 0.315|0.182 0.286|0.222 0.334
0.168 0.264|0.178 0.269(0.215 0.2980.204 0.293|0.246 0.337]0.249 0.344{0.198 0.3000.209 0.301|0.269 0.369|0.214 0.329{0.200 0.304|0.231 0.338
720]0.192 0.287(0.225 0.317]0.257 0.331]0.246 0.324|0.280 0.363]0.284 0.373|0.220 0.320]0.245 0.333|0.299 0.390|0.246 0.355|0.222 0.321]0.254 0.361

ECL
&

z
o

‘0.163 0.258‘0,178 0.270‘0.219 0.298|0.205 0.290]0.244 0.334{0.251 0.344/0.192 0.295(0.212 0.300|0.268 0.365]0.214 0.327|0.193 0.296|0.227 0.338

96 10.416 0.272]0.395 0.268 |0.649 0.389|0.462 0.295/0.522 0.290(0.805 0.493]0.593 0.321]0.650 0.396|0.788 0.499(0.587 0.366|0.612 0.338|0.613 0.388
192 10.436 0.277(0.417 0.276 |0.601 0.366(0.466 0.296/0.530 0.293|0.756 0.474|0.617 0.336(0.598 0.370|0.789 0.505|0.604 0.373|0.613 0.340(0.616 0.382
0.444 0.290]0.433 0.283(0.609 0.369|0.482 0.304{0.558 0.305|0.762 0.477(0.629 0.3360.605 0.373|0.797 0.508|0.621 0.383/0.618 0.328|0.622 0.337
720 10.513 0.316(0.467 0.302|0.647 0.387]0.514 0.322|0.589 0.328]0.719 0.449|0.640 0.350{0.645 0.394|0.841 0.523]0.626 0.382{0.653 0.355]0.660 0.408

Traffic
g

z
a5

‘0452 0.289‘0.428 0.282]0.626 0.378|0.481 0.304|0.550 0.304|0.760 0.473]|0.620 0.336|0.625 0.383]0.804 0.509(0.610 0.376|0.624 0.340|0.628 0.379

96 (0.149 0.198/0.174 0.214|0.192 0.232(0.177 0.218]0.158 0.230{0.202 0.261]0.172 0.220(0.196 0.255|0.221 0.306|0.217 0.296|0.173 0.223]0.266 0.336
192 10.200 0.243|0.221 0.25410.240 0.271(0.225 0.259|0.206 0.277|0.242 0.298]0.219 0.261]0.237 0.296|0.261 0.340|0.276 0.336|0.245 0.285|0.307 0.367
336 {0.257 0.286|0.278 0.296|0.292 0.3070.278 0.297(0.272 0.335]0.287 0.335|0.280 0.306|0.283 0.335(0.309 0.378]0.339 0.380{0.321 0.338/|0.359 0.395
720]0.334 0.338(0.358 0.347|0.364 0.353]0.354 0.348|0.398 0.418]0.351 0.386|0.365 0.359]0.345 0.381|0.377 0.427|0.403 0.428|0.414 0.410]0.419 0.428

Weather

Avg ‘0.235 0.266‘0,258 0.278 ‘0.272 0.291 ‘0.259 0.281/0.259 0.315‘0.271 0.320‘0.259 0.287|0.265 0.317]0.292 0.363|0.309 0.360|0.288 0.314‘0,338 0.382

96 10.188 0.225(0.203 0.237]0.322 0.339|0.234 0.286(0.310 0.331(0.312 0.399|0.250 0.292|0.290 0.378|0.237 0.344(0.242 0.342|0.215 0.249|0.884 0.711
192 10.229 0.258|0.233 0.261(0.359 0.356(0.267 0.310|0.734 0.725|0.339 0.416]0.296 0.318(0.320 0.398|0.280 0.380|0.285 0.380{0.254 0.272|0.834 0.692
336 10.233 0.260(0.248 0.273]0.397 0.369{0.290 0.315|0.750 0.735]0.368 0.430{0.319 0.330{0.353 0.415|0.304 0.389|0.282 0.376{0.290 0.296|0.941 0.723
720 10.249 0.272(0.249 0.275]0.397 0.356{0.289 0.317|0.769 0.765]0.370 0.425|0.338 0.337|0.356 0.413|0.308 0.388]|0.357 0.427|0.285 0.295|0.882 0.717

lar-Energy

G| Ave [0.225 0.254[0.233 0.262(0.369 0.356[0.270 0.307]0.641 0.639]0.347 0.4170.301 0.319]0.330 0.401]0.282 0.375(0.291 0.381/0.261 0.381(0.885 0.711
BestCount| 28 27 | 4 4]0 1[0 o]0 o]0 0|0 o0 o|0 O0]0O 0]O0 0|0 0

datasets for classification(Table[3T)), 4 datasets for imputation (Table[I0), and 5 datasets for anomaly
detection (Table [TT).

Forecasting. We compare the forecasting performance with the forecasting length of 96, 192, 336,
and 720. To make fair comparisons with baseline methods under different look back windows, we
have forecasting results in both fixed and optimal back windows. The full results for forecasting
with a 96 look back window are shown in Table[30} The full results with optimal look back window
ranging from 96 to 512 are shown Table [34]

Classification. Following [112]], we use 10 multivariate datasets from the UEA dataset collection [4].
The full results for classification are shown in Table 311

Imputation. Imputation aims to fill in the missing data points of the time series samples. We
randomly mask data points of the time series samples with mask ratios of 12.5%, 25%, 37.5%, and
50%, and then make the model predict the missing points. The full results of the imputation task are
shown in Table 33

Anomaly detection. Anomaly detection identifies the anomalous data points in the time series
samples. We present the complete results of anomaly detection in Table [32}

31

Table 31: Full results for the single-task classification task. *. in the Transformers indicates the name
of xformer. We report the classification accuracy (%) as the result.

‘Classical methods RNN TCN Transformers MLP Freq.
Datasets / Models -
[DTW XGBoostRocketLSTMLSTNet LSSL TCN Trans. Re. In. Pyra. Auto. Station. FED. ETS. Flow.DLinearLightTS.TimesNetUniTS-ST
[6] [I5] [24] (410 (531 (391 (30! (104] (511 [127] [65] (114] (691 [128] [I11(I13] (1191 [122] [1I2] (Ours)
EthanolConcentration|32.3 43.7 452 32.3 39.9 31.1 289 32.731.931.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 297 35.7 37.6
FaceDetection 529 633 64.7 57.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 70.5
Handwriting 28.6 15.8 58.8 152 25.8 24.6 53.3 32.0 27.432.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 29.7
Heartbeat 71.7 732 75.6 722 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 80.0
JapaneseVowels [94.9 86.5 96.2 79.7 98.1 98.4 98.9 98.7 97.8 98.9 98.4 96.2 99.2 984 959 989 962 962 984 97.8
PEMS-SF 71.1 983 75.1 39.9 86.7 86.1 68.8 82.1 82.7 81.5 83.2 82.7 87.3 809 86.0 83.8 75.1 884 89.6 93.1
SelfRegulationSCP1 |77.7 84.6 90.8 68.9 84.0 90.8 84.6 92.290.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 873 898 O91.8 93.9
SelfRegulationSCP2 |53.9 48.9 53.3 46.6 52.8 52.2 55.6 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 5I.1 57.2 61.1
SpokenArabicDigits |96.3 69.6 71.2 31.9 100.0 100.095.6 98.4 97.0100.099.6100.0 100.0 100.0100.098.8 81.4 100.0 99.0 98.9
UWaveGestureLibrary|90.3 75.9 94.4 41.2 87.8 85.9 88.4 85.6 85.6 85.6 83.4 859 87.5 853 85.0 86.6 82.1 80.3 85.3 87.8
Average Accuracy |67.0 66.0 72.5 48.6 71.8 70.9 70.3 71.9 71.572.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 704 73.6 75.0

Table 32: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall
and F1-score (%) respectively. Fl-score is the harmonic mean of precision and recall.

Datasets SMD MSL SMAP SWaT PSM Avg F11

Metrics Pt Rf FIt| Pt Rf FIf| Pt Rt FI{| Pt R FIf| Pt Rt FIf| B
LSTM [41] |78.52 65.47 71.41|78.04 86.22 81.93]91.06 57.49 70.48|78.06 91.72 84.34169.24 99.53 81.67| 77.97
Transformer [[104](83.58 76.13 79.56|71.57 87.37 78.68|89.37 57.12 69.70|68.84 96.53 80.37(62.75 96.56 76.07| 76.88
LogTrans [57] |83.46 70.13 76.21|73.05 87.37 79.57|89.15 57.59 69.97|68.67 97.32 80.52|63.06 98.00 76.74| 76.60
TCN [30] |84.06 79.07 81.49|75.11 82.44 78.60|86.90 59.23 70.45|76.59 95.71 85.09|54.59 99.77 70.57| 77.24
Reformer [51] {82.58 69.24 75.32|85.51 83.31 84.40(90.91 57.44 70.40|72.50 96.53 82.80(59.93 95.38 73.61| 77.31
Informer [127](86.60 77.23 81.65(81.77 86.48 84.06|90.11 57.13 69.92|70.29 96.75 81.43|64.27 96.33 77.10| 78.83
Anomaly* [116] [88.91 82.23 85.49(79.61 87.37 83.31|91.85 58.11 71.18|72.51 97.32 83.10|68.35 94.72 79.40| 80.50
Pyraformer [65] |85.61 80.61 83.04|83.81 85.93 84.86(92.54 57.71 71.09(87.92 96.00 91.78|71.67 96.02 82.08| 82.57
Autoformer [114]88.06 82.35 85.11|77.27 80.92 79.05/90.40 58.62 71.12|89.85 95.81 92.74|99.08 88.15 93.29| 84.26
LSSL [39] |78.51 65.32 71.31|77.55 88.18 82.53|89.43 53.43 66.90|79.05 93.72 85.76|66.02 92.93 77.20| 76.74
Station. [69] |88.33 81.21 84.62|68.55 89.14 77.50{89.37 59.02 71.09|68.03 96.75 79.88(97.82 96.76 97.29| 82.08
DLinear [119](83.62 71.52 77.10(84.34 85.42 84.88|92.32 55.41 69.26|80.91 95.30 87.52|98.28 89.26 93.55| 82.46
ETSformer [111](87.44 79.23 83.13(85.13 84.93 85.03|92.25 55.75 69.50|90.02 80.36 84.91(99.31 85.28 91.76| 82.87
LightTS [122](87.10 78.42 82.53(82.40 75.78 78.95|92.58 55.27 69.21|91.98 94.72 93.33|98.37 95.97 97.15| 84.23
FEDformer [128](87.95 82.39 85.08|77.14 80.07 78.57|90.47 58.10 70.76|90.17 96.42 93.19|97.31 97.16 97.23| 84.97
TimesNet* [112](87.95 81.54 84.62(89.55 75.29 81.80(90.14 56.56 69.50(90.76 95.35 93.00|98.50 96.29 97.38| 85.26
UniTS-ST Ours |89.32 86.90 88.09(89.91 77.68 83.46|93.37 76.02 83.80(92.37 94.17 93.26|98.62 96.28 97.43| 89.21

For fair comparisons, we follow the settings of [112] to only use reconstruction error for Anomaly

Transformer.

TimesNet are reproduced from the https://github.com/thuml/Time-Series-Library to ensure
fair comparisons.

32

https://github.com/thuml/Time-Series-Library

.| —®— Unified) =
=% Sliding window
a
230
)
[Vp]
[}
g
625
Q
£
220 ‘
o |
g i
<15
1.0 $———O—0—0—0—0—0—0—0—0—9 -
O D > o D ® oA O D O A b
A A MRV SR LG s A O A.

Trained length + A new length

Figure 6: The comparison of average inference steps between our direct multi-step inference and
multi-step sliding window-based inference for zero-shot forecasting on new lengths.

Table 33: Full results for the imputation task. We randomly mask 12.5%, 25%, 37.5% and 50% time
points to compare the model performance under different missing degrees.

UniTS-ST TimesNet ETS. LightTS® DLinear™ FED. Stationary Auto. Pyra. In. LogTrans Re. LSTM TCN LSSL
(Ours) {I12] iy [iv21] [iic)} (4 65] 7 0 En 01 (2]

Mask Ratio MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE|MSE MAE

Models

12.5% {0.015 0.079|0.019 0.092|0.067 0.188(0.075 0.180[0.058 0.162(0.035 0.135|0.026 0.107|0.034 0.124|0.670 0.541|0.047 0.155|0.041 0.141{0.032 0.126/0.974 0.780(0.510 0.493(0.101 0.231
25% 10.017 0.082(0.023 0.101/0.096 0.229|0.093 0.206(0.080 0.193|0.052 0.166|0.032 0.119]0.046 0.144/0.689 0.553|0.063 0.180(0.044 0.144|0.042 0.146|1.032 0.807(0.518 0.5000.106 0.235
37.5% |0.019 0.088(0.029 0.111]0.133 0.271(0.113 0.231{0.103 0.219/0.069 0.191]0.039 0.131]0.057 0.161{0.737 0.581{0.079 0.200|0.052 0.158|0.063 0.182(0.999 0.792/0.516 0.499(0.116 0.246
50% 10.024 0.097(0.036 0.124/0.186 0.323|0.134 0.255(0.132 0.2480.089 0.218|0.047 0.145]0.067 0.174(0.770 0.605|0.093 0.218|0.063 0.173|0.082 0.208/0.952 0.763|0.519 0.496(0.129 0.260

ETTml

Avg ‘0.019 0.087/0.027 0.107|0.120 0.253(0.104 0.218]0.093 0.206(0.062 0.177]0.036 0.126/0.051 0.150|0.717 0.570|0.071 0.188/0.050 0.154|0.055 0.166|0.989 0.786|0.516 0.497(0.113 0.254

12.5% {0.032 0.118]0.057 0.159|0.126 0.263(0.240 0.345/0.151 0.267|0.070 0.190|0.060 0.1650.074 0.182|0.857 0.609|0.114 0.234/0.229 0.330|0.074 0.194{1.265 0.896|0.599 0.554(0.422 0.461
25% 10.036 0.126(0.069 0.178/0.169 0.304(0.265 0.364(0.180 0.2920.106 0.236|0.080 0.189]0.090 0.203|0.829 0.672|0.140 0.262|0.207 0.323|0.102 0.227/1.262 0.883|0.610 0.567(0.412 0.456
37.5% 0.047 0.142|0.084 0.196|0.220 0.347|0.296 0.382|0.215 0.318|0.124 0.258|0.102 0.212(0.109 0.2220.830 0.675|0.174 0.293|0.210 0.328|0.135 0.261{1.200 0.867|0.628 0.577|0.421 0.461
50% 10.060 0.160(0.102 0.215/0.293 0.402(0.334 0.404(0.257 0.347|0.165 0.299|0.133 0.240|0.137 0.248/0.854 0.691|0.215 0.325|0.230 0.348|0.179 0.298|1.174 0.849(0.648 0.5870.443 0.473

ETThl

Av,

3

‘0.043 0.136(0.078 0.187|0.202 0.329(0.284 0.373|0.201 0.306|0.117 0.246|0.094 0.201]|0.103 0.214{0.842 0.682|0.161 0.279]0.219 0.332|0.122 0.245|1.225 0.873|0.621 0.571|0.424 0.481

12.5% {0.031 0.112/0.085 0.202|0.196 0.321(0.102 0.229/0.092 0.214|0.107 0.237|0.093 0.210]0.089 0.210|0.297 0.383|0.218 0.326|0.164 0.296|0.190 0.308/0.277 0.366|0.621 0.620(0.217 0.341
25% 10.035 0.119(0.089 0.206/0.207 0.332(0.121 0.252(0.118 0.2470.120 0.251{0.097 0.214]0.096 0.220|0.294 0.380{0.219 0.326|0.169 0.299|0.197 0.312(0.281 0.369|0.559 0.585(0.219 0.341
37.5% |0.040 0.128(0.094 0.213/0.219 0.3440.141 0.273(0.144 0.276|0.136 0.266|0.102 0.220|0.104 0.229]0.296 0.381|0.222 0.328|0.178 0.305|0.203 0.315(0.275 0.364(0.567 0.5880.223 0.343
50% |0.046 0.138(0.100 0.221/0.235 0.357|0.160 0.293(0.175 0.305|0.158 0.284(0.108 0.228|0.113 0.239|0.299 0.383|0.228 0.331(0.187 0.312]0.210 0.319|0.273 0.361(0.581 0.5970.229 0.347

Electricity

Avg ‘0.038 0.124/0.092 0.210|0.214 0.339(0.131 0.262|0.132 0.260(0.130 0.259]0.100 0.218|0.101 0.225|0.297 0.382|0.222 0.328|0.175 0.303|0.200 0.313]0.277 0.365|0.582 0.597|0.222 0.293

12.5% {0.025 0.041|0.025 0.045|0.057 0.141(0.047 0.101|0.039 0.084(0.041 0.107]0.027 0.0510.026 0.047|0.140 0.220|0.037 0.093|0.037 0.072|0.031 0.076{0.296 0.379|0.176 0.287(0.036 0.095
25% 10.026 0.044(0.029 0.052/0.065 0.155(0.052 0.111{0.048 0.103|0.064 0.163|0.029 0.056|0.030 0.054|0.147 0.229]0.042 0.100{0.038 0.074|0.035 0.082(0.327 0.409|0.187 0.293(0.042 0.104
37.5% 0.027 0.045|0.031 0.057]0.081 0.180/0.058 0.121{0.057 0.117]0.107 0.229(0.033 0.062(0.032 0.060|0.156 0.240(0.049 0.111]0.039 0.0780.040 0.091{0.406 0.463|0.172 0.281|0.047 0.112
50% 10.029 0.049(0.034 0.062/0.102 0.207|0.065 0.133(0.066 0.134/0.183 0.312|0.037 0.068|0.037 0.067|0.164 0.249|0.053 0.114/0.042 0.082|0.046 0.099(0.431 0.483(0.195 0.303|0.054 0.123

‘Weather

| Avg [0.0260.045/0.030 0.054]0.076 0.171]0.055 0.117|0.052 0.110]0.099 0.203(0.032 0.059[0.031 0.057]0.152 0.2350.045 0.104]0.039 0.076[0.038 0.087]0.365 0.434]0.183 0.291/0.045 0.108

BestCount 16 16| 0 0|0 o]o oo ofo ofo ofo ofo oo oflo oo ofo oo ofo o

L. Additional Results: Multi-task versus Single-task Learning

To verify the gap between multi-task and single-task learning under fair comparisons, we conduct
a experiment to train the single-task models using the same hyper-parameters as the multi-task co-
training. As shown in Table[35] multi-task learning achieves stronger performance on both forecasting
and classification tasks. Interestingly, under the same hyper-parameters, some classification models
fail to converge in the single-task setting, whereas the multi-task model does not have this issue,
demonstrating the robustness of multi-task training.

33

Table 34: Full results of the long-term forecasting task where model is separately trained on each
dataset. The input time series sequence length is set ranging from 96 to 512 to ensure fair comparisons.
Baseline results are obtained from their original papers. "Extra Training Data" indicates whether
the model uses training data beyond just time series data. "Multi-task Support" refers to whether
the model can handle multiple tasks or is focused solely on a single task. Gray color represents
LLM-reprogrammed models that reprogram pre-trained LLMs to time series domain and needs
dataset/task-specific modules. For the best count, we only consider the purely time series models.

Models UniTS-ST MOMENT TSMixer TEMPO TIME-LLM LLMA4TS TEST GPT4TS
‘ (Ours) (361 {14 (0] 2] (2] o7 129
Metric MSE MAE | MSE MAE | MSE MAE || MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
_ 96 0.278 0.338 | 0.293 0.349 | 0.285 0.339 || 0.438 0.424 | 0.272 0.334 | 0.360 0.388 | 0.293 0.346 | 0.292 0.346
] 192 0.319 0.364 - - 0.327 0.365 || 0.461 0.432 | 0.310 0.358 | 0.386 0.401 | 0.332 0.369 | 0.332 0.372
[t: 336 0.354 0.386 - - 0.356 0.382 || 0.515 0.467 | 0.352 0.384 | 0.415 0.417 [0.368 0.392 | 0.366 0.394
m 720 0.397 0.416 | 0.405 0.416 [0.419 0.414 || 0.591 0.509 | 0.383 0.411 | 0470 0.445]0.418 0420|0417 0.421
| Avg [0.337 0.376 | 0.349 0.383 | 0.347 0.375 || 0.501 0.458] 0.329 0.372] 0408 0.413]0.353 0.382] 0.352 0.383
96 0.167 0.258 | 0.181 0.269 | 0.163 0.252 || 0.185 0.267 | 0.161 0.253 | 0.184 0.265 - - 0.173 0.262
‘E 192 0.222 0.295 - - 0.216 0.290 || 0.243 0.304 | 0.219 0.293] 0.240 0.301 - - 0.229 0.301
E 336 0.270 0.325 - - 0.268 0.324 || 0.309 0.345 | 0.271 0.329 | 0.294 0.337 - - 0.286 0.341
m 720 0.358 0.380 | 0.366 0.388 | 0.420 0.422 || 0.386 0.395| 0.352 0.379 | 0.386 0.393 - - 0.378 0.401
| Avg [0.254 0.315]0.274 0.329 | 0.267 0.322 || 0.281 0.328] 0.251 0.314]0.276 0324 | - - 10284 0.339
96 0.360 0.396 | 0.387 0.410 | 0.361 0.392 || 0.400 0.406 | 0.362 0.392 | 0.371 0.394] 0.372 0.400 | 0.376 0.397
= 192 0.401 0.416 - - 0.404 0418 || 0.426 0.421 | 0.398 0.418 [0403 0.412 | 0414 0422|0416 0418
E 336 0.425 0.439 - - 0.420 0.431 || 0.441 0.430 | 0.430 0.427 | 0.420 0.422 | 0.422 0.437 | 0.442 0.433
m 720 0.434 0.454 | 0.454 0.472 | 0.463 0.472 || 0.443 0451|0442 04570422 0444|0447 0467|0477 0456
\ Avg | 0.405 0.426 | 0.421 0.441 | 0412 0.428 || 0.428 0.427 | 0.408 0.424 | 0.404 0418 | 0414 0.431]0.428 0426
96 0.277 0.346 | 0.288 0.345 | 0.274 0.341 || 0.301 0.353 | 0.268 0.328 | 0.269 0.332] 0.275 0.338 | 0.285 0.342
g 192 0.325 0.382 - - 0.339 0.385 | 0.355 0.389 | 0.329 0.375(0.328 0.377 | 0.340 0.379 | 0.354 0.389
E 336 0.347 0.398 - - 0.361 0.406 || 0.379 0.408 | 0.368 0.409 | 0.353 0.396 | 0.329 0.381 | 0.373 0.407
m 720 0.373 0.420 | 0.403 0.439 | 0.445 0.470 || 0.409 0.440 | 0.372 0.420 | 0.383 0.425] 0.381 0.423 | 0.406 0.441
| Avg [0.331 0.387 | 0.346 0.392 | 0.355 0.401 || 0.361 0.398] 0.334 0.383] 0.333 0.383] 0.331 0.380 | 0.355 0.395
96 0.130 0.224 | 0.138 0.242 | 0.131 0.229 || 0.178 0.276 | 0.131 0.224 | 0.128 0.223] 0.132 0.223 | 0.139 0.238
- 192 0.147 0.242 - - 0.151 0.246 || 0.198 0.293 | 0.152 0.241 | 0.146 0.240 | 0.158 0.241 | 0.153 0.251
B 336 0.160 0.260 - - 0.161 0.261 || 0.209 0.309 | 0.160 0.248 | 0.163 0.258 [0.163 0.260 | 0.169 0.266
720 0.188 0.284 | 0.211 0.305 | 0.197 0.293 || 0.279 0.355| 0.192 0.298 | 0.200 0.292 | 0.199 0.291 | 0.206 0.297
| Avg [0.156 0.253 | 0.175 0.274 | 0.160 0.257 || 0.216 0.308 | 0.159 0.253 | 0.159 0.253] 0.163 0.253] 0.167 0.263
96 0.370 0.255 | 0.391 0.282 | 0.376 0.264 || 0.476 0.343 | 0.362 0.248 | 0.372 0.259 | 0.407 0.282 | 0.388 0.282
2 192 0.390 0.263 - - 0.397 0.277 || 0.496 0.3 0.374 0.247 | 0.391 0.265 | 0.423 0.287 | 0.407 0.290
E 336 0415 0.268 - - 0.413 0.290 || 0.503 0.356 | 0.385 0.271 | 0.405 0.275 | 0.430 0.296 | 0.412 0.294
= 720 0.461 0.326 | 0450 0.310 | 0.444 0.306 || 0.538 0.376 | 0.430 0.288 | 0.437 0.292 | 0.463 0.315]0.450 0.312
| Avg [0.409 0.278 | 0.421 0.296 | 0.408 0.284 || 0.503 0.358 | 0.388 0.264 | 0.401 0.273] 0.431 0.295]0.414 0.295
. 96 0.140 0.192 | 0.154 0.209 | 0.145 0.198 || 0.211 0.254 | 0.147 0201 | 0.147 0.196 | 0.150 0.202 | 0.162 0.212
2 192 0.185 0.237 - - 0.191 0.242 || 0.254 0.298 | 0.189 0.234 | 0.191 0.238 [0.198 0.246 | 0.204 0.248
3 336 0.234 0.278 - - 0.242 0280 || 0.292 0.332 | 0.262 0.279 | 0.241 0.277 | 0.245 0.286 | 0.254 0.286
= 720 0.306 0.330 | 0.315 0.336 | 0.320 0.336 || 0.370 0.379 | 0.304 0316 0.313 0.329 | 0.324 0.342 | 0.326 0.337
| Avg [0.216 0.259 | 0.235 0.273 | 0.225 0.264 || 0.282 0.316] 0.226 0.258 | 0.223 0.260 | 0.229 0.269 | 0.237 0.271
Best Count | 21728 19/28 | 0/28 0/28 | 7/28 9128 || - -] - -] - -] - -
Extra Training Data No No No Yes Yes Yes Yes Yes
Multi-task Support Yes No No No No No No No

Table 35: Compare UNITS trained by multi-task learning with that trained by single-task learning
under same hyper-parameters.

UNITS Acc 4,47 (Classification) MSE 4,4 (Forecasting)
Multi-task 81.6% 0.439
Single-task 65.3% 0.464

M Limitations and Future Directions

The datasets collected by this work do not yet cover all available time series datasets, such as some of
the univariate datasets in UCR dataset collections and the more physiologic time series signals
from PhysioNet [34]]. We will explore using larger dataset collections to further improve UNITS.

UNITS primarily aims to unify predictive and generative tasks within a single multi-task model. We
demonstrate this by showcasing its adaptability to new data and tasks through prompt learning and
few-shot learning. While adapting to new time series data differs fundamentally from generalizing to
entirely new data, we will further explore UNITS’s generalization ability for zero-shot learning.

34

-

x

©

Y

(=}

[
5 3 3

n o~
[= 2 W o 5
© @ w ®© 9 < 5
@] 27 = (207 <

S ° [9 cco r ¢
e [22 & o590V o >
< a 38 9 553 s 2
28 cCU o3>0 5 Omyg c 0
o LEESP2I88 239 Jco
ca wS32ogsa> 298 c o0
S9 = -!mmgﬁtcgmgxogbwmoﬂ->
unSo1E ESS8085850CcE3E0 0PSSO0
z8 e0F TR 008280658 GOE505=
ZURUWaFa0=s2T8huzalnukEesLnD

NN5 1.0
Exchange
SharePricelncrease
EC|

0.8

Chinatown
MelbournePedestrian
0.6
Heartbeat
JapaneseVowels
SpokenArabicDigits
ECG5000
NonlnvasiveFetalECGThorax1 0.4
Blink
FaceDetection
SelfRegulationSCP2
ElectricDevices 0.2

MotionSenseHAR
EMOPain
UWaveGestureLibrary

> > c >
$ £ 9 2 & 2 ¢ o 2 g
c 2 2 £ £ T 3 5 9 £2
g & o O &% 3 o w 2 5%
= C Q
S g eEF < ® T <
L g o = ()]
he]
oy
fim]

Figure 7: The similarity of prompt tokens among datasets.

N Impact Statement

This paper focuses on analyzing time series sequences from various domains and introduces a versatile
machine-learning approach designed for this purpose. While our research has numerous potential
societal impacts, we believe none require specific emphasis in this context.

35

UMAP projection of prompt tokens before training.

L L[]
11 ° 3
° 0| © O 0 ° o o
o ° °© °
e
°
° e o
¢ °
- e) ° °
o e o o o 3
° o o LIS o
10 °© e o O
e O () o
° e o o °
o® ° O © 0 ® ° °
[} ° © ° o
] e o o o
° o
<] °®
o 9ees| = o e 5
t [} ° e) °
9 o °© o ° ° 5 o
e © °)] ° ° o [°
=] o] o) ° =]
[° o
° d o ° 4 o
© ° ° °
° = ° °
° o o. ° o o ©
o °
o °
8 5 o o @
o o °
°
o ° o®
o ° o
°
® o ..
° ° o
e
7 °
-7 -6 -5 -4 -3

Figure 8: UMAP of untrained prompt tokens in UNITS. This plot illustrates that there is no significant

organization (clustering) of prompt tokens prior to UNITS training.

UMAP projection of prompt tokens after training.

o® o | 0° 5
°
12 ° 0 Osgq % o °
o o ° ° o o
o & ¢ ° °
° ° ° [}
° °
o © °
11 ¢ e o . 2 o %o
(=}
Y4 ° © ©e ° °
° ° o0 o . % ° o o
°
° = o 0% o
o e g ® % ° 5 © og
° o °
° K °®
e o® o ° o
9 S ° %o
° ° o
°
°
°
® o o
8 ° oo
o e g, © .
e © ©
o ° a o
o ° = ©e
7 e} ® g «® °
= % o o oo
o ° © o g °
© o % 05 o
6
15 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Figure 9: UMAP of trained prompt tokens in UNITS. Unlike Figure above, this plot illustrates the
meaningful organization (clustering) of prompt tokens by dataset domain category when trained by

UNITS.

36

Data Identifier
Heartbeat
ILI
Trace
Exchange
SharePricelncrease
MotionSenseHAR
SpokenArabicDigits
Weather
Chinatown
Blink
SelfRegulationSCP2
ElectricDevices
ECG5000
Traffic
ECL
NN5
PEMS-SF
NonlinvasiveFetalECGThorax1
FaceDetection
EMOPain
JapaneseVowels
ETThl
MelbournePedestrian
UWaveGestureLibrary
FordB

Data Identifier
UWaveGestureLibrary
Blink
Chinatown
SelfRegulationSCP2
Weather
ETThl
ECG5000
Trace
ElectricDevices
FordB
EMOPain
NonlinvasiveFetalECGThorax1
JapaneseVowels
PEMS-SF
Heartbeat
SharePricelncrease
MelbournePedestrian
MotionSenseHAR
FaceDetection
1Ll
NN5
Traffic
Exchange
ECL
SpokenArabicDigits

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction cover the contributions and scope of the paper
regarding building a unified time-series model.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In Section[M] we discuss the limitations and future work regarding the size of
dataset collections and the exploration of more advanced network architectures.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

37

Answer: [NA]
Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details for experiment settings in Sec-
tion [5] Section and Section [K] We also provide the source code and datasets at
https://github.com/mims-harvard/UniTs.

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

38

https://github.com/mims-harvard/UniTS

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the source code and datasets at https://github.com/
mims-harvard/UniTS. Instructions for downloading data and running experiments are
provided inside."

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the details for training and test settings in Section 5] Section|D]
and Section K] Full details are shown in the provided code.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We use a fixed seed in experiments to maintain low statistical variance.
Additionally, we conduct experiments on diverse datasets to ensure the statistical significance
of the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

39

https://github.com/mims-harvard/UniTS
https://github.com/mims-harvard/UniTS
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the computer resources we used in Section
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics and adhere to it.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts in Section|[N]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

40

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use open source datasets and codes based on their licenses. Most baselines

are released under mit lisxxx. We use opsource datasets preprocessed xxx we did not crxx
build new dataset in this paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

41

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

42

paperswithcode.com/datasets

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

43

	Introduction
	Related Work
	Problem Formulation
	UniTS Model
	Prompting UniTS with Unified Time Series Data Tokens
	Unified Network Architecture in UniTS
	UniTS Model Training

	Experiments
	Benchmarking UniTS on Single-Task Learning
	Benchmarking UniTS for Multi-Task Learning
	UniTS for Direct Multi-Step Forecasting
	UniTS for Few-Shot Learning on New Datasets and Tasks

	Conclusion
	Extended Related Work
	Datasets
	Further information on UniTS
	All learning settings supported by UniTS
	Generalizing Task Tokens to Various Tasks
	Implementation of UniTS Network Architecture

	Implementation Details
	Model Details
	Training Details
	Further Information on Pre-training
	Implementation Details of Baselines

	Additional Results: Prompt Learning and Pre-training
	Additional Results: Ablation Studies of UniTS
	Additional Results: UniTS for Zero-Shot Forecasting on New Datasets
	Additional Results: Relation among Prompt Tokens
	Additional Results: Classification Performance Stratified by Datasets
	Additional Results: Direct Multi-step Forecasting on New Forecasting Lengths
	Additional Results: Benchmarking in the Single-Task Regime
	Additional Results: Multi-task versus Single-task Learning
	Limitations and Future Directions
	Impact Statement

