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Abstract

Manifold clustering is an important problem in motion and video segmentation,
natural image clustering, and other applications where high-dimensional data
lie on multiple, low-dimensional, nonlinear manifolds. While current state-of-
the-art methods on large-scale datasets such as CIFAR provide good empirical
performance, they do not have any proof of theoretical correctness. In this work,
we propose a method that clusters data belonging to a union of nonlinear manifolds.
Furthermore, for a given input data sample y belonging to the lth manifold Ml, we
provide geometric conditions that guarantee a manifold-preserving representation
of y can be recovered from the solution to the proposed model. The geometric
conditions require that (i) Ml is well-sampled in the neighborhood of y, with the
sampling density given as a function of the curvature, and (ii) Ml is sufficiently
separated from the other manifolds. In addition to providing proof of correctness
in this setting, a numerical comparison with state-of-the-art methods on CIFAR
datasets shows that our method performs competitively although marginally worse
than methods without theoretical guarantees.

1 Introduction

Manifold clustering is a fundamental problem in data science, in which one seeks to cluster data
lying close to a union of low-dimensional manifolds. It has a vast number of applications, such as
clustering i) image pixels [1–3], ii) video frames [4, 5], iii) images of faces [6], hand-written digits [7]
or other natural objects [8], iv) rigid-body motions [9], v) human actions [10–12], and vi) searching
policies for robots [13], to name a few.

Over the past two decades, there has been a considerable amount of work on subspace clustering,
the special case where each manifold is a linear or affine subspace. A key to the success of many of
these works can be attributed to the idea of self-expressiveness [14]: one can write a data point as
linear (or affine) combinations of other points, i.e., given a data point y and matrix of data points X ,
it holds that y = Xc for some vector c. The observation that the support of the sparsest such c should
correspond to data points in the same subspace as y prompted the study of the optimization problem

min
c

r(c) +
λ

2
∥e∥22 subject to (s.t.) e = y −Xc, (SC)

where r(·) is a regularizer on c (e.g., ∥ · ∥1 to promote sparsity [6]) and λ > 0 is a parameter that
balances the two terms in the objective. By solving an instance of (SC) for each point in the dataset,
one obtains one coefficient vector c per point, and the matrix of all coefficients for all points can be
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used to build a similarity graph of the points and run spectral clustering to obtain a clustering of the
data. This has spurred a fruitful line of research, leading to various formulations based on different
regularizers [6, 14–20], efficient algorithms [18, 21, 22], and theoretical guarantees on c having the
correct support [23–32].

While many interesting datasets (nearly) satisfy the linear or affine subspace assumption, there are a
variety of tasks with associated datasets that grossly violate it. For example, natural image datasets
such as CIFAR [33] and ImageNet [34] cannot be well modeled by low-dimensional subspaces.
Instead, it is more natural to assume that each cluster is modeled by a smooth low-dimensional non-
linear manifold, a more general case of manifold clustering. Notably, this is much more challenging
than subspace clustering, as the global linear relationship among points in each subspace is absent.

Although a few nonlinear manifold clustering methods have achieved high clustering accuracy on
large-scale datasets, they lack a theoretical justification. For example, the work in [35–53] aims to
learn an embedding (or kernel) via neural networks with subspace clustering style loss functions
on the embedded data. While these methods have progressively improved the state-of-the-art in
clustering performance, with the most recent ones achieving over 89% accuracy on CIFAR-10 [54–
56], little is theoretically understood about why these methods work. In fact, the work of [57] argues
the opposite, that some of these methods are provably ill-formulated and learn trivial embeddings *.

The current paper provides an approach that is both theoretically grounded and empirically tested on
modern large-scale datasets. An interesting method that motivates us is sparse manifold clustering
and embedding (SMCE) [58]. It views a local neighborhood of a manifold approximately as a low-
dimensional affine subspace, and solves a modified version of (SC) that reweights data and adds an
affine constraint 1T c = 1. Despite its effectiveness on simpler datasets such as Extended Yale-B [59],
COIL20 [60], and MNIST [7] as observed by [61], so far there is no theoretical understanding of
when this method will succeed, nor has it been applied to large-scale datasets.

Nevertheless, the method SMCE inspires our work. A major difficulty in providing theoretical
guarantees for SMCE is to deal with the affine constraint. This motivates us to relax the constraint as
a penalization, leading to the following model based on the self-expressiveness of the input sample y:

min
c

∥Wc∥1 +
λ

2
·
[
∥e∥22 + η · (1− 1T c)2

]
s.t. e = y −Xc, (1.1)

where W is a diagonal matrix with j-th diagonal entry wj an increasing function of the Euclidean
distance between y and data sample xj . The regularizer ∥Wc∥1 was adopted from SMCE to promote
sparse solutions with support determined by “close” data points. Comparing (1.1) with (SC), we
see two differences: (i) (1.1) replaces r(c) with a new regularizer that is a function of c and W ,
and (ii) (1.1) penalizes violation of the constraint 1T c = 1 in the objective by introducing the term
(1− 1T c)2. Thus, as η goes to infinity, the data sample will be represented by an affine combination
of input data samples. It is then natural to ask the following question:
Question 1. Can we provide geometric conditions based on the input data samples and structure of
the underlying manifolds that ensure that every optimal solution to (1.1) is manifold preserving, i.e.,
the non-zero entries of an optimal solution c correspond to data from the same manifold as y?

1.1 Contributions

In this paper, we propose a model that generates an approximately affine representation of an input
data sample and provide an answer to Question 1. Our contributions are summarized below.

• Formulation: We propose to perform manifold clustering via the convex optimization problem (1.1),
which is based on a self-expressiveness property. Notably, the proposed formulation can be
efficiently solved using a fast active-set-based method. We then construct an affinity matrix based
on the solutions to (1.1), and then use spectral clustering to cluster the data.

• Theory: Using our new formulation, we provide an answer to Question 1 by giving theoretical
guarantees for any optimal solution of (1.1) to be manifold preserving (see Definition 1). The
results depend on the curvature of the manifold at y, the relative location of the data samples in
the neighborhood of y, i.e., the distribution of the sample in the neighborhood, and the separation
between the samples from other manifolds and the neighborhood of y.

*Accuracy and running time of methods with theoretical guarantees of correctness have been reported on only
datasets with a small number of samples or clusters, or low ambient dimension; see Appendix C for a review.
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• Experiments: We compare the performance of the proposed method with state-of-the-art alternatives
on CIFAR-10,-20 and -100 datasets. The proposed method performs consistently better than
subspace clustering methods, and only marginally worse than methods based on deep networks.

1.2 Notations

For l = 1, . . . , L, we let Ml denote a nonlinear manifold in RD with intrinsic dimension dl ≪ D.
We define M = ∪L

l=1Ml to be the union of manifolds. Let N data samples be generated from
M, which we represent as the columns of X = [x1, . . . , xN ] ∈ RD×N . Additionally, let y be a
new sample generated from the union of manifolds M. Without loss of generality, we assume that
y ∈ M1. Furthermore, for l = 1, . . . , L, let Ml denote the set of generated input data samples that
lie on Ml, and define M = ∪L

l=1Ml to be the set of all N data samples. For a given subspace S , we
let PS(x) denote the orthogonal projection of x onto the subspace S.

Outline. In Section 2, we introduce our proposed model, define key quantities used in the analysis,
and provide theoretical results for the proposed model. In Section 3, we perform experiments on
synthetic data aimed to improve our understanding of the theoretical results, followed by a comparison
with other existing methods on real data. We conclude the paper in Section 4.

2 Proposed Model and Theoretical Analysis

The model (1.1) we study is obtained by penalizing the affine constraint 1T c = 1 in SMCE [58] with
penalty parameter η. The penalty term in the model (1.1) is equivalent to homogenizing the data
samples with homogenization constant

√
η. Thus, we we propose to study the equivalent problem

min
c

∥Wc∥1 +
λ

2
∥e∥22 s.t. e = y −Xc (WMC)

where λ > 0, W is a diagonal matrix with positive entries that depend on the Euclidean distances
between y and the input data samples, X ∈ R(D+1)×N is the matrix whose j-th column, xj , is the
homogenized data sample (xT

j ,
√
η)T with η > 0 a chosen constant, and y := (yT

√
η)T . One could

define wj := Wjj = ∥xj − y∥2/(
∑

k ∥xk − y∥2), although other reasonable choices are possible.

2.1 Definitions and assumptions

In this section, we state our assumptions and define key quantities used in the theoretical results. Our
theoretical analysis provides an answer to Question 1, i.e., we provide conditions under which the
non-zero entries of a solution c∗ of (WMC) correspond to data samples from the same manifold as y.
If c satisfies this property, it is called a manifold preserving solution, as we now define.

Definition 1 (Manifold preserving). For the data sample y ∈ M1, we say that the optimal solution
c∗ to (WMC) is manifold preserving if and only if c∗j = 0 for all xj /∈ M1.

If one considers solving N instances of problem (WMC) (each instance is defined by replacing y with
xj , and removing xj from X), then the N solutions may be used to define a similarity graph. If the
solution to each instance is manifold preserving, then the similarity graph will only have intra-cluster
connections (no inter-cluster/false connections). Consequently, it would be expected that applying
spectral clustering to such a graph will result in correct clustering of the data.

We now introduce key quantities and assumptions required to prove the results in Sections 2.2 and 2.3,
i.e., to derive conditions under which any optimal solution c∗ to (WMC) is manifold preserving.

Assumption 1. We assume that each manifold is smooth and the input data samples generated on
each manifold are noiseless. Furthermore, we assume that at least dl + 2 samples are generated on
each manifold Ml, where we recall that dl is the intrinsic dimension of manifold Ml.

Definition 2 (Set of nearest neighbors N). For the data sample y ∈ M1, define B to be the D-
dimensional ball of smallest radius centered at y such that it contains d1 + 1 points from M1, where
d1 is the dimension of manifold M1. Define N to be the set of all data samples in B excluding y,
and note that N may contain samples from both M1 and ∪L

l=2 Ml.
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Definition 3 (Nearest affine subspace S). For the data sample y ∈ M1 and N in Definition 2, we
define the nearest affine subspace, S, as the affine subspace generated by the set N ∩M1, i.e.,

S := aff({xj : xj ∈ N ∩M1}). (2.1)

Furthermore, we define S := span{xj : xj ∈ N ∩ M1} as the linear subspace spanned by the
homogenized data samples from the set N ∩M1.

Assumption 2. For the affine subspace S defined in Definition 3, we assume that dim(S) = d1.
Equivalently, we assume that dim(S) = d1 + 1.

Figure 1: The affine space S approxi-
mates the tangent to the 1-dimensional
manifold M1 at y. Observe that
{xi}4j=1 ⊂ N and that {x1, x2} ⊂ M1.

The affine subspace S is spanned by the d1 + 1 points
nearest to y on the manifold M1 (see Figure 1 for an
illustration when M1 is one-dimensional). We can view
S as an approximation of the tangent space to M1 at y.

We now define the dual of (WMC) since our analysis
requires knowledge of the dual variables.

Definition 4 (Weighted ℓ1 norm and its dual). The dual
norm of the weighted ℓ1 norm ∥c∥1,W := ∥Wc∥1 is

∥c∥∞,W−1 := max
∥z∥1,W≤1

cT z = max
j∈[N ]

|cj |
wj

. (2.2)

We can write the dual of (WMC) as

max
ν∈RD+1

⟨y, ν⟩ − 1
2λ∥ν∥

2
2 s.t. ∥XT

ν∥∞,W−1 ≤ 1.

(2.3)
The constraint in (2.3) can be equivalently written as

|⟨xj , ν⟩| ≤ wj for all 1 ≤ j ≤ N. (2.4)

We now define two more quantities (Definitions 5 and (6)) that appear in our main results (see
Lemma 1 and Lemma 3). Remark 1 also gives additional insight to these quantities.

Definition 5 (Dual direction). For the data sample y ∈ M1, define XS as the matrix with columns
that span the linear subspace S in Definition 3, i.e., XS = [xj ]xj∈N∩M1

. Define the reduced problem

min
c

∥c∥1,W + λ
2 ∥y −XSc∥

2
2, (2.5)

and its corresponding dual

max
ν

⟨y, ν⟩ − 1
2λ∥ν∥

2
2 s.t. ∥XT

Sν∥∞,W−1 ≤ 1. (2.6)

Then, we define the dual direction ν∗ as the unique optimal solution to (2.6).

The dual direction ν∗ is used to define the separation between the manifold M and other manifolds.
We elaborate on this in Remark 1.

Definition 6 (Inradius r(Q
W

S )). For the data sample y ∈ M1, define

Q
W

S = conv
{
± xj

wj
: xj ∈ N ∩M1

}
. (2.7)

We define r(Q
W

S ) as the inradius of the symmetric convex body Q
W

S , i.e., the radius of the largest
Euclidean ball contained in Q

W

S . For simplicity, we use the notation, rW = r(Q
W

S ).

It follows from Definition 6 that the inradius rW increases as {wj} decrease. Since {wj} are
proportional to the distances between y and the d1 + 1 points closest to y in the set M1, the inradius
increases when more samples are generated from M1 near y (see Remark 1 for more details).
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2.2 Manifold-preserving: general geometric conditions

Our first theoretical result provides geometric conditions that ensure that an optimal solution
of (WMC), defined for a given input data sample y, is manifold preserving (see Definition 1).
Lemma 1. For y ∈ M1, input data X , and λ > 0, define the model (WMC) and let Assumptions 1
and 2 hold. Let S and S be defined as in Definition 3, and ν∗ and rW be as given in Definitions 5
and 6, respectively. Let dist(y,S) be the Euclidean distance between y and subspace S, and define

γW = min
xk∈M\M1

wkr
W − |⟨xk,PS(ν∗)⟩|

∥PS(ν∗)∥2

∥xk∥2
.

The following statements hold.

(a) If
γW > 0 and (2.8)

dist(y,S) < ∥y∥2
γW

1 + γW
, (2.9)

then the interval (λl, λu) :=
(

1
rW (∥y∥2−dist(y,S))

, γW

rW dist(y,S)

)
is well defined and nonempty.

(b) If λ ∈ (λl, λu), then every optimal solution to (WMC) is manifold preserving and nonzero.

To help the reader better under the inequalities in (2.8) and (2.9), we give the following remark.
Remark 1. For the d1-dimensional manifold M1, conditions (2.8) and (2.9) depend on the following:

1. Inradius rW : rW (see Definition 6) provides information of the distribution of the d1 + 1 closest
data samples to y on the manifold M1, i.e., the samples belonging to the set M1 ∩ N. The
inequalities in (2.8) and (2.9) are more easily satisfied if rW increases. From the definition of the
inradius rW , it is clear that rW increases when the samples in the set M1∩N are more uniformly
distributed. Furthermore, suppose we generate more samples from the manifold M1 near y. Then,
the distances of the d1 + 1 samples in the set M1 ∩N from y will decrease, resulting in a larger
inradius. Thus, rW increases when either the number of samples generated from the manifold
M1 near y increases or the samples in the set M1 ∩N are well-distributed.

2. Inner product |⟨xk,PS(ν
∗)⟩|: For each xk ∈ M \M1, the inner product defines the separation

between xk and the subspace S. If the separation between each point xk ∈ M \ M1 and S
increases, the inner product decreases. From the definition of γW , it is clear that the inequalities
in (2.8) and (2.9) are more easily satisfied when the separation increases.

Part (a) of Lemma 1 provides conditions (based on the separation of samples belonging to other
manifolds from S , as well as the distribution of the input data samples in the neighborhood of y) for
the interval (λl, λu) to be nonempty. Note that λl is a function of y and X while λu is a function
y,X, and λ since γW depends on ν∗, which is an optimal solution to (2.6) with parameter λ.

Part (b) of Lemma 1 states that if the hyperparameter λ satisfies λl < λ < λu, then every solution
to (WMC) is manifold preserving and nonzero. While we can choose λ > λl based on knowledge of
(y,X), to explicitly compute λ satisfying λ < λu (when such a value exists) requires defining λu

as a function of λ. Although Lemma 1 does not provide this relationship, numerical experiments in
Section 3.1 on randomly generated data clarify how λl and λu change as a function of (y,X) and λ.

Interestingly, a geometric result in [62] for a linear subspace model can be recovered from Lemma 1.
Corollary 1 (Special case of (WMC)). For y ∈ M1, input data X , and λ > 0, define the
model (WMC) with W = I . Assume that ∥y∥2 = ∥xj∥2 = 1 for each data sample xj , and
that Assumptions 1 and (2) hold. In addition to the quantities defined in Lemma 1, define

µ = max
xk∈M\M1

|⟨xk,PS(ν
∗)⟩|

∥PS(ν
∗)∥2

,

and let r = rW ≡ rI since W = I . It then follows from Lemma 1 that if

µ < r and dist(y,S) < r−µ
1+r−µ , (2.10)
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then the interval
(

1
r(1−dist(y,S)) ,

r−µ
rdist(y,S))

)
is well defined and nonempty. Moreover, if λ is in this

interval, then every optimal solution to (WMC) is manifold preserving and nonzero.

Furthermore, if the manifolds are linear, then dist(y,S) = 0 since y ∈ S . Thus, in this special case, if
µ < r, then for any λ > 1/r, every optimal solution to (WMC) is subspace preserving and nonzero.

2.3 Manifold-preserving: curvature-based geometric conditions

Although we believe the results in the previous section are the first of its kind, they depend on
quantities related to projections onto S, which we would like to avoid, if possible. To achieve this
goal, we require curvature information of the manifold M1 as well as the reach of the manifold M1.
Let us define the curvature and the reach of a manifold.
Definition 7 (Curvature of a manifold). Let M1 be a smooth manifold with y ∈ M1. If 1/κ is the
radius of the largest (internal) tangent circle to M1 at y, then the curvature of M1 at y is κ.
Definition 8 (Reach of a manifold). Let M1 be a smooth manifold. The reach of the manifold M1,
reach(M1), is the largest value such that for any x /∈ M1 and dist(x,M1) ≤ reach(M1), x has a
unique projection onto M1. If κ is the curvature of the manifold M1, then reach(M1) ≤ 1/κ.

In Figure 1, κ denotes the curvature of the 1-dimensional manifold M1 at y. The curvature of the
manifold at y gives a bound on how fast the direction of a point on the manifold changes with respect
to the distance traveled. The larger the change in the direction (or the angle), the larger will be the
curvature. For linear manifolds, the curvature is zero.

In Lemma 2, we give a relationship between the curvature of the manifold M1 at y, the radius of the
ball B centered at y, and dist(y,S). Then, in Lemma 3, we provide geometric conditions based on
the curvature that guarantee that any optimal solution of (WMC) is manifold preserving.
Lemma 2. Let Assumptions 1 and 2. For y ∈ M1, let B and S be as defined in Definitions 2 and 3,
respectively. Let ζ = ζ(B) be the radius of the sphere B, κ be the curvature of the manifold M1 at y,
reach(M1) be the reach of the manifold M1, and dist(y,S) be the Euclidean distance between y
and the subspace S. If reach(M1) ≥ ζ, then

dist(y,S) ≤ 1

κ
−
√

1

κ2
− ζ2. (2.11)

Combining Lemma 1 and Lemma 2 gives our final result.
Lemma 3. For y ∈ M1, input data X , and λ > 0, define the model (WMC) and let Assumptions 1
and 2 hold. In addition to the quantities defined in Lemma 1, let ζ be the radius of the sphere B, κ
be the curvature of the manifold M1 at y, and reach(M1) be the reach of the manifold M1. The
following then hold.

(a) If

γW > 0, (2.12)
reach(M1) ≥ ζ, and (2.13)

1

κ
−
√

1

κ2
− ζ2 < ∥y∥22

γW

1 + γW
, (2.14)

then there exists a non-empty interval (λl, λu) :=

(
1

rW
(
∥y∥2− 1

κ+
√

1
κ2 −ζ2

) , γW

rW
(

1
κ−

√
1
κ2 −ζ2

)
)

.

(b) If λ ∈ (λl, λu), then every optimal solution to (WMC) is manifold preserving and nonzero.

The quantity γW in Lemma 3 captures the notion of distribution of the data samples in the set M1∩N
as well as separation of the data samples not in M1 from S . The condition (2.12) requires γW to be
positive. Condition (2.13) is related to the sampling density of the manifold M1 near y. If the number
of samples generated on M1 near y increases, then ζ will decrease. Meanwhile, if the curvature κ of
the manifold at y is large, 1/κ will be small, and from Definition 8, we see that reach(M1) will be
small. This indicates that for (2.13) to hold, one may need to generate more samples on M1 near
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y. Finally, (2.14) provides a lower bound on γW based on κ (the curvature) and ζ (the number of
samples generated on M1 near y). When all three of these conditions hold, we have a non-empty
interval (λl, λu) as defined in Lemma 3(a). If λl < λ < λu, then Lemma 3(b) ensures that every
optimal solution to (WMC) is manifold preserving and nonzero.

3 Computational Results

In this section, we first perform experiments on randomly generated data to understand how the
quantities in Lemma 1 change as a function of the input data and the hyperparameter λ (see Subsec-
tion 3.1). Next, in Subsection 3.2, we compare the performance of our model (WMC) with existing
methods on CIFAR datasets. Our goal here is to check the performance of (WMC) and to show that
while (WMC) does not outperform the state-of-the-art methods, it performs only slightly worse in
terms of clustering accuracy.

3.1 Experiments on synthetic data and understanding Lemma 1

In this section, we perform two experiments designed to understand how λl and λu (see Lemma 1)
change as a function of the number of data samples N and hyperparameter λ for randomly generated
data from two trefoil knots. The noiseless data samples are embedded in R100. The embedding of
data involves generating a random orthonormal basis of a subspace in R100, followed by projecting
the samples generated from two trefoil knots onto this subspace. We choose η = 1 and define the
matrix W as a diagonal matrix with j-th diagonal entry wj = ∥y − xj∥2/

∑
k ∥y − xk∥2.

Experiment 1: {λl, λu} versus λ. For this experiment, we evaluate how the values of λl and λu

change when only λ changes. We generate N1 ∈ {120, 150, 160, 200} and N2 = 40 data samples
from two non-intersecting trefoil knots of intrinsic dimension d1 = d2 = 1. We generate 50 different
random embeddings of the data samples from the trefoil knots in R100. We plot the mean values and
standard deviations of λl and λu for different values of λ ∈ [4.8, 204.8]× 10−4 in Figure 2.

Since λl is independent of λ, its value is constant for all values of (N1, N2). It also appears that λu

is a monotonically increasing function of λ that eventually reaches a “steady-state" value. When
N1 = 120, we observe that the conditions in Lemma 1(a) are not satisfied for any value of λ, and
that the interval (λl, λu) is empty. When N2 = 150, we observe that λu > λl for λ > 0.0012, but
for these λ values it also holds that λ > λu, meaning that Lemma 1(b) is violated for all λ > 0.
When N1 ∈ {160, 200}, we observe that for some values of λ > 0, there exist non-empty intervals
(λl, λu) such that λ ∈ (λl, λu). Thus, for every such λ ∈ (λl, λu), it follows from Lemma 1 that
every optimal solution to (WMC) is manifold preserving and nonzero. We can conclude from these
experiments that for certain input data (y,X), there exists a range of acceptable values of λ for
which the conditions defined in both parts (a) and (b) of Lemma 1 are satisfied, so that every optimal
solution to (WMC) is nonzero and manifold preserving.

0.001 0.002

0.010

0.005

0.000

N1=120, N2=40

l

u

0.001 0.002

0.010

0.005

0.000

N1=150, N2=40

0.001 0.002

0.010

0.005

0.000

N1=160, N2=40

0.001 0.002
0.010

0.005

0.000

0.005

N1=200, N2=40

Figure 2: Plot of λl, λu, and λ for (N1, N2) samples generated from two trefoil knots. The data generated
from the knots are embedded in R100 with 50 randomly generated embeddings.

Experiment 2: {λl, λu} versus N . In this experiment, we aim to understand how λl and λu

change when the number of data samples, N , changes. We let N1 = N2 and gradually increase
N = N1 + N2. We generate 50 different random embeddings of data samples from trefoil knots
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in R100. For each pair of data (y,X), we compute λl and then create three values for λ by setting
λ = αλl for α ∈ {2, 5, 50}. Then, for each λ value, we plot λl and λu versus N = N1 + N2 in
Figure 3. We can observe that as the number of samples increases, the size of the interval (λl, λu)
increases linearly.

We further observe that for α = 2, the interval (λl, λu) is non-empty (satisfying the conditions in
Lemma 1(a)) for all N ≥ 890, whereas for α = 5, 50, the interval is non-empty for all N ≥ 300.
Thus, we see that the small value of α leads to a slower increase in λu resulting in the interval (λl, λu)
becoming non-empty at a much larger value of N . Furthermore, we also see that, (i) when α = 5,
λ ∈ (λl, λu) for all N ≥ 330, and (ii) when α = 50, λ ∈ (λl, λu) for all N ≥ 510. In other words,
when α = 5, the conditions in both parts (a) and (b) of Lemma 1 are satisfied for all N ≥ 330,
whereas when α = 50, the conditions in parts (a) and (b) of Lemma 1 are satisfied for all N ≥ 510,
making λ = 5λl, the best choice of the hyperparameter in this experiment.

500 1000
N

0.004

0.002

0.000

0.002
= 2 l

l

u

500 1000
N

0.00

0.01

0.02 = 5 l

500 1000
N

0.00

0.02

0.04

= 50 l

Figure 3: Plot of λl, λu, and N = N1+N2 with N1 = N2 and λ = αλl for α ∈ {2, 5, 50}. Samples
are generated from two trefoil knots and embedded in R100 with 50 randomly generated embeddings.

3.2 Experiments on real data

In this section, we compare the empirical performance of our model with existing methods on
CIFAR-10, CIFAR-20, CIFAR-100 datasets [33]. The CIFAR dataset consists of 60000 color images
of size 32×32 that are divided into 10, 20, and 100 classes for CIFAR-10, CIFAR-20, CIFAR-100,
respectively. In Section 3.2.1, we describe the steps for clustering data using our model (WMC),
followed by a comparison of empirical results in Section 3.2.2. (See Appendix B.1 for more details.)

3.2.1 Clustering data using (WMC)

We follow the steps in Algorithm 1 to cluster the input images using our model (WMC).

Algorithm 1 Pseudocode for clustering data using (WMC)
Input: Images from CIFAR dataset, λ > 0, and the number of clusters L

1: Generate features using the CLIP encoder [63].
2: Construct a representation matrix C by solving problem (WMC) for the CLIP feature vector for

each input image.
3: Construct a symmetric affinity matrix A from C.
4: Apply spectral clustering to A to get the L clusters.

Output: L clusters of data

The CLIP (Contrastive Language-Image Pre-Training) [63] encoder is a powerful tool in pre-training
data. Given its prior success, we use CLIP to map each input image in CIFAR to a feature vector in
Step 1 of Algorithm 1. Step 2 of Algorithm 1 employs our model WMC to construct a representation
matrix C. We now briefly explain this step. For the feature vector y of each input image: (a)
we define the positive diagonal distance matrix W so that each diagonal entry is an increasing
function of the Euclidean distance between y and each of the other feature vectors, (b) we define the
model (WMC) for λ > 0, (c) we solve (WMC) using an active-set method [18] to (hopefully) obtain
a manifold preserving representation for the feature vector of each input image. (The choice of λ
and W is explained further in Subsection 3.2.2.) Similar to classical spectral clustering methods,
the representation matrix is used to define a symmetric affinity matrix A; here, we choose A =

8



Table 1: Comparing clustering accuracy (ACC) and Normalized Mutual Information (NMI) for our
models L-WMC and E-WMC with state-of-the-art subspace clustering and deep clustering methods.
Each method is used to cluster the data pre-trained using CLIP [63]. For each metric (ACC and NMI)
and data set, the best overall value achieved is bolded, and the best value achieved by our method is
in blue.

Dataset CIFAR-10 CIFAR-20 CIFAR-100
Metrics ACC NMI ACC NMI ACC NMI

Methods that do not fine-tune representations

L-WMC 96.07 90.54 63.97 69.55 69.2 76.49
E-WMC 94.34 88.79 64.1 69.58 69.83 76.63
SMCE 86.86 90.66 63.1 70.53 68.56 77.17
EnSC [18]∗ 85.8 89.2 61.6 69.3 66.6 77.1
SSC [22]∗ 85.4 84.6 60.9 65.3 64.6 72.8

Methods that fine-tune representations

TEMI [64]∗† 96.9 92.6 61.8 64.5 73.7 79.9
CPP [56]∗† 97.4 93.6 64.2 72.5 74.0 81.8
∗The numerical results in this row are taken from [56].
† See appendix in [56, 64] for details on fine-tuning models.

1
2 (|C|+ |C|T ). (We used this definition in combination with other techniques to construct A, which
are explained in detail in Appendix B.2.) Finally, we use spectral clustering on A to cluster the data.

Output metrics. We use two metrics to compare the performance of various clustering methods. In
particular, we use Clustering Accuracy and Normalized Mutual Information whose values range from
0 to 100%, with higher values indicating better performance.

3.2.2 Numerical Results

In this section, we compare the numerical performance of two instances of our Algorithm 1 with
the subspace clustering methods (a) Elastic Net Subspace Clustering (EnSC) [18] and (b) Sparse
Subspace Clustering, manifold clustering method (c) SMCE [58], and with the deep clustering
methods (d) CPP [56] and (e) TEMI [64]. Each method is applied to the CLIP features extracted from
the input images. The two instances of our Algorithm 1 are determined by how the weight matrix W
is chosen in (WMC), as we now describe.

• L-WMC: Linearly Weighted Manifold Clustering model with wj = ∥xj − y∥2/
∑

k ∥xk − y∥2
for all j in (WMC). Here, the weights {wj} are linearly proportional to the Euclidean distances.

• E-WMC: Exponentially Weighted Manifold Clustering model with weights in (WMC) defined as
wj = exp(2∥xj − y∥2)/

∑
k exp(2∥xk − y∥2) for all j. Here, the weights {wj} are defined as an

exponential function of the Euclidean distances.

We report the clustering results for L-WMC and E-WMC in Table 1. (See Appendix B.2 for details
on the choice of λ and η.) From Table 1, we can observe that the clustering accuracy of L-WMC and
E-WMC is consistently better than EnSC, SSC and SMCE for all three datasets. Moreover, L-WMC
and E-WMC perform slightly worse than the state-of-the-art method CPP on the CIFAR-10 and
CIFAR-20 datasets. So, although our method does not outperform the existing state-of-the-art method,
our method is the first to perform similarly to the state-of-the-art methods and have a theoretical
guarantee of correctness (see Lemma 1 and Lemma 3).

4 Discussion

In this paper, we propose a model whose solution defines a self-expressive representation of the input
data, and provide a theoretical analysis of correctness of the model (see Lemma 1 and Lemma 3). For
data (y,X) and hyperparameter λ > 0, we give conditions under which the solution to our model is
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non-trivial and manifold preserving. To the best of our knowledge, this is the first work that provides
a theoretical understanding of manifold clustering models. We also show that our model performs
only marginally worse than the current state-of-the-art methods on CIFAR datasets.

For a given data set, our analysis does not provide a strategy for choosing the hyperparameter λ > 0
so that it satisfies the conditions in Lemma 1. This leads to an important open question: For any
given data set, can one provide a proof of existence of λ > 0 for which the conditions in Lemma 1
are satisfied? If so, can one provide a closed form expression to choose the value of λ? An answer to
this question will result in an “optimal" choice for the value of λ, thus avoiding the cost of tuning λ.
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A Proofs

A.1 Proof of Lemma 1

Proof of Lemma 1. To prove Lemma 1, we start by defining the condition for the solution to (WMC)
to be manifold preserving in the following lemma.

Proposition 1. Let ν∗ be the dual direction as defined in Definition 5. If

|⟨xj , ν
∗⟩| < wj ∀xj ∈ M \M1, (A.1)

then every optimal solution to (WMC) is manifold preserving.

The proof of Proposition 1 is given in Section A.2. Now, from (A.1), we have that

|⟨xj , ν
∗⟩| = |⟨xj ,PS(ν

∗) + PS⊥(ν∗)⟩| ≤ |⟨xj ,PS(ν
∗)⟩|+ |⟨xj ,PS⊥(ν∗)⟩|, (A.2)

where PS(·) and PS⊥
(·) denote the projections on to S and the subspace orthogonal to S , respectively.

Thus, we see that if the stronger condition

|⟨xj ,PS(ν
∗)⟩|+ |⟨xj ,PS⊥(ν∗)⟩| < wj (A.3)

is satisfied for all xj ∈ M \M1, then (A.1) is satisfied.

Bounding |⟨xj ,PS⊥(ν∗)⟩|. From KKT conditions, we have that ν∗ = λ(y−XSc
∗), where (c∗, ν∗)

is the primal-dual optimal solution to (2.5)-(2.6). So,

∥PS⊥(ν∗)∥2 = ∥PS⊥(λ(y −XSc
∗))∥2

=
(i)

∥PS⊥(λy)∥2

= λdist(y,S),

(A.4)

where (i) follows since XSc
∗ is the linear combination of data samples in S and so, XSc

∗ ∈ S.
Furthermore, we have

dist(y,S) = min
a

{∥y − z∥2 : z =
∑

xk∈N∩M1

akxk}

≤ min
a

{∥y − z∥2 : z =
∑

xk∈N∩M1

akxk,
∑

xk∈N∩M1

ak = 1}

= min
a

{∥∥∥∥[ y√
η

]
−
[
z√
η

]∥∥∥∥
2

:

[
z√
η

]
=

∑
xk∈N∩M1

ak

[
xk√
η

]}
= min

a
{∥y − z∥2 : z =

∑
xk∈N∩M1

akxk,
∑

xk∈N∩M1

ak = 1}

= dist(y,S).

(A.5)

From (A.4) and (A.5), we have

|⟨xj ,PS⊥(ν∗)⟩| ≤ ∥xj∥2∥PS⊥(ν∗)∥2 ≤ λ∥xj∥2dist(y,S) ∀ xj ∈ M \M1. (A.6)

Combining (A.3) and (A.6), we have a stronger condition

|⟨xj ,PS(ν
∗)⟩|+ λ∥xj∥2dist(y,S) < wj ∀ xj ∈ M \M1, (A.7)

and equivalently, if

λ <
wj − |⟨xj ,PS(ν

∗)⟩|
dist(y,S)∥xj∥2

∀ xj ∈ M \M1, (A.8)

then (A.1) is also satisfied, and every optimal solution to (WMC) is manifold preserving. We can
write (A.8) as

λ < min
xj∈M\M1

wj − |⟨xj ,PS(ν∗)⟩|
∥PS(ν∗)∥

dist(y,S)∥xj∥2
. (A.9)
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Bounding ∥PS(ν
∗)∥2. The dual constraint of (2.6) can be written as

∥XT

Sν
∗∥∞,W−1 ≤ 1

⇒ ∥XT

S (PS(ν
∗) + PS⊥(ν∗))∥∞,W−1 ≤ 1

⇒ ∥XT

SPS(ν
∗)∥∞,W−1 ≤ 1

⇒
∣∣∣∣〈 xk

wk
,PS(ν

∗)

〉∣∣∣∣ ≤ 1 ∀xk ∈ M1 ∩N.

(A.10)

Recall the definition of the symmetric convex body Q
W

S = conv
{
± xj

wj
: xj ∈ M1 ∩N

}
as given in

Definition 6. From the last inequality in (A.10), we have that PS(ν
∗) belongs to the polar set of Q

W

S ,

i.e., PS(ν
∗) ∈ (Q

W

S )◦.

Proposition 2 ([65]). For a symmetric convex body P , the inradius of P and the circumradius of its
polar set P◦ satisfy

r(P)R(P◦) = 1. (A.11)

Using the fact that ∥PS(ν
∗)∥2 ≤ R(K◦), and setting P = Q

W

S in (A.11), we have that

∥PS(ν
∗)∥2r(Q

W

S ) ≤ 1, (A.12)

or equivalently,

∥PS(ν
∗)∥2 ≤ 1

rW
. (A.13)

Thus, from A.1, (A.9) and (A.13), we see that if

λ <
wjr

W − |⟨xj ,PS(ν∗)⟩|
∥PS(ν∗)∥2

rW dist(y,S)∥xj∥2
∀ xj ∈ M \M1, (A.14)

then every optimal solution to (WMC) is manifold preserving.

However, if λ is too small, then the optimal solution to (WMC) will be trivial, i.e., c = 0. Thus,
to get a non-trivial optimal solution to (WMC), λ cannot be too small. The following proposition
provides a lower bound on λ to get a non-trivial solution.

Proposition 3. If λ > 1
rW (∥y∥2−dist(y,S))

, then every optimal solution to (WMC) is nonzero.

Proof. We prove the result by contradiction. Assume that λ > 1
rW (∥y∥2−dist(y,S))

, and c = 0

is an optimal solution to (WMC). Then, from KKT condition applied to (WMC), we have that
ν = λ(y −Xc) = λy, where ν is the optimal solution to the dual (2.3). We have that

∥XT
ν∥∞,W−1 = λ∥XT

y∥∞,W−1 ≥ λ∥XT

Sy∥∞,W−1 . (A.15)

Furthermore, we have

∥XT

Sy∥∞,W−1 = ∥XT

S (PS(y) + PS⊥(y))∥∞,W−1

= ∥XT

S (PS(y))∥∞,W−1 .
(A.16)

Combining (A.15) and (A.16), we have

∥XT
ν∥∞,W−1 ≥ λ∥XT

SPS(y)∥∞,W−1

=
λ∥XT

SPS(y)∥∞,W−1

∥PS(y)∥2
∥PS(y)∥2

≥ λ min
u∈S,u ̸=0

λ∥XT

Su∥∞,W−1

∥u∥2
∥PS(y)∥2

=
(i)

λrW ∥PS(y)∥2,

(A.17)
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where the last equality follows since the inradius, rW (as defined in Defintion 6), can be written as

rW = min
u∈S,u ̸=0

max
xj∈M1∩N

λ|⟨xj/wj , u⟩|
∥u∥2

= min
u∈S,u ̸=0

λ∥XT

Su∥∞,W−1

∥u∥2
.

Furthermore, we have

∥PS(y)∥2 = ∥y−PS⊥(y)∥2 ≥ ∥y∥2−∥PS⊥(y)∥2 = ∥y∥2−dist(y,S) ≥ ∥y∥2−dist(y,S), (A.18)

where the last inequality follows from (A.5). Substituting this in (A.17), we have

∥XT

Sν∥∞,W−1 ≥ λrW (∥y∥2 − dist(y,S)) > 1, (A.19)

where the last inequality follows since λ > 1
rW (∥y∥2−dist(y,S))

. Thus, we have that when λ >
1

rW (∥y∥2−dist(y,S))
, c = 0 cannot be an optimal solution since the constraint in the dual problem (2.3)

is violated. This proves the statement of the proposition.

From Proposition 3 and (A.14), we see that if

1

rW (∥y∥2 − dist(y,S))
< min

xj∈M\M1

wjr
W − |⟨xj ,PS(ν∗)⟩|

∥PS(ν∗)∥2

rW dist(y,S)∥xj∥2
, (A.20)

then we get an interval for acceptable values of λ to get a non-trivial and manifold preserving solution
to (WMC). Rearranging the terms in (A.20), we see that, if

rW dist(y,S)
rW (∥y∥2 − dist(y,S))

< min
xj∈M\M1

wjr
W − |⟨xj ,PS(ν∗)⟩|

∥PS(ν∗)∥2

∥xj∥2
, i.e.,

dist(y,S) < ∥y∥2
min

xj∈M\M1

wjr
W−

|⟨xj,PS (ν∗)⟩|
∥PS (ν∗)∥2

∥xj∥2

1 + min
xj∈M\M1

wjrW−
|⟨xj,PS (ν∗)⟩|
∥PS (ν∗)∥2

∥xj∥2

,

(A.21)

then there exists a non-empty interval (λl, λu) :=

(
1

rW (∥y∥2−dist(y,S))
, min
xj∈M\M1

wjr
W−

|⟨xj,PS (ν∗)⟩|
∥PS (ν∗)∥2

rW dist(y,S)∥xj∥2

)
.

And for any λ ∈ (λl, λu), every optimal solution to (WMC) is manifold preserving.

A.2 Proof of Proposition 1

Proof of Proposition 1. To prove Proposition 1, we need to derive conditions (based on an optimal
solution to the reduced dual 2.6) for which any optimal solution to (WMC) will be manifold preserving.
We do so by (i) defining conditions on a primal-dual feasible solutions to (WMC) and its dual (2.3)
that ensure manifold preserving optimal solution to (WMC) (see Lemma 4), and then (ii) constructing
such primal-dual feasible pair to (WMC) from the optimal primal-dual solution to the reduced
problem (2.5) and its dual (2.6).

The following lemma provides conditions for any optimal solution of (WMC) to be manifold preserv-
ing. A similar result was given in [62] for linear sparse clustering problem. In this work, we have
adapted [62, Lemma 12] for our proposed model (WMC).

Lemma 4. Let (c, e, ν) be a primal-dual feasible solution to (WMC) and its dual (2.3) such that c
has support B where B ⊆ A ⊆ {1, . . . , N}, and the dual feasible solution satisfies:

1. (W−TX
T
)Bν = sgn((Wc)B),

2. ν = λe,

3. ∥XT

A∩Bcν∥∞,W−1 ≤ 1,

4. ∥XT

Acν∥∞,W−1 < 1.
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Then every optimal solution (c∗∗, e∗∗, ν∗∗) to (WMC) and its dual (2.3) satisfies c∗∗Ac = 0.

Proof. (c∗∗, e(1)∗∗, e(2)∗∗) be an optimal solution to (WMC). We then have

∥c∗∗∥1,W +
λ

2
∥e∗∗∥22 = ∥c∗∗B ∥1,W + ∥c∗∗A∩Bc∥1,W + ∥c∗∗Ac∥1,W +

λ

2
∥e∗∗∥22

≥ ∥cB∥1,W + ⟨sgn((Wc)B), (Wc∗∗)B − (Wc)B⟩

+ ∥c∗∗A∩Bc∥1,W + ∥c∗∗Ac∥1,W +
λ

2
∥e∗∗∥22.

(A.22)

We now determine a lower bound on ∥e∗∗∥22 from the following proposition.

Proposition 4. For any γ > 0, the function

g(e) = γ

(
eT e∗∗ − 1

2
eT e

)
(A.23)

has a unique maximizer e∗∗ and g(e∗∗) = γ
2 ∥e

∗∗∥22.

Setting γ = λ, we have
λ

2
∥e∗∗∥22 = g(e∗∗)

≥ g(e)

= λ

(
eT e∗∗ − 1

2
eT e

)
=

λ

2
∥e∥22 + ⟨λe, e∗∗ − e⟩ .

(A.24)

Also, from condition 1 in the lemma, we have

⟨sgn((Wc)B), (Wc∗∗)B − (Wc)B⟩ = ⟨(W−TX
T
)Bν, (Wc∗∗)B − (Wc)B⟩

= ⟨ν,XB(c
∗∗
B − cB)⟩

= ⟨ν,X(c∗∗ − c)⟩ − ⟨ν,XA∩Bc(c∗∗A∩Bc)⟩ − ⟨ν,XAc(c∗∗Ac)⟩.
(A.25)

Combining (A.22), (A.24), and (A.25), we have

∥c∗∗∥1,W +
λ

2
∥e∗∗∥22 = ∥cB∥1,W +

λ

2
∥e∥22

+ ∥c∗∗A∩Bc∥1,W − ⟨ν,XA∩Bc(c∗∗A∩Bc)⟩
+ ∥c∗∗Ac∥1,W − ⟨ν,XAc(c∗∗Ac)⟩
+ ⟨ν,X(c∗∗ − c)⟩+ ⟨λe, e∗∗ − e⟩ .

(A.26)

Now, from condition 2 in the lemma, we have that

⟨ν,X(c∗∗ − c)⟩+ ⟨λe, e∗∗ − e⟩ = ⟨ν,X(c∗∗ − c) + e∗∗ − e⟩ = 0, (A.27)

where the last inequality follows since (c, e) and (c∗∗, e∗∗) are both feasible to (WMC), and so,
y = Xc+ e = Xc∗∗ + e∗∗. Furthermore, we have that

∥c∗∗A∩Bc∥1,W − ⟨ν,XA∩Bc(c∗∗A∩Bc)⟩ = ∥c∗∗A∩Bc∥1,W − ⟨(W−TX
T
)A∩Bcν, ((Wc∗∗)A∩Bc)⟩

≥ ∥c∗∗A∩Bc∥1,W − ∥XT

A∩Bcν∥∞,W−1∥c∗∗A∩Bc∥1,W
≥ 0,

(A.28)

where the last inequality follows from condition 3 in the lemma. Similarly, we have that

∥c∗∗Ac∥1,W − ⟨ν,XAc(c∗∗Ac)⟩ = ∥c∗∗Ac∥1,W − ⟨(W−TX
T
)Acν, ((Wc∗∗)Ac)⟩

≥ ∥c∗∗Ac∥1,W (1− ∥XT

Acν∥∞,W−1).
(A.29)
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Combining (A.26), (A.27), (A.28), and (A.29), and using the fact B is the support of c, we have

∥c∗∗∥1,W +
λ

2
∥e∗∗∥22 ≥ ∥c∥1,W +

λ

2
∥e∥22 + ∥c∗∗Ac∥1,W (1− ∥XT

Acν∥∞,W−1). (A.30)

From condition 4 in the lemma, we know that ∥XT

Acν∥∞,W−1 < 1. Since (c∗∗, e∗∗, ν∗∗) is optimal,
this implies that ∥c∗∗Ac∥1,W = 0, and therefore, (Wc∗∗)Ac = 0, proving the result.

Lemma 4 provides conditions for any optimal solution of (WMC) to be manifold preserving. Now,
we construct a feasible solution (c, e, ν) to (WMC) that satisfies the conditions given in Lemma 4
from an optimal solution (c∗, e∗, ν∗) to the reduced problem (2.5) and its dual (2.6) as follows:

cj =

{
c∗j for j such that xj ∈ M1 ∩N

0 otherwise,
(A.31)

e∗ = y −XSc
∗ = y −Xc = e, and (A.32)
ν = ν∗. (A.33)

We observe that (c, e, ν) is feasible to (WMC) by construction. Let T be the set of indices of data
samples in the set M1 ∩N, and let B be the support of c∗. From KKT conditions for the reduced
problem (2.5) and its dual (2.6), we have

ν∗ = λe∗ = ν = λe, and (A.34)

W−TX
T

Sν
∗ = sgn(Wc∗) ≡ (W−TX

T
)Bν

∗ = sgn((Wc)B). (A.35)
Thus, (c, e, ν) satisfies the first two conditions in Lemma 4. Moreover, we have that

∥XT

A∩Bcν∥∞,W−1 ≤ ∥XT

Aν∥∞,W−1 = ∥XT

Sν∥∞,W−1 ≤ 1, (A.36)

which shows that condition 3 from Lemma 4 is satisfied for (c, e, ν). Finally, we observe that
condition 4 in Lemma 4 can be equivalently written as

|⟨xj , ν
∗⟩| < wj ∀xj ∈ M \M1. (A.37)

Thus, we have that if (A.37) is satisfied, then all conditions in Lemma 4 are satisfied, and every
optimal solution to (WMC) is manifold preserving.

A.3 Proof of Lemma 2

Proof of Lemma 2. We prove the result using geometric properties of the manifold and location of
the data samples. In the proof, we will introduce several new quantities and notations.

We define the curvature of the manifold M1 at y to be κ. From the definition of the curvature of the
smooth manifold, we have that 1/κ is the radius of the largest internal tangent sphere to the manifold
M1 at y. Let the tangent circle be denoted by T and let z be the center of the (D − 1)-dimensional
internal tangent sphere. Consider a point of intersection of the sphere B with T and denote it by u.
Next, we project the point u on to the line connecting y and z, and denote the projected point by v.

We then have that the points z, u and v form vertices of a right-angled triangle, and we have

∥z − u∥22 = ∥z − v∥22 + ∥v − u∥22. (A.38)

We now determine the bounds on each of the quantities in (A.38).

Since z is the center of the sphere T of radius 1/κ, and u lies on the surface of the sphere, we have

∥z − u∥22 =
1

κ2
. (A.39)

Now consider the three points y, u and v. Since v is the projection of the point u on to the line
connecting y and z, we have that the three points y, u and v also form a right-angled triangle. Thus,
we have that

∥u− v∥22 ≤ ∥u− y∥22 = ζ2, (A.40)
where the last inequality follows since u lies on the boundary of the sphere B with radius ζ and
centered at y.

19



Finally, we bound ∥z − v∥2. Since v is the projection of point u on to the line connecting y and z,
we have that z, v and y collinear and they lie on a single line connecting y and z. We, therefore, have
that ∥z − v∥2 = ∥y− z∥2 − ∥v− y∥2. Furthermore, since z is the center of the tangent sphere to the
manifold M1 at y, we have that ∥y − z∥2 = 1

κ . Thus,

∥z − v∥2 =
1

κ
− ∥v − y∥2. (A.41)

Proposition 5. For the point v as defined above, we have dist(y,S) ≤ ∥y − v∥2.

Proof. Let BT be the set consisting of u and additional d1 unique points of intersection of the sphere
B with T . We have that dim(aff{x : x ∈ BT }) ≤ d1. Since each point in the set BT lies on the
boundaries of both B and T , we have that each point x ∈ BT is equidistant from both y and z.
Thus, u and every point x ∈ BT projects onto the same point (v) on the line connecting y and z.
Furthermore, we have that

∥y − v∥2 = dist(y, aff{x : x ∈ BT }), (A.42)
i.e., v is the projection of y onto the affine subspace aff{x : x ∈ BT }.

From the definition of the inner tangent circle T , we have that the affine subspace aff{x : x ∈ BT }
will intersect with manifold M1 at points outside the sphere B. Thus, aff{x : x ∈ BT } is an affine
subspace of dimension ≤ d1 spanned by points not in B. From the definition of S (see Definition 3)
and Assumption 2, we note that S is the affine subspace (of dimension d1) nearest to y, and spanned
by the points inside or on the sphere B. Thus, we have that

dist(y,S) ≤ dist(y, aff{x : x ∈ BT }). (A.43)
Combining (A.42) and (A.43) proves the result.

From (A.41) and Proposition 5, we bound ∥z − v∥2 as

∥z − v∥2 ≤ 1

κ
− dist(y,S). (A.44)

Combining (A.38), (A.39), (A.40) and (A.44), we have that

1

κ2
≤ ζ2 +

(
1

κ
− dist(y,S)

)2

, (A.45)

or equivalently, (
1

κ
− dist(y,S)

)2

≥ 1

κ2
− ζ2. (A.46)

Since reach(M1) ≥ ζ, and from Definition 8, 1
κ ≥ reach(M1), we have that 1

κ ≥ ζ, and thus,

1

κ
− dist(y,S) ≥

√
1

κ2
− ζ2. (A.47)

Rearranging the terms proves the result.

B Details of Experiments on Real Data

B.1 CIFAR Datasets and CLIP feature extraction

CIFAR Datasets. CIFAR consists of 50,000 training and 10,000 test color images of size 32x32.
They are equally divided into 10, 20, and 100 classes resulting in CIFAR-10, CIFAR-20, and CIFAR-
100 datasets respectively. The 20 classes in CIFAR-20 are obtained by merging 100 classes in
CIFAR-100 into disjoint groups.

CLIP Pre-Training Model. Contrastive Language-Image Pre-training (CLIP) [63] is an efficient
tool for image representation learning by jointly training an image encoder and a text encoder to
correctly predict the image-text pairings. We use ViT-L/14 [66] architecture for image encoder.
ViT-L/14 refers to ‘Large’ Vision Transfomer model with input images divided into patches of size
14x14. See [67] for more information on the definition of ‘Large’ models. We use the features
extracted from images in CIFAR dataset by CLIP pre-training model that uses ViT-L/14 architecture*.

*We use the CLIP package available at https://github.com/openai/CLIP?tab=readme-ov-file
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B.2 Details of Experimental Setup

We include details of experiments performed in Section 3.2. Note that, the results reported in Table 1
for SSC, EnSC, CPP and TEMI methods are taken from [56]. Please refer to [56, Section 4] for
experimental details.

L-WMC and E-WMC. We perform the steps in Algorithm 1 for clustering data using L-WMC and
E-WMC. Details of pre-training using CLIP (Step 1 of Algorithm 1) are provided in Appendix B.1.
To construct the representation matrix (Step 2), we define the models L-WMC and E-WMC for each
input data sample with the distance matrix W set as given in Section 3.2.2. We use an efficient
active-set solver given in [18] to solve the optimization problem. The experiments are performed on
a machine with Intel(R) Xeon(R) Gold 6130 CPU operating at 2.10 GHz frequency and with 37 GB
RAM. We have provided our code in the Supplementary material.

We use grid search over the following parameter values: η ∈ {1, 20, 100, 400} and λ ∈ {20, 50}×λ0,
where λ0 is the smallest value of λ that generates a non-trivial (non-zero) solution. We report the
best accuracy results in Table 1. Furthermore, Table 2 provides the values of the parameters λ and η
corresponding to the clustering results reported in rows 1 (L-WMC) and 2 (E-WMC) in Table 1.

Method/ Parameter values CIFAR-10 CIFAR-20 CIFAR-100
λ η λ η λ η

L-WMC 50 20 50 400 50 20
E-WMC 20 400 20 400 50 400

Table 2: Values of the parameters corresponding to the clustering results reported in Table 1 for
L-WMC and E-WMC.

SMCE. The MATLAB code for the ADMM algorithm was provided by the authors of [58]. We
implemented the ADMM algorithm that solves SMCE [58] in Python. We refer to this method as
SMCE in this paper. As discussed in Section 3.2.2, we apply SMCE to pre-trained data generated
using CLIP. To generate the representation matrix, SMCE solves the following optimization problem
for each input sample xi,

min
ci

γ∥Wici∥1 +
1

2
∥Qici∥22 s.t. 1T ci = 1, (B.1)

where Wi is a diagonal matrix whose j-th entry [Wi]jj = wj =
∥xj−xi∥2∑

k ̸=i ∥xk−xi∥2
, and Qi =[

xj−xi

∥xj−xi∥2

]
j ̸=i

. Note that the matrix Wi is the same as the matrix W defined for our model L-

WMC. Furthermore, since the ℓ1 does not select points that are very far from the given data point
xi, [58] consider only K nearest neighbors of the point xi in the algorithm where K is chosen a
priori. We use grid search to choose the values of the hyperparameters γ and K: γ ∈ {10, 20, 50}
and K ∈ {10, 20, 50, 100}. Table 1 provides the best clustering result achieved by SMCE for each of
the three datasets. In Table 3, we provide the parameter values corresponding to the clustering results
reported for SMCE in Table 1.

Method/ Parameter values CIFAR-10 CIFAR-20 CIFAR-100
γ K γ K γ K

SMCE 10 20 50 20 20 20
Table 3: Values of the parameters corresponding to the clustering results reported in Table 1 for
SMCE.

B.3 Constructing affinity

The first step in using spectral clustering to cluster the input data samples is to construct an affinity
matrix that indicates pairwise similarities between the data samples. Ideally, the data samples from
the same cluster should be highly connected while those from different clusters should have no
connections. For the models based on self-expressiveness property, the construction of the affinity
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matrix involves post-processing the representation matrix C. Several post-processing strategies have
been used in literature to construct a symmetric affinity matrix from the representation matrix. We
describe three commonly used strategies below.

• Normalize (N): This strategy of constructing affinity matrix A involves normalizing each column
of the representation matrix C to have unit ℓ2 norm. This strategy can be helpful when the input
data samples have different norms.

• Symmetric (S): This is one of the commonly used strategies to construct the affinity matrix A as
A = 1

2 (|C|+ |C|T ).
• k-NN (K): This strategy involves finding k nearest neighbors of each data sample. Note that, the

representation matrix can have dense connections. When k-NN strategy is applied to each column
of C, only the k largest entries in the column are preserved while the rest are set to 0. Thus, the
affinity matrix resulting from this strategy will have at most k non-zero entries in each column.
This strategy can be helpful when there are several nonzero entries in C of very small magnitude.

We use N , S, K to denote the three strategies from now on. Moreover, we use SNK to denote that
‘symmetric’, ‘normalize’ and ‘k-NN’ strategies are used one after the other (and in that order) on the
representation matrix C to construct the affinity matrix. Since no universally best strategy exists, we
construct an affinity matrix by defining all permutations of all possible subsets of the three strategies
described above. Thus, there are 15 possible ways to construct an affinity by applying the following
strategies on C: N , S, K, NK, KN , SN , NS, SK, KS, SNK, SKN , KSN , KNS, NSK,
NKS. After constructing the affinity matrix using each strategy or a combination of strategies, we
use k-means to cluster the data.

For the clustering results reported in Table 1 for L-WMC, E-WMC, and SMCE, we provide the
affinity construction strategy corresponding to these results in Table 4.

Method/Dataset CIFAR-10 CIFAR-20 CIFAR-100
L-WMC N SNK N
E-WMC NK SNK N
SMCE S SNK NS

Table 4: Strategy used to construct affinity from the representation matrix corresponding to the
clustering results reported in Table 1 for L-WMC and E-WMC.

We observed that the CLIP feature vectors for each image in the CIFAR datasets have different
ℓ2 norm. Thus, the columns of the resulting representation matrix C also have different sizes (ℓ2
norm). In this case, it seems intuitive to normalize the columns of C while constructing the affinity.
Indeed, from Table 4, we notice that the best clustering accuracy result was observed when the affinity
construction involved normalizing the representation matrix C.

C Review of Manifold Clustering Methods with Theoretical Guarantees

Distance between Tangent Spaces The work of [68] provides an algorithm that i) fits an affine
subspace to a local neighborhood of each point in the dataset and ii) computes the similarity between
two points based on the distance between the two subspaces as well as that between the two points.
Further, they provide an upper bound on Euclidean distances between data samples from different
clusters to achieve perfect clustering with high probability. Interestingly, the above was later extended
to allow for a faster computation based on prototypes [69] and the ambient space being a Riemannian
manifold [70, 71]. However, their theoretically guaranteed algorithms require knowledge of the
intrinsic dimension of each manifold (or implicitly a model selection parameter to estimate the
dimension) which is in practice typically not known apriori and hard to estimate.

Longest-Leg Path Distance The work of [72] provides an algorithm that computes distance in a
different way: for every two points x, y in a given set of data points, the distance between x, y is
the minimum over all paths connecting x, y of the longest leg in the path. Then, the similarity can
be computed by applying a kernel function to the distances. They provide theoretical guarantees
that allow for a general number of manifolds, as well as algorithms that approximate the distances
hierarchically.
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Nonetheless, the approaches have been only tested on smaller-scale datasets (i.e., either ambient
dimension, or number of data samples, or number of clusters being small, while this paper shows both
theoretical guarantees as well as clustering performance on large-scale datasets of natural images.
A direction of independent interest to the community is to understand the computational picture of
these methods on such datasets, which is not pursued by this paper.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The contributions are clearly stated in the introduction, and Sections 2 and 3
contain the main results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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will be specifically instructed to not penalize honesty concerning limitations.
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included details of the experimental setup. The codes are also
provided to reproduce the results reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided access to our code to reproduce the results. In case of
synthetic data, we have included the code to reproduce the data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included the details of experimental setup. The experimental results
from other works are also included in the paper. In such cases, we have also included
references to the source.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For the experiments on synthetic data, we report error bars and the experimental
settings for the random data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have included the details of the computational resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have conformed to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our work does not have a direct societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The models or the data used in the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: When existing models or results were used, we have cited the original work.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have included the codes to reproduce the results in the paper. We have
included the details for executing the codes alongside the code submission.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve research with human subjects or crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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