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Abstract
Large Language Models (LLMs) have recently001
garnered significant interest. With in-context002
learning, they achieve impressive results in var-003
ious natural language tasks. However, the ap-004
plication of LLMs to sentence embeddings re-005
mains an area of ongoing research. In this006
work, we introduce a prompt-based method,007
PromptEOL, designed to improve LLMs per-008
formance on sentence embeddings with ex-009
plicit one word limitation. We further integrate010
in-context learning to refine sentence embed-011
dings. Our extensive experiments demonstrate012
that in-context learning allows LLMs to gener-013
ate superior sentence embeddings without any014
fine-tuning, enabling them to perform com-015
parably to current contrastive learning meth-016
ods. We also investigate the integration of con-017
trastive learning with PromptEOL. Notably,018
the 2.7B OPT model, when combined our019
method, surpasses the previous state-of-the-art020
method with 4.8B parameters. In addition, we021
propose a novel method based on Direct Per-022
formance Optimization (DPO) to better align023
the embeddings. With our methods, we suc-024
cessfully achieve an 86.76 Spearman correla-025
tion on STS tasks, a 1.8 improvement over the026
previous methods.027

1 Introduction028

Sentence embeddings is a fundamental problem in029

natural language processing, requiring language030

models to project sentences into a vector space031

based on their semantics. Current methods based032

on contrastive learning, such as SimCSE (Gao033

et al., 2021), have successfully leveraged pre-034

trained language models to generate high-quality035

embeddings. A significant amount of research036

has been devoted to refining the contrastive learn-037

ing framework in order to further improve sen-038

tence embeddings (Chuang et al., 2022; Wu et al.,039

2022a,b; Cheng et al., 2023).040

Recently, LLMs, such as GPT-3 (Brown et al.,041

2020) and LLaMA (Touvron et al., 2023a), have042

demonstrated significant potential on various nat- 043

ural language processing tasks such as translation, 044

question answering, and text classification. Cur- 045

rent research has also explored the application of 046

LLMs for data augmentation in sentence embed- 047

dings. By generating better sentence pairs for 048

contrastive learning, LLMs can help alleviate the 049

scarcity of labeled data (Cheng et al., 2023; Zhang 050

et al., 2023). However, directly utilizing LLMs 051

to generate sentence embeddings presents two pri- 052

mary challenges. Firstly, LLMs, as autoregressive 053

models, produce text instead of vectors, which ne- 054

cessitates vectorizing the output. Secondly, it is 055

crucial to determine an effective approach for in- 056

corporating the capabilities of in-context learning 057

into sentence embeddings. 058

In this work, we aim to investigate the ca- 059

pabilities of current LLMs for sentence embed- 060

dings, facilitated by the availability of open-source 061

LLMs (Touvron et al., 2023a; Zhang et al., 2022). 062

We address the following research questions: 1) 063

How can LLMs be used to represent sentence em- 064

beddings, and does prompt engineering, as demon- 065

strated by PromptBERT (Jiang et al., 2022) help? 066

2) Can in-context learning (Liu et al., 2023) en- 067

hance the quality of sentence embeddings? 3) 068

Does the scaling up the model parameters stil work 069

when the number of parameters exceeds billions? 070

4) What improvements can be achieved by incor- 071

porating the current contrastive learning frame- 072

work into LLMs? 073

To address these questions, we conduct a sys- 074

tematic study by evaluating LLaMA (Touvron 075

et al., 2023a) and OPT (Zhang et al., 2022) on 076

both semantic textual similarity (STS) tasks and 077

transfer tasks. Following (Jiang et al., 2022), we 078

utilize a prompt such as This sentence: “ [text] 079

” means to enable LLMs to generate sentence em- 080

beddings, where [text] serves as the input slot. 081

This method outperforms traditional representa- 082

tion methods, such as averaging output tokens to 083

1



represent sentences. Considering the causal archi-084

tecture and pretraining tasks of LLMs compared085

to BERT, we can refine the prompt to generate bet-086

ter representations by instructing LLMs to encap-087

sulate as much semantic information of the sen-088

tences as possible within the target token.089

Inspired by (Tsukagoshi et al., 2021), which090

uses definition sentences from a word dictionary091

to learn sentence embeddings, we find that per-092

formance can be further improved by adding def-093

inition sentences and corresponding words as ex-094

amples to perform in-context learning. To mit-095

igate the gap between examples and input sen-096

tences, we also use sentences from the STS-B (Cer097

et al., 2017) training set as examples by instruct-098

ing ChatGPT to generate a single word to rep-099

resent the meaning of sentences. By evaluating100

the demonstration examples based on the STS-101

B development set, LLMs can outperform previ-102

ous contrastive learning-based sentence models,103

which were fine-tuned on unsupervised data.104

By scaling up the parameters of LLMs, we find105

that transitioning from millions to billions of pa-106

rameters results in improvements on STS tasks.107

However, continue scaling up may not yield fur-108

ther improvements. Even with in-context learn-109

ing, 66B OPT still underperforms 6.7B OPT on110

STS tasks. Nonetheless, scaling up improves per-111

formance on transfer tasks. LLMs with tens of112

billions parameters exhibit strong performances,113

achieving state-of-the-art performance even with-114

out any fine-tuning.115

With the advancement of parameter-efficient116

fine-tuning techniques(Hu et al., 2021; Dettmers117

et al., 2023) and post-training quantization meth-118

ods(Frantar et al., 2022), we can also fine-tune119

LLMs with large batch sizes to conduct con-120

trastive learning with limited computational re-121

sources. For instance, fine-tuning 7B parameter122

LLMs can be accomplished using the same hard-123

ware employed for previous BERT-based mod-124

els. Inspired by Direct Performance Optimization125

(DPO) (Rafailov et al., 2023), we further refine126

models by aligning sentence embeddings with the127

preferences of the regression model, which can128

predict a more accurate similarity between two in-129

put sentences, but it is unable to embed sentences.130

Our main contributions are as follows:131

1. We propose a sentence embeddings method132

that leverages LLMs to enhance the represen-133

tation of sentences. Additionally, we incor-134

porate in-context learning to further improve 135

the quality of sentence embeddings. Our 136

method demonstrates that LLMs can gener- 137

ate high-quality sentence embeddings with- 138

out the need of fine-tuning. 139

2. We conduct an analysis of scaling up the pa- 140

rameters of LLMs from millions to tens of bil- 141

lions in sentence embeddings with and with- 142

out fine-tuning. Scaling does help LLMs 143

achieve better performance in most settings, 144

but we also found that performance may not 145

continue to improve on STS tasks without 146

fine-tuning when the number of parameters 147

exceeds billions. 148

3. We propose a method based on DPO to en- 149

hance embeddings by alignment, resulting in 150

improved performance on STS tasks. Based 151

our methods, we achieve 86.76 Spearman cor- 152

relation on STS tasks, a 1.8 improvement 153

over the previous state-of-the-art. 154

2 Related Work 155

Sentence Embeddings Sentence embeddings is 156

to convert a sentence into a fixed-size vector, 157

which captures the semantic meaning and context 158

of the sentence. It allows for the efficient re- 159

trieval of similar sentences through the similarity 160

between vectors. Recently, SimCSE (Gao et al., 161

2021) demonstrated that contrastive learning is 162

an effective approach for learning sentence em- 163

beddings using BERT.PromptBERT (Jiang et al., 164

2022) reveals that prompts can enhance BERT’s 165

ability to represent sentences. Additionally, sev- 166

eral studies (Cheng et al., 2023; Zhang et al., 2023) 167

have investigated data augmentation for sentence 168

embeddings using LLMs. SentenceT5 (ST5) (Ni 169

et al., 2021) leverages the encoder-decoder struc- 170

ture of models for generating sentence embed- 171

dings and demonstrates improvements by scaling 172

T5 from millions to billions of parameters. How- 173

ever, directly using LLMs to generate sentence em- 174

beddings remains an area of ongoing research. 175

Large Language Models LLMs (Zhang et al., 176

2022; Scao et al., 2022; Chowdhery et al., 2022; 177

Touvron et al., 2023a) recently show impressive 178

performance on various natural language process, 179

benefiting from their large parameter sizes com- 180

pared to previous pretrained language models. 181

LLMs can efficiently learn a new task with in- 182

context learning by using training data as demon- 183
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Figure 1: Performances of OPT in STS-B development
set with three representation methods. Dash lines rep-
resent the results of BERT.

strations (Brown et al., 2020). Without any gra-184

dient updates, LLMs with in-context learning can185

solve challenging tasks like multitask language186

understanding (Hendrycks et al., 2020), common-187

sense reasoning (Lin et al., 2021), and math prob-188

lems (Cobbe et al., 2021). This performance can189

be further improved by scaling up language mod-190

els (Hoffmann et al., 2022; Kaplan et al., 2020).191

3 Methodology192

In this section, we first discuss current sentence193

embeddings methods with LLMs, and then intro-194

duce a new Prompt-based method with Explicit195

One word Limitation (PromptEOL) for LLMs in196

Section 3.1. Based on this method, we describe197

methods without fine-tuning in Section 3.2 and198

with fine-tuning in Section 3.3, respectively.199

3.1 Represent Sentence with LLMs200

Previous works (Li et al., 2020; Su et al., 2021;201

Jiang et al., 2022) have extensively studied on im-202

proving sentence embeddings from encoder-based203

pretrained models, like BERT without fine-tuning.204

Recently, PromptBERT (Jiang et al., 2022) lever-205

ages a prompt-based method to represent sentence.206

It uses manual templates like This sentence: “207

[text] ” means [MASK]., where [text] is the208

placeholder for a sentence. The output vector of209

[MASK] token is used as sentence embeddings. It210

demonstrates superior results compared to previ-211

ous sentence representation methods like averag-212

ing output hidden vectors or the output vector of213

[CLS] token.214

Considering to LLMs as autoregression mod- 215

els, which do not have special tokens like [CLS] 216

or [MASK], we modify the prompt-based method 217

in (Jiang et al., 2022) to make it compatible with 218

LLMs. We use This sentence: “ [text] ” means 219

to prompt LLMs generate next token and ex- 220

tract the hidden vectors of the final token as sen- 221

tence embeddings. To validate the prompt-based 222

method with LLMs, we compare it with two other 223

methods, such as averaging or using the last to- 224

ken as sentence embeddings. For LLMs, we use 225

OPT (Zhang et al., 2022) from 125 million param- 226

eters to 66 billions and evaluate it on STS-B de- 227

velopment set in Figure 1. Following the results 228

in (Jiang et al., 2022), we observe that prompt- 229

based method can enhance sentence representation 230

across all OPTs, ranging from millions to billions 231

parameters. Despite that the previous prompt- 232

based method also improved LLMs like OPT on 233

sentence representations, OPT still fails to outper- 234

form BERT. 235

Considering to bidirectional attention in BERT, 236

we hypothesize that BERT can implicitly con- 237

dense the entire semantic information correspond- 238

ing to a sentence into a single [MASK] token when 239

using templates like “This sentence: “ [text] ” 240

means [MASK].”. Since the [MASK] token follows 241

a period, this implicitly restricts BERT to explain 242

meaning into one word. However, this template 243

fails to add the similar “one word limitation” when 244

it is used in autoregression models like OPT with 245

unidirectional attention. To validate this, we sim- 246

ply remove the period in template to transfer it into 247

“This sentence: “ [text] ” means [MASK]”. De- 248

spite only one word difference, and no modifica- 249

tion to meaning of the template, the performance 250

of BERT on STS-B development set plummeted 251

from 73.44 to 33.89 Spearman correlation, which 252

means BERT without this implicit “one word lim- 253

itation” fails to represent sentence. 254

Inspired by this, our objective is to enhance 255

prompt-based method for LLMs by introducing a 256

“one word limitation”. We propose a new Prompt- 257

based method with Explicit One word Limitation 258

(PromptEOL) for LLMs. PromptEOL is simple 259

and straightforward by directly adding some to- 260

kens in the template to instruct LLMs in predicting 261

the meaning of sentence in one word. The tem- 262

plate we used after modification is following: 263

This sentence: “ [text] ” means in one word: “

Compared to the template in (Jiang et al., 2022), 264
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Figure 2: An illustration of in-context learning based sentence embeddings. The green sentences denote the
demonstration sentence, and the blue words denote the demonstration words. The corresponding color blocks refer
to their slots in the template.

we introduce two simple modifications for LLMs.265

First, we append in one word to the prompt to con-266

strain LLMs in predicting semantic information in267

next token. Secondly, we incorporate : “ at the268

end of template to prevent model form generat-269

ing punctuations in next token, as This sentence:270

“ is used to indicate the input of a sentence. We271

find this template improve all OPT models and al-272

low them to match or even outperform BERT with273

prompt-based method in Figure 4.274

3.2 Improve Sentence Embeddings with275

In-context Learning276

In-context learning is widely utilized as an effec-277

tive method to help LLMs understand problems.278

It improves their comprehension of inputs and out-279

puts by directly adding a few examples in the280

prompts. However, when considering the problem281

of sentence embeddings, we need to project sen-282

tences into vectors based on their semantic infor-283

mation, separately. In other word, sentence em-284

beddings lack textual outputs that could be used285

as examples to perform in-context learning, such286

as answers for QA problems or labels for text clas-287

sification problems. Moreover, there are also no288

predetermined gold vectors for a given sentence.289

To leverage in-context learning in sentence em-290

beddings, we propose an framework to automati-291

cally build demonstration sets and search demon-292

stration to improve LLMs sentence embeddings in293

Figure 2. For the demonstration set, the goal is294

to create sentence and word pairs, where the word295

can represents the semantic information of the sen-296

tence. We propose two methods to generate pairs.297

The first method involves using ChatGPT to 298

generate corresponding words according to the se- 299

mantic information of given sentences from STS- 300

B training set. By asking ChatGPT with same tem- 301

plate in Figure 2, ChatGPT outputs one word sum- 302

mary for the given sentence. We also find “one 303

word limitation” in Section 3.1 is important for 304

ChatGPT. Consider to our prompt-based represen- 305

tation method, we employ the hidden state of the 306

next token as the sentence embeddings. By remov- 307

ing in one word from the template, it tends to ex- 308

plain the meaning of a sentence in a lengthy way, 309

and the first word often becomes an article such 310

as “The”, which lacks clear meaning. For exam- 311

ple, given the sentence “A jockey riding a horse.”, 312

the hidden state achieves the highest dot product 313

similarity for “Equestrain” among its word embed- 314

dings. However, without “one word limitation”, 315

it will achieve the highest dot product similarity 316

for word without specific meaning such as “The” 317

among its word embeddings, which can not repre- 318

sent sentence properly. Inspired by DefSent (Tsuk- 319

agoshi et al., 2021), which leverages definition sen- 320

tences with their words as labels to train unsuper- 321

vised sentence embedding, our second method is 322

also based on a word dictionary. We directly use 323

words and their definition sentences in the Oxford 324

dictionary as word-sentence pairs. 325

Based on these methods, we construct a demon- 326

stration set consisting of 300 pairs of sentences 327

and words. 100 pairs are from STS-B training 328

set, with words labeled by ChatGPT, while the 329

remaining are from the Oxford dictionary. To 330

find demonstration that help model to represent 331
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Figure 3: Distribution of Spearman correlations on the STS-B development set with different in-context learning
demonstrations. The red dash line represents the Spearman correlation of the corresponding model without any
demonstration. The blue area represents demonstrations that negatively impact the performance, and the percentage
refers to the proportion of these demonstrations to the total number of demonstrations.

sentences, we directly evaluate each demonstra-332

tion on the STS-B development set and use the333

demonstration with the best Spearman correlation334

as the demonstration for corresponding models.335

We also visualize the distribution of Spearman cor-336

relations for OPT from 125M to 66B parameters337

in Figure 3. Following the previous study (Ka-338

plan et al., 2020), we notice that in-context learn-339

ing achieves better performance, when increasing340

model parameter from 125M to 2.7B. For exam-341

ple, there are only one demonstration that helps342

the 125M OPT achieve better performance com-343

pared to without demonstration. However, around344

98% of demonstrations improve the performance345

of the 2.7B OPT. In-context learning significantly346

enhance the sentence embeddings, especially for347

OPT with more than 1B parameters. With only in-348

context learning, OPT with more than 1.3B param-349

eters even achieve better results on STS tasks com-350

pared to contrastive learning based method like351

SimCSE (Gao et al., 2021) in Table 1.352

3.3 Efficient Fine-tuning with Contrastive353

Learning and DPO354

While in-context learning enhancing the per-355

formance of sentence embeddings without fine-356

tuning, we also exploit contrastive learning357

with PromptEOL. To address the GPU mem-358

ory limitations of contrastive learning, we em-359

ploy an efficient fine-tuning method known as360

QLoRA (Dettmers et al., 2023). This method361

combines two strategies, 4-bit quantization and362

parameter-efficient fine-tuning, to significantly re- 363

duce memory usage. Consequently, this allows us 364

to scale LLMs to 30 billion parameters. Lever- 365

aging PromptEOL, we observe that LLMs can 366

achieve robust performance with contrastive learn- 367

ing in Tabel 2. 368

Inspired by the Direct Performance Optimiza- 369

tion (DPO) (Rafailov et al., 2023), we find the 370

performance of sentence embeddings can be fur- 371

ther improved by aligning the embeddings with 372

the preferences of sentence-pair regression model. 373

It predicts similarities more accurately based on 374

pairs of sentences, as opposed to the sentence em- 375

beddings method which relies on individual sen- 376

tences. The DPO loss for aligning embeddings is 377

defined as follows: 378

LDPO =

log σ

(
β log

simπθ (x3, x4)

simπref (x3, x4)
− β log

simπθ (x1, x2)

simπref (x1, x2)

)
(1)

379

Where πref represents the reference model, which 380

is fine-tuned by contrastive learning. πθ denotes 381

the optimal model, initially based on πref . The 382

term sim refers to the function for computing sim- 383

ilarity between sentence pairs. x1, x2 and x3, x4 384

are aligned sentence pairs, where regression model 385

prefers first pair as indicated by sim(x1, x2) ≻ 386

sim(x3, x4). β is the hyperparameter in DPO. 387
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Fine-tuning on unsupervised datasets

SimCSE-BERT† 110M 68.40 82.41 74.38 80.91 78.56 76.85 72.23 76.25
SimCSE-RoBERTa† 123M 70.16 81.77 73.24 81.36 80.65 80.22 68.56 76.57

Without fine-tuning

BERT avg.† 110M 30.87 59.89 47.73 60.29 63.73 47.29 58.22 52.57
BERT prompt‡ 110M 60.96 73.83 62.18 71.54 68.68 70.60 67.16 67.85
ST5-Enc§ 4.8B 34.97 60.19 47.59 66.40 70.62 62.83 63.57 58.02

PromptEOL
OPT

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

PromptEOL+ICL
OPT

125M 62.22 73.10 61.84 71.09 72.08 67.80 64.10 67.46
350M 63.87 73.85 63.41 72.45 73.13 70.84 65.61 69.02
1.3B 72.78 83.77 73.61 83.42 80.60 78.80 69.69 77.52
2.7B 68.49 84.72 75.15 83.62 81.34 80.94 72.97 78.18
6.7B 70.65 84.51 75.01 83.51 82.00 81.12 76.77 79.08
13B 71.99 85.22 76.04 82.23 81.38 81.42 75.00 79.04
30B 69.99 83.35 74.75 83.14 82.42 81.45 77.46 78.94
66B 69.93 83.29 74.88 80.10 81.11 81.76 76.26 78.19

Table 1: Performances of our method on STS tasks without fine-tuning. ICL denotes in-context learning with our
demonstration set. †: results from (Gao et al., 2021). ‡: results from (Jiang et al., 2022). §: results from (Ni et al.,
2021). More results on other LLMs can be found in Appendix G.

4 Experiment388

4.1 Implementation Details389

For the setting without fine-tuning, we use OPT390

from 125M to 66B parameters, and LLaMA from391

7B to 65B parameters. All models use the same392

template in Section 3.1. We use 300 pairs of393

sentences and words as demonstration set for in-394

context learning. Among these, 100 pairs are395

from the STS-B training set, and we use gpt-3.5-396

turbo to label their words. The remaining 200397

pairs are from the Oxford dictionary. We provide398

all demonstrations in Appendix A. For each model,399

we choose only one demonstration that has the400

highest Spearman correlation on the STS-B devel-401

opment set as their demonstration for evaluation.402

All results from models with 16-bit weights. We403

also present results using quantization methods in404

Appendix B. For the setting with fine-tuning, we405

following the LoRA settings in QLoRA (Dettmers406

et al., 2023) and train models on NLI datasets fol-407

lowing (Gao et al., 2021) with one epoch for con-408

trastive learning. We use the same training data409

with roberta-large fine-tuned on STS-B training 410

set as preference model for DPO. More training 411

details can be found in Appendix C. For the eval- 412

uation datasets, we use 7 STS tasks and 7 transfer 413

tasks following (Gao et al., 2021). 414

4.2 Main Results 415

We compare our method with BERT-based meth- 416

ods such as SBERT (Reimers and Gurevych, 417

2019), SimCSE (Gao et al., 2021), and Prompt- 418

BERT (Jiang et al., 2022). In addition, we in- 419

clude other sentence methods based on LLMs 420

as baselines, such as ST5 (Ni et al., 2021) and 421

SGPT (Muennighoff, 2022). Among these base- 422

lines, ST5 achieves state-of-the-art results on both 423

STS and transfer learning tasks by further fine- 424

tuning 4.8B parameters T5 encoder with con- 425

trastive learning. 426

STS tasks without fine-tuning Table 1 shows 427

the results of PromptEOL with and without in- 428

context learning on STS tasks. Even without cor- 429

responding textual outputs for sentence embed- 430

dings, in-context learning still helps model to gen- 431
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Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Fine-tuning on supervised datasets

SimCSE-RoBERTa† 123M 76.53 85.21 80.95 86.03 82.57 85.83 80.50 82.52
PromptRoBERTa‡ 123M 76.75 85.93 82.28 86.69 82.80 86.14 80.04 82.95
SGPT¶ 5.8B 74.28 85.35 79.21 85.52 82.54 85.50 79.53 81.70
ST5-Enc§ 4.8B 80.10 88.75 84.70 88.86 85.17 86.77 80.39 84.96

PromptEOL+CSE
OPT

1.3B 79.01 89.26 84.10 88.30 84.62 87.71 80.52 84.79
2.7B 79.49 89.64 84.80 89.51 85.91 88.33 81.64 85.62
6.7B 80.14 90.02 84.94 89.78 85.84 88.75 81.29 85.82
13B 80.20 90.24 85.34 89.52 85.90 88.56 82.06 85.97

PromptEOL+CSE
LLaMA

7B 79.16 90.22 85.40 88.99 86.25 88.37 81.51 85.70
13B 78.63 90.03 85.46 89.48 86.18 88.45 82.69 85.85
30B 79.72 90.25 85.85 90.04 86.27 89.14 82.38 86.24

PromptEOL+CSE+DPO
LLaMA

7B 79.75 90.73 86.14 89.35 86.93 88.39 82.84 86.30
13B 79.49 90.34 86.00 89.71 86.86 88.38 83.46 86.32
30B 80.17 91.03 86.78 90.15 87.16 89.10 82.93 86.76

Table 2: Performances of our method on STS tasks with fine-tuning. CSE denotes contrastive learning for sentence
embeddings. †: results from (Gao et al., 2021). §: results from (Ni et al., 2021). ¶: results from evaluation the
public checkpoint (Muennighoff, 2022) on STS tasks.

Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

Fine-tuning on supervised datasets

SimCSE-RoBERTa† 123M 84.92 92.00 94.11 89.82 91.27 88.80 75.65 88.08
PromptRoBERTa‡ 123M 85.74 91.47 94.81 90.93 92.53 90.40 77.10 89.00
ST5-Enc§ 4.8B 90.83 94.44 96.33 91.68 94.84 95.40 77.91 91.63

Without fine-tuning

BERT avg. 110M 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94
ST5-Enc§ 4.8B 91.15 93.33 97.55 90.20 94.07 94.40 74.26 90.71

PromptEOL
OPT

1.3B 88.06 91.55 95.90 91.55 93.08 95.00 73.97 89.87
2.7B 88.83 92.29 95.93 91.76 94.62 96.00 75.94 90.77
6.7B 90.26 92.50 96.67 91.39 94.67 96.00 77.91 91.34
13B 90.73 92.90 96.69 91.48 94.01 96.80 75.59 91.17
30B 90.95 92.77 96.99 91.79 95.28 97.00 73.97 91.25
66B 90.96 93.40 97.01 91.93 95.22 96.40 75.25 91.45

PromptEOL
LLaMA

7B 90.40 92.90 96.88 91.57 95.11 95.40 75.13 91.06
13B 92.02 93.22 97.29 91.40 95.66 95.80 76.46 91.69
30B 91.64 93.27 97.10 91.86 95.99 95.80 78.43 92.01
65B 92.13 93.43 97.16 91.91 95.33 97.40 77.28 92.09

Table 3: Performances of our method on transfer learning tasks. †: results from (Gao et al., 2021). ‡: results
from (Jiang et al., 2022). §: results from (Ni et al., 2021).

erate better embeddings. As the model size grows,432

improvements from in-context learning also in-433

crease. Moreover, in-context learning shows sig-434

nificantly improvements on STS tasks for model435

with more than billions parameters. For instances,436

it raises the Spearman correlation from 68.84 to437

78.19 on 66B OPT. Our method with in-context438

learning also outperforms among methods without439

fine-tuning. Even if we do not use any method440

to avoid anisotropy (Ethayarajh, 2019), which is 441

widely regarded as the main reason for poor per- 442

formance on STS tasks (Gao et al., 2021; Ni et al., 443

2021), our method still outperforms unsupervised 444

methods such as SimCSE, which use contrastive 445

learning to avoid anistoropy. Additionally, we find 446

the performance is not sensitive to the model size 447

while scaling model beyond a billion parameters. 448

Smaller models, such as 1.3B OPT, even outper- 449
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Figure 4: Influence of different sentence representation methods on three settings. “avg.” refers to use averag-
ing output tokens as sentence embeddings. “prompt” refers to extract sentence embeddings using the template
from (Jiang et al., 2022) . Dash lines represent the results from the base-size BERT.

forms SimCSE without fine-tuning.450

STS tasks with fine-tuning Table 2 shows451

the results by fine-tuning with PromptEOL on452

the supervised dataset. Compared to ST5-Enc,453

which fine-tuned all 4.8B parameters on Commu-454

nity QA and NLI datasets, our method with 2.7B455

OPT achieves superior results through parameter-456

efficient fine tuning on the 4-bit model with only457

NLI datasets. Keep scaling up the parameters size,458

30B LLaMA achieve the best performance on STS459

tasks, attaining a Spearman correlation of 86.24460

on STS tasks. Moreover, we also report the re-461

sults of LLaMA-2 (Touvron et al., 2023b) on Ap-462

pendix D and observe it performs better perfor-463

mance than LLaMA. Despite the strong results464

from contrastive learning, our DPO method still465

manages to enhance performance by aligning the466

embeddings with the preferences of a sentence-467

pair regression model. It achieves an approximate468

0.5 improvement in average Spearman correlation469

for LLaMA, ranging from 7B to 30B. In compar-470

ison to previous methods, our method achieves471

significant improvements on STS tasks with fine-472

tuning.473

Transfer tasks We also report the results of our474

method on the transfer learning tasks in Table 3.475

Unlike STS tasks, we observe that LLMs achieve476

better performance as the model size increases.477

Specifically, the 66B OPT and 65B LLaMA mod-478

els outperform their smaller counterparts with our479

representation method. Based on our representa-480

tion method, LLMs show good performance with-481

out in-context learning and contrastive learning.482

Following ST5 (Ni et al., 2021), we find that apply-483

ing contrastive learning solely on NLI datasets can484

even harm performance on transfer tasks. To solve485

this problem, ST5 utilizes Community QA dataset486

to enhance its performance in transfer tasks. For 487

in-context learning, as it is widely used in text clas- 488

sification, we find that using examples not relevant 489

to tasks, such as STS-B or the dictionary, does 490

not enhance transfer task performance. We present 491

these results in Appendix E. 492

5 Analysis 493

5.1 Sentence Representation Methods 494

We present the results obtained using three sen- 495

tence representation methods, across models rang- 496

ing in size from 125M to 66B parameters, as 497

shown in Figure 4. Different representation 498

methods can yield significantly different results. 499

Prompt-based methods outperform direct averag- 500

ing in three settings. Among these methods, 501

PromptEOL exhibits the best performance, as it in- 502

troduces an explicit “one-word limitation”. More 503

detail results can be found in Appendix F. 504

6 Conclusion 505

In this paper, we focus on exploiting LLMs to 506

improve sentence embeddings. To achieve this, 507

we propose a new sentence embeddings method 508

called PromptEOL, which adapts previous prompt- 509

based methods to autoregression models. Further- 510

more, we leverage in-context learning to generate 511

superior sentence embeddings by utilizing Chat- 512

GPT and the Oxford dictionary to create sentence 513

embeddings demonstrations. It demonstrates in- 514

context learning allows LLMs to achieve perfor- 515

mance comparable to current contrastive learning 516

methods. With our prompt-based method, we 517

also discover that further fine-tuning of LLMs 518

can achieve the state-of-the-art performance using 519

only efficient fine-tuning methods. 520

8



7 Limitation521

Despite LLMs with PromptEOL exhibiting ro-522

bust performance, it typically demands more com-523

putational resources than smaller language mod-524

els. Nevertheless, PromptEOL remains an effi-525

cient sentence embeddings method, which outper-526

forms previous methods such as ST5 with signifi-527

cantly fewer model parameters and fine-tuning re-528

sources. Limited by the hardware, we only scale529

the LLMs to 30B parameters with QLoRA for the530

setting of fine-tuning. We expect that performance531

could be further enhanced with full fine-tuning or532

larger models.533
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A Demonstrations 719

Over 100 dead as typhoon slams central Philippines. Disaster
Woman in red overalls standing on the sidewalk. Observation
India starts voting in world’s largest election. Democracy
Three dogs pulling a man on a bicycle through the snow. Adventure
Spain approves new restrictive abortion law. Legislation
A man dives into a pool. Activity
Saudi to give Lebanese army $3 billion Aid
Updated - Two explosions near finish line of Boston Marathon Terrorism
A gray cat with green eyes looks at the camera. Portrayal
Egypt interior minister survives bomb Survival
A man is playing a large flute. Music
A man is spreading shreded cheese on a pizza. Cooking
Three men are playing chess. Strategy
A man is playing the cello. Music
Some men are fighting. Conflict
A man is smoking. Smoking
The man is playing the piano. Music
A man is playing on a guitar and singing. Music
A person is throwing a cat on to the ceiling. Cruelty
The man hit the other man with a stick. Violence
A woman picks up and holds a baby kangaroo. Caring
A man is playing a flute. Music
A person is folding a piece of paper. Origami
A man is running on the road. Exercise
A dog is trying to get bacon off his back. Humorous
The polar bear is sliding on the snow. Playful
A woman is writing. Writing
A cat is rubbing against baby’s face. Affection
The man is riding a horse. Horseback-riding
A man pours oil into a pot. Cooking
A man is playing a guitar. Music
A panda is sliding down a slide. Playful
A woman is eating something. Eating
A woman peels a potato. Cooking
The boy fell off his bike. Accident
The woman is playing the flute. Music
A rabbit is running from an eagle. Escape
The woman is frying a breaded pork chop. Cooking
A girl is flying a kite. Recreation
A man is riding a mechanical bull. Entertainment
The man is playing the guitar. Music
A woman is dancing and singing with other women. Celebration
A man is slicing a bun. Cooking
A man is pouring oil into a pan. Cooking
A lion is playing with people. Dangerous
A dog rides a skateboard. Unusual
Someone is carving a statue. Art
A woman is slicing an onion. Cooking
A woman is dancing. Dancing
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Two green and white trains sitting on the tracks. Arrangement
A small white cat with glowing eyes standing underneath a chair. Mysterious
A large boat in the water at the marina. Yacht
a bus driving in a street. Movement
A passenger train waiting in a station. Stationary
a woman at a dinner table writing on her notebook. Observation
An Apple computer sitting on the floor. Description
A close-up of a brown horse’s head. Detail
A group of people eat at a table outside. Alfresco
A jockey riding a horse. Equestrian
The man is riding a motorcycle down the road. Motorcycling
A woman riding a brown horse. Equestrian
A kid jumping a ledge with a bike. Stunt
A black dog standing in front of yellow flowers. Contrast
Close up of a bottle of water. Zoom
A close up of a brown faced cat. Intense
sheep standing in afield. Pastoral
A longed-haired cat with it’s eyes closed. Sleeping
A woman in a gray shirt smiles for the camera while the woman behind her
makes a face.

Contrast

A silver and blue Amtrak train on the tracks near a small train station. Railway
A person in a blue shirt reclines near a coffee table and television. Relaxation
A black and white photo of a woman showing a horse. Monochrome
A dark brown horse standing in a field. Equine
A pitched tent with a horse in the background. Camping
A group of people sitting around a table with food on it. Gathering
A brown horse stands in a lush green field. Pastoral
a black and white cow in hay. Cow
An elderly woman stands in a kitchen with two cats at her feet. Domesticity
A school bus is driving uphill on a rural road. Ascend
Camouflage airplane sitting on grassy field. Concealment
Three young women standing in a room together. Group
Red double decker bus driving through the streets. Transportation
A white sheep on a hillside looking at the camera. Observation
A group of sheep in a field. Flock
A close-up, distorted photo of an empty glass Coke bottle. Abstract
Very crowded office desk with computer monitor on. Cluttered
A man sitting in a cluttered room. Disorderly
Two white cows in a green pasture. Scene
Black cow walking under trees in pasture. Nature
Two people sitting at a table at a restaurant. Dining
A smiling woman with a beer sitting outside with another smiling woman. Companionship
A bird holding on to a metal gate. Perching
The skinny cows are standing on the grass. Cattle
A women laying across two men sitting on a sofa. Entanglement
a woman with a big necklace. Opulent
Brown cow with horns standing in a field. Cattle
A cruise liner docked at the shoreline. Berthed
Black and white cat lying under bush. Camouflage
Brown and white cow standing in grass at side of road. Cow
A small dog looking up at the camera while standing on grass. Adorable
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the process or result of becoming smaller or pressed together. Contraction
done, produced, or occurring once a week. Weekly
the chief bishop of an eparchy. Eparch
a native or inhabitant of guatemala, or a person of guatemalan descent. Guatemalan
the energy transmitted by radiation. Radiation
a necktie tied in a loose knot with two hanging ends, popular in the late 19th
and early 20th centuries.

Four-in-hand

relating to germany, its people, or their language. German
not yet used or soiled. Fresh
the chemical composition and properties of a substance or body. Chemistry
insects of the order Hemiptera; true bugs. Hemiptera
an act of counting something again, especially votes in an election. Recount
a very helpful or valuable event, person, or article. Godsend
the part of a theatre where the orchestra plays, typically in front of the stage
and on a lower level.

Orchestra

the eighth star in a constellation. Theta
abnormally low blood pressure. Hypotension
high-flown style; excessive use of verbal ornamentation. Rhetoric
impetuous or flamboyant vigour and confidence; panache. Dash
a large and densely populated urban area; may include several independent
administrative districts.

Metropolis

the side of an object that is opposite its front. Backside
an outward semblance that misrepresents the true nature of something. Disguise
the action of reasserting or confirming something. Reaffirmation
an idea or conclusion having general application. Generalization
the choicest or most essential or most vital part of some idea or experience. Nub
the way in which something is done or operated. Mechanics
relating to switzerland or its people. Swiss
an inhabitant of a particular town or city. Citizen
a compound present in some kinds of ergot. an alkaloid, it causes constriction
of blood vessels and is used in the treatment of migraine.

Ergotamine

the descendants of one individual. Parentage
things done to express interest in or please someone. Attention
the branch of technology that deals with dimensions and tolerances of less
than 100 nanometres, especially the manipulation of individual atoms and
molecules.

Nanotechnology

a printed heading on stationery, stating a person or organization’s name and
address.

Letterhead

people who are destined to die soon. Doomed
the cross on which christ was crucified. Cross
a member of a sect. Sectary
an inanimate object worshipped for its supposed magical powers or because it
is considered to be inhabited by a spirit.

Fetish

denoting the offspring of a cross. Filial
create or prepare methodically. Formulate
a small old world songbird of the thrush family, with black, white, and brown
coloration and a harsh call.

Chat

make oneself thinner by dieting and sometimes exercising. Slim
head into a specified direction. Make
a white new zealander as opposed to a maori. Pakeha
a place of inviolable privacy. Sanctum
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a person who has matriculated. Matriculate
agriculture developed along industrial lines. Agro-industry
a naval officer of the second most senior rank, above vice admiral and below
admiral of the fleet or fleet admiral.

Admiral

ease the grief or distress of. Comfort
come under, be classified or included. Fall
be a sign or indication of. Denote
the starting point for a new state or experience. Threshold
an instance of sleeping in rough accommodation or on an improvised bed. Doss
a writer of any of the hagiographa. Hagiographer
relating to or denoting a paraprofessional. Paraprofessional
intense and eager enjoyment, interest, or approval. Enthusiasm
kill and prepare for market or consumption. Dress
an unexpected and surprising event, especially an unpleasant one. Bombshell
obtain or seek to obtain by cadging or wheedling. Scrounge
a mechanical device consisting of a cylindrical tube around which the hair is
wound to curl it.

Crimper

an established ceremony prescribed by a religion. Rite
a continuous period of being seated, especially when engaged in a particular
activity.

Sitting

the cultivation of flowers. Floriculture
settle or establish firmly. Cement
meat from a deer. Venison
a deep red colour like that of burgundy wine. Burgundy
a temporary board fence erected round a building site. Hoarding
haunt like a ghost; pursue. Obsess
the quality of transparency or purity. Clarity
a push or blow, especially one given with the head. Butt
a standard or typical example. Paradigm
praise enthusiastically and publicly. Acclaim
pass through a hole or opening. Reeve
relating to or characteristic of java, a large island in the malay archipelago. Javan
a substance obtained by mining. Mineral
the solid part of a comet’s head. Nucleus
confine or restrain with or as if with manacles or handcuffs. Manacle
cause extensive destruction or ruin utterly. Devastate
a person being dealt with by social or medical services. Client
make or become very warm, especially through exposure to the heat of the sun
or a fire.

Roast

say something with difficulty, repeating the initial consonants of words. Stutter
a body of students who are taught together. Class
euphemistic expressions for death. Release
of or relating to or resembling fish. Fishy
the part of a sphere cut off by any plane not passing through the centre. Segment
a crossbar in front of a wagon with a swingletree at each end, enabling two
horses to be harnessed.

Doubletree

a strong blow with a knife or other sharp pointed instrument. Thrust
a shiny silicate mineral with a layered structure, found as minute scales in
granite and other rocks, or as crystals. it is used as a thermal or electrical
insulator.

Mica

coins or other articles made of gold. Gold

14



living quarters provided for public convenience. Accommodation
unwillingness to do something contrary to your custom. Loath
move or cause to move gradually or with difficulty into another position. Work
move or sway in a rising and falling or wavelike pattern. Fluctuate
a flexible covering for the base of a gear lever or other mechanical part. Gaiter
done or existing alone. Solitary
of or relating to tutors or tutoring. Tutorial
come or be in close contact with; stick or hold together and resist separation. Cling
swell or cause to swell. Belly
relating to mongolia, its people, or their language. Mongolian
a longing or yearning. Yen
the sound made by the vibration of vocal folds modified by the resonance of
the vocal tract.

Vocalisation

the neurophysiological processes, including memory, by which an organism
becomes aware of and interprets external stimuli.

Perception

the process or action by which something is reabsorbed. Resorption
a public statement containing information about an event that has happened or
is going to happen.

Promulgation

in an advanced stage of pregnancy. Heavy
a smoky outdoor fire that is lit to keep off insects or protect plants against frost. Smudge
direct in spatial dimensions; proceeding without deviation or interruption;
straight and short.

Direct

a dead body, especially of a human being rather than an animal. Corpse
distinctive and stylish elegance. Style
a very typical example of a certain person or thing. Archetype
a person who replies to something, especially one supplying information for a
questionnaire or responding to an advertisement.

Respondent

the action of entering something. Entry
on the italian or roman side of the alps. Ultramontane
a projecting piece of wood made for insertion into a mortise in another piece. Tenon
a display of pretended or exaggerated suffering to obtain sympathy. Martyrdom
a malevolent spirit or person. Cacodemon
something or someone that causes anxiety; a source of unhappiness. Vexation
impose or inflict forcefully. Clamp
a long essay on a particular subject, especially one written for a university
degree or diploma.

Dissertation

be close or similar. Approximate
of uncertain outcome; especially fraught with risk. Chancy
the brotherhood of freemasons. Craft
a supporter of the american side during the war of american independence. Whig
a formal document giving notice of your intention to resign. Resignation
a device used in taxis that automatically records the distance travelled and the
fare payable.

Taximeter

any long object resembling a thin line. Thread
a set of reasons or a logical basis for a course of action or belief. Rationale
a person appointed to select a representative team in a sport. Selector
the manner in which someone behaves towards or deals with someone or some-
thing.

Treatment

refuse to acknowledge someone or something as having authority. Revolt
a branch of an army assigned to a particular kind of work. Corps
an event resulting in great loss and misfortune. Cataclysm
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occupy or take on. Strike
move with sweeping, effortless, gliding motions. Sweep
a high point, level, or figure. High
a large luxurious passenger ship of a type formerly used on a regular line. Liner
more distant than another object of the same kind. Far
the underground lair of a badger or fox. Earth
the central principle or part of a policy, system, etc., on which all else depends. Keystone
chequer with contrasting colours. Counterchange
the condition of being fenestrate. Fenestration
observe with care or pay close attention to. Observe
a dark greenish-blue colour. Teal
a mystic syllable, considered the most sacred mantra in hinduism and tibetan
buddhism. it appears at the beginning and end of most sanskrit recitations,
prayers, and texts.

Om

set the level or character of. Gear
be sexually unfaithful to one’s partner in marriage. Betray
a round button for adjusting or controlling a machine. Knob
an army unit consisting of soldiers who fight on foot. Foot
people who are fearful and cautious. Timid
the trait of being excessively fastidious and easily shocked. Squeamishness
demand something forcefully, not accepting refusal. Insist
a secret word or phrase known only to a restricted group. Word
to compress with violence, out of natural shape or condition. Squelch
a salt containing the anion hco−3 . Bicarbonate
the length of time that a person has lived or a thing has existed. Age
used to indicate that one is waiting for an answer or explanation from someone. Well
a quantity or supply of something kept for use as needed. Store
a person or group that oppresses people. Oppressor
eject the contents of the stomach through the mouth. Spue
make a loud, high-pitched sound. Scream
objective or physical; not subjective. Outer
full of nervous energy, especially through taking amphetamines or similar
drugs.

Amp

an adhesive solution; gum or glue. Mucilage
a fastener consisting of two buttons joined with a bar, used in formal wear to
fasten a shirt front or to fasten a collar to a shirt.

Stud

the air passage from the throat to the lungs; the trachea. Windpipe
a curtain or piece of fabric fastened so as to hang in a drooping curve. Swag
rope that is used for fastening something to something else. Lashing
to say, state, or perform again. Restate
being complete of its kind and without defect or blemish. Perfect
creating a picture with paints. Painting
make amorous advances towards. Solicit
very beautiful or attractive. Lovely
filled with soft feathers. Downy
a high explosive consisting chiefly of a gel of nitroglycerine with added cellu-
lose nitrate.

Gelatin

the capacity to experience the sense of touch. Feeling
furnish with new or different furniture. Refurnish
remove from the centre of activity or attention; place in a less influential posi-
tion.

Sideline
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rise up as in fear. Uprise
the celebration of something in a joyful and exuberant way. Festivity
stay or cause to stay at a certain value or level. Hold
to arouse hope, desire, or curiosity without satisfying them. Tease
liquid preparation having a soothing or antiseptic or medicinal action when
applied to the skin.

Application

change or be different within limits. Run
everything that exists anywhere. Cosmos
uncomfortably humid or airless. Close
a type of four-wheel-drive all-terrain military vehicle, or a similar vehicle in-
tended for civilian use.

Hummer

covered with or containing or consisting of ice. Icy
a caustic surface or curve. Caustic
the antibody which is involved in allergic reactions, causing the release of
histamine when it combines with antigen in tissue, and capable of producing
sensitivity to the antigen when introduced into the skin of a normal individual.

Reagin

to prepare verbally, either for written or spoken delivery. Prepare
a building or community occupied by or consisting of friars. Friary
a preliminary round in a sporting competition. Preliminary
load or cover with stacks. Stack
a cavity in a plant, animal body, or organ. Chamber
a periodic variation of an electromagnetic field in the propagation of light or
other radiation through a medium or vacuum.

Wave

ornamentation by means of figures or designs. Figuration
make or place parallel to something. Collimate
be in accord; be in agreement. Hold
brush or drive away with a waving movement. Fan
vigorously energetic or forceful. High-power
an australian acacia tree with delicate fern-like leaves and yellow flowers. Mimosa
make hard or harder. Harden
a tropical old world plant of the daisy family, with large brightly coloured
flowers, cultivated under glass in cooler regions.

Gerbera

the round fruit of a tree of the rose family, which typically has thin green or
red skin and crisp flesh.

Apple

Table 4: 300 demonstrations used for in-context learning
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B Influence of Quantization720

We analyze the influence of quantization in Table 5 between the 16bit models and 4bit models, which are721

quantized by bitsandbytes 1 with 4-bit normalfloat and double quantization. We find large models tend722

to show better results on STS tasks after 4-bit quantization. For example, PromptEOL+ICL with 6.7B723

OPT improve Spearman correlation from 79.08 to 79.38.724

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL
OPT(16-bit)

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

PromptEOL
OPT(4-bit)

125M 60.53 70.03 59.02 69.77 72.38 66.47 65.17 66.20
350M 58.03 72.61 61.34 66.14 72.99 67.27 65.10 66.21
1.3B 63.72 79.32 68.13 77.92 78.56 72.03 68.80 72.64
2.7B 57.80 72.45 61.09 73.33 76.22 64.71 64.07 67.10
6.7B 63.81 81.45 69.90 77.68 80.92 75.51 69.28 74.08
13B 60.91 80.97 70.22 76.93 79.46 72.84 66.34 72.52
30B 59.33 79.65 69.25 73.87 77.79 71.72 69.07 71.53
66B 59.35 77.33 68.33 74.45 77.25 73.93 69.27 71.42

PromptEOL+ICL
OPT(16-bit)

125M 62.22 73.10 61.84 71.09 72.08 67.80 64.10 67.46
350M 63.87 73.85 63.41 72.45 73.13 70.84 65.61 69.02
1.3B 72.78 83.77 73.61 83.42 80.60 78.80 69.69 77.52
2.7B 68.49 84.72 75.15 83.62 81.34 80.94 72.97 78.18
6.7B 70.65 84.51 75.01 83.51 82.00 81.12 76.77 79.08
13B 71.99 85.22 76.04 82.23 81.38 81.42 75.00 79.04
30B 69.99 83.35 74.75 83.14 82.42 81.45 77.46 78.94
66B 69.93 83.29 74.88 80.10 81.11 81.76 76.26 78.19

PromptEOL+ICL
OPT(4-bit)

125M 61.02 71.00 59.75 69.67 70.52 65.14 63.45 65.79
350M 64.14 72.45 62.58 71.05 70.18 67.67 65.52 67.66
1.3B 73.45 82.55 73.11 83.63 80.60 78.72 69.06 77.30
2.7B 68.50 84.73 74.62 82.23 80.87 80.81 72.30 77.72
6.7B 70.23 84.64 76.08 83.73 82.06 81.66 77.29 79.38
13B 71.79 84.23 75.57 81.75 80.71 80.89 74.46 78.49
30B 70.61 84.05 75.27 83.23 82.77 81.45 77.31 79.24
66B 71.67 83.95 75.67 81.33 81.86 82.58 76.54 79.09

Table 5: Influence of quantization on STS tasks. ICL denotes in-context learning with our demonstration set.

1https://github.com/TimDettmers/bitsandbytes
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C Training Details 725

We use QLoRA to fine-tune OPT and LLaMA with contrastive learning. Following QLoRA, we use 726

LoRA r = 64, α = 16, dropout = 0.05, and add LoRA modules on all linear layers of the 4-bit 727

quantized model. We fine-tune models on the NLI datasets (Gao et al., 2021) with one epoch, temperature 728

τ = 0.05 and learning rate 5e-4. Due to hardware limitations, we only conduct our experiments with 729

model parameters less than or equal to 13B with 8 RTX-3090 GPUs. For models with fewer than 7B 730

parameters, we fine-tune them on 2 GPUs with a batch size of 256. For 7B models, we use 4 GPUs with 731

a batch size of 256. For 13B models, we use 8 GPUs with a batch size of 200. 732

D Results of PromptEOL+CSE on LLaMA2 733

We report the results on LLaMA-2(Touvron et al., 2023b) on Table 6. 734

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

PromptEOL+CSE
LLaMA

7B 79.16 90.22 85.40 88.99 86.25 88.37 81.51 85.70
13B 78.63 90.03 85.46 89.48 86.18 88.45 82.69 85.85

PromptEOL+CSE
LLaMA-2

7B 78.48 90.07 84.86 89.43 86.16 88.44 83.20 85.81
13B 78.84 90.35 85.88 89.72 86.68 88.91 82.64 86.15

Table 6: Influence of quantization on STS tasks. ICL denotes in-context learning with our demonstration set.
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E Transfer Tasks735

The results of PromptEOL with in-context learning (ICL) and contrastive learning (CSE) are shown in736

Table 7. Compared to PromptEOL, both PromptEOL+ICL and PromptEOL+CSE appeared to hinder737

performance on transfer tasks. We anticipate that the incorporation of additional datasets, such as the738

Community QA dataset, in accordance with ST5 (Ni et al., 2021), or the implementation of full-model739

fine-tuning, might enhance the performance of PromptEOL+CSE in transfer tasks, which we leave in fu-740

ture. For PromptEOL+ICL, using STS-B or a dictionary as the example did not improve the performance741

on transfer tasks. We discover that using examples from a task with the label as the word in the example742

can improve the original performance. For instance, if we use one positive example and one negative743

example from training set of MR tasks, it increases the accuracy on MR in 6.7B OPT by approximately744

one point. We find these examples also beneficial to other transfer tasks, improving the average accuracy745

from 91.34 to 91.78, which can exceed 66B OPT performance.

Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

PromptEOL
OPT

125M 80.86 87.66 93.19 89.77 87.31 92.20 72.64 86.23
350M 84.14 88.08 93.17 89.77 89.73 91.20 71.36 86.78
1.3B 88.06 91.55 95.90 91.55 93.08 95.00 73.97 89.87
2.7B 88.83 92.29 95.93 91.76 94.62 96.00 75.94 90.77
6.7B 90.26 92.50 96.67 91.39 94.67 96.00 77.91 91.34
13B 90.73 92.90 96.69 91.48 94.01 96.80 75.59 91.17
30B 90.95 92.77 96.99 91.79 95.28 97.00 73.97 91.25
66B 90.96 93.40 97.01 91.93 95.22 96.40 75.25 91.45

PromptEOL+ICL
OPT

125M 80.86 87.10 93.08 89.55 87.10 92.00 73.28 86.14
350M 82.20 86.65 93.21 89.70 87.86 87.60 72.52 85.68
1.3B 87.05 90.49 95.34 91.54 90.72 95.80 72.64 89.08
2.7B 88.73 91.79 95.44 91.54 93.52 95.20 75.30 90.22
6.7B 89.80 93.27 96.32 91.46 93.79 95.40 74.43 90.64
13B 89.45 92.98 96.23 91.28 94.51 95.40 75.71 90.79
30B 90.27 92.82 96.46 91.76 94.34 97.00 76.29 91.28
66B 90.40 92.50 97.08 91.24 94.34 97.40 75.01 91.14

PromptEOL+CSE
OPT

1.3B 88.62 91.89 95.49 91.64 94.29 94.80 73.22 89.99
2.7B 88.40 92.16 95.57 91.51 94.12 95.20 74.09 90.15
6.7B 89.60 92.05 95.91 91.09 94.78 95.80 75.71 90.71
13B 89.20 92.40 95.92 90.86 93.74 95.40 73.10 90.09

PromptEOL
LLaMA

7B 90.40 92.90 96.88 91.57 95.11 95.40 75.13 91.06
13B 92.02 93.22 97.29 91.40 95.66 95.80 76.46 91.69
30B 91.64 93.27 97.10 91.86 95.99 95.80 78.43 92.01
65B 92.13 93.43 97.16 91.91 95.33 97.40 77.28 92.09

PromptEOL+CSE
LLaMA

7B 90.28 93.27 96.67 91.45 94.73 95.60 75.54 91.08
13B 91.22 93.22 96.83 91.52 94.89 95.80 74.26 91.11

Table 7: Performances of our method with in-context learning and contrastive learning on transfer learning tasks.

746
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F Sentence Representation Methods 747

We supplemented detail results in Table 8 and 9 for different sentence representation methods. 748

Method Params STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Without fine-tuning

OPT avg.

125M 44.27 50.38 44.95 62.39 55.52 45.39 53.24 50.88
350M 40.61 47.25 40.45 55.12 55.57 40.53 47.66 46.74
1.3B 45.12 54.01 46.52 62.94 55.96 46.31 54.32 52.17
2.7B 44.11 54.35 47.89 63.91 57.02 47.85 54.44 52.80
6.7B 43.61 51.69 45.86 60.11 55.41 45.42 54.93 51.00
13B 46.95 54.92 48.74 60.13 54.96 48.07 53.93 52.53
30B 43.93 52.44 46.04 58.80 55.15 47.13 53.46 50.99
66B 40.81 47.98 44.21 59.37 56.37 43.80 53.19 49.39

OPT prompt

125M 56.25 71.61 58.62 63.47 70.29 59.77 63.23 63.32
350M 56.56 69.27 55.81 60.05 68.73 61.75 64.15 62.33
1.3B 60.26 75.64 62.93 70.63 76.52 67.31 65.95 68.46
2.7B 59.34 75.47 62.64 69.76 75.65 68.35 67.48 68.38
6.7B 55.20 76.91 62.53 69.41 76.39 67.33 65.86 67.66
13B 49.60 75.43 61.58 67.33 75.53 65.98 63.79 65.61
30B 46.69 72.42 58.00 67.52 72.98 64.77 65.66 64.01
66B 50.21 69.65 56.78 70.20 73.37 64.31 66.93 64.49

PromptEOL
OPT

125M 59.90 71.55 60.93 70.76 72.83 67.89 65.14 67.00
350M 54.70 71.52 59.99 64.51 71.39 66.55 66.58 65.03
1.3B 64.59 79.06 68.46 78.88 78.64 73.22 69.41 73.18
2.7B 60.03 75.51 64.30 74.56 77.62 67.73 65.35 69.30
6.7B 60.91 80.05 67.65 75.49 80.11 72.91 67.57 72.10
13B 60.21 81.36 69.69 75.46 79.58 70.73 65.99 71.86
30B 59.99 80.52 69.80 75.20 78.03 73.57 69.87 72.43
66B 55.66 74.62 64.90 72.34 75.21 71.72 67.43 68.84

Fine-tuning on unsupervised datasets

OPT avg.

125M 74.08 82.70 77.76 83.65 79.74 82.43 78.55 79.84
350M 74.07 83.78 78.06 84.62 80.70 83.93 78.61 80.54
1.3B 75.38 84.99 80.34 86.10 81.49 84.35 79.98 81.80
2.7B 75.31 85.66 80.73 86.71 81.84 84.92 79.66 82.12
6.7B 76.02 86.22 81.30 87.07 82.54 85.28 80.53 82.71
13B 75.86 86.32 80.73 86.25 82.13 85.55 79.62 82.35

OPT prompt

125M 76.05 85.24 79.82 85.27 81.30 84.56 79.09 81.62
350M 76.28 86.01 80.96 86.13 81.87 85.33 79.73 82.33
1.3B 78.56 89.21 84.21 88.71 84.17 87.39 81.16 84.77
2.7B 78.89 89.21 84.43 89.43 85.75 88.07 81.40 85.31
6.7B 78.66 89.81 84.45 89.70 85.71 88.63 81.79 85.54
13B 79.66 89.84 84.88 89.54 85.59 88.65 81.93 85.73

PromptEOL
OPT

125M 76.53 85.56 79.75 85.43 81.17 84.32 79.04 81.69
350M 75.96 85.51 81.32 86.50 81.42 85.24 80.35 82.33
1.3B 79.01 89.26 84.10 88.30 84.62 87.71 80.52 84.79
2.7B 79.49 89.64 84.80 89.51 85.91 88.33 81.64 85.62
6.7B 80.14 90.02 84.94 89.78 85.84 88.75 81.29 85.82
13B 80.20 90.24 85.34 89.52 85.90 88.56 82.06 85.97

Table 8: Comparison of three sentence representation methods on STS tasks.
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Method Params MR CR SUBJ MPQA SST TREC MRPC Avg.

OPT avg.

125M 80.63 86.41 93.91 87.85 86.22 92.60 71.83 85.64
350M 80.73 85.16 93.42 87.26 86.11 87.80 69.57 84.29
1.3B 85.89 90.04 95.71 90.10 91.38 94.20 72.99 88.62
2.7B 87.55 90.76 95.78 90.26 91.71 94.40 68.00 88.35
6.7B 87.93 91.07 96.58 90.65 92.70 96.20 72.17 89.61
13B 88.33 91.76 96.74 90.78 93.25 95.20 70.90 89.57
30B 88.54 92.11 96.85 90.61 93.74 94.40 70.72 89.57
66B 89.17 92.00 96.86 90.80 94.67 96.40 71.07 90.14

OPT prompt

125M 83.54 87.60 94.28 89.36 88.74 91.60 67.01 86.02
350M 80.99 84.08 93.30 89.38 86.88 88.80 60.99 83.49
1.3B 87.31 90.68 95.73 91.30 93.47 94.40 72.99 89.41
2.7B 88.58 91.60 96.22 91.36 93.90 95.80 70.96 89.77
6.7B 90.55 92.21 97.09 91.31 95.06 96.60 74.90 91.10
13B 90.45 92.66 96.85 91.57 95.44 96.00 74.55 91.07
30B 90.56 92.79 97.28 91.93 94.78 96.00 72.93 90.90
66B 90.95 92.48 97.27 91.72 95.55 95.80 75.30 91.30

PromptEOL
OPT

125M 80.86 87.66 93.19 89.77 87.31 92.20 72.64 86.23
350M 84.14 88.08 93.17 89.77 89.73 91.20 71.36 86.78
1.3B 88.06 91.55 95.90 91.55 93.08 95.00 73.97 89.87
2.7B 88.83 92.29 95.93 91.76 94.62 96.00 75.94 90.77
6.7B 90.26 92.50 96.67 91.39 94.67 96.00 77.91 91.34
13B 90.73 92.90 96.69 91.48 94.01 96.80 75.59 91.17
30B 90.95 92.77 96.99 91.79 95.28 97.00 73.97 91.25
66B 90.96 93.40 97.01 91.93 95.22 96.40 75.25 91.45

Table 9: Comparison of three sentence representation methods on STS tasks.
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G Resulst of PromptEOL and PromptEOL+ICL on Current Popular LLMs 749

We supplemented results of STS tasks with PromptEOL and PromptEOL+ICL in Table 10 on current 750

popular LLMs include open-LLaMA (Geng and Liu, 2023), LLaMA (Touvron et al., 2023a), LLaMA- 751

2 (Touvron et al., 2023b), MPT (MosaicML, 2023), Mistral (Jiang et al., 2023). 752

Params Avg. Prompt PromptEOL PromptEOL+ICL

Open-LLaMA

3B 51.75 66.45 68.22 78.85
7B 52.03 63.40 76.35 79.17
13B 49.58 64.11 70.03 78.04

LLaMA

7B 46.94 42.18 68.76 77.63
13B 47.53 48.73 65.62 73.40
30B 50.70 47.10 70.60 77.61
65B 44.80 51.69 69.39 75.73

LLaMA-2

7B 46.34 45.87 69.30 75.99
13B 49.07 58.80 68.87 78.31
70B 44.34 45.14 70.90 74.97

MPT

7B 49.39 57.25 71.06 79.08
30B 42.31 54.45 71.08 75.74

Mistral

7B 49.32 66.23 73.32 78.35

Table 10: Results of PromptEOL and PromptEOL+ICL on current popular LLMs. We report averaging Spear-
man correlation over seven STS tasks with four sentence representation methods: avg., prompt, PromptEOL and
PromptEOL+ICL. “Avg.” refers to use averaging output tokens as sentence embeddings. “Prompt” refers to extract
sentencne embeddings using the template from (Jiang et al., 2022). For simplicity, we do not search demonstra-
tion for PromptEOL+ICL but use the best demonstration from the PromptEOL+ICL OPT directly. We expect that
PromptEOL+ICL can achieve better results by searching for demonstrations according to the model.
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