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Fig. 1. Our Decaf approach captures hands and face motions as well as the face surface deformations arising from the interactions from a
single-view RGB video. Thanks to our new dataset with 3D surface deformations relying on position based dynamics that considers the underlying human
skull structure, our neural architecture estimates plausible hands-head interactions and head deformations. The examples in this figure highlight the variety
of the supported hand poses and facial expressions. The results are temporally consistent. See our supplementary video for dynamic visualisations.

Existingmethods for 3D tracking frommonocular RGB videos predominantly
consider articulated and rigid objects (e.g., two hands or humans interacting
with rigid environments). Modelling dense non-rigid object deformations in
this setting (e.g. when hands are interacting with a face), remained largely
unaddressed so far, although such effects can improve the realism of the
downstream applications such as AR/VR, 3D virtual avatar communications,
and character animations. This is due to the severe ill-posedness of the
monocular view setting and the associated challenges (e.g., in acquiring a
dataset for training and evaluation or obtaining the reasonable non-uniform
stiffness of the deformable object). While it is possible to naïvely track mul-
tiple non-rigid objects independently using 3D templates or parametric 3D
models, such an approach would suffer from multiple artefacts in the result-
ing 3D estimates such as depth ambiguity, unnatural intra-object collisions
and missing or implausible deformations.
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Hence, this paper introduces the first method that addresses the funda-
mental challenges depicted above and that allows tracking human hands
interacting with human faces in 3D from single monocular RGB videos. We
model hands as articulated objects inducing non-rigid face deformations
during an active interaction. Our method relies on a new hand-face motion
and interaction capture dataset with realistic face deformations acquired
with a markerless multi-view camera system. As a pivotal step in its creation,
we process the reconstructed raw 3D shapes with position-based dynamics
and an approach for non-uniform stiffness estimation of the head tissues,
which results in plausible annotations of the surface deformations, hand-
face contact regions and head-hand positions. At the core of our neural
approach are a variational auto-encoder supplying the hand-face depth prior
and modules that guide the 3D tracking by estimating the contacts and the
deformations. Our final 3D hand and face reconstructions are realistic and
more plausible compared to several baselines applicable in our setting, both
quantitatively and qualitatively. https://vcai.mpi-inf.mpg.de/projects/Decaf
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1 INTRODUCTION
Reconstructing 3D hands and face from a monocular RGB video
is a challenging and important research area in computer graphics.
The task becomes significantly more difficult when attempting to
reconstruct hands and face simultaneously including surface defor-
mations caused by their interactions. Capturing such interactions and
deformations is crucial for enhancing realism in reconstructions as
they are frequently observed in everyday life (hand-face interaction
occurs 23 times per hour on average during awake-time [Kwok et al.
2015]), and they significantly impact the impressions formed by
others. Consequently, reconstructing hand-face interactions is key
for avatar communication, virtual/augmented reality, and character
animation, where realistic facial movements are essential to create
an immersive experience, as well as for applications such as sign
language transcriptions and driver drowsiness monitoring. Despite
several studies on the reconstruction of face and hand motions,
the capture of interactions between them and the corresponding
deformations from a monocular RGB video remains unaddressed
[Tretschk et al. 2023]. On the other hand, naïvely using existing
template-based hand and face reconstruction methods leads to arte-
facts such as collisions, and missing interactions and deformations
due to the inherent depth ambiguity in the monocular setting and
the lack of deformation modelling in the reconstruction pipeline.
Several key challenges are associated with this problem setting.

One (I) is the lack of an available markerless RGB capture dataset
for face and hand interaction with non-rigid deformations for model
training and method evaluation. Capturing such a dataset is highly
challenging due to the constant presence of occlusions caused by
hand and head motions, particularly at the interaction region where
non-rigid deformation occurs. Another challenge (II) is the inherent
depth ambiguity of the single-view RGB setup, which makes it
difficult to obtain accurate localisation information, resulting in
errors that can cause implausible artefacts such as collisions or non-
touching of the hand and head (when they interact in practice). To
tackle these challenges, we propose Decaf (short for deformation
capture of faces interacting with hands), a monocular RGBmethod for
capturing face and hand interactions along with facial deformations.

Specifically, to address (I), we propose a solution that combines a
multiview capture setup with a position-based dynamics simulator
for reconstructing the interacting surface geometry, even under oc-
clusions. To integrate the deformable object simulator, we calculate
the stiffness values of a head mesh using a simple but effective“skull-
skin distance” (SSD) method. This approach provides non-uniform
stiffness to the mesh, which significantly improves the qualitative
plausibility of the reconstructed geometry compared with uniform
stiffness values. To address the challenge (II), we train the networks
to obtain the 3D surface deformations, contact regions on the head
and hand surfaces, and the interaction depth prior from single-view
RGB images utilising our new dataset. During the final optimisation
stage, we utilise this information from different modalities to obtain
plausible 3D hand and face interactions with non-rigid surface de-
formations, which helps disambiguate the depth ambiguity of the
single-view setup. Our approach results in much more plausible
hands-face interactions compared to the existing works; see Fig. 1
for representative results.

In summary, the primary technical contributions of this article
are as follows:

• Decaf, the first learning-based MoCap approach for 3D hand
and face interaction reconstruction with face surface defor-
mations (Sec. 3).

• A global fitting optimisation guided by the estimated contacts,
learned interaction depth prior, and deformation model of
the face to enable plausible 3D interactions (Sec. 3.3).

• The acquisition of the first markerless RGB-based 3D hand-
face interaction dataset with surface deformations with con-
sistent topology based on position-based dynamics (PBD).
The reference 3D data for model training and evaluation are
generated using a simple and effective non-uniform stiffness
estimation approach for human head models, namely skull-
skin distance (SSD; Sec. 4).

Our Decaf outperforms benchmark and existing related methods
both qualitatively and quantitatively, with notable improvements
in physical plausibility metrics (Sec. 5.3). For dynamic qualitative
comparisons, please refer to our supplementary video. We plan to
release the acquired dataset and code for research purposes.

2 RELATED WORKS
This section focuses on the 3D reconstruction of hands interacting
with objects in the monocular (single-view) capture context.

2.1 Hand Reconstruction with Interactions
There have been diverseworks proposed to capture 3D handmotions
with interactions. Several works reconstruct 3D hand and rigid
object interactions from depth information [Hu et al. 2022; Zhang
et al. 2019, 2021b] or RGB camera [Cao et al. 2021; Grady et al.
2021; Liu et al. 2021; Tekin et al. 2019]. There are several works that
reconstruct hand-hand interactions. Mueller et al. [2019] reconstruct
two hands interactions from a single depth camera utilising collision
proxies based on Gaussian spheres embedded in the hand model.
Some works reconstruct interacting 3D hands from a single RGB
image [Wang et al. 2022; Zhang et al. 2021a]. However, none of these
works considers the non-rigidity while interactions unlike ours.

Similar to our approach, Tsoli et al. [2018] reconstruct non-
rigid cloth and hand interaction by considering hand/object contact
points in the optimisation. However, the method requires RGB-D
input unlike ours. Our work assumes no access to depth sensor
information and reconstructs interactions with a deformable face.
The face exhibits varying stiffness values based on the surface area,
owing to the underlying skull structure in a human’s head. This
is in contrast to cloth interactions, which typically have uniform
stiffness values. Furthermore, our face autonomously changes its
pose and expression during the sequence, whereas in [Tsoli and
Argyros 2018], the behaviour of the cloth changes only due to the
interacting hand or gravity. These unique characteristics, coupled
with the limited input setting, make our problem highly challenging.

2.2 Monocular Face Reconstruction
Capturing a human face from a single view RGB input is important
for many graphics applications, thus a significant amount of works
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Fig. 2. Schematic visualisation of Decaf, the proposed system to predict 3D poses of hands and face in interaction from a sequence of monocular RGB
images of a subject. The input image sequence is first cropped on the left-/right-hand and face locations, which are subsequently fed to the DefConNet,
where we estimate the probabilities of face-hand contact cf and ch as well as the per-vertex displacements p0. Two DefConNets of the same architecture are
independently operated in cases where two hands are present in the scene. Next, the contact labels and deformations are merged by simply computing the
union of the outputs from the two DecConNets. Finally, we solve the optimisation to fit the hands and face parametric models guided by the estimated
contacts, deformations and 2D keypoints in the image (Sec. 3.3). The final output from Decaf reconstructs the face and hands, incorporating plausible surface
deformations on the face resulting from their interactions.

have been proposed with learning-free [Garrido et al. 2013, 2016;
Thies et al. 2016; Wu et al. 2016] and learning-based approaches
[Ichim et al. 2015; Lattas et al. 2020; Saito et al. 2016]. In this category,
some works train the networks in a self-supervised manner to re-
construct faces with textures and illuminations [Tewari et al. 2017]
or details with estimated normals [Danecek et al. 2022; Feng et al.
2021b]. Although these works capture the geometry of expressive
deforming human faces, none of the works in this category models
the face deformations caused by the interactions unlike ours.

2.3 Shape from Template (SfT)
This algorithm class bears a similarity to our approach. SfT assumes
a template mesh of the tracking object and deforms the template
mesh based on the observations such as RGB/-D sequences. Sev-
eral works address this problem with learning-based algorithms
[Bozic et al. 2020; Fuentes-Jimenez et al. 2021; Golyanik et al. 2018;
Kairanda et al. 2022; Shimada et al. 2019], and some with learning-
free optimisation-based approaches [Habermann et al. 2018; Ngo
et al. 2015; Salzmann et al. 2007; Yu et al. 2015; Zollhöfer et al. 2014].
Unlike these approaches, our method models interactions between
two different objects (i.e. hand and face) from a single view RGB
input under severe occlusions caused by the interactions. Petit et al.
[2018] propose a physics-based non-rigid object tracking method
using a finite element method. However, their method requires RGB-
D input and focuses on simple deformable objects (e.g. , cubes and
discs). In contrast, our approach does not rely on depth informa-
tion and handles interactions between a complex articulated hand
and face, considering locally varying stiffness values. Some works
estimate 3D human poses with self- and multi-person interactions
(contacts) from single RGB images [Fieraru et al. 2020, 2021; Müller
et al. 2021]. However, they do not model significant surface defor-
mations due to contacts (e.g. during hand-face interactions). Li

et al. [2022] propose a method that addresses a problem set that
bears resemblance to ours. It estimates the 3D global human pose
along with the deformations of the interacting environment surface
based on ARAP-loss. However, their method does not consider stiff-
ness values specific to object categories and does not incorporate
learned priors for non-rigid deformations, distinguishing it from
our approach.

2.4 Template Free Non-Rigid Surface Tracking
Some methods in this category reconstruct non-rigid surfaces by ac-
quiring first an explicit template mesh from RGB-D inputs [Innmann
et al. 2016]. Some use node graphs [Lin et al. 2022] or implicit SDF
surface representations [Slavcheva et al. 2017] for non-rigid surface
tracking. Guo et al. [2017] propose a method that reconstructs the
non-rigid surface along with the surface albedo and low-frequency
lighting. Our approach differs from these works by considering the
dynamics of the interactions between two different materials i.e.
face and hand, and face surface stiffness values based on bone struc-
ture. Additionally, our dataset and method’s output have consistent
3D mesh topologies that are very important for the supervision of
network training in explicit surface space.

2.5 Physics-based MoCap
Recently, numerous physics-based algorithms for motion capture
have been proposed. Several works model the interactions with the
environment from a static single RGB camera [Gärtner et al. 2022a,b;
Huang et al. 2022; Innmann et al. 2016; Luo et al. 2022; Rempe et al.
2020; Shimada et al. 2021, 2020; Xie et al. 2021; Yuan et al. 2021]
or with objects [Dabral et al. 2021]. Some works reconstruct 3D
poses from egocentric views [Luo et al. 2021] or IMUs [Yi et al.
2022]. Hu et al. [2022] reconstruct hand-object interactions from
an RGB-D camera sequence modelling the physics-based contact

ACM Trans. Graph., Vol. 42, No. 6, Article 264. Publication date: December 2023.



264:4 • Soshi Shimada, Vladislav Golyanik, Patrick Pérez, and Christian Theobalt

Fig. 3. Example artefacts caused by the depth inaccuracies after solving
a naïve single RGB based fitting optimisation, i.e. Eqs. (5) and (8) without
Ltouch, Lcol. and Ldepth. The first row shows the physically implausible
collisions between the hand and face. The second row displays the “non-
touching” artefacts in which no hand-face interactions are discernible in
the reconstruction, despite the presence of such interactions in the image
input. The locations of the artefacts are indicated by the red circles.

status. While the existing approaches primarily focus on modelling
the interactions with static floor planes or rigid objects, our method
uniquely addresses non-rigid deformations arising from interactions
between hands and face. This capability is made possible thanks to
our networks trained on our novel dataset, which incorporates 3D
deformations generated using a maker-less multiview motion cap-
ture system combined with position based dynamics (PBD) [Müller
et al. 2007] – a widely adopted deformable object simulation algo-
rithm employed in modern physics engines.

3 METHOD
Our goal is to reconstruct hands interacting with a face in 3D, in-
cluding non-rigid face deformations caused by the interaction, from
a single monocular RGB video. Figure 2 provides an overview of
the proposed framework. Our deformation and contact estimation
network DefConNet, trained on our new dataset (Sec. 4), estimates
face surface deformations and contact labels on both face and hand
surfaces from an image sequence; the contact labels are crucial to
achieve plausible and realistic interactions in 3D (Sec. 3.2). The esti-
mated deformations, contacts and 2D keypoints are subsequently
sent to the global fitting optimisation stage (Sec. 3.3), where we also
utilise the interaction prior obtained from a conditional variational
autoencoder [Sohn et al. 2015] conditioned on the 2D key points
for the improved interactions between the hands and face. After
this stage, we obtain the final 3D reconstruction of the face and
hands in the form of parametric hand and head models with applied
deformations. We next explain the notations and assumptions used
in this work (Sec. 3.1), followed by the details of our Decaf approach.

Fig. 4. Schematic visualisation of depth ambiguity in a monocular setup. f
denotes the focal length of the camera. a) and b): Given the same 3D poses
of face and hand of the same scale in the 3D space, different combinations
of depths and focal lengths can result in indistinguishable images after the
2D projection in a monocular setting. This effect, known as depth ambiguity,
poses a challenge for methods attempting to estimate the depth values of
the hand and face in the camera frame from monocular 2D inputs (e.g., RGB
images or 2D keypoints). However, the relative location of the hand w.r.t.
the head is invariant to the positions of the face and hand in 3D space (e.g.,
0.3 [m] above). Based on this idea, our DePriNet learns the depth prior in
the canonical face frame.

3.1 Modelling and Preliminaries
Our Decaf accepts as input a sequence I= {I𝑡 } = {I1, ..., I𝑇 } of 𝑇 = 5
successive RGB frames from a static camera with known intrinsic
camera parameters. We resize I𝑡 to 224× 224 pixels after cropping
the detected bounding box around the subject’s face and hands in
each frame. To represent the 3D face, we employ a gender-neutral
version of FLAME parametric model F [Li et al. 2017]. We utilise its
identity parameters 𝜷 f ∈R100, jaw pose 𝜽 f ∈R3 and expression pa-
rameters 𝚿 ∈R50 combined with the global translation 𝝉 f ∈R3 and
rotation rf ∈R3 that can be formulated as a differentiable function
F (𝝉 f, rf, 𝜷 f, 𝜽 f,𝚿). Model F returns 3D head vertices Vf ∈R𝑀×3

(𝑀 = 5023) from which we obtain the 3D face landmarks Jf ∈R𝐾f×3

(𝐾f = 68). To represent 3D hands, we employ the gender neutral ver-
sion of the statistical MANO parametric hand model [Romero et al.
2017] that defines the hand mesh as a functionM(𝝉h, rh, 𝜽h, 𝜷h) of
global translation 𝝉h ∈R3 and global root orientation rh ∈R3, pose
parameters 𝜽h ∈R45 and hand identity parameters 𝜷h ∈R10. This
function M returns hand 3D mesh vertices Vh ∈R𝑁×3 (𝑁 = 778)
from which 3D hand joint positions Jh ∈R𝐾h×3 (𝐾h = 21) are
obtained. We assume that the face identity and hand shape pa-
rameters are known. In the following, 𝚽f = (𝝉 f, rf, 𝜷 f, 𝜽 f,𝚿) and
𝚽h = (𝝉h, rh, 𝜷h, 𝜽h) denote the kinematic states of the face and
hand in a 3D space.

3.2 Interaction Estimation
We introduce a learning-based approach that estimates plausible
interactions in a scene, i.e., the vertex-wise face deformations and
contacts on the face and hand surfaces given only single-view RGB
images. The approach is trained on our new dataset (Sec. 4).

Our neural network accepts as input an image sequence I and out-
puts the deformation on the head model as per-vertex displacements
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in a camera frame p ∈R𝑀×3, contact labels on the face cf ∈ {0, 1}𝑀
and the hand ch ∈ {0, 1}𝑁 . The contact labels are binary signals i.e. 1
for contact, 0 otherwise. The network is trained to estimate the
contact probability using the binary cross entropy (BCE):

Llabels = BCE(cf, ĉf) + BCE(ch, ĉh), (1)

where ĉf and ĉh denote the ground-truth contact labels for the face
and hand, respectively. We also train the network to estimate the
deformations using the ground-truth annotations p̂𝑚 :

Ldef. =
1
𝑀

𝑀∑︁
𝑚=1

(𝑤𝑚def
p𝑚 − p̂𝑚

2
2 + 𝑏

𝑚
def

p𝑚), (2)

where

𝑤𝑚def =

{
0.3, if | |p̂𝑚 | | = 0,
1.0, otherwise,

𝑏𝑚def =

{
1, if | |p𝑚 | | > 𝜓,
0, otherwise.

(3)

The first term in Eq. (2) allows the network to learn the 3D de-
formations in our dataset. The weight 𝑤def helps to penalise the
network predictions more on deforming vertices. We observe that
this weighting strategy improves the network precision as the ma-
jority of the face vertices have no deformations. The second loss
term in Eq. (2) regularises the unnaturally large deformations on
the face surface where 𝑏def works as a binary label to penalise only
the vertices with deformations greater than𝜓 = 0.1 [m].

3.3 Global Fitting Optimisation
Using the estimated deformations p, contact labels cf and ch and
2D joint keypoints, we obtain the global positions of the face 𝚽f
and hand 𝚽h in the 3D scene considering their interactions. In this
optimisation step, we also update p to refine and handle the minor
collisions. The objective follows:

Lopt (𝚽f,𝚽h, p) = Lface + Lhand . (4)

The fitting loss term of the face model Lface reads:

Lface (𝚽f, p) = L2D + Lreg., (5)

where L2D and Lreg. are the weights of the 2D reprojection term
and regulariser loss term , respectively. Employing the projection
function Π(·) with the known camera intrinsics, the 2D reprojection
loss term is formulated as follows:

L2D =
1
𝑀

𝑀∑︁
𝑚=1

𝑤𝑚conf.
Π(J𝑚f ) − Ĵ𝑚f

2
2, (6)

where Ĵ𝑚f and 𝑤𝑚conf. are, respectively, the reference 2D face land-
marks and the corresponding confidence value obtained by the
method of [Bulat and Tzimiropoulos 2017] given the input image.
We also minimise the regulariser loss term Lreg. to introduce the
statistical prior for the shape 𝜷 f and expression 𝚿, and temporal
smoothness in the motion:

Lreg. = 𝜆𝜷
𝜷 f

2
2 + 𝜆𝚿


𝚿

2
2 + 𝜆 ¤V

 ¤Vf
2
2 + 𝜆 ¥V

 ¥Vf
2
2, (7)

where ¤Vf and ¥Vf denote the velocity and acceleration of the head
vertex positions Vf, respectively. 𝜆• denotes a weight of the loss
term. The objective for the hand fitting Lhand optimisation includes

the 2D reprojection term L2D, regulariser term Lreg., collision term
Lcol., touchness term Ltouch and the depth prior term Ldepth:

Lhand (𝚽h, p) = L2D + Lreg. + 𝜆touchLtouch

+𝜆col.Lcol. + 𝜆depthLdepth,
(8)

where 𝜆• are the corresponding weights. The terms L2D and Lreg.
are the same as in (6)-(7) with the modification that (6) is applied
on the hand 3D joints Jh compared with the reference 2D hand
keypoints Ĵh, and (7) on the hand shape 𝜷h, velocity and acceleration
of hand vertices, excluding the expression prior loss


𝚿

2
2.

Due to the inaccuracy of the depth estimation in the monocular
setting, simply solving the fitting optimisation w.r.t. the face and
hand global positions can cause implausible artefacts, e.g. collisions
between the face and hand or non-touching artefacts. Figure 3 shows
examples of such artefacts, when solving a naïve 2D reprojection
based single view fitting optimisation i.e. (4) excluding Ltouch, Lcol.
and Ldepth. They immediately give the impression of unnatural
hand-face interaction to the viewer. To address the “non-touching”
artefacts, we utilise the touching loss term Ltouch that penalises
the distances between the contact surfaces on the face and hands
inspired by [Shimada et al. 2022]. Specifically, we treat the face
and hand vertices with contact probabilities cf > 0.5 and ch > 0.5 as
effective contacts, respectively. Let Cf ⊂ ⟦1, 𝑛⟧ and Ch ⊂ ⟦1,𝑚⟧ be
the index subsets of the face and hand vertices with the effective
contacts. Using a Chamfer loss, Ltouch is formulated as follows:

Ltouch=
1
|Cf |

∑︁
𝑖∈Cf

min
𝑗∈Ch

V𝑖f − V𝑗h

2
2
+ 1
|Ch |

∑︁
𝑗∈Ch

min
𝑖∈Cf

V𝑖f − V𝑗h

2
2
. (9)

To avoid collisions between hands and a head, we also introduce
the collision loss term Lcol. for minimising the penetration distance
of the hand vertices. Specifically, we first detect the hand vertices
colliding with the face mesh based on an SDF criterion [Yu 2023].
Then, we minimise the distance between colliding hand vertices
and their nearest vertices on the head mesh. Let P ⊂ ⟦1,𝑊 ⟧ be the
subset of indices of hand vertices Vh colliding with the face mesh.
The collision loss is formulated as:

Lcol. =
∑︁
𝑖∈P

min
𝑗∈Vf

V𝑖h − V𝑗f

2
2
+ LregDef, (10)

where Vf ⊂ ⟦1, 𝑀⟧ is the set of all the indices of the face vertices
Vf. The term LregDef regularises the update of the deformation p
from the perspective of edge lengths, neighbouring face angles and
original deformation estimated by DefConNets. Let 𝑙 = {𝑙1, ..., 𝑙𝑥 }
and 𝜑 = {𝜑1, ..., 𝜑𝑦} be vectors that consist of the edge lengths
and the angles between the neighbouring faces of the face mesh,
respectively. The formulation of LregDef reads:

LregDef=
𝑥∑︁
𝑖=1

𝑠𝑖edge ∥𝑙𝑖 − 𝑙0∥
2
2+

𝑦∑︁
𝑖=1

𝑠𝑖bend ∥𝜑𝑖 − 𝜑0∥
2
2+∥p − p0∥22 , (11)

where 𝑙0 and 𝜑0 denote the edge lengths and dihedral angles at rest
and p0 is the displacements estimated byDefConNets in the previous
step; 𝑠edge and 𝑠bend are, respectively, the edge and bending stiffness
values that consider the underlying skull structure of a human head.
The details of the stiffness computations are elaborated in Sec. 4.2.

ACM Trans. Graph., Vol. 42, No. 6, Article 264. Publication date: December 2023.



264:6 • Soshi Shimada, Vladislav Golyanik, Patrick Pérez, and Christian Theobalt

Template fitting PBD-based optimisation

Stiffness computation based on SSD

Multiview RGB recordings
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Fig. 5. Overview of the dataset generation pipeline.We first capture the hand and face interactions using a markerless multi-view setup. (1) Subsequently,
the obtained RGB image sequences are used to solve template-based fitting optimisation using MANO [Romero et al. 2017] and FLAME [Li et al. 2017]
models. At this stage, due to the unawareness of the hand-face interactions, the collisions are observable, as indicated by the red circle. (2) To provide the
plausible stiffness values on the head mesh for the later position-based dynamics (PBD) optimisation stage, we compute skull-skin distances (SSD) and obtain
vertex-wise stiffness values. (Left-hand side): A visualisation of mean skull and skin surface of a statistic model [Achenbach et al. 2018] from the side and
frontal views. (Right-hand side): Transferred stiffness value to FLAME head model [Li et al. 2017] based on the SSD calculation, see Sec. 4.2 for the details.
(3) Using the fitted templates from (1) and the stiffness values from (2), we solve the PBD-based tracking optimisation. This stage handles the physically
implausible collisions and provides plausible surface deformations on the head mesh surface (Sec. 4.3).

To further introduce the learned prior for the depth position of the
hand, we train a conditional variational autoencoder (CVAE) [Sohn
et al. 2015] -based depth prior network DePriNet that is conditioned
on the 2D key points. DePriNet is trained to reconstruct the 3D
hand key points in a canonical face frame, as estimating the
depth of hand and face in the camera frame only from monocular
2D input is challenging due to the depth ambiguity (e.g. 3D hand
and face with different combinations of focal lengths and depths can
be projected onto the same position in the 2D image). However, the
hand positions relative to the face in the 3D space are invariant to the
depth in the camera frame; see Fig. 4 for a schematic visualisation.
We train DePriNet with the standard losses:

Lvae =
J∗h − Ĵ∗h

2
2 + KL

(
𝑞(Z | Ĵ∗h,Θ)∥N (0, I)

)
. (12)

The first term is a reconstruction loss to reproduce the ground-
truth input hand joints in a canonical face frame Ĵ∗h ∈R

𝐾h×3 and
J∗h ∈R

𝐾h×3 denotes the output from the decoder network of De-
PriNet. The second loss term penalises the deviation of the latent
vector Z ∈R50 distribution from a standard normal distribution
N(0, I) using the Kullback-Leibler divergence loss KL(·∥·). Latent Z
is sampled from a Gaussian distribution whose mean and variance
are estimated from the encoder network 𝑞(·) of DePriNet. At test
time, we use the decoder network 𝑝 (·) of DePriNet to output depth
candidates of the hand positions that are integrated into the depth

prior loss Ldepth in the global fitting optimisation:

Ldepth =

𝑢∑︁
𝑖=1

𝑤𝑖

J𝑧h − T(J∗h,𝑖 )
2
2
, (13)

where𝑤𝑖 = 1 − 𝜂𝑖 −min(𝜂)
max(𝜂) −min(𝜂) , 𝜂𝑖 = |Z𝑖 |1, (14)

J𝑧h denotes the 𝑧-value of the hand 3D keypoints Jh that corresponds
to the depth axis in the camera frame, and T(·) is a transformation
from the canonical face space to the camera frame that consists of
the rotation and translation of the face model (that are also simulta-
neously obtained in this global fitting optimisation); J∗h,𝑖 is the 𝑖-th
sample obtained from the decoder 𝑝 (·) given 𝑢 = 100 latent vectors
∼N(0, I) and the conditioning vector Θ that consists of face and
hand 2D keypoints with corresponding confidence values as well
as the face 3D rotation in the camera frame in 6D representation
[Zhou et al. 2019]. Note that 2D key points of the face and hands
are translated to be a face-root relative representation for the condi-
tioning. The conditioning 3D head rotation is obtained during the
optimisation (4). Each generated sample is weighted by the scalar𝑤
that has the higher value the closer the corresponding latent vector
Z is to zero (i.e. a statistically more likely sample). We utilise the
two independent DePriNets of the same architecture for the left and
right hands. After minimising the objective that combines all these
loss terms, we obtain the final 3D head and hand reconstructions
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Fig. 6. Example visualisations of the reconstructed 3D head and hand interactions with the stiffness values computed using the skull-skin distance (SSD)
(second to fourth columns) and the uniform stiffness value (fifth to seventh columns). With SSD, the obtained surface deformations are much more plausible
compared to naïevely assigning the uniform stiffness value to all the head vertices. The red circles highlight the overly deformed surfaces (left) and inaccurate
deformations that ignore the underlying jaw in the human head (right).

with plausible deformations and interactions. The significance of
each loss term is evaluated in Sec. 5. The final deformed face vertices
V∗
f are obtained by simply adding the updated deformations p to

the face model parameterised by 𝚽f, i.e. V∗
f = F (𝚽f) + p.

3.4 Architectures of Our Networks
Our Decaf comprises several components (Fig. 2). We employ [Bulat
and Tzimiropoulos 2017] and [Lugaresi et al. 2019] for 2D keypoint
and bounding box estimation of the face and hand, respectively. The
DefConNet is composed of two encoders and three decoders. The
encoders for the cropped face and hand images follow the ResNet-
18 architecture [He et al. 2016]. The decoders, sharing the same
architecture, estimate per-vertex deformations and contact labels for
the face and hand. Each of them includes three fully connected layers
with leaky ReLU activation [Maas et al. 2013] and their hidden layer
dimensions equal to 1024. We duplicate DefConNet for both hands
and compute the union of the face deformations and contacts before
the final global fitting optimisation. The DePriNet is a variational
autoencoder [Kingma and Welling 2014], consisting of three linear
fully connected layers with batch normalisations, ReLU activations
[Agarap 2018], a latent dimension of 50 and hidden size of 128 for
both encoders and decoders.

4 DATASET
In this work, we build a new markerless multi-view dataset for 3D
hand-face interactions for method training and evaluation. It con-
tains eight subjects—captured with 15 SONYDSC-RX0 cameras at 50

fps (i.e., from 15 different viewpoints)—alongwith the corresponding
reference 3D geometries of a right hand and head, including surface
deformations of the head represented as per-vertex displacements.
In total, the dataset contains 100K frames, see Table 1 for the details.
Each actor performs seven different actions with three different fa-
cial expressions. For each captured view, the background masks are
obtained using [Sengupta et al. 2020]. The bounding boxes (for the
hands and the faces) and 2D key points (for the faces), are obtained
using [Lugaresi et al. 2019] and [Bulat and Tzimiropoulos 2017],
respectively.

In the remainder of this section, we elaborate on our dataset gen-
eration pipeline; see Fig. 5 for the overview. The first step of the
pipeline, i.e.,multiview template fitting, is explained In Sec. 4.1. Next,
to obtain a reasonable stiffness value that considers the underlying
skull structure of a human face, we introduce a simple but effective
skull-skin distance (SSD) approach in Sec. 4.2. The computed stiff-
ness values are further utilised in the deformable object simulation
relying on position based dynamics (PBD), and we obtain the final
3D geometry with plausible interactions arising from hand-face
interactions (Sec.4.3).

4.1 Multiview Template Fitting
We first solve the 2D keypoint reprojection-based fitting optimisa-
tion to obtain the MANO [Romero et al. 2017] and FLAMEmodel [Li
et al. 2017] parameters, so that the hand and face shapes match the
multiview 2D keypoints with known intrinsic and extrinsic calibra-
tions. The objective for the face fitting encompasses (6) and (7). For
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Reference Image Without hands Without handsReconstructed
face and hand

Reconstructed
face and hand

Reference Image

Fig. 7. Example visualisations from our new hands+face 3Dmotion capture dataset with hand shape articulations non-rigid face deformation. The reconstructed
3D geometry shows plausible surface deformations thanks to the fitting optimisation combined with PBD.

the hand, we also minimise (6) and (7) with the modification that (6)
is applied on the hand 3D joints Jh, and (7) is applied on the hand
shape 𝜷h, velocity and acceleration of hand vertices, excluding the
expression loss term


𝚿

2
2. However, FLAME does not model the

surface deformation caused by the interactions, which can result
in physically implausible collisions; see the red circle in Fig. 5-(1).
We address this limitation by integrating into our tracking pipeline
a deformable object simulator relying on position-based dynamics
(PBD) [Müller et al. 2007]. Our approach assumes non-homogeneous
stiffness values of the human face, and we describe next how we
obtain those.

4.2 Stiffness on a Head Mesh
Deformable object simulators require known material stiffness. The
stiffness of human face tissues is non-uniform, due to the rich mimic
musculature and the skull anatomy. Therefore, assuming uniform
stiffness in the whole face and head would result in physically
implausible artefacts when running the simulation; see Fig. 6 for the
examples. We obtain the non-uniform stiffness values based on a
simple but effective skin-skull distance (SSD) assumption. It is based
on the assumption that our face and head region tend to have higher
stiffness when the distance between the skin and skull surface is
smaller (e.g. forehead), and vice versa (e.g. cheek). To compute SSD,
we employ the mean skull and skin surface of a statistic model

Fig. 8. Visualisation of the effect of Lcol. (10). Starting from the colliding
hand and face poses (left-most visualisation), our non-rigid collision loss
term effectively resolves the physically implausible inter-penetrations in
the course of the optimisation.

from [Achenbach et al. 2018]. The obtained tissue stiffness map is is
upon our expectation and the corresponding pseudo-ground-truth
deformations are used in quantitative experiments in Sec. 5.
Let D = [𝑑1, ..., 𝑑ℎ] ∈Rℎ be a set of nearest distances between

the skin and skull surfaces computed for all the ℎ skin vertices of
[Achenbach et al. 2018]. The stiffness 𝑠 of the 𝑖-th skin vertex is
calculated as follows:

s𝑖 = (1 − 𝑑𝑖 )𝑏 , (15)
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Table 1. Details of our new dataset. This dataset contains several types of
data including pseudo ground truth of 3D surface deformations represented
as 3D displacement vectors for seven different actions with three different
facial expressions performed by eight subjects. The “Age” signifies the age
range, whereas the number in the brackets means the corresponding number
of subjects.

Characteristic Value/Description

Number of subjects 8
Number of views 16

Total Number of Frames 100 K
Ethnicity 5 Asian, 3 Caucasian
Gender 6 male, 2 female
Age 20 - 29 (5), 30 - 39 (3)

Facial expressions neutral, open mouth, smiling

Action types

poking a cheek (open hand)
poking a cheek (pointing hand)

punching a cheek
pushing a cheek with a palm

rubbing a cheek
pinching a chin

touching nose front
touching nose from side

Data types

2D hand keypoints
2D face landmarks

RGB videos
foreground segmentation masks

hand-face bounding box
3D mesh for hand and face
3D surface deformations

where 𝑑 is the normalised distance:

𝑑𝑖 =
𝑑𝑖 −min(D)

max(D) −min(D) , (16)

with the operators min(·) and max(·) to compute the minimum
and maximum values of the input vector; 𝑏 is empirically set to
4. After computing the per-point stiffness s𝑖 , we transfer it to the
FLAME head model by finding the corresponding vertices based on
the nearest neighbour search after fitting the FLAME head model
onto the skin surface model of [Achenbach et al. 2018]. In Fig. 5-(2),
we show the visualisation of the assigned stiffness values (more
saturated green encodes lower stiffness). The assigned values are
expected from the anatomical viewpoint (e.g. high stiffness around
the head region and low stiffness near the tip of the nose and cheeks).
The edge and bending stiffness values in (11) are obtained by simply
computing the average over the 𝑠 of vertices that form the edges
and triangles.

4.3 PBD-based Optimisation
Position based dynamics (PBD) [Müller et al. 2007] is a technique
for simulating deformable objects, which gained popularity for its
robustness and simplicity; it is widely used in game and physics
engines. We utilise PBD to resolve implausible head-hand collisions

Fig. 9. 3D reconstructions on unseen identities in the wild. Our Decaf rea-
sonably generalises across different identities and illuminations unseen
during the training. The images are taken from [Pexels 2023].

which are challenging to address in a markerless motion capture
setup due to constant occlusions at the interaction regions.We utilise
stretch constraint 𝐶stretch, bending constraint 𝐶bend and collision
constraint𝐶collision in the PBD simulator. For each pair of connected
vertices p1 and p2 in the mesh, 𝐶stretch is defined as follows:

𝐶stretch (p1, p2) = |p1 − p2 | − 𝑙0, (17)

where 𝑙0 denotes the rest length of the edge between p1 and p2.
For each pair of adjacent triangles (p1, p3, p2) and (p1, p2, p4), the
definition of bending constraint 𝐶bend reads:

𝐶bend (p1, p2, p3, p4) =

acos
(
(p2 − p1) × (p3 − p1)
| (p2 − p1) × (p3 − p1) |

· (p2 − p1) × (p4 − p1)
| (p2 − p1) × (p4 − p1) |

)
− 𝜑0,

(18)
where 𝜑0 is the rest angle between the two triangles. Collision
constraint 𝐶collision can be integrated for each vertex p:

𝐶collision (p) = n𝑇 p − ℎ = 0, (19)

where n and ℎ are the normal of the colliding plane and the distance
from the plane that p should maintain. After resolving collisions,
we introduce friction as formulated in [Müller et al. 2007] with 0.5
for both kinetic and static friction coefficients.
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Fig. 10. Visualisations of the estimated contacts on in-the-wild images.
The green and blue colours represent the face contacts regressed by the
right- and left-hand DefConNet, respectively (see Fig. 2). The yellow colour
represents the contact regions on the hand(s). All estimations are reasonable.
The images are taken from [Pexels 2023].

We also additionally introduce constraint 𝐶track for tracking the
reference 3D motions obtained in Sec. 4.1. More specifically, this
tracking constraint minimises the Euclidean distance between the
vertex of the template mesh p and its corresponding vertex pref in
the reference mesh from the previous multi-view fitting stage:

𝐶stretch (p, pref) = |p − pref | . (20)

For the simulation, we use the stiffness values obtained in Sec.4.2,
and finally obtain the 3D geometry of the interacting hand and face
with the surface deformations (also see Fig. 5-(3) for the example
reconstruction).

5 EVALUATIONS
We next evaluate our Decaf on our new dataset. As there are no ex-
istingmethods that address the same problemwe tackle, we compare
our method to a most closely related approach, i.e., a monocular
full-body capture PIXIE [Feng et al. 2021a] and its variants that
reconstruct only hands and face independently, denoted as PIXIE
(hand+face). We also compare to our benchmark method that in-
cludes hand-only [Lugaresi et al. 2019] and face-only [Li et al. 2017]
trackers.
Note that in this method variant, DefConNet and non-rigid col-

lision handling (10) are deactivated. Our dataset contains separate
training and testing sequences containing the same kinds of actions.
We train our networks on the training sequences of 5 different
subjects and conduct the quantitative evaluations on 3 different sub-
jects unseen during the training. For the qualitative comparisons,
we show the results of our data recording green studio and indoor
sequences captured using a SONY DSC-RX0 camera.

Fig. 11. 3D reconstructions on actions unseen during the training, i.e. (left:)
poking a cheek (pointing hand) and (right:) punching a cheek.

5.1 Implementation and Training Details
The neural networks were implemented in PyTorch [Paszke et al.
2019]. The evaluations and network training were conducted on a
computer with an NVIDIA QUADRO RTX 8000 graphics card and
AMD EPYC 7502P 32 Core Processor. The training was continued
until convergence using Adam optimiser [Kingma and Ba 2014]
with a learning rate 3 · 10−4. DefConNet models are trained until
convergence which takes ≈12 hours. Since our dataset was captured
with right-hand and face interactions, we flip the image and the
corresponding 3D ground-truth annotations and contact labels hor-
izontally to obtain the input and ground truth for the left hand. For
the global fitting optimisation, we set the loss term weights of (5),
𝜆𝜷 = 1 · 10−5, 𝜆

𝚿
= 1 · 10−3, 𝜆 ¤V = 3 · 10−4, 𝜆 ¥V = 3 · 10−4. For

(8), we employed the following weights: 𝜆touch = 0.1,𝜆col. = 1.0,
𝜆depth = 3 · 10−3, 𝜆𝜷 = 1 · 10−5 , 𝜆 ¤V = 3 · 10−4, 𝜆 ¥V = 3 · 10−4. As the
2D hand keypoint estimator [Lugaresi et al. 2019] in our method
estimates 3D hand key points as well, we utilise them to initialise
our hand pose by simply fitting the MANO hand model onto the 3D
keypoints using inverse kinematics (Note that this step is optional.).

5.2 Qualitative Evaluations
Our supplementary video shows comparisons of our results with
results of PIXIE (hand+face) [Feng et al. 2021a] as well as the bench-
mark methods in a studio and an indoor scene, i.e. monocular hand
[Lugaresi et al. 2019] and face [Li et al. 2017] trackers operating
independently. Only our method reconstructs face deformations
caused by the interactions while showing much more accurate 3D
localisations of the hands and face compared to other approaches;
see Fig. 13 and Fig. 14 for the visualisations. In Fig. 8, we also show
an example visualisation of the non-rigid collision loss (10) start-
ing from colliding hand and face positions. While the optimisation
progresses, the physically implausible collisions are resolved by
plausibly deforming the face surface. Our qualitative results con-
firm that Decaf produces significantly more plausible hand-face
interactions and natural face deformations from a single RGB video
compared with others.

To assess the generalisability of ourDecaf across diverse identities
and lighting conditions, we evaluate it on in-the-wild images; see
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Table 2. Comparisons of the 3D reconstruction accuracy and plausibility of interactions. Lower PVE indicates higher 3D reconstruction accuracy. “†” denotes
PVE after applying a translation on both the face and hand that translates the centre of the face mesh to the origin. Our Decaf shows the lowest error in PVE
and DefE metrics. In the plausibility measurements, lower Col. Dist. and higher Non. Col. indicate the lower magnitude of collisions and less frequent collisions,
respectively (thus, more plausible interactions). Higher Touchness represents higher plausibility of the interaction that corresponds to the image input.

3D Error Plausibility Measurement

PVE [mm]↓ PVE† [mm]↓ Col. Dist. [mm]↓ Non. Col. [%]↑ Touchness [%]↑ F-Score [%]↑

Ours 11.9 9.65 1.03 83.6 96.6 89.6
Ours w/o Ltouch 17.4 15.2 6.83 68.7 78.5 73.2
Ours w/o Lcol. 15.7 12.9 14.4 59.6 87.7 71.0
Ours w/o Ldepth 15.9 13.8 11.0 77.2 85.5 81.1

Benchmark 18.9 17.7 19.3 64.2 73.2 68.4
PIXIE (hand+face) 41.6 26.3 7.04 75.9 75.1 75.5

PIXIE 51.9 39.7 0.11 97.1 51.8 67.6

Table 3. 3D deformation error comparisons. Lower DefE indicates higher 3D
accuracy of the deformations. “+” indicates that DefE was computed only
on deformations whose ground-truth deformation vector has a norm greater
than 5 [mm]. Our full method shows the lowest deformation error. Note that
DefE and +DefE for related methods and benchmarks are computed using
zero displacements as only our method outputs the per-vertex deformations
(denoted with “*”) .

DefE. [mm]↓ +DefE. [mm]↓

Ours 0.08 2.28
Ours w/o refinement 0.09 2.35

Benchmark 0.13* 7.28*
PIXIE (hand+face) 0.13* 7.28*

PIXIE 0.13* 7.28*

Fig. 9. The reconstructed 3D shapes show plausible interactions
with reasonable facial deformations. Furthermore, the estimated
contacts showcased in Fig. 10 faithfully mirror the contact regions
evident in the input images. As a result, the final reconstructions
show plausible hand-to-face interactions guided by the estimated
contacts. To further assess the generalisability of our method on
unseen actions, we train our networks excluding “poking a cheek
(pointing hand)” and “punching a cheek” actions from the training
dataset; the results for these actions are illustrated in Fig. 11. Our
method produces satisfactory results for “poking a cheek (pointing
hand)”. On the other hand, the exclusion of “punching a cheek”
from the training dataset is a highly challenging scenario as no
other actions in the training data contain interactions between the
back side of the hand and the face. Given that our approach is neural
and learning-based, such a substantial deviation from the training
set can lead to inaccurate interactions in the results.

5.3 Quantitative Evaluations
To evaluate our algorithm from various perspectives numerically,
we report multiple evaluation metrics. We calculate the 3D per
vertex error (PVE) as an indicator of the 3D accuracy as well as
the 3D deformation errors for our estimated face deformations.
Additionally, we report the metrics of collision distance, non-collision

ratio and touchness ratio to quantify the physical plausibility of
the reconstructed hands and faces. We also include the F-Score to
evaluate the overall plausibility of the reconstructions, taking into
account both the occurrences of collisions and the correctness of
the interactions. The specific details of each metric are elaborated
as follows:

• Per vertex error (PVE) measures the magnitude of the 3D er-
ror by computing the average Euclidean distances between the
reconstruction and the ground-truth vertices. We report the er-
rors in the camera frame before and after applying a translation
on the hand and face that aligns the centroid of the face with
the origin of the coordinate frame, denoted as PVE and PVE†,
respectively. Thus, PVE†measures the reconstruction quality fo-
cusing on the relative position of the hand w.r.t. the head, which
is important when judging the accuracy of the interactions.

• Deformation error (DefE) measures the magnitude of the er-
ror by computing the average Euclidean distances between the
estimated per-vertex 3D deformations and their pseudo ground
truth. We also report +DefE that computes DefE only for de-
formations with the corresponding ground-truth deformation
vectors of norm greater than 5 [mm], i.e. when non-negligible
interactions are present. Lower DefE and +DefE indicate higher
prediction accuracy of the deformations.

• Collision distance (Col. Dist.)measures the collision distances
averaged over the number of vertices and frames. A lower colli-
sion distance indicates a smaller magnitude of collisions through-
out the sequence.

• Non-collision ratio (Non. Col.) measures the ratio of the
frames with no collisions between the hand and face over all
sequence frames. A higher non-collision ratio indicates fewer
collisions in the reconstructed sequence.

• Touchness ratio measures the ratio of frames over all the
frames where contacts between face and hand are present in
the prediction when there are face-hand contacts in our ground
truth. The hand vertices with the nearest distance from the face
surface lower than 5 [mm] are considered in contact. This metric
exposes the presence of an artefact, namely the occurrence of
face-hand interactions in the input frame while the hand does
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Fig. 12. PVE plots for two exemplary test sequences (left: woman on top-left in Fig. 7; right: man on middle-right in Fig. 7) in relation to the degree of occlusions
and deformations in the pseudo ground truth. Our full model is affected by the occlusions (the bottom row) substantially less than its ablated versions.

not make physical contact with the face in the reconstruction.
A higher ratio indicates more plausible reconstructions.

• F-Score for Non. Col. and touchness ratio are also reported by
computing the harmonic mean of the two (as these two met-
rics are complementary to each other). It is very important to
report F-Score, since each of these metrics in isolation is not
meaningful (e.g. constant presence of hand-face collisions will
result in perfect touchness ratio 100%; no presence of interac-
tion throughout the sequence will make the perfect Non. Col.
100%). A higher F-Score indicates a higher plausibility of the
interactions in the reconstructions showing fewer occurrences
of collisions and incorrect interactions.

3D Error Comparisons. We report PVE in Table 2-(left) to evaluate
the 3D accuracy of the reconstructed hand and face. Our Decaf
shows the best performance scoring around 40% less error compared
with the second best method, benchmark ([Lugaresi et al. 2019] + [Li
et al. 2017]). We also report the 3D accuracies of the deformations;
DefE and +DefE in Table 3. To compute DefE for the related works,
we simply provide zero deformations, as thosemethods do notmodel
per-vertex deformations caused by interactions. For both DefE and
+DefE, our method shows the lowest errors, i.e. about 60% lower
errors for DefE and 40% lower errors compared with others.

Plausibility of Interactions. In Table 2, we report Col. Dist., Non.
Col., Touchness and F-Score. It is very important to show F-Score
as Non. Col. and Touchness are complementary to each other. Ours
show low collision distances while showing quite high Touchness,
which indicates the highly plausible face-hand interactions that
correspond to the input images, thus the best performance in F-
Score. In contrast, PIXIE shows extremely low collision distances
while showing much worse Touchness compared with ours. This is
because, in most cases, the reconstructed hand and face are wrongly
not interacting with each other when they should be interacting;
see Fig. 13 for the example reconstructions. The benchmark and
PIXIE (hand+face) independently reconstruct the face and hands
being agnostic of the interactions of those, therefore they show
quite frequent collisions (high Col. Dist. and low Non. Col.) as

Table 4. Perfomance measurement of our contact estimation component.
Our method estimates reasonable contacts on face-hand surfaces only from
RGB input, which are integrated into the final global fitting optimisation.
The significance of the contacts is validated in Table 2.

F-score ↑ Precision ↑ Recall ↑ Accuracy ↑

face 0.57 0.69 0.49 0.99
hand 0.47 0.62 0.39 0.98

well as incorrect interactions (Low Touchness), thus lower F-Score
than ours. Given these metrics in Table 2 and qualitative results
in our video, Decaf shows the most plausible interactions in the
reconstructed results compared with the related methods.

Ablation Studies. In Table 2, we show the ablation studies of the
reconstructions denoted as “Ours w/o Ltouch”, “Ours w/o Lcol. ”
and “Ours w/o Ldepth ” to assess the importance of each loss term.
For both the 3D accuracy and plausibility measurements, removing
one loss term results in a severe performance decrease, which con-
firms all those loss terms contribute to higher 3D localisations and
improvement of interaction plausibilities. Additionally, in Table 3,
we also show the DefE and +DefE without updating the deforma-
tions in the final global fitting optimisation stage i.e. direct output
from the DefConNet denoted as “Ours w/o refinement”. Our final
global fitting optimisation improves the estimated deformations
from DefConNet, reducing the DefE and +DefE by 10% and 3%.

Fig. 12 shows PVE plots for two test sequences from our dataset
highlighting the stability of our results. Amount of occlusion stands
for the per-frame ratio of face pixels occluded by hand pixels from
the camera view and amount of deformations signifies the per-frame
sums of deformations in the pseudo ground truth. We observe that
the ablated versions of our method are starkly influenced by occlu-
sions, which can be recognised with the help of peaks occurring
at the frames with the (locally) largest deformations as well as the
most significant occlusions. In contrast, our full model is affected by
the occlusions substantially less and its curve has a smaller standard
deviation of PVE, which verifies the importance of each loss term.
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Input Image Ours PIXIE PIXIE (hand + face)

Fig. 13. Visualisations of the experimental results by our method, PIXIE [Feng et al. 2021a] and hand-face only mode of PIXIE. The PIXIE results (fourth
column) frequently lack interactions between the hand and face, resulting in a low touchness ratio (Table 2). PIXIE (hand+face) in the fifth column shows
collisions and lacks face-hand interactions as the method is agnostic to the latter. Our results (second column) exhibit natural interactions between the hand
and face along with plausible face deformations (third column), which are not present in the results of the competing approaches (fourth and sixth columns).
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Input Image Ours PIXIE PIXIE (hand + face)

Fig. 14. Visualisations of the experimental results by our method, PIXIE [Feng et al. 2021a] and hand-face-only mode of PIXIE for indoor scenes. Our results
are plausible and represent expressive facial deformations, whereas the other works show inaccurate interactions and lack deformations.

Contact Estimations. To our knowledge, there are no existing
works that estimate the contacts on hand-face surfaces from RGB
inputs. Nonetheless, we report the performance of the contact es-
timation of our method for comparison on Table 4. Note that al-
though estimating contact vertices only from RGB inputs is a highly
challenging problem, our Decaf estimates reasonable contacts that
significantly improve the 3D localisation as validated in Table 2.

6 DISCUSSIONS AND LIMITATIONS
Our Decaf captures plausible 3D deformations along with hand-face
interactions solely from amonocular RGB video, effectively reducing
unnatural collisions and non-touching artefacts. While our method
is the first to address this problem set, it does have certain limitations.
Our network learns from a newly created dataset computed using
Position-Based Dynamics (PBD) with a skull-skin-distance (SSD)
approach combined with the multi-view markerless motion capture
setup. PBD is widely utilised in modern physics engines, ensuring
that our pseudo-ground truth deformations are plausible. However,
it may introduce some discrepancies between the actual deforma-
tions and calculated deformations as this PBD-based approach does
not integrate visual information such as photometric loss. Neverthe-
less, we believe this approach to be satisfactorily accurate to obtain
plausible deformations although the visual information is not reli-
able at the interaction regions due to the constant occlusions, which
is verified in our qualitative experiments. Our method employs
PCA-based parametric face and hand models. Consequently, the 3D
reconstructions of both body parts maintain consistent topology
though, as a downside, miss high-frequency details such as wrinkles

or blood vessels. Lastly, our method primarily focuses on handling
pushing actions (e.g. pushing or poking cheeks). Furthermore, it
is important to note that object-hand-face interactions, which fall
outside the scope of our research, can be addressed in future studies.

7 CONCLUSIONS
Decaf is the first monocular RGB-based approach for deformation-
aware 3D hand-face motion capture. Our method captures non-rigid
face surface deformations arising from various hand-head interac-
tions. It regards the human head anatomy (i.e., skull-skin distance
used to calculate non-uniform facial tissue stiffness), detects hand-
head contacts and is trained on a new dataset of facial performances.
In the comprehensive experiments, Decaf demonstrates the highest
3D reconstruction (in terms of PVE) and plausibility metrics (in
terms of F-score) among all compared methods. Especially signifi-
cant are the advancement in terms of PVE compared to the most
closely related previous method (roughly fourfold error reduction)
and qualitative improvements in the estimated 3D geometry, which
opens up many possibilities for downstream applications (e.g., next-
generation telepresence systems).
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