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ABSTRACT

Reinforcement learning algorithms have typically used discounting to reduce the
variance of return estimates. However, this reward transformation causes the agent
to optimize an objective other than what is specified by the designer. We present
a novel deep policy gradient algorithm, Truncated Value Learning (TVL), which
can learn rewards discount free while simultaneously learning value estimates for
all summable discount functions. Moreover, unlike many other algorithms, TVL
learns values without bootstrapping. We hypothesize that bootstrap-free learning
improves performance in high-noise environments due to reduced error propaga-
tion. We tested TVL empirically on the challenging high-noise Procgen bench-
mark and found it outperformed the previous best algorithm, Phasic Policy Gra-
dient. We also show that our method produces state-of-the-art performance on
the challenging long-horizon Atari game Skiing while using less than 1% of the
training data of the previous best result.

1 INTRODUCTION

Discounting has been extensively used when implementing reinforcement learning (RL) algorithms.
Theoretical concerns raise serious questions about the correctness of using this reward modifica-
tion technique (Naik et al., 2019), especially with policy gradient algorithms (Nota & Thomas,
2019). The justification for discounting typically comes from the need to make returns finite (Sutton
& Barto, 2018), which holds in the continuing setting but not for the more common time-limited
episodic tasks. Despite the shortcomings, discounting is still used extensively on episodic tasks
(Hessel et al., 2018; Mnih et al., 2015; Badia et al., 2020b;a) and with horizons much shorter than
the typical duration of the episodes.

In this work, we argue that the primary need for discounting in deep RL is to dampen error prop-
agation when bootstrapping. We demonstrate that a noisy function approximator, when combined
with bootstrapping, can lead to divergence, even when used on policy.1. This implies that a deep RL
algorithm that does not bootstrap might be more suitable for high-noise, long-horizon settings.

Fixed-horizon learning (De Asis et al., 2020) is notable in that it learns value estimates, not for
a single horizon, but for each of a set of fixed horizons.2 When performing updates, each value
estimate uses fixed-horizon estimates strictly shorter than the horizon being estimated. For this
reason, if the estimates are independent, no bootstrapping occurs. Fixed-horizon learning offers
some interesting capabilities, including generating values estimates for arbitrary discount functions
(see Figure 1), and can even generate discount-free estimates in the time-limited episodic setting.

Previously, fixed-horizon learning had been applied only to short-horizon tasks (hMAX = 64) and
using Q-learning (De Asis et al., 2020). However, this approach does not naturally align with con-
tinuous control problems or the learning of stochastic policies. In our research, we introduce fixed-
horizon learning within policy gradient methods, extending its applicability to significantly longer
horizons (hMAX = 27, 000). We achieve this by leveraging a new algorithm we call truncated value
learning (TVL). We demonstrate that our approach produces state-of-the-art results on the high-noise

1Bootstrapping, function approximation, and off-policy learning are sometimes referred to as the deadly
triad (Sutton & Barto, 2018). However, we show in Section 3 that divergence can occur even without being
off-policy

2We refer to this as the ‘value curve’
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Figure 1: Typically, agents do not learn when rewards arrive, only their sum. However, in fixed-
horizon learning, we learn a ‘value curve’ for all horizons up to hMAX. By taking the finite difference
over the curve, we recover the (expected) discounted rewards, which can then be rediscounted and
summed together to give a value estimate for any discount function. Pictured here is the value curve
under geometric discounting (γ = 0.99) being transformed into the value curve under the hyperbolic
discount 1/(1 + h/10)

.

Procgen environment and the long-horizon Atari game Skiing without compromising performance
on traditional short-horizon Atari games.

The primary contributions of this work are:

• An efficient interpolation-based solution to enable efficient learning of very long fixed-
horizon values.

• A sample-based return estimator that enables efficient TD(λ)-style return estimates in the
fixed-horizon setting.

• A process for using fixed-horizon estimates to generate advantage estimates suitable for
policy gradient.

• The first results demonstrating fixed-horizon learning’s effectiveness on long-horizon (h≫
100) tasks.

We outline the background and relevant work in Section 2. Section Section 3 gives a simple example
of how bootstrapping can fail on high-noise tasks. In Section 4, we give the details of our policy-
gradient algorithm Truncated Value Learning (TVL). In Section 5 we evaluate TVL empirically on
the high-noise Procgen environment and long-horizon Atari games.

2 BACKGROUND AND RELATED WORK

MDPs. We define an MDP µ as the tuple (S,A, P,R, γ), where S is the set of all states, A the set
of all actions, P (s′|s, a) the probability of transitioning to state s′ when action a is taken from state
s, R (S × A × S 7→ R) the reward function, and γ ∈ [0, 1) the discount factor. We also write a
trajectory of state action pairs as (s0, a0, s1, a1, ...) as τ . At each time step t the agent receives a
state st ∈ S and reward rt ∈ R, and must select an action at ∈ A according to its policy π(a|s).
It can also be useful to consider the discounted sum or rewards (return) from a state st under some
policy π as

Gγ(τ) :=

∞∑
k=0

γkrt+k. (1)

We can further define the value of being in state st as the expected return

V γ(s) := Eτ∼π,µ[G
γ(τ)|s0 = s], (2)

as well as the n-step estimate

NSTEP(γ,k)(τ) :=

(
k−1∑
i=0

γirt+i

)
+ γkV γ(st+k). (3)
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Return estimates can be further improved by using an exponentially weighted sum of n-step returns
(Sutton, 1988)

TD(γ,λ)(τ) := (1− λ)

∞∑
k=1

λk−1NSTEP(γ,k)(τ), (4)

where λ is a parameter that controls the variance / bias trade-off of the estimate.

Fixed-horizon Learning. Like traditional return estimators, a truncated return estimate is the ex-
pected sum of discounted future rewards. However, unlike a traditional return estimate, the rewards
are ignored after some horizon h (De Asis et al., 2020). Formally for some trajectory τ , fixed horizon
h ∈ Z≥0, and policy π, the finite-horizon discounted return is defined as

Gγ
h(τ) :=

h−1∑
t=0

γtrt (5)

with the expected value given by

V γ
h (s) := Eτ∼π,µ[G

γ
h(τ)|s0 = s] (6)

V≤0(·) := 0 (7)

Estimates for V γ
h can be generated by return estimators with very similar properties to those used in

traditional TD methods. Several return estimators are listed in Appendix C. However, due to the use
of fixed-horizon discounting, TD(λ) methods are inefficient to generate. For a more comprehensive
review of fixed-horizon learning, see De Asis et al. (2020).

Time-Limited Episodic Environments. We limit our domain to time-limited episodic tasks. For-
mally, an episodic environment µ is time-limited if the terminal state sterm will always be reached in
at most tMAX time steps. We also require that the agent is given the current time step t as part of the
state space, as otherwise, time-limited environments would no longer be Markovian (Pardo et al.,
2018).

Crucially, tMAX should not be misconstrued as a mere training detail but rather an essential property
of the environment. That is, the goal is to maximize the accumulated reward in the time-limited envi-
ronment, not in the time-unlimited environment. This is important as for many environments where
the score can be accumulated indefinitely, the time-unlimited task is not well defined. Furthermore,
the optimal policy for a small tMAX might differ considerably from that for a large tMAX.

Policy Gradient. Our work builds on the widely adopted Proximal Policy Optimization (PPO)
algorithm (Schulman et al., 2017), which employs a deep neural network (DNN) to learn a value
function and a policy concurrently. Recognizing the intricacies of learning value curves, we adopt
and expand upon the Dual-network architecture variant (PPO-DNA). This variant, characterized by
its dual networks for policy and value, has demonstrated impressive results in vision-based tasks.

Related Work. Simultaneously learning multiple horizons was proposed by Fedus et al. (2019),
who used the estimations to reconstruct an estimate of the hyperbolic discounted value. Their results
showed no improvement for hyperbolic discounting but that learning this richer discounting value
function was beneficial as an auxiliary task. Like our method, their method allows for learning
arbitrary discount estimates. However, their method does not work in the undiscounted case γ = 1
and does not explicitly enable the estimates from one horizon to be used to update another.

The most similar work to ours is De Asis et al. (2020), which also uses fixed-horizon methods
to learn a value function and provides a lot of the theoretical underpinning for this paper. Our
work differs in two important ways. First, we apply fixed-interval learning to a Policy Gradient
algorithm rather than Q-learning, which naturally supports stochastic policies and continuous control
problems. Second, their method was significantly limited in the length of the horizons feasible
(h = 64). In contrast, we develop methods to allow fixed-horizon to scale to much larger horizons
(h = 27, 000). Sun et al. (2018) also maximize the k-step rewards, but requires a cost-to-go oracle
based on expert (but flawed) training.

3



Under review as a conference paper at ICLR 2024

Figure 3: A toy example. On the left, we update the value estimates using standard TD updates.
Undiscounted TD updates do not converge. When noise is added, TD diverges unless the discount
is set low enough. When using fixed-horizon updates, convergence occurs, even in a high-noise,
long-horizon setting. The shaded area indicates errors exceeding the error at initialization. Y-axis
indicates γ and labels indicate the noise level σ.

3 ERROR PROPAGATION IN BOOTSTRAPPED VALUE LEARNING

Figure 2: A two-state MDP. Rewards are always
0, the environment does not terminate, and there is
only one action which takes the agent to the other
state.

This section demonstrates that noisy function
approximation, combined with bootstrapped
TD updates, can lead to divergence in a sim-
ple environment, even with on-policy updates.
This example shows the necessity for discount-
ing when bootstrapping is used and suggests
a relationship between the noise introduced by
function approximation and the amount of dis-
counting required. We use this example to jus-
tify the development of an algorithm that can
learn value estimates without bootstrapping.

To demonstrate the problem, we construct a
two-state fully connected MDP as shown in Figure 3. We then initialize a table containing state
value estimates to 5 and update it according to value iteration (Sutton & Barto, 2018). Before each
update, we perturb the table with noise sampled from N (µ = 0, σ = ϵ), which we call the noisy
table setup. Since rewards are always 0 in this experiment, V (s) = 0 ∀s ∈ S. We consider an
algorithm to have diverged if, after 100, 000 updates, the value table has an L1 error of more than
10.0.

We present the results in Section 3, under the noisy table setting for various values of γ. We find
that TD updates diverged if the discount factor γ was not set sufficiently low enough but that fixed-
horizon updates converged even without discounting.

An intuitive explanation for this result is that errors can only propagate in one direction, from shorter
horizons to longer ones, when performing fixed-horizon updates. This, coupled with the property
that by definition V0 = 0, provides a ‘sink’ for the errors. However, with TD learning, errors from
one state propagate to the other during each update. Therefore, some dampening is required in the
form of a discount factor γ.

This experiment underscores a significant limitation of TD learning-based algorithms. They are
caught in a trade-off between substantial discounting and potential divergence issues in environ-
ments with high noise. This challenge is evident in the results from Agent57 on Skiing, which is
both high-noise and long-horizon (Badia et al., 2020a). The workaround was extensive training.
While fixed-horizon learning may circumvent this issue, its current constraint is the necessity to
learn every horizon. Addressing the impracticality of learning all horizons comprehensively is the
focus of our subsequent section.
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4 LEARNING LONG HORIZONS VIA TRUNCATED VALUE LEARNING

In this section, we present our solution to long-horizon high-noise tasks in the form of Truncated
Value Learning (TVL). TVL is based on the deep reinforcement learning (DRL) policy-gradient al-
gorithm Proximal Policy Optimization (PPO) (Schulman et al., 2017). To which we apply an exten-
sion called Dual-Network Architecture (Aitchison & Sweetser, 2022), which, unlike PPO performs
strongly on vision-based tasks, is fast to train, and includes a separate value network which may be
required for the more complex value curve learning. To support efficient fixed-horizon learning on
very long horizons, TVL introduces several important features:

1. Geometrically spaced value heads with linear interpolation allowing for arbitrarily long
horizons using a fixed number of return estimates.

2. A sample-based return estimator (SRE) that enables efficient low-variance TD(λ)-style
return estimates in the fixed-horizon setting.

3. A method to apply fixed-horizon learning to the policy gradient setting, allowing for
stochastic policies and more naturally suiting continuous control tasks.

Together these modifications allow the application of fixed-horizon learning to environments beyond
the previous short horizons (h = 64), to very long horizons (h = 27, 000) with a minimal impact on
computational cost.

Geometrically Spaced Value Heads.

Encoder

FC Layer
ReLU

...

Figure 4: The architecture of the trun-
cated value learning model in TVL. All
value heads are estimated via different
linear combinations of a shared feature
representation.

Managing individual models for every value function
V0..hMAX is infeasible. Instead, we consolidate these func-
tions into a single value network that employs multiple
value heads (Figure 4). Since the bulk of the computa-
tional effort lies in the shared encoder segment of the net-
work, producing value estimates across numerous heads
remains efficient. Nevertheless, generating return esti-
mates to instruct these value heads poses a challenge.

To resolve this, we introduce a sampling and interpolation
strategy. First, we learn value estimates for K value heads
at fixed locations spaced geometrically over the horizon
range, enabling high precision for shorter horizons but
less for longer ones. We, therefore, only need to update K
value heads during training rather than hMAX. To produce
estimates for horizons not learned, we use linear interpo-
lation.

Formally, given a maximum horizon hMAX and a set num-
ber of horizons K we generate an ordered set of horizon
samples H

H = (⌊(hMAX)
i/K⌋)i∈1..K = (h1, ..., hK) (8)

with duplicates permitted. Value estimates for horizons h ∈ hMAX can then be generated using linear
interpolation (see Algorithm 3 in the Appendix). This allows TVL to learn only K horizons, but
output value estimates over an arbitrarily large range of horizons.

Sample Based Return Estimator. In the non fixed-horizon setting, an exponentially weighted
sum of n-step estimates (TD(λ)) can be calculated efficiently in constant time per value estimate
regardless of the maximum n-step used (Sutton, 1988). However, this is not the case in the fixed-
horizon setting. This is because in the traditional setting n-step estimates can be reused at different
offsets by scaling by γδ where δ is the offset, but fixed-horizon estimates also require modifying the
horizon h, and therefore need to be recomputed.

De Asis et al. (2020) provides an analogous algorithm (FHTD(λ)) for the fixed-horizon setting.
However, it requires generating hMAX value estimates for each of the |H| horizons learned and
therefore scales poorly for very long-horizon problems.
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To address this, we introduce a sample-based weighted return estimator (SRE) for generating return
estimates via a weighting over n-step returns,

SREW
h (st) := En∼W[NSTEPn

h(st)], (9)

where W is a distribution over Z+. Algorithm 1 gives a method to generate SRE estimates. The ad-
vantage of SRE is that it supports any weighted mixture over n-step estimates yet only requires some
constant c value estimates. SRE can be used to recover estimates for standard return estimations,
such as n-step and TD(λ), as well as alternative distributions (see Appendix I).

Algorithm 1 Sampled Return Estimator.
Input:
s ∈ S, state for which value will be estimated.
h ∈ Z+ horizon for which value will be estimated.
NSTEPn

h(s) a n-step estimator than returns the nth n-step estimate of Vh(s).
c ∈ Z+ number of samples to use.
W weights for each n-step estimate, with wi ≥ 0 ∀ i and

∑|W|
i=1 wi = 1.0.

Output:
Estimate of Vh(s) under under a weighted average of n-step estimators given by W .

Vest ← 0
for i ∈ [1...c] do
x ∼W, where p(x = i) = wi

Vest ← Vest + NSTEPx(s, h)/c
end for
return Vest

Fixed-horizon Update Rule. Fixed horizons can be learned in much the same way as traditional
horizons by summing losses over the individual value heads

LFH
t =

∑
h∈H

[
Êt[(V̂h(st)−G∗

h(st))
2]
]

(10)

where G∗
h(s) is a return estimate for the policy starting from st with a truncated horizon of h (e.g.

SRE), and V̂h is the models value head corresponding to horizon h. Return estimates can also be
improved by ‘trimming’ the h used by G∗

h back when t + h exceeds tMAX. We discuss this further
in Appendix G.

Generation of Advantages. Advantage estimates Ât at time step t in PPO are generated using
general advantage estimation (GAE) (Schulman et al., 2015) which can be written as

Â
GAE(γ,λ)
t = TD(γ,λ)(st)− V̂ γ(st) (11)

for which we substitute in our longest fixed-horizon approximation

Â
GAE FH(γ,λ)
t = TD(γ,λ)

hMAX
(st)− V̂ γ

hMAX
(st). (12)

For t + hMAX ≥ tMAX this substitution is exact. Otherwise, for rt = 1.0 ∀ t, the error is upper-
bounded by γhMAX/(1 − γ). Therefore, setting hMAX = 3

1−γ (three ‘effective horizons’) limits the
error to < 5% , which we find to be sufficient.

Substituting this into the standard PPO clip loss, we have

LCLIP
t := Êt

[
min(ρt(θ)Ât

GAE FH
, clip(ρt(θ), 1− ϵ, 1 + ϵ)Ât) + ceb · S[π(st)]

]
(13)

where S is the entropy in nats, ρt is the ratio π(at|st)
πold(at|st) at time t, ϵ the clipping coefficient, and ceb

the entropy bonus coefficient.
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Distillation. The DNA algorithm includes a distillation phase, where knowledge from the value
network is transferred to the policy network. Features learned regarding when the rewards arrived
might be helpful to the policy network. However, attempting to learn the entire value curve and the
policy might prove too difficult for the policy network. Therefore, we adapt the distillation process
to select cvh value heads evenly from the available set as distillation targets while always including
the final value head. Therefore, setting cvh = 1 selects only the final value head, and cvh = k selects
all value heads.

LD
t (θ) :=

∑
h∈H′

[
Êt
[
(Vπ(st)− VV (st))

2]]+ β · Êt[KL(πold(·|st), π(·|st))
]

(14)

where β is the policy constraint coefficient, and πold is a copy of the policy before the distillation
update, and H’ the subset of horizons to distil.

Summary. We have outlined how to efficiently generate value estimates along value curves, using
interpolated value heads, and a sample-based return estimator. Together these changes allow TVL
to efficiently generate TD(λ)-style return estimates on long-horizon tasks. We formalize the TVL
algorithm in Algorithm 2, while also providing source code with the supplementary material.3

Algorithm 2 Truncated Value Learning (TVL)
1: Input N ∈ Z+ rollout horizon.
2: Input A ∈ Z+ number of parallel agents.
3: Input H The set of horizons to generate esimates for.
4: Input π the initial policy.
5: for t = 1 to ... do
6: for a = 1 to A do
7: Run policy π in environment a for N time steps
8: end for
9: Compute Vtarg ← Gh for each h ∈ H

10: Compute ÂGAE FH
t

11: πold ← π
12: for i = 1 to Eπ do
13: Optimize LCLIP

t wrt θπ
14: end for
15: for i = 1 to EV do
16: Optimize LFH

t wrt θV
17: end for
18: πold ← π
19: for i = 1 to ED do
20: Optimize LD

t wrt θπ
21: end for
22: end for
23: Output π

5 EXPERIMENTAL RESULTS

Having introduced the TVL algorithm, we test our algorithm empirically. Given the high variance
returns, we opted for Procgen (Cobbe et al., 2020) to test TVL’s learning ability in a high-noise
setting. Additionally, we chose Atari-5 (Aitchison et al., 2022) to gauge the agent’s overall perfor-
mance and selected the Atari game Skiing to evaluate its performance in long-horizon scenarios.
Full training details are provided in Appendix F. We also provide supplementary results under the
easy Procgen setting in Appendix E, and Mujoco results in Appendix D.

High Noise Environments. We found TVL to perform very well on the challenging Procgen bench-
mark. The results are summarized in Figure 5. Compared to PPG, TVL demonstrated the greatest

3Source-code will also be provided via GitHub on publication
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Figure 5: Results on the Procgen dataset over three seeds under the hard distribution setting. Left:
Human normalized average score over all 16 games. Right: individual scores for each game. Results
are averaged over three seeds and smoothed for readability. PPO and PPG results are taken from
Cobbe et al. (2021). Shaded areas indicate 95% CI.

improvement on Heist, which requires complex long-term planning (unlocking a sequence of doors
in a maze). It also performed well on Maze, which requires long-term planning. The largest dif-
ference found was on Plunder, where time penalties for shooting incorrect sprites led indirectly to
reduced reward later on.

In terms of average normalized score, TVL outperformed all previous algorithms on this benchmark
with a score of 0.796 (see Table 1), including the previous state-of-the-art phasic policy gradient
(Cobbe et al., 2021) after 75 million frames. This is despite not requiring a large replay buffer and
needing less time to train (see Appendix B).

Algorithm HNS 95% CI

TVL (ours) 0.796 0.792− 0.799
PPG, (Cobbe et al., 2021) 0.756 0.744− 0.767
DNA, (Aitchison & Sweetser, 2022) 0.742 0.733− 0.751
PPO, (Cobbe et al., 2021) 0.587 0.568− 0.605

Table 1: Average human normalized scores (HNS) for the Procgen benchmark under hard settings,
including the 95-percent confidence interval.

General Performance. We assessed TVL’s overarching performance using the Atari-5 dataset,
which estimates the median score of Atari-57 based on just five games (Aitchison et al., 2022). Given
that these games neither involve long horizons nor exhibit high noise, our aim was to determine if
the emphasis on long-horizon learning would notably affect general performance.

We found TVL marginally under-performed DNA on the Atari-5 dataset, but the difference was not
statistically significant. We also found no statistically significant difference in the five individual
games evaluated. TVL demonstrated a considerable improvement over PPO, but less significant
than that of DNA.

Long Horizon. We found that both TVL and DNA performed very well on the Skiing environment,
with TVL achieving a time of 38.98 seconds (37.35-40.60 95% CI), and DNA a time of 40.61
seconds (38.47-42.75 95% CI) (Figure 6).4 While TVL does not show a statistically significant
improvement over DNA, it is the only algorithm tested that outperforms the previous best time of

4Scores in Skiing can be converted to (penalized) time in seconds by dividing by -100.
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Figure 6: Left: Results on the Atari-5 benchmark averaged over three seeds. Shading indicates
95 % CI. Results smoothed for readability. Right: Results for the Skiing environment. The Y-axis
indicates the number of seconds slower than the human world record, which is 32.78 seconds and is
on a log scale. Shading indicates 95% CI over 16 seeds.

42.02 seconds by Agent-57 (Badia et al., 2020a) by a statistically significant margin.5 We also note
that 14 of the top 16 seeded runs were produced by TVL.

6 DISCUSSION

Our findings illustrate the potential of scaling fixed-horizon learning to extended horizons. While
TVL exhibited superior performance in the long-horizon challenge Skiing, the margin of improve-
ment was modest. Interestingly, its most remarkable performance was observed in the shorter-
duration Procgen games. We speculate that this might be caused by the trimming approach not
working as well in long-horizon settings as shorter ones. Exploring more sophisticated trimming
techniques, such as time-until-termination prediction, could further enhance TVL’s efficacy.

One limitation of our approach is that value heads in TVL are not independent due to feature sharing
and interpolation. Because of this, errors on one head may propagate forward to longer-horizon
heads. Despite this, TVL performs strongly in the high-noise Procgen setting. Also, when selecting
test environments, we picked the longest-horizon problems we could find. However, finding tasks
with exceedingly long horizons proved challenging. Given that many real-world problems, such as
climate change, require judging the long-term implications of actions taken, it would be preferred if
there existed established benchmarks involving longer time frames (tMAX > 100, 000)

TVL demonstrated its most notable performance in the Procgen games, specifically in Heist, Plun-
der, and to a lesser extent, Maze. In contrast to other Procgen titles, these games place a greater
emphasis on long-term planning. This suggests that TVL may be more adeptly bridge its immediate
actions with far-reaching outcomes compared to other methods we evaluated. Further investigation
into this potential strength would be beneficial.

7 CONCLUSIONS

In this paper, we have introduced fixed-horizon updates as a compelling alternative to TD learning.
Our findings suggest that, when appropriately scaled, this method performs comparably on many
tasks and occasionally outperforms alternative approaches. While we have not observed signifi-
cant enhancements in long-horizon problems, our results in high-variance return environments are
state-of-the-art. Given the theoretical benefits of fixed-horizon learning and its capability to simul-
taneously learn all discount functions, this research will likely encourage further exploration in the
field.

5Go-Explore (Ecoffet et al., 2021) reports a time of 36.60 seconds. We do not compare against this result
due to significant differences in the training approach (i.e. the exploitation of the perfect determinism of the
environment and the modification of the environment’s timeout.
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A TRUNCATED VALUE INTERPOLATION ALGORITHM

This algorithm outlines a method for estimating the value of a state s by using truncated value
estimates at various horizons between hmin and hmax, and then interpolating a value estimate for any
arbitrary horizon h within the range [hmin..hmax] using linear interpolation. This approach decouples
the number of value estimates generated from the maximum horizon hmax, which is a key feature of
TVL.

Algorithm 3 Interpolated Value Estimate

Input:
s ∈ S, state for which value will be estimated.
h ∈ Z+ horizon for which value will be estimated.
H, ordered list of K horizons.
V̂ , list of K value estimates where V̂i is an estimate for VHi(s)
BISECT(a,x) function that locates insertion point for x in a to maintain sorted order.

Output:
Interpolated estimate of Vh(s).

if h = 0 then
return 0

end if
r ← BISECT(H, h)
l← r − 1
∆h← Hr − Hl

if ∆h = 0 then
return V̂l

end if
α← (h− Hl)/∆h

return (1− α)VHl
+ αVHr

B COMPUTE EFFICIENCY OF TVL

Implementing fixed-horizon learning poses a challenge in efficiently learning horizon estimates for
problems with long horizons. In this section, we analyze the training time required to train TVL
compared to PPO and DNA. TVL was trained on the Atari game Name This Game. The game was
trained with a horizon limit of 30,000 and 4 return samples.

The training time required for TVL is similar to that of PPO as reported by Schulman et al. (2017).
However, compared to RainbowDQN Hessel et al. (2018) TVL’s training time is much faster. De-
spite learning value estimates for 128 different horizons, TVL only takes roughly twice as long to
train as DNA. We observe that training time only begins to increase significantly when the product
of the number of value heads and return samples exceeds 2,048.

Table 2: Approximate training times for the algorithms used in this paper.
Algorithm GPU hours per game

PPO (our settings) 3
DNA 4
PPO (Schulman et al. (2017) settings) 7.5
TVL 9
Rainbow DQN 1206

6When trained on an RTX 2080 using the code provided at https://github.com/Kaixhin/
Rainbow.

12

https://github.com/Kaixhin/Rainbow
https://github.com/Kaixhin/Rainbow


Under review as a conference paper at ICLR 2024

Table 3: Impact of return samples (c) and number of value heads on training time.
Value Heads c = 1 c = 2 c = 4 c = 8

64 9 hours 9 hours 9 hours 9 hours
128 9 hours 9 hours 9 hours 9 hours
256 9 hours 9 hours 9 hours 10 hours
512 9 hours 9 hours 10 hours 12 hours

C TRUNCATED RETURN ESTIMATORS

To effectively learn truncated value estimates Vh, obtaining accurate estimates of the return Gh is
crucial. While Monte-Carlo estimates are unbiased and simple to generate, they are plagued by
high variance and are unsuitable for long episodes where estimates are required before episode
termination. To address these issues, we present a set of return estimators in the fixed-horizon
setting.

The Fixed-horizon setting introduces two challenges not present in traditional exponentially dis-
counted value estimates. First, we need to estimate the value at multiple horizons, and second, the
self-similar property of exponential discounting is absent, leading to less efficient TD(λ) algorithms.

We review traditional return estimators that overlap with the Q-learning estimators developed by
De Asis et al. (2020), as well as novel estimators that account for the specific needs and constraints
of the fixed-horizon setting.

Traditional Return Estimators Adapted for TVL.

It is possible to modify the traditional return estimators TD, N-STEP, Monte Carlo (MC) and TD(λ)
to generate truncated return estimates with relative ease.

One-Step Fixed-Horizon Targets.

Return estimates for the truncated value can be learned in much the same way as a traditional value
function using one-step updates as outlined by De Asis et al. (2020).

TDh(s) := NSTEP(1)
h (s) :=Eπ,µ

{
rt + γVh−1(st+1)|st = s

}
(15)

(16)

where t is the current time step, rt is the next-step reward, and γ ∈ R the discount rate.

A drawback of using this return estimate is that any improvement made at the first horizon will
require hMAX updates before it impacts the final horizon. This results in a slow propagation of
important information, especially for longer horizons. To overcome this limitation, we can utilize
n-step estimates.

Monte Carlo Fixed Horizon Targets. Monte Carlo estimates provide an unbiased estimate of the
truncated return from a state but do so with high variance. We define Monte-Carlo return targets as

MCh(s) := Eπ,µ

{ h−1∑
i=0

γirt+i|st = s)
}

(17)

where rt>tMAX := 0.

n-Step Fixed-Horizon Targets. Targets can also be estimated by considering not just the next-step
reward, but a sequence of the next n steps using

NSTEP(k)
h (s) := Eπ,µ

{ k−1∑
i=0

γirt+i + γkVh−k(st+k)|st = s
}
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For k ≥ tMAX − t, n-step returns reduce to Monte-Carlo estimates since V≤0 := 0.

TD(λ) Fixed Horizon TD Targets. TD(λ) balances bias and variance in return estimation by using
an exponentially weighted mixture of n-step return estimates. We can easily extend this to the fixed
horizon setting as follows.

TD(γ,λ)
h (s) := (1− λ)

∞∑
k=1

λk−1NSTEP(γ,k)
h (τ), (18)

In the geometrically discounted setting, TD(λ) has an efficient implementation that makes it no
slower than a one-step estimate. However, all hMAX return estimations must be calculated in fixed
horizons, which presents a challenge for long-horizon problems. To address this issue, we propose
the following novel value estimators.

Novel Value Estimators for TVL.

After discussing the fundamental return estimates utilized in geometric horizon TD and introducing
their fixed-horizon counterparts, we explore our novel return estimators that are more suited for
fixed-horizon settings. These estimators aim to balance variance and bias trade-offs while remaining
sub-linear in terms of the maximum horizon.

Uniform Fixed-Horizon TD Targets. We define the uniform return estimate as

UNINh (s) :=
1

N

N∑
n=1

NSTEPn
h(s) (19)

which is a uniformly weighted average over n-step returns up to some step N . The reason for
this particular formulation, is that if N is set to the number of steps in an experience window,
then transitions (si, ai, si+1) all use NSTEPN−i

h as there target where i is their position within the
experience buffer.

Since NSTEPN−i
h (si) requires Vh−(N−i)(si+N−i) to be calculated, all estimates required are for

sN , that is, the last state. Therefore only one in every N states requires horizon estimates to be
generate.

If we set N proportional to hMAX, we have a constant number of return estimations independent of
hMAX. One downside to this style of return estimation is that all returns within a trajectory window
use the same state for updating, which could cause issues.

D ADDITIONAL RESULTS ON MUJOCO

Given that TVL operates as a policy gradient algorithm, it is inherently tailored for continuous
control problems, prompting us to present experimental results on MuJoCo (Todorov et al., 2012).
While MuJoCo typically features low noise and short horizons, TVL’s design is not expected to
enhance performance in this context. Nevertheless, our goal is to ascertain if the introduction of
learning the value curve has any adverse effects on the performance across these tasks.

As with the Atari and Procgen benchmarks, we also provided a time component to the model by
appending t/tmax to the state space. Because of this and other minor variations in hyperparameters,
our results for PPO and DNA differ slightly from that of Aitchison & Sweetser (2022)

We found TVL to underperform DNA on this benchmark slightly. TVL improved upon DNA on
one environment, Walker2d, and underperformed on two (HalfCheetah, and Hopper). All other
environments showed no statistically significant difference over 30 seeds.

These results are within expectation, as TVL’s primary advantage is the ability to generate long-
horizon value estimates in noisy environments. The MuJoCo environments are limited to only 1000
time steps. Our agents used the standard γ = 0.99 discounting, giving an effective planning hori-
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Figure 7: Results on the MuJoCo benchmark. Scores are averaged over 30 seeds, with one standard
error shown shaded. All agents are trained for 1 million frames. Results are smoothed with an
exponential moving average.

Table 4: Hyperparameters used for MuJoCo. Hyperparameters follow closely to that of Schulman
et al. (2017); Aitchison & Sweetser (2022). Agents were trained for one million interactions.
† Learning rate was annealed linearly to 0.0 over training.

Setting PPO DNA TVL

Entropy bonus (ceb) 0.00
Rollout horizon (N) 2048
Parallel agents (A) 1
PPO epsilon ϵ 0.2
Discount gamma (γ) 0.99
Learning Rate 3.0× 10−4†
Policy lambda (λπ) 0.95 0.9 0.9
Value lambda (λV ) 0.95

Policy epochs (Eπ/Eppo) 10 10 10
Value epochs (EV ) - 10 10
Distil epochs (ED) - 10 10
Distil beta (β) - 1.0 1.0
Policy mini-batch size 64 64 64
Value mini-batch size - 64 64
Distil/Aux mini-batch size - 64 64
Global gradient clipping 5.0
Embed time yes

Distil max heads - - All
TVL return samples - - 8

zon of 100 time steps.7. Nonetheless, these results demonstrate TVL’s retains it’s ability to solve
continuous control problems at a high level.

E ADDITIONAL RESULTS ON THE PROCGEN DATASET

Given our interest in evaluating TVL’s performance in high-noise environments, in primary experi-
ments evaluated on the hard Procgen settings. Nonetheless, several previous studies such as (Cobbe
et al., 2020; Laskin et al., 2020; Raileanu et al., 2021) used the easy settings. For a comprehensive
compassion with these works, we present results under the easy Procgen settings. Each model was

7We also tried higher values of γ for both TVL and DNA, but found the standard 0.99 to be optimal from
those tried [0.99, 0.999, 1.0]
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trained for 25 million steps on the easy distribution and is evaluated using an average of 100 episodes
at the end of training. TVL outperformed the other algorithms we compared against on 12 of the 16
games and achieved a PPO-normalized score of 164.6, outperforming the next best (DrAC) by 37%.

Algorithm PPO-Normalized Score

PPO 100.0
RAD 109.1
DrAC 119.6
TVL 164.6

Table 5: Performance on Procgen under the easy settings, trained for 25 Million steps. PPO, RAD
and DrAC results are taken from Raileanu et al. (2021). Scores are normalized by dividing by the
PPO score for each game, multiplying by 100 and then averaging. TVL is averaged over three seeds,
while PPO, RAD and DrAC are averaged over ten.
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Figure 8: Individual training plots for TVL on each of the 16 games in the Procgen benchmark.
Trained for 25 million steps under the easy settings. Shading indicates 95% CI over three seeds.
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Table 6: Results for each game under the easy Procgen settings. PPO, RAD and DrAC results are
taken from Raileanu et al. (2021). Bounds indicate two standard errors over three seeds for TVL
and 10 seeds for the others.

Game PPO RAD DrAC TVL

CoinRun 9.3± 0.3 9.6± 0.4 9.7± 0.2 9.5± 0.1
StarPilot 29.8± 2.3 36.5± 3.9 38.0± 3.1 51.5± 0.6
CaveFlyer 6.8± 0.6 6.0± 0.8 8.2± 0.7 7.6± 0.4
DodgeBall 4.2± 0.5 5.0± 0.7 7.5± 1.0 14.0± 0.8
FruitBot 29.1± 1.1 26.1± 3.0 29.4± 1.0 31.3± 0.6
Chaser 4.9± 0.5 6.4± 1.0 7.1± 0.5 10.5± 0.2
Miner 12.2± 0.3 12.6± 1.0 12.5± 0.3 10.5± 0.4
Jumper 8.3± 0.4 8.6± 0.4 9.1± 0.4 8.8± 0.7
Leaper 5.5± 0.4 4.9± 0.9 5.0± 0.7 9.7± 0.2
Maze 9.1± 0.3 8.4± 0.7 8.3± 0.7 10.0± 0.1
BigFish 8.9± 1.5 13.2± 2.8 13.1± 2.2 25.1± 3.6
Heist 7.1± 0.5 6.2± 0.9 6.8± 0.7 8.6± 0.4
Climber 8.4± 0.8 9.3± 1.1 9.9± 0.8 11.0± 0.4
Plunder 6.0± 0.5 8.4± 1.5 9.9± 1.3 19.6± 1.7
Ninja 7.4± 0.7 8.9± 0.9 8.8± 0.5 9.4± 0.1
BossFight 8.5± 0.7 8.1± 1.1 8.2± 1.0 10.7± 0.8

F TRAINING DETAILS

Changes from DNA.

In our experiments we used settings similar to those used in Aitchison & Sweetser (2022). We
use this section to note any important differences. Where we did make changes we applied those
changes to all three algorithms evaluated.

Entropy in Atari. Our agent occasionally encountered situations where it became stuck, impacting
the performance of PPO, DNA, and TVL. Specifically, it would either adhere to an under-performing
policy or remain stationary in-game (e.g. holding a ball but not shooting). We identified two strate-
gies to address these issues.

1. The entropy bonus should be less on environments with less actions.

We scaled the entropy bonus based on the number of valid actions as follows

e′b = eb ×
log(|Atarget|)
log(|A|)

(20)

where |Atarget| is the target action count (we set this to 18) and |A| is the actual number of actions in
the environment, with |A| ≥ 2. This causes the entropy bonus for a uniform distribution to be the
same regardless of the number of actions.

2. The relative weighting of the entropy bonus is affected by advantage normalization.

We modified the ADVϵ used during advantage normalization from 10−8 to 10−2. The reason for
this is that the relative scale between the entropy bonus, and policy gradient is modified when ad-
vantages are normalized. This causes agents who receive no advantage (e.g. in environments where
rewards are spare) so have an effective entropy bonus that is extremely high. By adjusting the ADVϵ

parameter, the affect of this scaling is diminished in sparse reward environments.

Procgen. Procgen results were generated following the same procedure as Aitchison & Sweetser
(2022), with the following changes.

• We apply distillation only on alternate updates.8

8We found this to be much faster, and produce similar results
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• We increased the policy mini-batch size from 8k to 16k.

• We switched from RGB colorspace to YUV colorspace.

• We increased Adam β1 from 0.9 to 0.95.

• We included the entropy modifications used in our Atari benchmarks.

Table 7: Hyperparameters used for ProcGen. PPG hyperparameters are taken from Cobbe et al.
(2021).
† every other update.

Setting PPO DNA TVL PPG

Color space YUV RGB
Advantage ϵ (ADVϵ) 1e-2 1e-8
Entropy bonus (ceb) 0.01
Rollout horizon (N) 256
Parallel agents (A) 256
PPO ϵ 0.2
Discount gamma (γ) 0.999
Learning Rate 5.0× 10−4

Policy lambda (λπ) 0.95 0.8 0.8 0.95
Value lambda (λV ) 0.95 0.9 0.9 0.95

Policy epochs (Eπ/Eppo) 3 2 2 1
Value epochs (EV ) - 1 1 1
Distil/Aux epochs (ED) - 2† 2† 6
Distil/Aux beta (β) - 1.0 1.0 1.0
Policy mini-batch size 16,384 16,384 16,384 8,192
Value mini-batch size - 2,048 2,048 8,192
Distil/Aux mini-batch size - 512 512 4,096
Global gradient clipping 5.0 5.0 5.0 off

TVL value heads - - 128 -
TVL return samples - - 4 -
TVL return distribution - - exp -
Adam Beta1 0.95 0.95 0.95 0.9

G TRIMMING AND VALUE PROPAGATION

A challenge in applying fixed-horizon learning to long-horizon tasks is the delayed propagation of
improvements from short horizons to longer ones. In the most extreme case (when using NSTEP
updates with n = 1) it would necessitate hMAX − 1 updates for an improvement at V1 to propagate
to VhMAX . Since π solely relies on VhMAX , this might slow the agent’s learning process.

Recognizing this, we exploit the following relationship

Vh(·) = Vh+(·) ∀ h+ ≥ tMAX − t (21)

Assuming V̂ closely approximates V it is pragmatic to replace longer horizons with shorter ones as
the environment’s time constrain nears, primarily because the latter are often learned earlier.9

We can, therefore, replace return estimations with either the shortest valid horizon hmin =
min(tMAX − t, h) giving

GTRIM
h (st) = Ghmin(st) (22)

or alternatively with an average over all valid horizons shorter than the target horizon

9For example, at t = 25, and with tMAX = 200, V>175(·) = V175(·), as termination beyond this horizon is
assured.
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ḠTRIM
h (st) =

1

1 + h− hmin

h∑
i=hmin

Gi(st), (23)

which may be preferred if return estimates have high variance.

H JUSTIFICATIONS FOR THE USE OF DISCOUNTING IN DECISION MAKING

The problems caused by discounting in human decision-making raise questions over why machines
should discount at all. When justifying discounting in reinforcement learning, one or more of the
following three reasons is generally given:

1. It ensures that return estimates are finite.

2. It makes sure that beneficial actions are not postponed indefinitely

3. It accounts for known (or unknown) hazards.

In a continuing non-episodic setting, all three justifications are well supported. For discussion see;
returns are finite: Sutton & Barto (2018), postponing actions: Hutter (2004) (section 5.7), hazards:
Sozou (1998). However, in an episodic environment where the time is limited by tMAX ∈ Z+,
none of these reasons are well justified. If rewards are bounded by Rmax ∈ R, then the returns
will be bounded by tMAX · Rmax. If an agent is aware of the current time step (required to make
the environment Markovian (Pardo et al., 2018)), the agent will learn the optimal time to take any
beneficial action. Finally, any environmental hazards will eventually be learned and compensated
for automatically over time due to the ergodic nature of time-limited environments.

Paper Episodic Time-limited Discounting

Hessel et al. (2018) Yes Yes γ = 0.99
Mnih et al. (2015) Yes Yes γ = 0.99
Badia et al. (2020b) Yes Yes γ ∈ [0.99...0.997]
Badia et al. (2020a) Yes Yes γ ∈ [0.99...0.9999]

Table 8: Summary of discounting used in popular RL papers.

This casts doubt on the need for any discounting in the time-limited episodic setting. Yet, findings
from prominent RL papers in time-limited episodic domains consistently employ discounting, often
over surprisingly short horizons (Table 8). Moreover, empirically, the discount rate is not an unim-
portant setting when tuning an algorithm but a critical hyperparameter. If the three reasons above do
not hold, why not just set γ = 1.0 and learn the environment’s unmodified rewards?

The reason given by many authors, including (Badia et al., 2020a; Schulman et al., 2015; Marbach
& Tsitsiklis, 2003), is that discounting reduces the variance of the returns. That is to say, unknown
far-future rewards are quite noisy, and making decisions using these estimates causes instability
during training. By discounting, we reduce the weight of the long-term effect of a decision, thereby
reducing the variance. While this allows the agent to learn more efficiently, it comes at the price
of learning the wrong problem. Indeed, for any horizon, there exists an MDP where the optimal
discounted policy is sub-optimal (even maximally so). This work’s counterclaim is that discounting
primarily functions in time-limited episodic environments to dampen error propagation caused by
bootstrapping and that (high levels of) discounting is no longer required when bootstrapping is
removed.

I ALTERNATIVE DISTRIBUTIONS FOR SRE

Traditionally, n-step returns are weighted exponentially for computational efficiency. In the fixed-
horizon setting, recalculating these returns can be computationally intensive. To mitigate this, we
employ a sample-based return estimator termed SRE. Notably, the SRE allows for a diverse range
of n-step weights. We present several of these in Table 9. Furthermore, we emphasize the potential
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of the harmonic series as an alternative to exponential weighting, offering the advantage of being
parameter-free and not implying a specific timescale.

Name W

n-step wi = 1 if i = n else 0
TD(λ) wi =λi

Uniform wi =1
Harmonic wi = 1/i

Table 9: Weights for various unnormalised distributions over N n-step estimates. Distributions can
be normalized by dividing by Γ = 1/

∑N-1
i=0 wi

.

J REDISCOUNTING

For simplicity, in our main study, we used a single discount γ applied to both the return estimates
used during value learning and advantage generation. However, this need not be the case. We can
define γTV L as the discount applied when learning value estimates and γPPO the discount used
when generating advantage estimates. Doing so provides several advantages.

1. Rediscounting, as explained below, involves averaging over multiple horizons, which might
reduce variance.

2. The γTVL could be set high (e.g. 1.0) while the γPPO discount be could adjusted dynamically
without destabilizing training by modifying the discount rate the value network is targeting,
giving a dynamic potentially learned discount rate (for discussion see (François-Lavet et al.,
2015; Wang et al., 2019)).

Using rediscounting can cause increased noise in value estimates if ratio ϕ2(x)/ϕ1(x) is large for
some x. When rediscounting, for example, from ϕ1(x) = 0.99x to ϕ1(x) = 0.999x at a horizon of
1000, any noise in the value estimation at h = 1000 will be magnified by ≈ 8517 times. Conse-
quently, it is often better to learn longer horizons and rediscount to shorter horizons than the other
way around.

Algorithm 4 General Rediscounting.

1: Procedure Rediscount(ϕ1, ϕ2, V ϕ1

h (s)) 7→Vϕ2

h (s)
2: Input:
3: Source discount function ϕ1 with support on Z+.
4: Any target discount function ϕ2.
5: V ϕ1

h (s), truncated values of state s generated using discount function ϕ1 for h ∈ 0...n.
6: Returns:
7: V ϕ2 ∈ R, the truncated value of state s under discount discount ϕ2 at horizon n.
8: V ϕ2 ← 0
9: for h = 1→ n do

10: r ← Vh(s)− Vh−1(s)
11: V ϕ2 ← V ϕ2 + r × ϕ2(h)/ϕ1(h)
12: end for
13: return V ϕ2
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