
Feudal Graph Reinforcement Learning

Tommaso Marzi1 Arshjot Khehra1 Andrea Cini1 Cesare Alippi1,2
1 IDSIA USI-SUPSI, Lugano, Switzerland.

2 Politecnico di Milano, Milan, Italy.
{tommaso.marzi, arshjot.khehra, andrea.cini, cesare.alippi}@usi.ch

Abstract

Graph-based representations and message-passing modular policies constitute
prominent approaches to tackling composable control problems in Reinforcement
Learning (RL). However, as shown by recent graph deep learning literature, such
local message-passing operators can create information bottlenecks and hinder
global coordination. The issue becomes more serious in tasks requiring high-level
planning. In this work, we propose a novel methodology, named Feudal Graph
Reinforcement Learning (FGRL), that addresses such challenges by relying on
hierarchical RL and a pyramidal message-passing architecture. In particular, FGRL
defines a hierarchy of policies where high-level commands are propagated from
the top of the hierarchy down through a layered graph structure. The bottom layers
mimic the morphology of the physical system, while the upper layers correspond
to higher-order sub-modules. The resulting agents are then characterized by a
committee of policies where actions at a certain level set goals for the level be-
low, thus implementing a hierarchical decision-making structure that can naturally
implement task decomposition. We evaluate the proposed framework on a graph
clustering problem and MuJoCo locomotion tasks; simulation results show that
FGRL compares favorably against relevant baselines. Furthermore, an in-depth
analysis of the command propagation mechanism provides evidence that the in-
troduced message-passing scheme favors learning hierarchical decision-making
policies.

1 Introduction

Although reinforcement learning (RL) methods paired with deep learning models have recently led to
outstanding results, e.g., see [30, 12, 38, 25], achievements have come with a severe cost in terms
of sample complexity. A possible way out foresees embedding inductive biases into the learning
system, for instance, by leveraging the relational compositionality of the tasks and physical objects
involved [7, 18, 41, 13]. Within this context, physical systems can be often decomposed into a
collection of discrete entities interconnected by binary relationships. In such cases, graphs emerge as
a suitable representation to capture the system’s underlying structure. When processed by message-
passing graph neural networks (GNNs; [3, 10, 15]), these graph representations enable the reuse of
experience and the transfer of models across agents: node-level modules (policies) can easily be
applied to graphs (systems) with different topologies (structures) [37]. However, while conceptually
appealing, the use of modular message-passing policies also bears some concerns in terms of the
constraints that such representations impose on the learning system. As an example, consider a
robotic agent: a natural relational representation can be obtained by considering a graph capturing
its morphology, with links represented as edges, and different types of joints (or limbs) as nodes. In
this framework, policies can be learned at the level of the single decision-making unit (actuator, in
the robotic example), in a distributed fashion [37, 20]. Nevertheless, recent evidence suggests that
existing approaches are not successful in learning composable policies able to fully exploit agents’

17th European Workshop on Reinforcement Learning (EWRL 2024).

morphology [24]. Notably, in such modular architectures, the same replicated processing module
must act as a low-level controller (e.g., by applying a torque to a joint of a robotic leg), but, at the
same time, attend to complex, temporally extended tasks at the global level, such as running or
reaching a far-away goal.

In light of this, we propose to tackle the problem of temporal abstraction by introducing a novel
hierarchical approach to designing graph-based message-passing policies. Our approach is inspired
by the guiding principles of hierarchical reinforcement learning (HRL; [6]) and, in particular, feudal
reinforcement learning (FRL; [11]): we argue that GNNs are natural candidates to implement HRL
algorithms, as their properties implicitly account for HRL desiderata such as transferability and
task decomposition. Indeed, one of the core ideas of HRL is structuring the learning systems to
facilitate reasoning at different levels of spatiotemporal abstraction. The options framework [32], as
an example, pursues temporal abstraction by expanding the set of available actions with temporally
extended behavioral routines, implemented as policies named options. Conversely, FRL implements
spatiotemporal abstractions by relying on a hierarchy of controllers where policies at the top levels
set the goals for those at lower levels. In the FRL framework, each decision-making unit is seen
as a manager that controls its sub-managers and, in turn, is controlled by its super-manager. In its
original formulation, FRL is limited to tabular RL settings and relies on domain knowledge for the
definition of subtasks and intermediate goals. Although extensions to the deep RL settings exist [36],
the idea of learning a hierarchy of communicating policies has not been fully exploited yet. In
this paper, we rely on these ideas to propose a novel hierarchical graph-based methodology, named
Feudal Graph Reinforcement Learning (FGRL), to build hierarchical committees of composable
control policies. In FGRL, policies are organized within a feudal, i.e., pyramidal, structure, and
each layer corresponds to a graph. Message-passing GNNs provide the proper neuro-computational
framework to implement the architecture. More in detail, the hierarchy of controllers is represented
as a multilayered graph where nodes at the bottom (workers) can be seen as actuator-level controllers,
while upper-level nodes (sub-managers and manager) can focus on high-level planning, possibly
by exploiting higher-order relationships. In the robotic example, workers would correspond to the
agent’s joints and the corresponding actuators, i.e., to those entities directly applying a control action
to the system. Conversely (sub-)managers would correspond to modules responsible for coordinating
subordinate nodes by sending appropriate (possibly high-level) commands. Depending on their role
in the hierarchy, such commands might specify, for instance, a target position for a specific joint or
control the orientation of a body part. In FGRL, each discrete decision-making unit is responsible for
the control of the system at a certain level. In particular, each node participates in learning a policy by
exchanging messages with controllers of the same levels and setting local goals for the level below.
While exchanged messages enable coordination, the hierarchical pyramidal structure constrains the
information flow, implementing information hiding. As a result, the system is biased towards learning
a hierarchical decomposition of the problem into sub-tasks.

To summarize, our main novel contributions are as follows.

1. We introduce the FGRL paradigm, a new methodological deep learning framework for graph-
based HRL (Sec. 4).

2. We evaluate a possible implementation of the proposed method on a graph clustering problem and
on continuous control tasks from the MuJoCo locomotion benchmarks [34], where the proposed
approach obtains competitive performance w.r.t. relevant baselines (Sec. 5.2 and 5.3).

3. We provide empirical evidence that supports the adoption of hierarchical message-passing schemes
and graph-based representations to implement hierarchical control policies (Sec. 5.4).

Our work paves the way for a novel take on hierarchical and graph-based reinforcement learning,
marking a significant step toward designing deep RL architectures incorporating biases aligned with
the structure of HRL agents.

2 Related Works

Several RL methods rely on relational representations. Zambaldi et al. [41] embed relational inductive
biases into a model-free deep RL architecture by exploiting the attention mechanism. Sanchez-
Gonzalez et al. [28] use GNNs to predict the dynamics of simulated physical systems and show
applications of such models in the context of model-based RL. Other works adopt GNNs in place of
standard, fully-connected, feed-forward networks to learn policies and value functions for specific

2

structured tasks, such as physical construction [18, 4]. Moreover, GNNs have been exploited also in
the context of multi-agent systems [21] and robotics [13, 14]. Ha & Tang [17] provide an overview
of deep learning systems based on the idea of collective intelligence, i.e., systems where the desired
behavior emerges from the interactions of many simple (often identical) units.

More related to our approach, NerveNet [37] relies on message passing to propagate information
across nodes and learn an actuator-level policy. Similarly to NerveNet, the Shared Modular Policies
method (SMP; [20]) learns a global policy that is shared across the limbs of a target agent and
controls simultaneously different morphologies. The agents’ structure is encoded by a tree where an
arbitrary limb acts as a root node. Information is propagated through the tree in two stages, from
root to leaves and then backward. Kurin et al. [24], however, show that constraining the exchange of
information to the structure of the system being controlled can hinder performance. This issue is a
well-known problem in graph machine learning: the best structure to perform message passing does
not necessarily correspond to the input topology [23, 2]. Graph pooling [39, 9, 16, 8] tackles this
problem by clustering nodes and rewiring the graph to learn hierarchical representations. Our work
can be seen as introducing a similar idea in graph-based RL. Moreover, in FGRL, the hierarchical
structure corresponds to the structure of the decision-making process.

FRL [11] has been extended to the deep RL setting with the introduction of FeUdal Net-
works (FUN; [36]) and, recently, explored in the context of multi-agent systems [1]. However,
none of the previous works match FRL with a hierarchical graph-based architecture to learn modular
policies, as we do here instead.

3 Preliminaries

Markov decision process A Markov Decision Process (MDP; [31]) is a tuple ⟨S,A,P,R⟩ where
S ⊆ Rns is a state space, A ⊆ Rna is an action space, P : S × A → S is a Markovian transition
function and R : S × A → R is a payoff (reward) function. We focus on the episodic RL setting
where the agent acts in the environment for a fixed number of time steps or until it receives a
termination signal from the environment. The objective is to learn a parameterized stochastic policy
πθ that maximizes the total expected reward received in an episode. We focus on environments where
the state representation can be broken down into sub-parts, each part mapped to a node of a graph
structure.

Graphs and message-passing neural networks A graph is a tuple G = ⟨V, E⟩, where V and E
denote the set of vertices (nodes) and links (edges), respectively. In attributed graphs, each node
i is equipped with an attribute (or feature) vector xi ∈ Rdx . Similarly, edges can be associated
with attribute vectors eij ∈ Rde where (i, j) indicates the edge connecting the i-th and the j-
th nodes. Message-passing neural networks (MPNNs; [15]) encompass a large variety of GNN
architectures under the same general framework. In particular, in MPNNs, representations associated
with each node are updated at each round by aggregating messages from its neighbors. More precisely,
representation xl

i of node i at round l with neighbors N (i) is updated as:

xl+1
i = ζl

(
xl
i,AGGR

j∈N (i)

{
ϕl(xl

i,x
l
j , eij)

})
, (1)

where AGGR is a permutation-invariant aggregation function, while ζl and ϕl are differentiable
update and message functions (e.g., MLPs), respectively.

4 Feudal Graph Reinforcement Learning

A physical system can often be described as a set of entities and relationships among these entities. As
a case study, we consider structured agents (simplified robots), as those typically used in continuous
control RL benchmarks [33]. Such agents are modeled as made of several joints and limbs that
correspond to actuators of a system to control. The following section provides a method for extracting
and exploiting hierarchical graph-based representations in RL.

3

4.1 Graph-based Agent Representation

Morphology
extraction

Graph
extraction

Original agent Agent morphology Agent graph

Torso

Low arm (2)

Up arm (1) Up arm (2)

Low arm (1)

Thigh (2)

Shin (2)

Thigh (1)

Shin (1)

Figure 1: Constructing the agent graph G1 for ‘Hu-
manoid’ environment. Blue squares in the agent’s
morphology represent the joints of the agent and are
not mapped to nodes, differently from the green labels
which, instead, refer to the limbs and constitute the
nodes of G1.

A structured agent with K limbs can be rep-
resented as an undirected graph G1. The
subscript denotes the level in the hierarchy
and will be contextualized in the next sub-
section. In this setup, each i-th limb with
i ∈ {1, . . . ,K} is mapped to a node whose
feature vector sti ∈ S contains information
regarding its state at time t (e.g., the posi-
tion, orientation, and velocity of the node);
an edge between two nodes indicates that the
corresponding limbs are connected. Each
limb can be paired with an actuator and
outputs are associated with control actions
at
i ∈ A. Limbs with no associated action act

as auxiliary hub nodes and simply account
for the morphology of the agent; in practice,
representations of such nodes are simply not mapped to actions and are discarded in the final process-
ing steps. Fig. 1 provides an example of the graph extraction process for the ‘Humanoid’ environment
from MuJoCo, in which the torso node acts as a simple hub for message passing.

4.2 Building the Feudal Hierarchy

The core idea of FGRL consists of exploiting a multi-level hierarchical graph structure G∗ to model
and control a target system by leveraging a pyramidal decision-making architecture. In this framework,
each i-th node in the hierarchy reads from the representation of subordinate (child) nodes C(i) and
assigns them goals; in turn, it is subject to goals imposed by its supervisor (parent) nodes P(i)
through the same goal-assignment mechanism. Each node has no access to state representations
associated with the levels above, as the structure is layered. We identify three types of nodes:

1. Manager: It is a single node at the highest level of the hierarchy, i.e., it has no supervisor. It
receives the reward directly from the environment and is responsible for coordinating the entire
hierarchy.

2. Sub-managers: These nodes constitute the intermediate levels of the hierarchy and, for each
level lh, they can interact among each other through message passing on the associated graph Glh .
Each sub-manager receives an intrinsic reward based on the goals set by its direct supervisors.

3. Workers: These nodes are at the lowest level of the hierarchy. Workers correspond to nodes
in the previously introduced base graph G1 and are in charge of directly interacting with the
environment. At each time step t, the i-th worker has access to state vector sti and receives an
intrinsic reward that is a function of its assigned goals.

This feudal setup allows for decomposing the original task into simpler sub-tasks by providing goals
at different scales. In particular, increasing the hierarchy depth Lh increases the resolution at which
goals are assigned: upper levels can focus on high-level planning, while lower levels can set more
immediate goals. The resulting hierarchical committee facilitates temporal abstraction, which can be
further promoted by letting each level of the hierarchy act at different temporal frequencies [36]. In
practice, we can keep the commands set by the higher levels fixed for a certain (tunable) number of
steps. Depending on the setup, sub-managers and workers can rely on intrinsic rewards alone (reward
hiding principle; [11]) or maximize both intrinsic and extrinsic reward at the same time [36].

The hierarchical graph G∗ can be built by clustering nodes of the base graph G1 (with nodes possibly
belonging to more than one cluster) and assigning each group to a sub-manager. The same clustering
process can be repeated to obtain a single manager at the top of the hierarchy; see Fig. 2 (left)
and Fig. 6 for reference. The number of hierarchy levels is a hyperparameter that depends on the
problem at hand. Similarly, the clustering can be performed in several ways, e.g., by grouping
nodes according to physical proximity or functionality (e.g., by aggregating actuators belonging to a
certain subcomponent). We indicate with Glh the pooled graph representation at the lh-th level of the
hierarchy and remark that the state of each node is hidden from entities at lower levels.

4

AGGR AGGR AGGR

AGGR

m

State representation (Eq. 2) Propagation layer (Eq. 3) Goal/action generation (Eqs. 4, 5)

Environment

Hierarchical graph

Su
b-

m
an

ag
er

s
W

or
ke

rs

M
an

ag
er

Figure 2: Learning architecture given the hierarchical graph G∗ and the graphs Glh for the ‘Walker’
environment. Trainable functions are reported in red and hierarchical operations are represented with
dashed lines: in G∗, information flows bottom-up, while goals are assigned top-down.

4.3 Learning Architecture

Given the introduced hierarchical setup, this subsection illustrates the learning architecture and the
procedure to generate actions starting from the environment state. In particular, we generate the initial
representations of nodes in G∗ starting from raw observations, in a bottom-up fashion. Subsequently,
to take full advantage of both the feudal structure and the agent’s morphology, information is
propagated across nodes at the same level as well as through the hierarchical structure. Finally, (sub-
)managers set goals top-down through G∗, while workers act according to the received commands.
We now break this process down into a step-by-step procedure, a visual representation of which is
reported in Fig. 2.

State representation The environment state is partitioned and mapped to a set {si}Ki=1 of K local
node states, each corresponding to an actuator. We omit the temporal index t as there is no ambiguity.
Additional (positional) node features {fi}Ki=1 can be included in the representation, thus generating
observation vectors {xi}Ki=1, where, for each i-th limb, xi is obtained by concatenating si and fi.
Starting from the observation vectors, the initial representation h0

i of each i-th node in G∗ is obtained
recursively as:

h0
i =

{
W1xi, i ∈ G1

AGGR
j∈C(i)

{
ρlh(h0

j)
}
, i ∈ Glh , lh ∈ {2, . . . , Lh} (2)

where W1 ∈ Rdh×dx is a learnable weight matrix, ρlh a (trainable) differentiable function and
AGGR a generic aggregation function. The superscript of h0

i indicates the stage of the information
propagation. In practice, the initial state representation of each worker is obtained through a linear
transformation of the corresponding observation vector, while, for (sub-)managers, representations are
initialized bottom-up with a many-to-one mapping obtained by aggregating recursively representations
at the lower levels of G∗.

Propagation layer Information across nodes is propagated through message passing. Nodes at the
lh-th levels can read from representations of neighbors in Glh and subordinate nodes in Glh−1, i.e.,
those corresponding to the lower level. We combine these 2 information flows in a single message-
passing step. In particular, starting from the initial representations h0

i , each round lr ∈ {1, . . . , Lr}
of message passing updates the corresponding state representation hlr

i as:

hlr
i = ζlr,lh

(
hlr−1
i ,AGGR

j∈N (i)

{
ϕlr,lh1 (hlr−1

i ,hlr−1
j , eij)

}
,AGGR
j∈C(i)

{
ϕlr,lh2 (hlr−1

i ,hlr−1
j , eij)

})
, (3)

where the message function ϕlr,lh1 regulates the exchange of information among nodes at the same
hierarchy level, ϕlr,lh2 conveys, conversely, information from the subordinate nodes, and ζlr,lh updates
the representation. We comment that workers (nodes at the lowest level in the hierarchy) only receive

5

messages from neighbors in G1, while the top-level manager simply reads from its direct subordinates.
We remark that, in general, for each round lr and hierarchy level lh we can have different message
and update functions. However, multiple steps of message passing can lead to over-smoothing in
certain graphs [26]. In such cases, the operator in Eq. 3 can be constrained to only receive messages
from neighbors at the same level. Note that information nonetheless flows bottom-up at the initial
encoding step (Eq. 2) and top-down through goals, as discussed below.

Goal generation State representations are used to generate goals (or commands) in a recursive
top-down fashion through G∗. In particular, each supervisor i ∈ Glh , with lh ∈ {2, . . . , Lh}, sends a
local goal gi→j to each subordinate node j ∈ C(i) as:

gi→j =

ψLh

(
hLr
i ,hLr

j ,h0
j

)
, i ∈ GLh

ψlh

(
AGGR
k∈P(i)

{gk→i} ,hLr
j ,h0

j

)
, otherwise

(4)

where the superscript Lr denotes the last round of message passing (see Eq. 3). We remark that the
top-level manager has no supervisor: goals here are directly generated from its state representation,
which encompasses the global state of the agent. All goal (or command) functions ψlh used by
(sub-)managers can be implemented, for example, as MLPs, while worker nodes do not have an
associated goal-generation mechanism, but, instead, have a dedicated action-generation network.

Action generation Lowest-level modules map representations to raw actions, which are then used
to interact with the environment. For each i-th node in G1, the corresponding action ai is computed
as a function of the aggregation of the goals set by the corresponding supervisors and, possibly, its
state representation:

ai = µ

(
AGGR
j∈P(i)

{gj→i} ,hLr
i

)
(5)

The action-generation function µ can be again implemented by, e.g., an MLP shared among workers.
We remark that actions associated with nodes that do not correspond to any actuator are discarded.

Rewards Each node of the hierarchy receives a different reward according to the associated goals
and its role in the hierarchy. As already mentioned, the top-level manager coordinates the entire
hierarchy and collects rewards directly from the environment. On the other hand, sub-managers and
workers receive intrinsic rewards that can be used either as their sole reward signal or added to the
external one. As an example, a dense reward signal for the i-th worker can be generated as a function
of the received goals and the state transition:

ri = fR

(
AGGR
j∈P(i)

{gj→i} , si, s′i
)
, (6)

where fR is a score function and s′i denotes the subsequent state. We remark that since goals are
learned and are (at least partially) a function of si, designing a proper score function fR is critical
to avoid degenerate solutions. At each step, rewards of nodes belonging to the same level lh are
combined and then aggregated over time to generate a cumulative reward (or return) Rlh , which is
subsequently used as a learning signal for that level.

Scalability MPNNs are inductive, i.e., not restricted to process input graphs of a fixed size. As a
result, the number of learning parameters mainly depends on the depth of the hierarchy.

5 Experiments

In this section, we introduce the experimental setup and compare FGRL against relevant baselines;
furthermore, we provide an in-depth study of the goal-generation mechanism.

5.1 Experimental Setup

Environments We validate our framework on two scenarios, namely a synthetic graph clustering
problem inspired by Bianchi et al. [9] and continuous control environments from the standard MuJoCo
locomotion tasks [34], where we follow Huang et al. [20]. More details on the graph clustering
environment are reported in App. B.

6

Baselines and variants used The proposed approach is compared against multiple variants thereof:

1. Graph Neural Network (GNN): This model performs message passing on the agent graph G1

(refer to Eq. 1), but does not exploit the hierarchical structure. An MLP then maps node-level
representations to actions.

2. Feudal Deep Sets (FDS): This model takes advantage of the feudal setup without performing any
message passing.

3. Feudal Graph Neural Network (FGNN): This is a complete implementation of the proposed
framework.

Furthermore, we implement two additional baselines:

4. Multilayer Perceptron (MLP): In this baseline, node features are stacked together and fed into
an MLP, which predicts a vector of concatenated actions. This baseline has no modularity and
cannot be directly transferred to different morphologies.

5. Deep Sets (DS): This baseline models the agent as a set of entities each corresponding to a
limb, but does not rely on any structure to propagate representations. The policy network is
implemented as a Deep Sets architecture [40] that maps node features to actions with an MLP.
Learnable weights are shared among nodes.

Tab. 1 provides a summary of the salient properties of each architecture. Additional details are
reported in App. D. For FGNN, message-passing layers simply propagate representations among
neighbors and not across different levels; messages flow bottom-up at the encoding step only.

Table 1: Summary of baselines and variants used.

MLP DS GNN FDS FGNN

Hierarchy ✗ ✗ ✗ ✓ ✓

Message passing ✗ ✗ ✓ ✗ ✓

Modularity ✗ ✓ ✓ ✓ ✓

Optimization algorithm In FGRL, each
graph Glh embodies a multi-agent system in
which nodes (agents) act according to a shared
policy that is specific for that level. Each pol-
icy is trained independently from the others as
it maximizes only its level-specific signal. The
model could in principle be trained end-to-end,
i.e., as a single model, but this would most likely
result in the collapse of goals’ representations, and all the modules would be trained to maximize the
same reward. We investigate the multi-level optimization approach in App. C.3.

In principle, each level-specific policy can be paired with a standard RL optimization algorithm, but
the hierarchical paradigm introduces additional challenges in the training procedure. As an example,
instabilities at a single level can hinder global performance and make credit assignment more difficult:
good commands propagated by the upper layers are not rewarded properly if workers fail to select the
correct actions. We use CMA-ES [19] as the optimization method since evolutionary algorithms have
proven to be competitive with policy gradient methods and less likely to get stuck in such sub-optimal
solutions [27]; we provide a comparison with a standard gradient-based algorithm in App. C.4.

Finally, policies of intermediate levels can commit to sub-optimal behaviors if they receive the
intrinsic reward as the only learning signal. Therefore, similarly to [36], we add the external reward
to the intrinsic one at each level. Further details regarding both the policy optimization and reward
scheme can be found in App. D.1 and D.2, respectively.

5.2 Graph Clustering Problem

Given a graph with β communities and Nβ nodes per community with random labels, the objective is
to cluster the nodes so that only nodes belonging to the same community have the same label, i.e., are
assigned to the same cluster. The agents receive a sparse reward based on the MinCut loss [9] at the
end of each episode, with an additional reward bonus for eventually solving the problem. Further
details regarding observation space, action space, and reward function can be found in App. B. The
hierarchical graph G∗ of both FGNN and FDS is a 3-level graph that is built by assigning a sub-
manager to each community; all the β sub-managers are then connected to a single top-level manager.
As a result, goals sent to workers and sub-managers are conditioned to be a β-dimensional vector
representing a target assignment at the node level and community level, respectively. Furthermore, we
let the top-level manager and sub-managers act on different time scales by keeping the selected goals

7

2 4 6

10

40

N
1.00 0.97 1.00

1.00 1.00 0.86

FGNN

2 4 6

1.00 1.00 1.00

0.01 0.75 0.54

FDS

2 4 6

1.00 0.11 0.14

0.01 0.02 0.03

GNN

2 4 6

1.00 0.61 0.52

0.21 0.02 0.03

DS

2 4 6

0.05 - -

- - -

MLP

OOR
0
25
50
75
100

Success R
ate (%

)

Figure 3: Success rates (color) and median of NMI (value) over 4 runs. We remark that given a
configuration (β,Nβ), all the models are trained on the same topology to ensure fairness. The MLP
baseline is computationally demanding for large graph sizes; such scenarios were not assessed and
are indicated with orange cells (out of resources, OOR).

fixed for 10 and 5 time steps, respectively. All baselines have access to static coordinates f ∈ R2 of
each node.

In Fig. 3 we show the success rate of each agent in clustering the graph and the median of the
Normalized Mutual Information (NMI) score computed across different runs. Further details regarding
the computation of the NMI are reported in App. C.1. Our approach (FGNN) outperforms all the
baselines in settings with large communities, i.e., with Nβ = 40: it fails to perfectly solve the task
only in the environment with the highest complexity, i.e., with β = 6 and Nβ = 40, where the
corresponding NMI score indicates a good clustering nonetheless. On the other hand, the performance
of the feudal variant without message passing (FDS) deteriorates when the number of nodes per
community increases, while it is able to perfectly solve the task for Nβ = 10. Indeed, for such
small communities, static coordinates alone appear sufficient for the feudal paradigm to reach one
of the possible target configurations, while message-passing features result in being redundant. The
comparison of the clustering scores achieved by the modular baselines without hierarchy forNβ = 10
further supports this claim: the DS model, which is not graph-based, achieves better NMI scores than
GNN. In the graph clustering problem, temporally extended goals turned out to provide substantial
performance improvements for both FGNN and FDS; a sensitivity analysis of this aspect is reported in
App. C.2. We remark that the MLP baseline is non-modular and cannot effectively handle graphs with
high node counts. Thus, we were able to assess this variant only in the simplest environment, where
it fails to solve the task. In general, modular baselines can solve simple scenarios, but performance
degrades rapidly as the complexity increases. When compared with GNN, results obtained by FGNN
support our claims: flat message-passing operators achieve subpar performance for large graphs due to
information bottlenecks. However, such limitation can be overcome by improving global coordination
through the adoption of a hierarchical setup. On the other hand, feudal architectures alone fail to
solve the task for large communities because they lack the ability to capture the underlying topology.

5.3 MuJoCo Benchmarks

We consider the modular variant of 4 environments from the standard MuJoCo locomotion tasks
– namely ‘Humanoid’, ‘Walker2D’, ‘Hopper’, and ‘HalfCheetah’. We remark that these modular
variants are taken from a related work [20] on learning modular policies and that the observation and
action spaces are different w.r.t. the original environments. If agents do not crash, episodes last for
1000 time steps; environment rewards are defined according to the distance covered: the faster the
agent, the higher the reward. Nodes in the base graph are the actuators of the morphological agent:
hence, in models exploiting the hierarchical setting (FGNN and FDS), workers are clustered using
a simple heuristic, i.e., grouping together nodes belonging to the same body part (see App. D.3 for
details).

We report the results for the 4 agents in Fig. 4. Returns obtained by the FGNN architecture in ‘Walker’
and ‘Humanoid’ support the adoption of message passing within the feudal paradigm in structured
environments, where the agent requires a high degree of coordination. More precisely, we observed
that these agents are prone to learn unnatural gaits which involve jumping, sliding, or limping. In this
context, we highlight that the performance of FGNN and MLP in ‘Walker’ are comparable, but the
former has empirically shown to be less likely to learn such gates. Furthermore, the results of the
GNN baseline support the adoption of the feudal setup: in such environments, this variant achieves
lower returns than FGNN. FDS obtains subpar performance across environments, suggesting that the
feudal paradigm might be not as effective without any other coordination mechanism. In ‘Hopper’ –

8

0.0 0.5 1.0 1.5 2.0
Generation ×104

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

Humanoid

0.0 0.5 1.0 1.5 2.0 2.5
Generation ×104

Walker

0.0 0.5 1.0 1.5 2.0
Generation ×104

Half Cheetah

0.0 0.5 1.0 1.5 2.0 2.5
Generation ×104

Hopper

MLP DS GNN FDS FGNNMLP DS GNN FDS FGNNMLP DS GNN FDS FGNNMLP DS GNN FDS FGNN

Figure 4: Average return and standard deviation of the considered agents on the MuJoCo bench-
marks (averaged over 4 runs). Each generation refers to a population of 64 episodes. To ease the
visualization, the plots show a running average with returns normalized w.r.t. the maximum obtained
values, that are: 4025 (Humanoid), 3125 (Walker), 1918 (Half Cheetah), and 3950 (Hopper).

that is the agent with the simplest morphology – a simple MLP is enough to learn the best-performing
policy. In this context, we remark that the MLP baseline is the only non-modular (non-inductive)
architecture among the considered ones, and the performance observed in this environment could be
explained by its streamlined architecture, which facilitates policy optimization here. Indeed, learning
a good locomotion policy does not require, in ‘Hopper’, a high degree of coordination, making the
architecture of the more sophisticated models redundant. As one would expect, then, the performance
of FGNN and GNN for this agent is comparable with that of DS, i.e., the simpler modular variant.

5.4 Analysis of Generated Goals

−1

0

1

Sub-m
anagersleft right

−1

0

1 H
eels

left right

−1

0

1 Feet

t-
SN

E
1-

di
m

go
al

em
be

dd
in

g

left right

0 200 400 600 800 1000
Episode time steps

−1

0

1 K
nees

left right

Figure 5: Analysis of goals received by sub-
managers (orange and blue lines) and work-
ers (green and red lines) in an episode of a
‘Walker’ environment (refer to Fig. 10 for the
hierarchical graph). Plots show a 50-step run-
ning average.

The feudal paradigm relies on the goal-generation
mechanism, that establishes communication among
different hierarchical levels by propagating goals
through a cascade effect. This key feature enables
policy improvement on both a global and local scale:
the top-level manager has to generate goals aligned
with the external return, while sub-managers must
learn to break down the received goals into subtasks.

To investigate whether commands are generated co-
herently, we run t-SNE [35] on goal vectors received
by pairs of nodes with symmetric roles in the mor-
phology of a trained ‘Walker’ agent and analyze their
time evolution during an episode. More precisely,
for each pair of nodes (e.g., left and right knee) we
collect the goals signals received in an episode, com-
pute the one-dimensional t-SNE embeddings from
such sample, and then plot the embeddings corre-
sponding to the goals sent to the left and right nodes.

The results reported in Fig. 5 show that com-
mands sent by the manager to the intermediate
sub-managers responsible for legs (purple and blue
nodes in Fig. 10) show a trend that oscillates in time
with no particular structure. Indeed, the abstrac-
tion of commands increases with the depth of the
hierarchy: goals at the upper levels are not directly
mapped into physical actions and should simply pro-
vide supervision to the levels below. On the other
hand, goals assigned by sub-managers to workers become more specific and, e.g., depend on the
specific joints being controlled. Indeed, they exhibit a clear structure in time with a recurring pattern:
the curves intersect at time steps corresponding to the actual steps of the agent.

9

This analysis shows that propagated goals are meaningful and capture salient aspects of the learned
gait. Results show coordination emerging from the interaction of nodes at different levels and support
the adoption of such an architecture to implement hierarchical control policies.

6 Conclusions and Future Works

We proposed a novel hierarchical graph-based reinforcement learning framework, named Feudal
Graph Reinforcement Learning. Our approach exploits the feudal RL paradigm to learn modular
hierarchical policies within a message-passing architecture. We argue that hierarchical graph neural
networks provide the proper computational and learning framework to achieve spatiotemporal
abstraction. In FGRL, nodes are organized in a multilayered graph structure and act according to
a committee of composable policies, each with a specific role within the hierarchy. Nodes at the
lowest level (workers) take actions in the environment, while (sub-)managers implement higher-
level functionalities and provide commands at levels below, given a coarser state representation.
Experiments on graph clustering and MuJoCo locomotion benchmarks – together with the in-depth
analysis of the learned behaviors – highlight the effectiveness of the approach.

There are several possible directions for future research. In the first place, the main current limitation
of FGRL, shared among several HRL algorithms [36], is in the inherent issues in jointly and efficiently
learning the different components of the hierarchy in an end-to-end fashion. Solving this limitation
would facilitate learning hierarchies of policies less reliant on the external reward coming from the
environment. In this regard, exploring different implementations of the intrinsic reward mechanism is
a key problem that future research could focus on.

Acknowledgements

This research was funded by the Swiss National Science Foundation under grant 204061: High-Order
Relations and Dynamics in Graph Neural Networks.

10

References
[1] Ahilan, S. and Dayan, P. Feudal Multi-Agent Hierarchies for Cooperative Reinforcement

Learning. arXiv:1901.08492 [cs], January 2019. URL http://arxiv.org/abs/1901.08492.
arXiv: 1901.08492.

[2] Arnaiz-Rodriguez, A., Begga, A., Escolano, F., and Oliver, N. Diffwire: Inductive graph
rewiring via the lovasz bound. In The First Learning on Graphs Conference, 2022. URL
https://openreview.net/pdf?id=IXvfIex0mX6f.

[3] Bacciu, D., Errica, F., Micheli, A., and Podda, M. A gentle introduction to deep learning for
graphs. Neural Networks, 129:203–221, 2020.

[4] Bapst, V., Sanchez-Gonzalez, A., Doersch, C., Stachenfeld, K., Kohli, P., Battaglia, P., and
Hamrick, J. Structured agents for physical construction. In International conference on machine
learning, pp. 464–474. PMLR, 2019.

[5] Barhate, N. Minimal pytorch implementation of proximal policy optimization. https://
github.com/nikhilbarhate99/PPO-PyTorch, 2021.

[6] Barto, A. G. and Mahadevan, S. Recent advances in hierarchical reinforcement learning.
Discrete event dynamic systems, 13(1):41–77, 2003.

[7] Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V., Malinowski,
M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner, R., et al. Relational inductive biases, deep
learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[8] Bianchi, F. M. and Lachi, V. The expressive power of pooling in graph neural networks. arXiv
preprint arXiv:2304.01575, 2023.

[9] Bianchi, F. M., Grattarola, D., and Alippi, C. Spectral clustering with graph neural networks for
graph pooling. In International conference on machine learning, pp. 874–883. PMLR, 2020.

[10] Bronstein, M. M., Bruna, J., Cohen, T., and Veličković, P. Geometric deep learning: Grids,
groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

[11] Dayan, P. and Hinton, G. E. Feudal reinforcement learning. Advances in neural information
processing systems, 5, 1992.

[12] Degrave, J., Felici, F., Buchli, J., Neunert, M., Tracey, B., Carpanese, F., Ewalds, T., Hafner, R.,
Abdolmaleki, A., de Las Casas, D., et al. Magnetic control of tokamak plasmas through deep
reinforcement learning. Nature, 602(7897):414–419, 2022.

[13] Funk, N., Chalvatzaki, G., Belousov, B., and Peters, J. Learn2assemble with structured
representations and search for robotic architectural construction. In Conference on Robot
Learning, pp. 1401–1411. PMLR, 2022.

[14] Funk, N., Menzenbach, S., Chalvatzaki, G., and Peters, J. Graph-based reinforcement learning
meets mixed integer programs: An application to 3d robot assembly discovery. In 2022
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 10215–
10222. IEEE, 2022.

[15] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural message passing
for quantum chemistry. In International conference on machine learning, pp. 1263–1272.
PMLR, 2017.

[16] Grattarola, D., Zambon, D., Bianchi, F. M., and Alippi, C. Understanding pooling in graph
neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2022.

[17] Ha, D. and Tang, Y. Collective intelligence for deep learning: A survey of recent developments.
Collective Intelligence, 1(1):26339137221114874, 2022.

[18] Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee, K. R., Tenenbaum, J. B., and Battaglia,
P. W. Relational inductive bias for physical construction in humans and machines. arXiv
preprint arXiv:1806.01203, 2018.

11

http://arxiv.org/abs/1901.08492
https://openreview.net/pdf?id=IXvfIex0mX6f
https://github.com/nikhilbarhate99/PPO-PyTorch
https://github.com/nikhilbarhate99/PPO-PyTorch

[19] Hansen, N. and Ostermeier, A. Completely derandomized self-adaptation in evolution strategies.
Evolutionary computation, 9(2):159–195, 2001.

[20] Huang, W., Mordatch, I., and Pathak, D. One policy to control them all: Shared modular policies
for agent-agnostic control. In International Conference on Machine Learning, pp. 4455–4464.
PMLR, 2020.

[21] Jiang, J., Dun, C., Huang, T., and Lu, Z. Graph convolutional reinforcement learning. In 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia,
April 26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=
HkxdQkSYDB.

[22] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. Neural relational inference for
interacting systems. In International conference on machine learning, pp. 2688–2697. PMLR,
2018.

[24] Kurin, V., Igl, M., Rocktäschel, T., Boehmer, W., and Whiteson, S. My body is a cage: the role
of morphology in graph-based incompatible control. In International Conference on Learning
Representations, 2020.

[25] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C., Agarwal, S.,
Slama, K., Ray, A., et al. Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[26] Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on oversmoothing in graph neural
networks. arXiv preprint arXiv:2303.10993, 2023.

[27] Salimans, T., Ho, J., Chen, X., Sidor, S., and Sutskever, I. Evolution Strategies as a Scalable
Alternative to Reinforcement Learning, September 2017. URL http://arxiv.org/abs/
1703.03864. Number: arXiv:1703.03864 arXiv:1703.03864 [cs, stat].

[28] Sanchez-Gonzalez, A., Heess, N., Springenberg, J. T., Merel, J., Riedmiller, M., Hadsell, R.,
and Battaglia, P. Graph networks as learnable physics engines for inference and control. In
International Conference on Machine Learning, pp. 4470–4479. PMLR, 2018.

[29] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

[30] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T.,
Baker, L., Lai, M., Bolton, A., et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[31] Sutton, R. S. and Barto, A. G. Reinforcement learning: an introduction. Adaptive computation
and machine learning series. The MIT Press, Cambridge, Massachusetts, second edition edition,
2018. ISBN 978-0-262-03924-6.

[32] Sutton, R. S., Precup, D., and Singh, S. Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

[33] Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D. d. L., Budden, D., Abdolmaleki, A.,
Merel, J., Lefrancq, A., et al. Deepmind control suite. arXiv preprint arXiv:1801.00690, 2018.

[34] Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE,
2012.

[35] Van der Maaten, L. and Hinton, G. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[36] Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and
Kavukcuoglu, K. Feudal networks for hierarchical reinforcement learning. In International
Conference on Machine Learning, pp. 3540–3549. PMLR, 2017.

12

https://openreview.net/forum?id=HkxdQkSYDB
https://openreview.net/forum?id=HkxdQkSYDB
http://arxiv.org/abs/1703.03864
http://arxiv.org/abs/1703.03864

[37] Wang, T., Liao, R., Ba, J., and Fidler, S. Nervenet: Learning structured policy with graph neural
networks. In International conference on learning representations, 2018.

[38] Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K., Walsh, T. J.,
Capobianco, R., Devlic, A., Eckert, F., Fuchs, F., et al. Outracing champion gran turismo drivers
with deep reinforcement learning. Nature, 602(7896):223–228, 2022.

[39] Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., and Leskovec, J. Hierarchical graph
representation learning with differentiable pooling. Advances in neural information processing
systems, 31, 2018.

[40] Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., and Smola, A. J.
Deep sets. Advances in neural information processing systems, 30, 2017.

[41] Zambaldi, V., Raposo, D., Santoro, A., Bapst, V., Li, Y., Babuschkin, I., Tuyls, K., Reichert, D.,
Lillicrap, T., Lockhart, E., et al. Deep reinforcement learning with relational inductive biases.
In International conference on learning representations, 2018.

13

Appendix

A Extraction of the Hierarchical Graph

In Fig. 6 we report an example of extraction of the hierarchical graph G∗ for the ‘Humanoid’
environment; the base graph G1 is obtained directly from the agent’s morphology (see Fig. 1 for
reference) and the number of layers of G∗ is a hyperparameter.

Workers Sub-managers Manager

Agent graphs Hierarchical graph

Clustering Clustering Clustering Multi-level structure

Figure 6: Extraction of the hierarchical graph G∗ starting from the workers’ graph G1 of the ‘Hu-
manoid’ environment. Hierarchical edges of G∗ are represented as dashed lines and denote parent-
child relationships. As shown in the second level, each node can have more supervisors.

B Graph Clustering Environment

The environment of the synthetic graph clustering problem is defined by a β-community graph
with Nβ nodes for each community, that is, a community graph with βNβ nodes. The objective
is to cluster the graph so that each community has a unique label for all the nodes, different from
other communities. For each simulation, we generate a (β,Nβ) graph with binary adjacency matrix
A ∈ {0, 1}βNβ×βNβ and degree matrix D = diag(A1N), under the assumption that there are no
isolated nodes. Each node i has a static feature vector given by the fi ∈ R2 coordinates: nodes
belonging to the same community are characterized by similar features. At each time step t, the
observation vector xt

i of each i-th node is the concatenation of the one-hot encoding of the current
cluster assignment sti, its coordinates, and the normalized remaining time steps before the end of the
episode:

xt
i = sti ||fi|| 1− t/T (7)

We remark that assignments are initialized at random at the beginning of each episode. The action is
a 3-dimensional vector (left/noop/right) that allows nodes to change cluster by possibly changing
its label of at most one index; periodic boundary conditions are applied on the label vector. We
consider an episodic setting where episodes last for T = 50 time steps, unless the graph reaches one
of the possible target configurations where nodes belonging to the same community have the same
label. The sparse reward at the termination time step t ≤ T is given by:

Rt =
Tr(CT ÃC)

Tr(CT D̃C)
−

∥∥∥∥Tr(CTC)

∥CTC∥F
− IK√

K

∥∥∥∥
F

+ (T − t) (8)

where C is the cluster matrix, Ã = D− 1
2AD− 1

2 ∈ RβNβ×βNβ is the normalized adjacency matrix,
and D̃ is the degree matrix of Ã. The first two terms represent the negative of the MinCut loss [9]:
the first one promotes clustering among strongly connected nodes, while the second one prevents
degenerate solutions by ensuring similarity in size and orthogonality between different clusters. We
remark that for this maximization problem those terms are bounded in [0, 1] and [−2, 0], respectively:
therefore, the bonus factor (T − t) strongly encourages to solve the task with as few iterations as
possible. We consider the task as solved if the running average of the success rate percentages of the
last 20 evaluation samples is greater than 95%.

14

C Additional Results

C.1 NMI Score in the Graph Clustering Problem

The Normalized Mutual Information score measures the similarity between two independent label
assignments X,Y . It is computed as:

NMI(X,Y) =
2I(X;Y)

H(X) +H(Y)
, (9)

where H(·) and I(X;Y) denote the entropy of the labels and mutual information, respectively. This
metric is bounded in [0, 1], where the boundaries represent perfect dissimilarity (NMI = 0) and
similarity (NMI = 1), and is invariant under labels permutation. Hence, in our setting we measure
the NMI score of the predicted clustering w.r.t. a generic target configuration where nodes belonging
to the same community have the same cluster-specific label. In Tab. 2 we report the maximum (blue)
and minimum (red) values achieved by the models in each configuration (Fig. 3 and 7 for reference).
We remark that MLP was not trained in scenarios other than (2, 10), as it does not scale with the size
of the graph (OOR – out of resources): as an example, setting β = 4 and Nβ = 10, i.e., a graph with
40 nodes, results in 20000 parameters.

Table 2: Minimum and maximum values of the NMI score achieved by the models in the graph
clustering problem.

Nβ = 10 Nβ = 40

β = 2 β = 4 β = 6 β = 2 β = 4 β = 6

FGNN (1.00, 1.00) (0.10, 1.00) (0.15, 1.00) (0.01, 1.00) (0.02, 1.00) (0.84, 0.94)

FDS (1.00, 1.00) (1.00, 1.00) (1.00, 1.00) (0.01, 1.00) (0.02, 1.00) (0.39, 1.00)

GNN (1.00, 1.00) (0.11, 0.24) (0.14, 0.15) (0.01, 0.03) (0.02, 0.02) (0.03, 0.03)

DS (1.00, 1.00) (0.21, 0.76) (0.42, 0.88) (0.01, 1.00) (0.02, 0.03) (0.03, 0.03)

MLP (0.03, 0.06) OOR OOR OOR OOR OOR

FGNN (one-step goals) (0.03, 1.00) (0.09, 1.00) (0.16, 1.00) (0.01, 0.02) (0.02, 0.88) (0.03, 0.79)

FDS (one-step goals) (0.04, 1.00) (0.76, 1.00) (0.76, 0.88) (0.004, 0.013) (0.02, 0.44) (0.60, 0.87)

C.2 Temporal Abstraction in Propagated Goals

In the graph clustering experiment, commands propagated through the hierarchy of the feudal models
(FGNN and FDS) represent a target label for the subordinate nodes. Depending on the number of
communities, achieving such a configuration can require multiple steps, as each worker can shift by
at most one label index per time step. Therefore, we explicitly implemented temporal abstraction
in the goal-generation mechanism by propagating the same command for an extended time interval:
top-level manager and sub-managers send a new command every 10 and 5 steps, respectively. By
doing so, in the 10-step interval sub-managers set 2 commands, i.e., one every 5 steps, to steer
subordinate workers towards a specific configuration; in turn, each worker has 5 time step to reach its
assigned label configuration and obtain a positive intrinsic reward.

To investigate the effectiveness of this goal-propagation mechanism, we compare the results of
FGNN and FDS both implementing temporally extended goals (long-term goals) with their respective
versions where instead (sub-)managers send a different goal at each time step (one-step goals).
Results in Fig. 7 show that temporal abstraction in command propagation is pivotal for solving the
task. In particular, while the performance of FGNN with one-step goals in settings with Nβ = 10
nodes is only slightly worse w.r.t. that achieved with long-term goals, for Nβ = 40 upper levels in
the hierarchy fail to properly coordinate levels below when propagating commands at each time step,
resulting in a drastic performance decrease for the one-step goals variant. On the other hand, FDS
with long-term goals outperforms its one-step counterpart when Nβ = 10. However, none of the
FDS variants is able to achieve good results for Nβ = 40, even if on average FDS with long-term
goals performs slightly better.

15

2 4 6

10

40

N
1.00 0.97 1.00

1.00 1.00 0.86

FGNN (long term)

2 4 6

1.00 1.00 0.78

0.01 0.02 0.26

FGNN (one step)

2 4 6

1.00 1.00 1.00

0.01 0.75 0.54

FDS (long term)

2 4 6

0.52 0.88 0.88

0.01 0.20 0.75

FDS (one step)

OOR
0
25
50
75
100

Success R
ate (%

)

Figure 7: Percentage of correct clustering (color) and median of NMI score (value) over 4 independent
runs with long-term and one-step goals. We remark that given a configuration (β,Nβ), all the models
are trained on the same topology to ensure fairness.

C.3 Analysis of the Multi-Level Optimization

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Generation ×104

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

no intrinsic reward
single optimizer
2 levels
3 levels

Figure 8: Analysis of variants of the FGNN
model with different reward choices, opti-
mizations, and depths of the hierarchy in a
‘Walker’ environment (4 seeds for each vari-
ant). Returns are reported with standard devia-
tion and each generation refers to a population
of 64 episodes. To ease the visualization, the
plot shows a running average with returns nor-
malized w.r.t. the maximum obtained value,
i.e., 2725.

The proposed feudal framework relies on a multi-
level hierarchy where nodes at each level Glh act
according to a level-specific policy trained to maxi-
mize its own reward. Notably, the policy trained at
level lh completely ignores rewards received at dif-
ferent levels: coordination completely relies on the
message-passing and goal-generation mechanisms.
This peculiar aspect implies that each policy can have
its own policy optimization routine.

To analyze the impact of such a multi-level struc-
ture and optimization routine, we compare results
obtained by a 3-level FGNN model in the ‘Walker’
environment against 1) a 2-level FGNN model, 2) a
3-level FGNN model without intrinsic reward, and
3) a 3-level FGNN model where all the policies are
jointly trained to maximize the external reward only.
We remark that the number of learnable parameters
is the same for all the 3-level variants. As shown
in Fig. 8, our method achieves the highest average
return, while baselines are more likely to get stuck in
sub-optimal policies (e.g., by learning to jump rather
than to walk). Comparing the full model (blue curve)
with the variant without intrinsic reward (red curve)
highlights the advantage of the hierarchical intrinsic reward mechanism. In the full 3-level FGRL
model, the reward at each level incentivizes workers and sub-managers to act accordingly to the
received commands. This auxiliary task turns out to be instrumental in avoiding sub-optimal gaits.
The 2-level model (green curve) performs akin to the variant without intrinsic reward, hence hinting
at the benefits of using a deeper hierarchy for agents with complex morphologies. Lastly, for the
variant where all levels are jointly optimized (black curve), empirical results show that the resulting
agent does not only achieve a lower return but, surprisingly, it is also less sample efficient.

C.4 Comparison with PPO

Learning a hierarchy of level-specific policies using independent reward signals is challenging, as
the reward received by (sub-)managers depends also on the actions taken at levels below it. In this
context, which also involves a non-stationary reward signal, gradient-based methods often fail [27].
For this reason, we use Covariance Matrix Adaptation Evolution Strategy (CMA-ES; [19]) as learning
algorithm: evolution strategies treat policies as a black-box, hence they are more robust to degenerate
solutions. In experiments in Sec. 5, all the agents were trained using CMA-ES to ensure fairness.
However, to help contextualize the results, here we provide a comparison with the Proximal Policy
Optimization (PPO; [29]) algorithm in the 4 MuJoCo benchmarks; code was adapted from a public
repository [5] and hyperparameters are reported in App. D.4. We chose this algorithm because of its
popularity and wide applicability in both single and multi-agent reinforcement learning problems.

16

0.0 0.5 1.0 1.5 2.0
Generation ×104

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

Humanoid

0.0 0.5 1.0 1.5 2.0 2.5
Generation ×104

Walker

0.0 0.5 1.0 1.5 2.0
Generation ×104

Half Cheetah

0.0 0.5 1.0 1.5 2.0 2.5
Generation ×104

Hopper

MLP FGNN PPO (max) PPO (mean)MLP FGNN PPO (max) PPO (mean)MLP FGNN PPO (max) PPO (mean)MLP FGNN PPO (max) PPO (mean)

Figure 9: Comparison of the average return achieved with CMA-ES (4 runs) with average and
maximum value of PPO (5 runs) at the last training step in the 4 MuJoCo benchmarks. To ease the
visualization, the plots show a running average with returns normalized w.r.t. the maximum obtained
values, that are: 4025 (Humanoid), 3125 (Walker), 2402 (Half Cheetah), and 3950 (Hopper).

In general, evolution strategies rely on a selection process that evaluates a sample (population) of
parameters for each update step, resulting in worse sample efficiency compared to gradient-based
methods that can instead perform multiple updates with a smaller sample. Therefore, in Fig. 9 we
report the average returns obtained with FGNN and MLP, together with the mean and maximum
values among 5 independent seeds of PPO at the last training step, i.e., 2 · 107; we applied a running
average to account for fluctuations. PPO hyperparameters were tuned on the ‘Walker’ agent (as we
similarly did for CMA-ES). In this scenario, the performance of FGNN and MLP is comparable with
PPO, highlighting that evolution strategies allow to achieve absolute returns that are competitive
w.r.t. a widely used gradient-based method. Conversely, PPO seems to be less robust when the same
hyperparameters are used to learn locomotion policies for other morphologies.

D Implementation Details

D.1 Optimization Algorithm

As already mentioned, to learn the parameters for our setup we use evolution strategies, namely
CMA-ES [19]. The number of instances of CMA-ES we initialize corresponds to the depth of the
hierarchy, as each level has its independent policy. Indeed, each CMA-ES optimizes only modules
corresponding to its level:

• Workers CMA-ES (level 1): weight matrix W1, functions µ and ϕ11.

• Sub-managers CMA-ES (levels lh ∈ {2, . . . , Lh − 1}): functions ρlh , ψlh , and ϕlh1 .

• Manager CMA-ES (level Lh): functions ρLh and ψLh .

Experiments were run on a workstation equipped with AMD EPYC 7513 CPUs and NVIDIA RTX
A5000 GPUs. Depending on the model and environment, each seed can take from 30 minutes to 1
day for the graph clustering experiment and from 12 hours to 3 days for the MuJoCo benchmarks.

D.2 Intrinsic Reward

In variants that take advantage of the hierarchical structure (FGNN and FDS), we define the intrinsic
reward of sub-managers and workers as a signal that measures their alignment with the assigned
goals. At each time step t, for each hierarchical level we add the environment reward to the average
intrinsic signal.

Graph clustering problem In this environment, each i-th node has a single (sub-)manager P(i)
and propagated goals represent a target label. At each time step, the reward of each i-th worker is
defined as:

ri =
1

T

[
dc

(
gP(i)→i, s

′
i

)
− 0.5

]
, (10)

where dc is the cosine similarity function, while gP(i)→i and s′i denote the one-hot encoding of the
received command and subsequent cluster, respectively. Similarly, intermediate nodes are responsible

17

WalkerHumanoid HopperHalf Cheetah

Figure 10: Extraction of the hierarchical graphs G∗ used in the FGNN model. The filled colored
ellipses with dashed lines highlight the hierarchical connections among different levels, and overlap-
ping circles imply that the node is subordinate of both the sub-managers. Graphs with green nodes
represent the original agent graphs G1.

of the aggregated cluster of subordinated nodes, and the intrinsic reward of each i-th sub-manager
can be defined as:

ri =
1

T

dc
gP(i)→i,

∑
k∈C(i)

s′k
|C(i)|

− 0.5

 , (11)

Since s′k is a one-hot encoding vector and goals represent a target label, we set the one-step intrinsic
rewards in the range ri ∈ [−0.01, 0.01] to penalize subordinate nodes for not following assigned
commands. In order to be comparable with the values of the MinCut loss, intrinsic signals are
normalized w.r.t. the length of the episode.

MuJoCo benchmarks In this control problem, goals are instead unconstrained latent vectors.
Nodes at the lowest level have the most fine-grained representations and learn to follow goals at the
simulation scale. Thus, each i-th worker receives an intrinsic signal:

ri = dc

(
AGGR
j∈P(i)

{gj→i} , s′i − si

)
+ 1, (12)

where s′i denotes the subsequent state. Conversely, intermediate nodes operate on a coarser scale,
and the intrinsic reward of each i-th sub-manager can be similarly defined as:

ri = dc

(
AGGR
j∈P(i)

{gj→i} ,h0′
i

)
+ 1, (13)

where h0′
i denotes the subsequent initial state representation, computed using Eq. 2. Since goals

are latent, we prevent lower levels from getting a negative reward for not following the assigned
commands in the first stages of learning by providing positive intrinsic rewards in the range ri ∈ [0, 2].

D.3 Hierarchical Graphs

The graphs under analysis for the MuJoCo benchmarks have a low number of nodes, and each
actuator has a proper physical meaning in the morphology of the agent. Thus, we decide to create
the hierarchical graphs using heuristic. As an example, in the ‘Walker’ agent we expect nodes of the
same leg to be clustered together, and the associated sub-manager to be at the same hierarchical level
as that of the other leg: in this way, the topology of the intermediate graph reflects the symmetry of
the agent graph G1.

The hierarchical graphs for the FGNN model are reported in Fig. 10. Notice that the ‘Hopper’ agent
has a simple morphology with no immediate hierarchical abstraction and where each actuator has
different role: as a consequence, a meaningful hierarchy cannot be trivially extracted, and results
revealed no benefit in implementing a 3-level hierarchy for this agent. We remark that hierarchical
graphs used in the FDS variant are not reported because in all the environments empirical evidence
did not show improvements as the depth of the hierarchy increased, leading to 2-level hierarchical
graphs where all the workers are connected to a single top-level manager (see ‘Hopper’ in Fig. 10 for
an example).

18

D.4 Reproducibility

The code for the experiments was developed by relying on open-source libraries1 and on the publicly
available code of previous works 2,3. All the learnable components in message-passing blocks
are implemented as MLPs. In Tab. 3 are reported the values of the hyperparameters used in our
experiments. For each baseline, we tuned the number of hidden units and CMA-ES step size by
performing a grid search on the average return. Note that for the MuJoCo benchmarks the best
configuration of the MLP baseline and that of FGNN results in a similar number of learnable
parameters. For the graph clustering experiment we used the same set of hyperparameters, except
for the aggregation function of subordinate nodes in the feudal models where we used the average
instead of the sum.

The hyperparameters used for the comparison with PPO (App. C.4) are the following: we used Adam
optimizer [22] with a learning rate of 3 · 10−6 and hidden layers [64, 64] with tanh non-linearities for
both actor and critic; discount factor γ and clipping value ϵ are fixed to 0.99 and 0.2, respectively;
policy is updated for 10 epochs with batch size of 64 and the updating horizon is 2048 time steps; the
initial action standard deviation is 0.6 and it decays every 104 episodes of 0.05, up to a minimum of
0.2. We performed a grid search on such hyperparameters, focusing mainly on learning rate, hidden
layers, updating epochs, and updating horizon.

Table 3: Hyperparameters used in each model, where the ✗ marker indicates those that are not part
of the architecture. For the total number of parameters, in the non-modular baseline (MLP) we
reported the maximum among the four environments of the MuJoCo benchmark. We remark that
in the modular models the number of parameters does not depend on the environment, but since
in the feudal architectures it depends on the hierarchical height, in FGNN we reported the number
corresponding to the maximum one, i.e., 3 levels.

Context Hyperparameter MLP DS GNN FDS FGNN

CMA-ES
Population size 64 64 64 64 64

Initial step size 0.25 0.25 0.25 0.5 0.25

Policy

Dimension of state representation ✗ ✗ 32 32 20

Dimension of hidden layer 64 32 32 32 30

Activation function tanh tanh tanh tanh tanh

AGGR (subordinate nodes) ✗ ✗ sum ✗ sum

AGGR (message passing) ✗ ✗ sum ✗ sum

AGGR (goals aggregation) ✗ ✗ ✗ mean mean

Maximal hierarchy height ✗ ✗ ✗ 2 3

Message-passing rounds ✗ ✗ 2 ✗ 2

Shared weights (message passing) ✗ ✗ ✓ ✗ ✓

of parameters (MuJoCo benchmark) 11593 673 4865 7124 12700

1ESTool: https://github.com/hardmaru/estool
2SMP [20]: https://github.com/huangwl18/modular-rl
3NerveNet [37]: https://github.com/WilsonWangTHU/NerveNet

19

https://github.com/hardmaru/estool
https://github.com/huangwl18/modular-rl
https://github.com/WilsonWangTHU/NerveNet

	Introduction
	Related Works
	Preliminaries
	Feudal Graph Reinforcement Learning
	Graph-based Agent Representation
	Building the Feudal Hierarchy
	Learning Architecture

	Experiments
	Experimental Setup
	Graph Clustering Problem
	MuJoCo Benchmarks
	Analysis of Generated Goals

	Conclusions and Future Works
	Extraction of the Hierarchical Graph
	Graph Clustering Environment
	Additional Results
	NMI Score in the Graph Clustering Problem
	Temporal Abstraction in Propagated Goals
	Analysis of the Multi-Level Optimization
	Comparison with PPO

	Implementation Details
	Optimization Algorithm
	Intrinsic Reward
	Hierarchical Graphs
	Reproducibility

