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Daniel Armstrong, Zlatko Jončev, Jeff Guo & Philippe Schwaller∗
Institute of Chemical Sciences and Engineering
Ecole Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland
{daniel.armstrong,philippe.schwaller}@epfl.ch

ABSTRACT

Computer-aided synthesis planning (CASP) has made significant strides in gener-
ating retrosynthetic pathways for simple molecules in a non-constrained fashion.
Recent work introduces a specialised bidirectional search algorithm with forward
and retro expansion to address the starting material-constrained synthesis problem,
allowing CASP systems to provide synthesis pathways from specified starting ma-
terials, such as waste products or renewable feed-stocks. In this work, we introduce
a simple guided search that allows us to solve the starting material-constrained syn-
thesis planning problem using an existing unidirectional search algorithm, Retro*.
We show that by optimising a single hyperparameter, Tango* outperforms existing
methods in terms of efficiency and solve rate. We find that the Tango* cost function
catalyses strong improvements for the bidirectional DESP methods. Our method
also achieves lower wall clock times while proposing synthetic routes of similar
length, a common metric for route quality.

1 INTRODUCTION

Synthesis planning, where chemists design routes of chemical reactions to synthesise a complex
molecule from simple or purchasable building blocks, is a key task in synthetic chemistry. The
process used for this, retrosynthetic analysis, involves recursively performing reversed reactions,
where a bond is broken to simplify a molecule into two or more component precursors (Corey, 1967;
Corey & Chelg, 1995). Originally proposed by Corey in 1969, Computer-Assisted Synthesis Planning
(CASP) aims to automate this process (Corey & Wipke, 1969). Since the seminal patent mining work
of Lowe, which provided a large dataset of machine-readable chemical reactions, the CASP field has
expanded significantly, with a plethora of approaches developed (Schneider et al., 2016; Liu et al.,
2017; Segler & Waller, 2017; Coley et al., 2017; Chen et al., 2020; Tu & Coley, 2021; Sacha et al.,
2021). CASP systems typically have two primary components: a single-step retrosynthesis model,
which decomposes a molecule into simpler precursors, and a search algorithm that explores the search
graph constructed from outputs of the single-step model (Segler & Waller, 2017; Segler et al., 2018;
Schwaller et al., 2020; Chen et al., 2020; Kishimoto et al.; Genheden et al., 2020). The iterative
application of single-step models and exploration of the generated search space typically continues
until a molecule is ”solved,” which is specified as having all leaf nodes belonging to a predefined set
of purchasable building blocks. This approach of finding a path to any available precursor differs
substantially from the approach expert chemists may take, where chemists can plan a synthesis with
numerous constraints in mind, such as avoiding certain reactions and solvents, or starting from a
specific precursor, known as a ”structure-goal” (Corey & Chelg, 1995). By starting from a building
block containing a key structural motif, the overall molecular complexity gain in a synthesis route
can be reduced, a technique called ”semi-synthesis” (Ojima et al., 1992; Brill et al., 2017). There
is also considerable interest in the recycling of waste compounds into useful products, a technique
called ”waste valorisation” (Wołos et al., 2022; Lopez et al., 2024; Żadło-Dobrowolska et al., 2024).
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Figure 1: Comparison of existing constrained synthesis planning methods with Tango*

While designing constrained and steerable chemical synthesis is a daily practice in synthetic chemistry,
it has received little attention in the CASP literature, with existing algorithms simply seeking to find
any ”valid” pathway to purchasable molecules.

Recently, several approaches for starting material constrained synthesis planning have been proposed
with promising results (Johnson et al., 1992; Yu et al., 2022; 2024). Existing solutions either rely
on rule-based approaches or require complex systems with several interacting parts. In this work,
we show that a general-purpose and data-driven retrosynthesis system can be adapted to starting
material constrained synthesis planning by the addition of a computed node cost function. Our
contribution is as follows:

1. We use a computed node cost function, TANimoto Group Overlap (TANGO), to guide the
retrosynthetic search process toward enforced blocks. In this work, these blocks are limited
to starting materials but could include key intermediates or molecular substructures.

2. We show that by integrating TANGO into an existing general-purpose search algorithm, we
can tackle the constrained synthesis planning problem with results comparable to or superior
to existing specialised methods.

3. We further show that TANGO can be a drop-in replacement for retrosynthetic cost networks
and demonstrate that by doing so, the performance of the recently proposed bidirectional
search algorithm (Yu et al., 2024) can be significantly improved.

4. We compare the outputs of existing retrosynthetic value functions with the outputs of the
TANGO node cost function and present a plausible explanation for the improved performance
over existing starting material constrained synthesis planning tools.

2 RELATED WORK

Computer-Assisted Synthesis Planning (CASP) tools typically formulate synthesis planning as a
tree search, with each step corresponding to disconnecting a molecule into precursors through a retro”
chemical reaction. Two primary approaches are used for selecting retro” reactions. Firstly, template-
based methods extract chemical graph transformations from a corpus and train a neural network
to select a transformation given an input (Segler & Waller, 2017; Segler et al., 2018). Template-
free methods frame single-step retrosynthesis as a conditional language generation problem, with
molecules encoded as SMILES strings or as a graph-edit prediction task (Weininger, 1988; Schwaller
et al., 2020; Sacha et al., 2021; Zhong et al., 2023). Additionally, models that leverage graph features
for direct generation have been developed (Tu & Coley, 2021; Chen et al., 2023). Significant focus
has been placed on how to use single-step models in multi-step synthetic planning. Initial approaches
used hand-curated rules, while more recent methods use neural-network guided graph exploration,
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such as Monte Carlo Tree Search (MCTS) or AND-OR graph search methods (Pensak & Corey, 1977;
Szymkuć et al., 2016; Segler et al., 2018; Genheden et al., 2020; Kishimoto et al.; Chen et al., 2020).
A key development was driven by Chen et al. (2020), who proposed an A-star-like algorithm guided
by a neural network that estimates the cost to synthesise a molecule from any arbitrary purchasable
building block (Chen et al., 2020). More novel methods have utilised self-play and experience-based
learning to improve navigation of the search space (Schreck et al., 2019; Kim et al., 2021; Hong
et al., 2023; Liu et al., 2023). While single-step model performance continues to improve, this has
not always been translated into the real-world performance of multi-step CASP systems (Thakkar
et al., 2020; Schwaller et al., 2020; Maziarz et al., 2023; Torren-Peraire et al., 2024).

Constrained Single-Step Retrosynthetic Models. In recent years, there has been increased focus
on introducing constraints into single-step retrosynthesis models with specific goals. Toniato et al.
utilised reaction class tokens to steer the output of single-step retrosynthetic transformers towards
specific reaction classes (Toniato et al., 2023). Following a similar approach, Thakkar et al. introduced
”disconnection prompts” to guide single-step models to break specific bonds (Thakkar et al., 2023).
In the multi-step planning domain, Westerlund et al. proposed a disconnection-aware transformer to
encourage the breaking of bonds and allow the freezing of bonds during the search process, discarding
any reaction that violates the frozen bond constraint (Westerlund et al., 2024). Interestingly, such
bond constraints do not appear to impede the search process, indicating that simple, chemically
informed rules can be powerful in data-driven retrosynthesis techniques.

Starting Material Constrained Synthesis Planning. Despite its potential use in waste valorisation
and semi-synthesis, constrained synthesis planning has received limited attention in the literature.
This approach imposes an additional constraint by focusing on the utilisation of specific starting
materials. The LHASA program included such rules; however, they relied on expert-designed
rules, limiting scalability (Johnson et al., 1992). GRASP utilised reinforcement learning to develop
a goal-driven synthesis planning tool that can target either arbitrary products or specific starting
materials (Yu et al., 2022). Recent state-of-the-art work proposed a bidirectional search algorithm,
Double-Ended Synthesis Planning (DESP), which uses both forward- and retro-expansion models,
guided by a value network that estimates the cost of synthesising molecule m2 specifically from
molecule m1 (Yu et al., 2024). DESP employs two search techniques, Frontier-to-Frontier (F2F)
which compares all the nodes of each frontier with one another and Frontier-to-End (F2E) which
compares the Retro* expansion frontier with the target starting material. Constrained synthesis
planning has also emerged as a target in synthesisable molecular design. Guo et al. introduced a
method for the de novo generation of synthesisable molecules using enforced building blocks in the
synthesis pathway (Guo & Schwaller, 2024). To date, all starting material constrained synthesis
planning tools have relied on specialised architectures, reinforcement learning, or expert-defined rules.
In this work, we show instead that the problem can be approached with a simple cheminformatics
calculation.

Algorithm 1: TANGO* Node Cost Function
Input :

MOLsm ▷ Enforced Starting Materials
Node ▷ Molecule Node
k ▷ Weight’s influence of TANGO to node cost
c ▷ Scales TanSim vs. FMS

Function Tango*NodeCost(Node, MOLsm):
rewardnode ← 0
// Loop through all specified starting materials
foreach molsm ∈MOLsm do

// Compute reward for this starting material
TanSim← CalculateTanimotoSimilarity(node,molsm)
FMS ← CalculateFMS(node,molsm)
rewardsm ← TanSim · c + FMS · (1− c)
rewardnode ← max(rewardnode, rewardsm)

end
return k · (1− rewardnode) + RetroCost
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3 METHODS

TANGO* Overview

We adopt the traditional structure of the synthesis planning problem using a top-down, or retrosyn-
thetic, search algorithm. Due to its strong performance and built-in compatibility with node cost-based
guidance functions, we use Retro* (Chen et al., 2020) as the baseline search algorithm. The Retro*
algorithm uses a best-first approach, selecting the lowest-cost node at any given iteration. In the
original paper, a neural network that estimates the cost (number of chemical reactions) required to
synthesise a given node from an arbitrary chemical building block is used to provide cost values for
each node. To adapt the Retro* algorithm to the starting material constrained setting, we utilise a
computed function, TANGO, to estimate the structural and chemical similarity of a node to a specific
starting material. TANGO employs a weighted combination of Tanimoto Similarity and Fuzzy
Matching Substructure (FMS) to compute molecular similarity. The Tango* cost is bounded by the
interval ( [0, 1] ), while the Retro* cost is theoretically bounded by ( [0,∞) ) and practically varies
around the range ( [0, 10] ). To balance the influence of these mechanisms in the search dynamics, a
scalar hyperparameter ( k ) is used to upweight the Tango* cost. The two cost functions are additively
combined; further details are provided in Algorithm 1 and Appendix A.

4 EXPERIMENTS

Tango* is built on the Retro* algorithm, using a reference implementation provided by DESP (Yu
et al., 2024). For our estimation of node cost, we combine the original Retro* Value function (Chen
et al., 2020) with an adaptation of the TANGO reward introduced by Guo & Schwaller (2024).

Our experiments are structured to answer the following questions: (1) Can a non-neural computed
node cost function be used to adapt general-purpose synthesis planning tools to the constrained setting?
(2) Can such a system outperform existing specialised models for starting material-constrained
planning? (3) Can the cost function additionally provide improvements to existing bidirectional
search methods? (4) As the TANGO function is empirically computed as opposed to estimated, does
TANGO generalise from simple to harder datasets more effectively?

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate our system’s performance, we utilise the common USPTO-190 dataset
introduced by Chen et al. (2020), which is a set of 190 challenging target molecules extracted from
USPTO-Full. Additionally, we use the datasets introduced by Yu et al. (2024), namely Pistachio
Reachable and Pistachio Hard. The sets of target, starting material pairs are extracted for a set
of commercial building blocks, we use canonical SMILES strings provided in the set of 23 million
molecules from eMolecules used by Chen et al. (2020) and Yu et al. (2024).

Machine learning models. To avoid variance due to subtle differences in data pre-processing
techniques and to ensure a meaningful comparison, we use the Retro* value network and single-step
retrosynthesis model provided by Yu et al. (Yu et al., 2024; Maziarz et al., 2023).

Hyperparameter Optimisation. We use a hyperparameter k to balance the starting material guidance
of TANGO with the general guidance of the Retro* Value Network. To evaluate the ability of our
method to generalise from simpler to more complex molecules, we choose the Pistachio Reachable
dataset for hyperparameter tuning. We find a value of k = 25 optimises both Solve Rate and Average
Number of expansions. We employ an additional parameter, c, to specify the ratio of FMS to Tanimoto
Similarity, with c defining the FMS weight. Through empirical testing, we determine the optimal
value to be c = 0.3. In the results section, we will refer to Tango with c = 0.0 as Tango(1, 0) and
Tango with c = 0.3 as Tango(0.7, 0.3).

4.2 TANGO* SOLVE RATE AND ALGORITHM EFFICIENCY

While there remains a lack of a clearly agreed-upon ’gold standard’ for reporting the quality of
synthetic routes generated by CASP systems, a few metrics are commonly used. The Solve Rate
indicates the system’s ability to find viable solutions, while the Average Route Length (in terms of
the number of reactions) indicates route quality. In addition to reporting metrics regarding the outputs
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Table 1: Summary comparison between baseline methods and Tango* across the three benchmarks.
Baseline results for Retro*, GRASP,Retro* + D and the DESP methods are taken from Yu et al.
(2024). Solve rate is the fraction of (target, starting material) pairs solved within the expansion limit.
Tango DESP methods use a (1, 0) weighting of Tanimoto Similarity to FMS. Best overall results are
in bold and best uni-directional results are underlined

.
Algorithm USPTO-190 Pistachio Reachable Pistachio Hard

Solve Rate (%) ↑ N ↓ Solve Rate (%) ↑ N ↓ Solve Rate (%) ↑ N ↓
Expansion Budget 100 300 500 50 100 300 100 300 500

Random 4.2 4.7 4.7 479 16.0 26.7 40.7 325 6.0 12.0 13.0 452
BFS 12.1 20.0 24.2 413 48.7 57.3 74.0 169 16.0 26.0 29.0 390
MCTS 20.5 32.1 35.3 364 52.0 72.7 85.3 111 27.0 31.0 32.0 361
Retro* 25.8 33.2 35.8 351 70.7 78.0 92.7 73 32.0 35.0 37.0 342
GRASP 15.3 21.1 23.7 410 46.7 51.3 66.7 198 14.0 22.0 29.0 402
Retro*+D 27.4 32.6 37.4 348 77.3 87.3 96.0 49 31.0 40.0 42.0 323
DESP-F2E 30.0 35.3 39.5 340 84.0 90.0 96.0 41 35.0 44.0 50.0 300
DESP-F2F 29.5 34.2 39.5 336 84.5 88.9 97.3 38 39.0 45.0 48.0 293

Ours
Tango(1, 0)* 36.3 41.1 42.6 313 84.5 90.6 97.3 32 40.0 45.0 47.0 290
Tango(0.7, 0.3)* 35.7 40.5 42.1 316 86.7 94.0 98.0 29 39.0 44.0 46.0 295
Tango-F2E 33.1 40.0 41.5 317 88.7 92.0 98.7 27 39.0 45.0 49.0 290
Tango-F2F 33.2 45.3 53.7 291 91.3 95.3 99.3 18 47.0 59.0 63.0 231

Table 2: Inference time and Mean Solved Route Length for the evaluated methods. Route length
comparisons are made on the routes solved by all methods.

Algorithm USPTO-190 Pistachio Reachable Pistachio Hard

Route Length
(61 Routes)

Wall Clock
Time (s)

Route Length
(114 Routes)

Wall Clock
Time (s)

Route Length
(36 Routes)

Wall Clock
Time (s)

Retro* 5.30 58.1 4.64 10.2 4.67 56.3
Retro* + D 5.56 64.1 4.67 8.3 4.67 55.2
DESP-F2E 5.13 66.5 4.51 8.6 4.56 56.3
DESP-F2F 5.51 109.4 4.46 8.2 4.44 61.8

Tango(1, 0)* 5.06 55.8 4.56 5.8 4.67 47.5
Tango-F2E 4.44 75.3 4.24 6.5 4.29 54.2
Tango-F2F 5.06 146.4 4.04 4.9 4.40 72.8

of Tango*, we aim to evaluate how efficient Tango* is at navigating the retrosynthetic search space
and assess the effect of computational overhead on the system. To this end, we report the Average
Number of Expansions (N ) and Wall Clock Time.

The primary results are displayed in Table 1. Tango(1, 0)* demonstrates improvements in the
starting material-constrained setting and consistently outperforms the neural network-enhanced
Retro* (referred to as Retro* + D) across all benchmarks and expansion limits while displaying
greater algorithmic efficiency, as measured by the average number of expansions N . In addition,
Tango(1, 0)* achieves higher or comparable solve rates to both DESP methods across all three
datasets, doing so with a strictly lower average number of expansion calls, clearly demonstrating the
power of the TANGO reward to navigate the retrosynthetic action space. We find that the value of k,
optimised on Pistachio Reachable, shows strong generalisation performance to the more challenging
datasets, with Tango* being the best-performing method across all iteration levels on USPTO-190.

We perform an ablation of the FMS : Tanimoto Similarity weighting in the TANGO cost function,
which we refer to as Tango(0.7, 0.3). We find that although the incorporation of FMS into the cost
function improves the solve rate and reduces expansion calls for Pistachio Reachable, such results
do not carry over to the more challenging datasets. We hypothesise that Tanimoto Similarity offers
greater granularity for guidance than FMS, enabling higher performance on more complex datasets.

To examine the general applicability of the TANGO cost in guiding various search algorithms,
we explore its integration into the recently proposed bidirectional search methods, DESP-F2F and
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Figure 2: Here we demonstrate a meaningful 12-step route generated by our method on a (target,
starting material) pair not solved by the best performing DESP (Yu et al., 2024) method. Constrained
starting material highlighted in red; bonds/atoms disconnected shown in red.

DESP-F2E (Yu et al., 2024). This integration is achieved by replacing the pairwise synthetic distance
network, D, with the TANGO cost function. The hyperparameters k and c are set to the same
values as Tango (1,0). Our findings show that the addition of TANGO reward generally leads to a
substantial increase in the solve rate for both DESP methods, while also reducing the average number
of expansions and route length. Particularly noteworthy is the impressive performance of Tango-F2F
at high expansion budgets, where it achieves a 99.3% solve rate on Pistachio Reachable and improves
accuracy by approximately 25% compared to the next best method on the more challenging UPSTO-
190 and Pistachio Hard datasets. We note that as the added bidirectional search of DESP outperforms
Retro* + D, TANGO-DESP methods should be expected to outperform Tango*.

4.3 WALL CLOCK TIME AND ROUTE LENGTH ABLATIONS

As both DESP and Tango* introduce computational overhead that may decouple the number of
expansion calls from the computational resources required, we report the wall clock time. Tango*
consistently achieves a lower wall clock time than alternative starting material-constrained methods.
Finally, we investigate the average number of reactions per solved route for each method. Tango*
achieves shorter route lengths than all existing methods on USPTO-190, but only matches existing
methods on other datasets. The strongest results in terms of route length come from the combination
of TANGO with bidirectional search methods F2E and F2F, with one of them displaying the shortest
routes for all of the datasets. This result is revealing; existing methods use a neural network directly
trained to predict synthetic distance, and yet it fails to provide significantly stronger guidance towards
shorter synthetic routes than a simply molecular similarity measure. This leads to the obvious
question, just how effective are such neural networks at estimating the synthetic distance of a node,
and how reliable is this estimation at test time?

4.4 WHY DOES TANGO* WORK?

Despite access to a starting material constrained node cost function (one with access to information
from ground truth routes at test time), Retro* +D does not show a substantial increase in performance
compared to Retro*. In contrast, Tango*’s incorporation of a privileged node cost function provides
significant performance improvements. We hypothesize that, as a computed cost function, the
TANGO cost function should be relatively invariant to the molecular inputs and maintain strong
performance at test time. Let V : M → R be a node cost function where M is the space of molecules.
For node cost to effectively guide retrosynthetic search the function should generally satisfy:

V (mi) > V (mi+1) ∀i ∈ 1, ..., n− 1 (1)

where m1, ...,mn represents molecules along a synthetic path from root to starting material.

A potential caveat to the above constraint might be ”tactical combinations”, the synthetic complexity
of a molecule temporarily increases during a retrosynthesis, to allow a major complexity-reducing
reaction Gajewska et al. (2020). We believe that retrosynthetic value functions should continue to
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show synthetic distance estimate decreases even for the complexity-increasing step. We also expect a
stronger monotonic decrease for routes that are solved by a method, compared to routes not solved,
as this indicates that the node cost function can accurately prioritise nodes in the search tree. To
systematically evaluate these hypotheses about TANGO’s effectiveness and empirically assess the
relative strength of different guidance functions, we analyse their behavior on ground truth synthetic
routes in the test set. Using the USPTO-190 dataset, we extract the linear synthetic path from root
molecule mr to expert-defined starting material ms. We define synthetic distance d(m1,m2) as the
minimum number of reactions required to synthesize m1 from m2. For each molecule mi in this
path, we calculate:

• d(mi,ms): Ground truth synthetic distance
• D(mi,ms): Neural network estimation of synthetic distance
• T (mi,ms): TANGO cost molecular similarity

To isolate the cost function, we fix the search algorithm, in this case focusing on the Retro* algorithm
with either TANGO or D as a starting material-guided cost function. We then take the 4 sets of routes
that are solved and not solved by Tango* and Retro* +D. We plot the corresponding starting material
constrained cost function, TANGO and D respectively, as costs for each node in the ground truth
synthetic routes.

We show the results of this experiment in Figure 3. The neural network estimated synthetic distance
(b) and (e) displays an unexpected bimodal distribution, with peaks at low and high estimates. It
displays consistently high absolute error and is unable to provide a granular, monotonically decreasing
estimate of synthetic distance. For routes that Retro* + D solves, the mean synthetic distance estimate
begins to decrease when the ground truth distance is under two but still displays substantial error
margins. This is exacerbated for routes that Retro* does not solve, with the synthetic distance
estimation consistently varying around 10 if the ground truth distance is greater than 1. We note this
fits with the training strategy of D described in (Yu et al., 2024), which augments the training set with
synthetic ”negative samples” of (target, startingmaterial) pairs. These samples are generated by
selecting two molecules that are disconnected in the directed graphs formed by linking reactants and
products in USPTO, and are assigned a fixed ”distance” value of 10. While such a method should be
robust in a dense dataset where all theoretically synthesisable molecules are interconnected, USPTO
is notably sparse. Consequently, many of these ”disconnected” samples may, in fact, be feasibly
synthesisable. Furthermore, the constraint enforcing a Tanimoto Similarity of less than 0.7 may
be overly permissive. We observe that the majority of molecules within the same synthetic route
typically exhibit Tanimoto similarities far lower than 0.7, suggesting that this sampling approach may
introduce significant noise into the training process.

In comparison, the computed TANGO cost function 3(a) and 3(d) exhibits a clear and granular
monotonic decrease across routes solved by Tango*. On routes not solved by Tango*, the monotonic
decrease is less pronounced but still present. We hypothesize that this strong granularity and
monotonicity enables TANGO cost-guided search algorithms to achieve substantially improved solve
rates compared to neurally guided methods. Based on this observation, we investigated whether
similar findings apply to non-privileged (non-goal oriented) neural guidance functions, such as the
original Retro* cost function. Prior work has shown that omission of the Retro* cost function has
limited effects on retrosynthetic search performance, with both Chen et al. (2020) and Maziarz et al.
(2023) finding that setting the value to a constant resulted in only minor performance changes on
USPTO-190. The results for solved and unsolved routes are shown in Figure 3 (c) and (f), respectively.
In contrast to the plots for the D cost function, which consistently overestimates cost, the Retro* cost
function consistently underestimates it. While it displays clear monotonicity on solved routes, this
pattern does not extend to unsolved routes, where the cost function hovers around 1-2 before splitting
into a bimodal distribution with lower error at ground truth distances greater than 7. This is likely a
function of the power-law like distribution of reaction sequence lengths in USPTO, with the majority
of synthetic routes consisting of only a single step. These results indicate that value networks trained
exclusively on positive samples using simple training methods such as MSE and Consistency loss
perform substantially better at estimating synthetic distance.4.5 CASE STUDY: SYNTHESIS OF USEFUL COMPOUNDS FROM RENEWABLE/WASTE

FEEDSTOCK

A key aim of starting-material-constrained synthesis planning is to enable the discovery of synthetic
pathways to useful compounds from renewable or waste feedstocks. Previous evaluations relied
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Figure 5: Here we show a feasible synthesis route to the chemotherapy drug, Chlorambucil, a WHO
essential medicine, synthesised entirely from renewable or industrial waste feedstocks.

on a database of 17 million chemical building blocks from the eMolecules database. We aim to
demonstrate the effectiveness of our method, Tango*, in finding synthesis pathways to useful small
molecules starting exclusively from renewable or waste feedstocks. For renewable building blocks,
we use a set of 146 small molecules previously curated by Wołos et al. (2022). For useful compounds,
we extract a set of 110 small molecules from a curation of the WHO List of Essential Medicines,
previously developed by Gao et al. (2020). We conduct the search using the Tango(1, 0) set of
hyperparameters previously described, but set the expansion budget to 1,000 model calls. In Figure
5, we present a strong route, discovered by Tango* but not Retro*, to the chemotherapy drug
Chlorambucil, starting exclusively from renewable starting materials. We find all proposed reactions
and the complete synthesis are directly reported in the literature (Yang et al., 2020; Gangjee et al.,
2009)

5 CONCLUSION

In this work, we introduce Tango*, a simple adaptation of the Retro* algorithm to the starting
material-constrained setting without any model retraining. We demonstrate that our TANGO guided
search method strictly outperforms the similar neural network-guided Retro* + D. Despite relying on
single-ended search, Tango* either outperforms or matches the performance of specialised DESP
models and search algorithms, providing routes that satisfy the specified goal for a greater number
of compounds. Application of the TANGO node cost function to the DESP methods also yields
substantial improvements, particularly to the F2F method, which achieves the strongest solve rate
performance of all investigated systems. It proposes routes with a comparable length and does so
with a lower number of expansion calls and reduced wall clock time.

We show that existing neural node cost functions fail to provide a granular and monotonic decrease in
node cost throughout a retrosynthesis pathway, particularly struggling on more challenging routes. In
contrast, the computed Tango* cost function displays better monotonicity and granularity on both
solved and unsolved routes. This work indicates that there may be substantial room for improvement
in developing novel guidance functions for retrosynthesis tools.

We anticipate that future developments in similar methods will unlock synthesis planning tools with
diverse and flexible structure constraints, allowing expert chemists to specify key intermediates or
predefined substructure goals at any position in the synthetic route.

Code and Data availability The anonymised code used to produce these results is available here
https://figshare.com/s/5425c38da7a686d1f878
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A APPENDIX

A.1: Compute Details

Wall clock time comparisons were implemented on a GPU-enabled workstation with the following
specifications.

• CPU: 12-core AMD Rysen 9 7900X

• RAM Memory : 64 GB

• GPU : NVIDIA A6000 48 GB

A.2: Retro* Algorithm

We note this algorithm description is largely taken from the DESP paper Yu et al. (2024).

Retro* defines the following quantities:

• Vm: For a molecule m, Vm is an unconditional estimate of the minimum cost required to
synthesise m. This estimate is provided by a neural network.

• rn(m|G): For a molecule m in the search graph G, the ”reaction number” rn(m|G) repre-
sents the estimated minimal cost to synthesise m.

• Vt(m|G): For a molecule m in the search graph G with the target molecule p∗, Vt(m|G)
denotes the estimated minimal cost to synthesise p∗ starting from m.

Retro* operates through iterative phases of selection, expansion, and update. We follow the DESP
implementation of Retro* as follows:

Selection: Choose the molecule from the set of frontier nodes F that minimises the expected cost of
synthesising the target p∗ given the current search graph G:
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mselect = arg min
m∈F

Vt(m|G) (2)

Expansion: As detailed in Algorithm 2, apply a one-step retrosynthesis model to the selected node
mselect, and add the resulting reactions and precursor molecules to the search graph G. Initialise each
new molecule node with:

rn(m|G)← Vm

Update:

First, propagate the reaction number values upward to ancestor nodes. For a reaction node R, update
its reaction number as the sum of its childrens’ reaction numbers plus the cost of the reaction c(R):

rn(R|G)← c(R) +
∑

m∈ch(R)

rn(m|G) (3)

For a molecule node m, update its reaction number to be the minimum reaction number among its
child reactions:

rn(m|G)← min
R∈ch(m)

rn(R|G) (4)

Next, propagate the values of Vt(m|G) downward to descendant nodes. Starting from the target
molecule p∗:

Vt(p
∗|G)← rn(p∗|G) (5)

For subsequent reaction nodes R, update the value as:

Vt(R|G)← rn(R|G)− rn(pr(R)|G) + Vt(pr(R)|G) (6)

Finally, for molecule nodes m that are not the target p∗:

Vt(m|G)← min
R∈pr(m)

Vt(R|G) (7)

Here, ch(R) denotes the set of child molecules of reaction R, and ch(m) represents the set of child
reactions of molecule m. Similarly, pr(R) denotes the parent molecule of reaction R, and pr(m)
represents the set of parent reactions of molecule m.

This implementation ensures that at each iteration, the algorithm selects the most promising node
to expand based on the estimated cost, propagates cost updates throughout the search graph, and
efficiently guides the search towards the most cost-effective synthesis pathways.

A.3: Dataset Details

We provide details on the used datasets in Table 3. The Table is taken directly from the original DESP
paper (Yu et al., 2024).

A.4: TANGO Hyperparameter Screening

Here we provide a hyperparameter screen of TANGO weight and Tanimoto weight across the 3 Tango
augmented methods, Tango*, TANGO DESP-F2E and TANGO DESP-F2F. Due to computational
resource limitations, this screen was conducted exclusively on Pistachio Reachable with a small
expansion budget of 50. In general, a higher Tango Weight (> 15) tends to lead to a higher solve rate,
consistent across all methods.

A Tanimoto weight of 0.75 performs strongly for the TANGO DESP-F2F and Tango* methods on
the Pistachio Reachable test set, consistent with previous results.
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Table 3: Benchmark dataset summary. Avg. In-Dist. % is the mean percentage of reactions in each
route within the top 50 suggestions of the retro model. Unique Rxn.% is the ratio of deduplicated
reactions to total reactions across all routes. Avg. # Rxns. is the mean number of reactions in each
route, and Avg. Depth is the mean number of reactions in the longest path of each route.

Dataset # Routes Avg. In-Dist. % Unique Rxn. % Avg. # Rxns. Avg. Depth
USPTO-190 190 65.6 50.5 6.7 6.0
Pistachio Reachable 150 100 86.1 5.5 5.4
Pistachio Hard 100 59.9 95.2 7.5 7.2
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Figure 6: A hyper-parameter screen conducted on Pistachio Reachable with an expansion limit of 50.

A.5: Renewable synthesis of WHO Essential Medicines datasets

The sources of small molecule WHO Essential Medicines and renewable and waste compound
feedsGao et al. (2020); Wołos et al. (2022) are not machine-readable. We used a vision-enabled large
language model (GPT-4o) to parse compound names from the Supplementary Information sections of
the aforementioned papers.

A.6: Value function failiure points

In Figure 7, we analyze discrepancies between model-predicted number of synthesis steps (Retro*
and SynthDist) and ground truth values across four synthetic transformations. In these examples,
models overestimate synthetic complexity compared to ground truth, likely due to their focus on
structural features rather than strategic synthetic planning. This is evident in: (a) ring-opening of
tetrahydropyran introducing rotatable bonds of an alkyl chain, (b) TBDMS protection adding heavy
atoms, (c) oxidation of primary alcohols changing atom connectivity and adding heavy atoms, and (d)
lactone formation creating additional ring complexity. These cases demonstrate how the models may
misinterpret strategic intermediates with increased synthetic complexity as being further away from
commercially available building blocks while in reality, these intermediates help disconnections over
multiple steps, suggesting potential areas for improvement in retrosynthetic prediction algorithms.
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