

000 001 002 003 004 005 A SCALABLE GLOBAL OPTIMIZATION ALGORITHM 006 FOR CONSTRAINED CLUSTERING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027
028
029
030
031 Constrained clustering leverages limited domain knowledge to improve clustering
032 performance and interpretability, but incorporating pairwise *must-link* and
033 *cannot-link* constraints is an NP-hard challenge, making global optimization in-
034 tractable. Existing mixed-integer optimization methods are confined to small-scale
035 datasets, limiting their utility. We propose Sample-Driven Constrained Group-
036 Based Branch-and-Bound (SDC-GBB), a decomposable branch-and-bound (BB)
037 framework that collapses must-linked samples into centroid-based pseudo-samples
038 and prunes cannot-link through geometric rules, while preserving convergence and
039 guaranteeing global optimality. By integrating grouped-sample Lagrangian de-
040 composition and geometric elimination rules for efficient lower and upper bounds,
041 the algorithm attains highly scalable pairwise k-Means constrained clustering via
042 parallelism. Experimental results show that our approach handles datasets with
043 200,000 samples with cannot-link constraints and 1,500,000 samples with must-
044 link constraints, which is 200 - 1500 times larger than the current state-of-the-art
045 under comparable constraint settings, while reaching an optimality gap of $\leq 3\%$.
046 In providing deterministic global guarantees, our method also avoids the search
047 failures that off-the-shelf heuristics often encounter on large datasets.
048
049

1 INTRODUCTION

050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
0130
0131
0132
0133
0134
0135
0136
0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
0156
0157
0158
0159
0160
0161
0162
0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0176
0177
0178
0179
0180
0181
0182
0183
0184
0185
0186
0187
0188
0189
0190
0191
0192
0193
0194
0195
0196
0197
0198
0199
0200
0201
0202
0203
0204
0205
0206
0207
0208
0209
0210
0211
0212
0213
0214
0215
0216
0217
0218
0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235
0236
0237
0238
0239
0240
0241
0242
0243
0244
0245
0246
0247
0248
0249
0250
0251
0252
0253
0254
0255
0256
0257
0258
0259
0260
0261
0262
0263
0264
0265
0266
0267
0268
0269
0270
0271
0272
0273
0274
0275
0276
0277
0278
0279
0280
0281
0282
0283
0284
0285
0286
0287
0288
0289
0290
0291
0292
0293
0294
0295
0296
0297
0298
0299
0300
0301
0302
0303
0304
0305
0306
0307
0308
0309
0310
0311
0312
0313
0314
0315
0316
0317
0318
0319
0320
0321
0322
0323
0324
0325
0326
0327
0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371
0372
0373
0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0394
0395
0396
0397
0398
0399
0400
0401
0402
0403
0404
0405
0406
0407
0408
0409
0410
0411
0412
0413
0414
0415
0416
0417
0418
0419
0420
0421
0422
0423
0424
0425
0426
0427
0428
0429
0430
0431
0432
0433
0434
0435
0436
0437
0438
0439
0440
0441
0442
0443
0444
0445
0446
0447
0448
0449
0450
0451
0452
0453
0454
0455
0456
0457
0458
0459
0460
0461
0462
0463
0464
0465
0466
0467
0468
0469
0470
0471
0472
0473
0474
0475
0476
0477
0478
0479
0480
0481
0482
0483
0484
0485
0486
0487
0488
0489
0490
0491
0492
0493
0494
0495
0496
0497
0498
0499
0500
0501
0502
0503
0504
0505
0506
0507
0508
0509
0510
0511
0512
0513
0514
0515
0516
0517
0518
0519
0520
0521
0522
0523
0524
0525
0526
0527
0528
0529
0530
0531
0532
0533
0534
0535
0536
0537
0538
0539
0540
0541
0542
0543
0544
0545
0546
0547
0548
0549
0550
0551
0552
0553
0554
0555
0556
0557
0558
0559
0560
0561
0562
0563
0564
0565
0566
0567
0568
0569
0570
0571
0572
0573
0574
0575
0576
0577
0578
0579
0580
0581
0582
0583
0584
0585
0586
0587
0588
0589
0590
0591
0592
0593
0594
0595
0596
0597
0598
0599
0600
0601
0602
0603
0604
0605
0606
0607
0608
0609
0610
0611
0612
0613
0614
0615
0616
0617
0618
0619
0620
0621
0622
0623
0624
0625
0626
0627
0628
0629
0630
0631
0632
0633
0634
0635
0636
0637
0638
0639
0640
0641
0642
0643
0644
0645
0646
0647
0648
0649
0650
0651
0652
0653
0654
0655
0656
0657
0658
0659
0660
0661
0662
0663
0664
0665
0666
0667
0668
0669
0670
0671
0672
0673
0674
0675
0676
0677
0678
0679
0680
0681
0682
0683
0684
0685
0686
0687
0688
0689
0690
0691
0692
0693
0694
0695
0696
0697
0698
0699
0700
0701
0702
0703
0704
0705
0706
0707
0708
0709
07010
07011
07012
07013
07014
07015
07016
07017
07018
07019
07020
07021
07022
07023
07024
07025
07026
07027
07028
07029
07030
07031
07032
07033
07034
07035
07036
07037
07038
07039
07040
07041
07042
07043
07044
07045
07046
07047
07048
07049
07050
07051
07052
07053
07054
07055
07056
07057
07058
07059
07060
07061
07062
07063
07064
07065
07066
07067
07068
07069
07070
07071
07072
07073
07074
07075
07076
07077
07078
07079
07080
07081
07082
07083
07084
07085
07086
07087
07088
07089
07090
07091
07092
07093
07094
07095
07096
07097
07098
07099
070100
070101
070102
070103
070104
070105
070106
070107
070108
070109
070110
070111
070112
070113
070114
070115
070116
070117
070118
070119
070120
070121
070122
070123
070124
070125
070126
070127
070128
070129
070130
070131
070132
070133
070134
070135
070136
070137
070138
070139
070140
070141
070142
070143
070144
070145
070146
070147
070148
070149
070150
070151
070152
070153
070154
070155
070156
070157
070158
070159
070160
070161
070162
070163
070164
070165
070166
070167
070168
070169
070170
070171
070172
070173
070174
070175
070176
070177
070178
070179
070180
070181
070182
070183
070184
070185
070186
070187
070188
070189
070190
070191
070192
070193
070194
070195
070196
070197
070198
070199
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
070204
070205
070206
070207
070208
070209
070210
070211
070212
070213
070214
070215
070216
070217
070218
070219
070220
070221
070222
070223
070224
070225
070226
070227
070228
070229
070230
070231
070232
070233
070234
070235
070236
070237
070238
070239
070240
070241
070242
070243
070244
070245
070246
070247
070248
070249
070250
070251
070252
070253
070254
070255
070256
070257
070258
070259
070260
070261
070262
070263
070264
070265
070266
070267
070268
070269
070270
070271
070272
070273
070274
070275
070276
070277
070278
070279
070280
070281
070282
070283
070284
070285
070286
070287
070288
070289
070290
070291
070292
070293
070294
070295
070296
070297
070298
070299
070200
070201
070202
070203
07020

054 Constraint programming approaches (Dao et al., 2013; 2015; 2017) offer flexibility in incorporating
 055 various constraint forms but generally do not scale beyond a few hundred points. Mixed-Integer
 056 Programming (MIP) formulations have also been explored to handle additional cluster-level or
 057 instance-level constraints in MSSC. For example, (Tang et al., 2020) proposed an iterative scheme
 058 that reformulates a size-constrained MSSC problem into a mixed-integer linear program, leveraging
 059 the unimodularity of certain constraint matrices to reduce computational complexity. Similarly,
 060 (Liberti & Manca, 2022) examined several side-constrained MSSC models cast as Mixed-Integer
 061 Nonlinear Programs, some featuring convex relaxations that enable global optimization techniques.
 062 While these MIP-based approaches provide a powerful and flexible framework for ensuring feasibility
 063 under various constraint types, their applicability remains limited by high computational overhead,
 064 restricting them to relatively small or moderate-sized datasets.

065 Branch-and-bound methods have also been specialized for constrained MSSC. (Guns et al., 2016)
 066 proposed the Constraint Programming Repetitive Branch-and-Bound Algorithm (CPRBBA), which
 067 augments Brusco’s repetitive branch-and-bound procedure (Brusco, 2006) with a constraint program-
 068 ming solver to compute tight lower and upper bounds on subsets of objects of increasing size. This
 069 approach, while effective on small instances, remains limited to fewer than 200 data points. (Piccialli
 070 et al., 2022a) developed the PC-SOS-SDP algorithm, which integrates *must-link* and *cannot-link*
 071 constraints into a semidefinite programming framework, scaling to a few thousand data points but
 072 not beyond (Baumann & Hochbaum, 2024). These exact methods do not generally account for
 073 soft constraints and remain computationally expensive for larger datasets. Nonetheless, continuing
 074 progress in algorithmic design and hardware (Bertsimas & Dunn, 2017) has widened the scope of
 075 exact methods for constrained clustering.

076 **Our Contributions** In this paper, we propose a scalable deterministic global optimization algorithm
 077 for the minimum sum-of-squared clustering (MSSC) task *with pairwise ML and CL constraints*. We
 078 introduce a centroid-based pseudosample formulation for must-link subsets, leveraging the combined
 079 information of each group to maintain the exact global minimum while reducing problem complexity.
 080 We devise geometric sample-determination rules that eliminate cannot-links, which specify whether
 081 points must not be placed into the same clusters before enumeration. We design a branch-and-bound
 082 algorithm that branches only on the cluster-center variables. This avoids combinatorial branching
 083 on sample-to-cluster assignments, thus achieving a globally ϵ -optimal solution even for large-scale
 084 datasets. Our analysis proves convergence under exhaustive subdivisions of the feasible region for
 085 the center variables.

086 **Capability For More than One Hundred Thousand Scale Problems** We present an open-source
 087 implementation in *Julia* that solves constrained MSSC instances of up to 1,500,000 samples for
 088 the ML case and 200,000 samples for CL case with optimality guarantee or very low optimality gaps.
 089 This corresponds to 1500-fold and 200-fold increases in scale, respectively, over the current exact
 090 state-of-the-art (Piccialli et al., 2022a). This framework thus enables deterministic global clustering
 091 solutions for large-scale datasets previously considered intractable.

092 2 MIXED-INTEGER PROGRAMMING FOR PAIRWISE-CONSTRAINED k -MEANS

093 Given a dataset $X = \{x_1, \dots, x_S\} \subset \mathbb{R}^m$ with S samples and m attributes, the semi-supervised
 094 MSSC task with pairwise constraints seeks a set of k clusters that minimizes the Sum of Squared
 095 Errors (SSE) subject to must-link (ML) and cannot-link (CL) requirements:
 096

$$097 \min_b \sum_{s \in \mathcal{S}} \sum_{k \in \mathcal{K}} b_{s,k} \|x_s - \mu_k\|_2^2 \quad (1a)$$

$$100 \text{ s.t. } b_{s,k} = b_{s',k}, \quad \forall (s, s') \in \mathcal{T}_{ml}, k \in \mathcal{K}, \quad (1b)$$

$$101 \quad b_{s,k} + b_{s',k} \leq 1, \quad \forall (s, s') \in \mathcal{T}_{cl}, k \in \mathcal{K}, \quad (1c)$$

$$102 \quad b_{s,k} \in \{0, 1\}, \quad \forall s \in \mathcal{S}, k \in \mathcal{K}. \quad (1d)$$

$$103 \quad \sum_{k \in \mathcal{K}} b_{s,k} = 1 \quad (1e)$$

106 where $s \in \mathcal{S} := \{1, \dots, S\}$ is the data sample set, $k \in \mathcal{K} = \{1, \dots, K\}$ is the cluster set,
 107 $\mu := [\mu_1, \dots, \mu_K]$, where $\mu_k \in \mathbb{R}^m$ represents the center of each cluster, $b_{s,k} \in \{0, 1\}$ is equal to

108 1 if x_s belongs to the k -th clusters and 0 otherwise. $\mathcal{T}_{ml} \subseteq \mathcal{S} \times \mathcal{S}$ and $\mathcal{T}_{cl} \subseteq \mathcal{S} \times \mathcal{S}$ are the sets of
 109 tuples indicating whether samples must or must not reside in the same cluster respectively.
 110

111 The MSSC with pairwise constraints (Problem 1) can be reformulated as an SSE optimization problem
 112 of the following form:

$$113 \min_{\mu, d, b} \sum_{s \in \mathcal{S}} d_{s,*} \quad (2a)$$

$$115 \text{s.t. } -N(1 - b_{s,k}) \leq d_{s,*} - d_{s,k} \leq N(1 - b_{s,k}) \quad (2b)$$

$$117 d_{s,k} \geq \|x_s - \mu_k\|_2^2 \quad \forall s \in \mathcal{S}, \forall k \in \mathcal{K} \quad (2c)$$

$$118 \text{Constraints 1b- 1e} \quad (2d)$$

119 Here $d_{s,k}$ is the distance between x_s and μ_k , $d_{s,*}$ is the distance from x_s to its assigned centroid, and
 120 N is a big- M constant. Define $d_s = [d_{s,1}, \dots, d_{s,K}, d_{s,*}]$, $d = [d_1, \dots, d_S]$, $b_s = [b_{s,1}, \dots, b_{s,K}]$,
 121 $b = [b_1, \dots, b_S]$. Constraint (2b) links $d_{s,*}$ and $d_{s,k}$ when $b_{s,k} = 1$. Problem 2 is a mixed-integer
 122 second-order cone program (MISOCP) admits a two-stage extensive form (see Appendix A). While
 123 off-the-shelf solvers like Gurobi (Gurobi, 2024) and CPLEX (Cplex, 2022) can handle small instances,
 124 they become intractable even at moderate sample sizes (e.g., $S = 800$) (Piccialli et al., 2022a).
 125

126 3 REDUCED-SPACE BRANCH-AND-BOUND ALGORITHM

127 Reduced-space branch-and-bound frameworks have demonstrated significant scalability gains by
 128 partitioning only the centroid search space (Cao & Zavala, 2019). We tailor this scheme to the
 129 pairwise-constrained clustering problem by integrating geometric probing rules derived from the
 130 MISOCP formulation in Sec. 2 to tighten both lower and upper bounds. In particular, we exploit the
 131 implicit inequality that any subregion whose lower bound exceeds the current best upper bound can
 132 be discarded outright.

133 3.1 GEOMETRIC SAMPLE DETERMINATION RULES

134 We first observe that every feasible clustering is subject to two straightforward geometric bounds
 135 relative to the incumbent solution. Let $\rho = \max_{s \in \mathcal{S}} \|\mathbf{x}_s - \boldsymbol{\mu}_{k(s)}^{\text{best}}\|_2^2$ be the worst-case squared distance
 136 between each sample and the centroid to which it is assigned in the current best solution. Thus,
 137 ρ represents the maximum per-sample contribution to the current incumbent cost and is used as a
 138 per-sample upper bound. Then, for any region M_k (an axis-aligned box in \mathbb{R}^m) containing the true
 139 optimal μ_k , we can compute the minimal and maximal possible squared distances:

$$140 d_{\min}(\mathbf{x}_s, M_k) = \min_{\mu \in M_k} \|\mathbf{x}_s - \mu\|_2^2, \quad d_{\max}(\mathbf{x}_s, M_k) = \max_{\mu \in M_k} \|\mathbf{x}_s - \mu\|_2^2.$$

141 Because ρ is an upper bound on the true assignment cost, any candidate pair (s, k) with
 142 $d_{\min}(\mathbf{x}_s, M_k) > \rho$ can never be optimal.

143 **Lemma 3.1** (Early-elimination). *For any sample $s \in \mathcal{S}$ and any cluster region M_k , $d_{\min}(\mathbf{x}_s, M_k) >$
 144 $\rho \implies b_{s,k} = 0$ in every optimal solution with objective value not larger than the incumbent.*

145 *Proof.* By definition $d_{\min}(\mathbf{x}_s, M_k) = \min_{\mu \in M_k} \|\mathbf{x}_s - \mu\|_2^2$. If $d_{\min} > \rho$, then for every $\mu \in M_k$ one
 146 has $\|\mathbf{x}_s - \mu\|_2^2 > \rho$. Since ρ is an upper bound on the per-sample cost in the incumbent, assigning
 147 \mathbf{x}_s to cluster k would yield a contradiction. Hence $b_{s,k} = 0$ in any cluster whose overall cost does
 148 not exceed the incumbent cost. \square

149 A complementary rule arises from comparing the worst-case assignment cost in one region to the
 150 best-case cost in the others.

151 **Lemma 3.2** (Forced assignment). *Fix a sample s and let $k^+ \in \mathcal{K}$ satisfy $d_{\max}(\mathbf{x}_s, M_{k^+}) <$
 152 $\min_{k \neq k^+} d_{\min}(\mathbf{x}_s, M_k)$. Then $b_{s,k^+} = 1$ in every optimal solution.*

153 *Proof.* For any $\mu^+ \in M_{k^+}$ and any $\mu \in M_k$ with $k \neq k^+$ we have $\|\mathbf{x}_s - \mu^+\|_2^2 \leq d_{\max}(\mathbf{x}_s, M_{k^+}) <$
 154 $d_{\min}(\mathbf{x}_s, M_k) \leq \|\mathbf{x}_s - \mu\|_2^2$. Thus the distance from \mathbf{x}_s to every center in M_{k^+} is strictly smaller
 155 than the distance to any center in the remaining regions, implying that the unique cost-minimising
 156 assignment is $b_{s,k^+} = 1$. \square

Figure 1: Illustration of sample-determination via link propagation for $K = 3$.

190 Figure 1 illustrates interaction variations of geometric checks and pairwise constraints for data points
191 x_1, x_2 and x_3 . In (a), the distance bounds immediately fix x_1 in M^2 . In (b), the bounds overlap,
192 distances are inconclusive and no assignment is made. In (c), the cannot-link (x_1, x_2) rules out M^2
193 for x_2 , after which the geometric test fixes x_2 in M^3 . In (d), the must-link (x_2, x_3) propagates that
194 assignment to x_3 . This sequence shows how geometry and ML/CL constraints jointly determine
195 assignments prior to branching. If the ML/CL constraints forbid the move $(x_s \rightarrow k^+)$, the node
196 becomes infeasible and is pruned.

3.2 EQUIVALENT UNCONSTRAINED CLUSTERING PROBLEM

200 Although the geometric sample-determination rules and link propagation of Section 3.1 eliminate
201 most binary assignments, the remaining must-link constraints still couple samples and inflate the
202 **branch-and-bound** (BB) complexity. To isolate this effect, consider the ML-only version of
203 Problem (2). Different from the *unconstrained* MSSC problem, pairwise constraint clustering
204 problem contains a family of equalities $b_{s,k} = b_{s',k}$ for $(s, s') \in \mathcal{T}_{ml}$. Nevertheless, we show that
205 collapsing each must-link component into repeated pseudo-samples yields an unconstrained instance
206 with identical global optimum.

207 Let a cluster $\mathcal{C} = \{x_1, x_2, \dots, x_p\}$ and let μ denote an arbitrary centroid for \mathcal{C} . Without loss of
208 generality, assume $x_1, \dots, x_t \in \mathcal{C}_{ml} \subseteq \mathcal{C}$ form a single *must-link component* inside \mathcal{C} . Let μ_{ml}
209 denote the centroid of \mathcal{C}_{ml} and $tr(\Sigma_{ml}^2)$ the trace of the covariance matrix of \mathcal{C}_{ml} . Thus, we have:
210 $\mu_{ml} = \frac{1}{t} \sum_{i=1}^t x_i$, $tr(\Sigma_{ml}^2) = \frac{1}{t-1} \sum_{i=1}^t \|x_i - \mu_{ml}\|^2$.

211 **Lemma 3.3.** *Given 2 clusters, $\mathcal{C} = \{x_1, x_2, \dots, x_p\}$ and $\hat{\mathcal{C}} = \{x_{t+1}, x_{t+2}, \dots, x_p, \underbrace{\mu_{ml}, \dots, \mu_{ml}}_t\}$,*
212 *let $sse_{\mathcal{C}}(\mu)$ and $sse_{\hat{\mathcal{C}}}(\mu)$ denote their respective within-cluster SSE computed with centroid μ . Then,*
213 *the following identity holds:*

$$sse_{\mathcal{C}}(\mu) = sse_{\hat{\mathcal{C}}}(\mu) + (t-1)tr(\Sigma_{ml}^2). \quad (3)$$

216 Note that $(t - 1)tr(\Sigma_{ml}^2)$ is an additive constant that does not affect optimization over centroids.
 217 Figure 2 illustrates this construction of pseudo-samples using a small example. Based on Lemma 3.3,
 218 we form the dataset:
 219

$$220 \hat{X} = \bigcup_{k \in \mathcal{K}_{ml}} \underbrace{\{\mu_{ml,k}, \dots, \mu_{ml,k}\}}_{t_k} \cup (X \setminus \{x_s | (s, s') \in \mathcal{T}_{ml}, s' \in \mathcal{S}\}),$$

$$221$$

222 along with the corresponding unconstrained MSSC optimization problem:
 223

$$224 \min_{\mu, d, b} \sum_{s \in \hat{\mathcal{S}}} d_{s,*} + \sum_{k \in \mathcal{K}_{ml}} (t_k - 1)tr(\Sigma_{ml,k}^2) \quad (4a)$$

$$225$$

$$226 \text{ s.t. Constraints 2b, 2c, 1e, 1d} \quad (4b)$$

$$227$$

228 where $\mu_{ml,k}$ and $\Sigma_{ml,k}^2$ represent the mean (centroid) and covariance matrix of the must-link samples
 229 within cluster k , respectively. \mathcal{K}_{ml} denotes the set of clusters containing must-link samples, and $\hat{\mathcal{S}}$ is
 230 the corresponding index set for the dataset \hat{X} .
 231

232 **Theorem 3.4.** *If μ^* and $z(\mu^*)$ are the global optimal solution and cost of Problem (4), then they are
 233 also the global optimum and cost of the ML-only problem (2), and vice versa.*

234 **Mixed ML and CL constraints.** When both ML and CL constraints are present, collapse each ML
 235 component as above to obtain \hat{X} with only CL constraints. Then apply Lemma 3.1 to eliminate all
 236 CL-violating assignments, yielding an unconstrained MSSC on the reduced dataset.
 237

245 Figure 2: Left: three samples x_1, x_2, x_3 with must-link (x_1, x_2) and centroid μ . Right: collapse of
 246 $\{x_1, x_2\}$ into two pseudo-samples at $\mu_{ml} = \frac{1}{2}(x_1 + x_2)$ preserves the optimal centroid μ .
 247

248 3.3 UPPER BOUNDING STRATEGIES

250 Let $M_0 \subset \mathbb{R}^{mk}$ be the initial axis-aligned box for the full centroid vector $\mu = \{\mu_1, \dots, \mu_K\}$. The
 251 branch-and-bound (BB) algorithm requires a fast yet tight lower bound (LB) for each subproblem
 252 or node M inside the solution space M_0 . In this section two methods for computing upper bounds
 253 at each node of the BB scheme are presented. The first method handles CL constraints through a
 254 k -coloring interpretation. The second method derives a closed-form expression applicable when only
 255 ML constraints are present. When both constraint types coexist, ML constraints can be collapsed
 256 as described in Section 3.2, reformulating the problem into one involving only CL constraints and
 257 allowing the use of the k -coloring approach.
 258

259 **K -Coloring Bound for CL Constraints.** Let K denote the prescribed number of clusters and
 260 let $G_{cl} = (\hat{\mathcal{S}}, \mathcal{T}_{cl})$ be the CL graph. At node $M \subseteq M_0$ maintain a pool of C centroid candidates
 261 $\{\mu^{(c)}\}_{c=1}^C \subset M$. For each candidate c assign each sample $s \in \hat{\mathcal{S}}$ to its closest centroid, $k_s^{(c)} =$
 262 $\arg \min_{k \in \{1, \dots, K\}} \|x_s - \mu_k^{(c)}\|_2^2$, and let $\chi^{(c)}(s) = k_s^{(c)}$. The labeling $\chi^{(c)}$ is *proper* if $\chi^{(c)}(u) \neq$
 263 $\chi^{(c)}(v)$ for every $(u, v) \in \mathcal{T}_{cl}$. Define

$$264 z_{ub}^{(c)} = \begin{cases} \sum_{s \in \hat{\mathcal{S}}} \|x_s - \mu_{\chi^{(c)}(s)}^{(c)}\|_2^2, & \text{if } \chi^{(c)} \text{ is proper,} \\ +\infty, & \text{otherwise.} \end{cases}$$

$$265$$

$$266$$

$$267$$

268 The node upper bound is $\alpha(M) = \min_{1 \leq c \leq C} z_{ub}^{(c)}$. If $\chi^{(c)}$ is proper, then $z_{ub}^{(c)}$ satisfies all CL
 269 constraints and $z(M) \leq \alpha(M)$.
 270

270 **Closed-Form Bound for ML Constraints.** With only must-link (ML) constraints, fix any feasible
 271 centroid set $\hat{\mu} \in M$ and compute $\alpha(M) = \sum_{s \in \hat{\mathcal{S}}} Q_s(\hat{\mu})$, where each $Q_s(\hat{\mu})$ admits a closed form.
 272 The expression yields an admissible bound because every $\hat{\mu} \in M$ respects the ML constraints,
 273 implying $z(M) \leq \alpha(M)$. An initial bound is produced at the root via a heuristic (k -means). Bounds
 274 at descendant nodes are updated with candidates extracted from the relaxations in Section 3.4. The
 275 BB algorithm terminates with the optimal objective value $\alpha + \sum_{k \in \mathcal{K}_{\text{ml}}} q_k \sigma_{\text{ml},k}^2$.
 276

277 3.4 LOWER BOUNDING STRATEGY WITH GROUPING-BASED LAGRANGIAN DECOMPOSITION

279 The branch-and-bound (BB) algorithm requires a fast yet tight lower bound (LB) for each sub-
 280 problem or node M inside the solution space M_0 . An effective strategy to achieve tighter lower
 281 bounds is through Lagrangian decomposition (LD), in which the corresponding non-anticipativity
 282 constraints Cao & Zavala (2019) are dualized with fixed Lagrange multipliers λ and added to the
 283 objective function (Karuppiah & Grossmann, 2008). However, to reduce problem size and improve
 284 relaxation quality, instead of associating each sample with a separate subproblem (as mentioned
 285 in Karuppiah & Grossmann (2008)), we partition the sample set $\hat{\mathcal{S}}$ into G disjoint groups $\hat{\mathcal{S}}_1, \dots, \hat{\mathcal{S}}_G$
 286 with index set $\mathcal{G} = 1, \dots, G$, such that $\bigcup_g \hat{\mathcal{S}}_g = \hat{\mathcal{S}}$ and $\hat{\mathcal{S}}_i \cap \hat{\mathcal{S}}_g = \emptyset$ for $i \neq g$. Instead of replicating
 287 center variables per sample, we assign one per group and enforce consistency through:
 288

$$\min_{\mu_g \in M} \sum_{g \in \mathcal{G}} Q_g(\mu_g), \quad Q_g(\mu_g) := \sum_{s \in \hat{\mathcal{S}}_g} Q_s(\mu_g) \quad \text{s.t.} \quad \mu_g = \mu_{g+1}, \quad \forall g \in 1, \dots, G-1 \quad (5a)$$

291 Dualizing the coupling constraints with multipliers λ yields a tighter lower bound via:

$$\beta^{SG+LD}(M) := \max_{\lambda} \beta^{SG+LD}(M, \lambda) \quad (6)$$

295 This grouped formulation preserves intra-group non-anticipativity while relaxing inter-group consis-
 296 tency, yielding $\beta^{LD}(M) \leq \beta^{SG+LD}(M) \leq z(M)$. While solving (6) requires iterative MISOCPs,
 297 it significantly strengthens the bound. The grouping is fixed at the BB root for efficiency.

299 3.5 BRANCH-AND-BOUND CLUSTERING SCHEME

300 We adopt the framework of the reduced-space branch-and-bound scheme from (Cao & Zavala, 2019)
 301 and tailor the algorithm for the pairwise constrained clustering task. Algorithm 1 depicts the details
 302 of the algorithm, where β and α represent the function of lower and upper bound, respectively. With
 303 the lower and upper bounding strategy provided in the following subsections.

305 **Theorem 3.5.** *Given an exhaustive subdivision on μ , Algorithm 1 converges in the sense that*

$$\lim_{i \rightarrow \infty} \alpha_i = \lim_{i \rightarrow \infty} \beta_i = z. \quad (7)$$

308 The proof is shown in Appendix C.

310 4 COMPUTATIONAL EXPERIMENTS

312 We implemented our algorithm, **Sample-Driven Constrained Group-Based Branch-and-Bound**
 313 (**SDC-GBB**), in **Julia 1.10.3** and evaluated its performance on synthetic and real-world datasets
 314 using a high-performance cluster comprising nodes with 128 AMD Epyc 7702 CPUs (2.0GHz) and
 315 1TB of RAM. Computational experiments were conducted under both serial and parallel config-
 316urations, comparing SDC-GBB against the branch-and-bound (BB) algorithm in CPLEX 22.1.1
 317 (Cplex, 2022), the exact method PC-SOS-SDP (Piccialli et al., 2022a), and the best heuristic out
 318 of the following algorithms: COP- k -means (Wagstaff et al., 2001), encode-kmeans-post (Nghiem
 319 et al., 2020), BLPKM-CC (Baumann, 2020), and Sensitivity Sampling coresets algorithm (Feldman
 320 & Langberg, 2011). All heuristic algorithms were run with 100 restarts (Wagstaff et al., 2001) in 4
 321 hours, and the full results are reported in Appendix E. For parallel applications, subproblems were
 322 distributed across multiple CPU cores with group sizes limited to $\min(162/d - k, 10 \times k)$ during the
 323 lower bound decomposition process. Performance was assessed using Upper Bound (UB), relative
 324 optimality gap, and the number of BB nodes resolved. UB represents the best feasible solution found,

324 **Algorithm 1** Branch-and-Bound Clustering with Geometric Sample Determination

```

325
326 Inputs:  $X = \{x_s\}_{s \in S} \subset \mathbb{R}^d$ ,  $K$ ,  $\mathcal{T}_{ml}$ ,  $\mathcal{T}_{cl}$ 
327 Initialization
328 Initialize  $i = 0$ ,  $\mathbb{M} \leftarrow \{M_0\}$ , tolerance  $\epsilon > 0$ 
329 Compute upper bound  $\alpha_i = \alpha(M_0)$ , lower bound  $\beta_i = \beta(M_0)$ ;
330 Geometric Sample Determination
331 Compute  $d_{\min}(x_s, M_{0,k})$ ,  $d_{\max}(x_s, M_{0,k})$ ;
332 if  $d_{\min}(x_s, M_{0,k}) > \alpha_i$  then  $b_{s,k} \leftarrow 0$  (update  $K_s$ );
333 if  $\{\exists k^+ \text{ with } d_{\max}(x_s, M_{0,k^+}) < \min_{k \neq k^+} d_{\min}(x_s, M_{0,k})\}$  then  $b_{s,k^+} \leftarrow 1$ ;
334 Propagate fixes via  $\mathcal{T}_{ml}$ ,  $\mathcal{T}_{cl}$ ; update  $\{K_s\}$ ;
335 repeat
336     Node Selection
337         Select a set  $M \in \mathbb{M}$  satisfying  $\beta(M) = \beta_i$ ;
338          $\mathbb{M} \leftarrow \mathbb{M} \setminus \{M\}$ ;
339          $i \leftarrow i + 1$ ;
340     Branching
341         Partition  $M$  into subsets  $M_1$  and  $M_2$  with  $\text{relint}(M_1) \cap \text{relint}(M_2) = \emptyset$ ;
342         Add each subset to  $\mathbb{M}$  to create separated child nodes;
343     Bounding
344         Compute  $\alpha(M_1)$ ,  $\beta(M_1)$ ,  $\alpha(M_2)$ ,  $\beta(M_2)$ ;
345          $\beta_i \leftarrow \min\{\beta(M') \mid M' \in \mathbb{M}\}$ ;
346          $\alpha_i \leftarrow \min\{\alpha_{i-1}, \alpha(M_1), \alpha(M_2)\}$ ;
347         Remove all  $M'$  from  $\mathbb{M}$  if  $\beta(M') \geq \alpha_i$ ;
348         If  $|\beta_i - \alpha_i| \leq \epsilon$ , STOP;
349     until  $\mathbb{M} = \emptyset$ 
350 Output  $\hat{\mu}$ ,  $\hat{b}$  and  $z^* = \alpha_i + \sum_{k \in \mathcal{K}_{ml}} (t_k - 1) \text{tr}(\Sigma_{ml,k}^2)$ 

```

351 while the relative optimality gap is calculated as $\frac{\alpha_l - \beta_l}{\min(\alpha_l, \beta_l)} \times 100\%$, where α_l and β_l denote the
352 best lower and upper bounds, respectively. The number of resolved BB nodes indicates the total BB
353 iterations performed. Unlike heuristic methods, deterministic global optimization methods provide
354 an optimality gap, enabling quantitative assessment of solution quality.

355 We evaluate the selected algorithms on 8 real-world datasets taken or sampled from the UCI Machine
356 Learning Repository (Dua & Graff, 2017), Hemicellulose (Wang et al., 2022), PR2392 (Padberg &
357 Rinaldi, 1991), and 7 synthetic datasets generated with 2 features, 3 Gaussian clusters and a fixed
358 random seed (`seed` = 1). Datasets are categorized as small ($n \leq 1,000$), medium ($n \leq 10,000$),
359 large ($n \leq 100,000$), and huge ($n \geq 100,000$), where n is the number of samples¹. We follow
360 the pairwise constraint generation practice with the same classic random-pair sampling pipeline as
361 (Piccialli et al., 2022a; Aloise et al., 2009; Babaki et al., 2014; Guns et al., 2016). Across three
362 separate experiments, namely must-link only (ML-only), cannot-link only (CL-only), and both
363 must-link and cannot-link (ML+CL), each dataset has $\frac{n}{4}$ samples bounded by ML constraints, $\frac{n}{4}$
364 samples bounded by CL constraints, and combining $\frac{n}{4}$ ML with $\frac{n}{4}$ CL constraints respectively. when
365 the optimality gap dropped below 0.1 %, when runtime reached 4 hours for datasets with $n \leq 10,000$
366 or 12 h for those with $n > 10,000$, or when 5 million nodes had been explored.

367 **4.1 NUMERICAL RESULTS**

369 Our work focuses explicitly on solution quality in terms of the MSSC cost, providing an optimality
370 guarantee. With this, SDC-GBB matches the performance of commercial solvers and the state-of-
371 the-art algorithm PC-SOS-SDP (Piccialli et al., 2022a) through *super-point aggregation, targeted*
372 *decomposition, and tight bounding via geometric partitioning* under ML constraints, as well as
373 *geometric sample determination rules* that prune infeasible assignments under CL constraints. SDC-
374 GBB successfully handles instances exceeding two hundred thousand samples across all constraint
375 cases and further scales to ML-only instances with more than 1.5 million samples.

376
377 ¹Tables 2-3 use a subset of datasets from Table 1 ($n \leq 210,000$). Table 1 includes 15 datasets of up to 1.5M
378 samples that are only tractable under ML constraints due to the scalability limitations discussed in Section 6.

378 **Small and medium-sized datasets** For small datasets, SDC-GBB matches the state-of-the-art
 379 PC-SOS-SDP algorithm, outperforming CPLEX and heuristic methods across all constraint settings,
 380 as shown in Tables 1, 2, 3. On real-world benchmarks, SDC-GBB and PC-SOS-SDP achieve global
 381 optimality with gaps $\leq 0.1\%$ on Iris ($n = 150$) (Fisher, 1936) and Seeds ($n = 210$) (Charytanowicz
 382 et al., 2010). The heuristic method also closely approximates the global optima, whereas CPLEX
 383 yields significantly larger gaps of around 10%–69% for ML, 73%–86% for CL, and 37%–75% for
 384 combined constraints. In experiments with medium-sized datasets, SDC-GBB consistently outper-
 385 forms all other algorithms, achieving optimality gaps $\leq 0.1\%$ in nearly all cases, with exceptions
 386 in PR2392 (CL-only) and RDS_CNT (CL-only), where gaps slightly increase to 2.68% and 1.23%,
 387 respectively. The best heuristic method consistently performs slightly worse than SDC-GBB but
 388 remains competitive, providing relatively small gaps across datasets. Conversely, CPLEX returns
 389 gaps close to 100% across all medium-sized datasets, and PC-SOS-SDP either generates higher gaps
 390 than SDC-GBB or fails to converge for datasets with $\geq 2,000$ samples.

391 Table 1: Computational performance with must-link (SDC-GBB, $k = 3$).
 392

REAL-WORLD DATASETS										
DATASET	METHOD	UB	NODES	GAP (%)	DATASET	METHOD	UB	NODES	GAP (%)	
IRIS ² N = 150 D = 4	HEURISTIC	83.82	—	—	HTRU2 N = 17,898 D = 8	HEURISTIC	1.407×10^8	—	—	
	CPLEX	84.07	12987400	10.55%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	83.63	1	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	83.63	10	$\leq 0.1\%$		PARALLEL	1.022×10^8	67	$\leq 0.1\%$	
SEED ² N = 210 D = 7	HEURISTIC	620.78	—	—	SPNET3D_5 ³ N = 50,000 D = 3	HEURISTIC	6.627×10^6	—	—	
	CPLEX	755.91	5814200	69.48%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	620.23	1	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	620.23	7	$\leq 0.1\%$		PARALLEL	6.609×10^6	61	1.51%	
HEMI ² N = 1,955 D = 7	HEURISTIC	1.602×10^7	—	—	SKIN_8 N = 80,000 D = 3	HEURISTIC	4.533×10^8	—	—	
	CPLEX	3.204×10^7	90400	96.26%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	1.601×10^7	1	2.07%		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	1.601×10^7	8	$\leq 0.1\%$		PARALLEL	4.138×10^8	12	0.62%	
PR2392 ² N = 2,392 D = 2	HEURISTIC	3.210×10^{10}	—	—	URBANGB N = 360,177 D = 2	HEURISTIC	1.643×10^9	—	—	
	CPLEX	3.816×10^{10}	281000	98.76%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	3.209×10^{10}	22	$\leq 0.1\%$		PARALLEL	4.135×10^8	2	12.97%	
RDS_CNT ² N = 10,000 D = 3	HEURISTIC	6.122×10^7	—	—	SPNET3D N = 434,874 D = 3	HEURISTIC	5.848×10^7	—	—	
	CPLEX	1.154×10^8	12600	100.00%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	6.078×10^7	32	$\leq 0.1\%$		PARALLEL	5.797×10^7	2	7.43%	
SYNTHETIC DATASETS (D = 2)										
SYN-210000 N = 210,000	HEURISTIC	2.163×10^6	—	—	SYN-1050000 N = 1,050,000 D = 2	HEURISTIC	1.050×10^7	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	2.163×10^6	26	$\leq 0.1\%$		PARALLEL	1.050×10^7	1	2.45%	
SYN-420000 N = 420,000	HEURISTIC	6.010×10^6	—	—	SYN-1500000 N = 1,500,000 D = 3	HEURISTIC	1.725×10^7	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	6.010×10^6	18	0.61%		PARALLEL	1.725×10^7	1	2.66%	

414 Table 2: Computational performance with cannot-link (SDC-GBB, $k = 3$).
 415

REAL-WORLD DATASETS										
DATASET	METHOD	UB	NODES	GAP (%)	DATASET	METHOD	UB	NODES	GAP (%)	
IRIS ² N = 150 D = 4	HEURISTIC	80.31	—	—	RDS_CNT ² N = 10,000 D = 3	HEURISTIC	2.897×10^7	—	—	
	CPLEX	119.03	8259900	73.59%		CPLEX	5.198×10^7	11559	100.00%	
	PC-SOS-SDP	80.21	1	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	80.21	17	$\leq 0.1\%$		PARALLEL	2.861×10^7	49	1.23%	
SEED ² N = 210 D = 7	HEURISTIC	603.04	—	—	HTRU2 ³ N = 17,898 D = 8	HEURISTIC	1.740×10^8	—	—	
	CPLEX	771.54	5244683	86.67%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	601.96	15	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	601.96	18	$\leq 0.1\%$		PARALLEL	9.225×10^7	15	$\leq 0.1\%$	
HEMI ² N = 1,955 D = 7	HEURISTIC	1.401×10^7	—	—	SPNET3D_5 N = 50,000 D = 3	HEURISTIC	3.938×10^6	—	—	
	CPLEX	2.667×10^7	65002	100.00%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	1.328×10^7	i^4	17.70%		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	1.328×10^7	5	$\leq 0.1\%$		PARALLEL	3.831×10^6	34	$\leq 0.1\%$	
PR2392 ² N = 2,392 D = 2	HEURISTIC	2.566×10^{10}	—	—	SKIN_8 N = 80,000 D = 3	HEURISTIC	6.367×10^8	—	—	
	CPLEX	3.266×10^{10}	256964	99.96%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	2.512×10^{10}	97	2.68%		PARALLEL	3.016×10^8	8	1.32%	
SYNTHETIC DATASETS (D = 2)										
SYN-12000 N = 12,000	HEURISTIC	9.503×10^4	—	—	SYN-42000 N = 42,000 D = 2	HEURISTIC	5.116×10^5	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	9.053×10^4	89	0.75%		PARALLEL	5.116×10^5	22	$\leq 0.1\%$	
SYN-21000 N = 21,000	HEURISTIC	1.817×10^5	—	—	SYN-210000 N = 210,000 D = 3	HEURISTIC	2.161×10^6	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	1.817×10^5	27	0.32%		PARALLEL	2.161×10^6	1	2.38%	

Large and huge datasets Only SDC-GBB and heuristic algorithms can handle $n > 10,000$ datasets, with SDC-GBB getting better UB and reaching global optimality or maintaining stable gaps below 3% in all datasets and experiments other than URBANGB and SPNET3D, which receive 5% - 13% gaps. Although the gaps we achieved with these instances are not optimal, they can be further optimized with increased parallelization, and it is worth noting that no other global optimization method can find solutions at this scale. Meanwhile, both PC-SOS-SDP and CPLEX cannot find any feasible solution for these datasets given the 12-hour time limit. This shows that SDC-GBB can scale up to 1,500 times for ML-only constraints, and 200 times for CL-only and ML+CL constraints when compared with state-of-the-art algorithms.

Table 3: Computational performance with both must-link and cannot-link (SDC-GBB, $k = 3$).

REAL-WORLD DATASETS										
DATASET	METHOD	UB	NODES	GAP (%)	DATASET	METHOD	UB	NODES	GAP (%)	
IRIS ² N = 150 D = 4	HEURISTIC	86.85	—	—	RDS_CNT ² N = 10,000 D = 3	HEURISTIC	7.579×10^7	—	—	
	CPLEX	93.75	9166269	37.47%		CPLEX	1.493×10^8	4100	100.00%	
	PC-SOS-SDP	86.76	3	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	86.76	17	$\leq 0.1\%$		PARALLEL	7.437×10^7	32	$\leq 0.1\%$	
SEED ² N = 210 D = 7	HEURISTIC	597.14	—	—	HTRU2 ³ N = 17,898 D = 8	HEURISTIC	1.859×10^8	—	—	
	CPLEX	760.73	6044677	75.32%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	596.61	5	$\leq 0.1\%$		PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	596.61	9	$\leq 0.1\%$		PARALLEL	1.141×10^8	79	$\leq 0.1\%$	
HEMI ² N = 1,955 D = 7	HEURISTIC	1.566×10^7	—	—	SPNET3D_5 ³ N = 50,000 D = 3	HEURISTIC	8.171×10^6	—	—	
	CPLEX	3.519×10^7	39600	100.00%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	1.533×10^7	115	$\leq 0.1\%$		PARALLEL	7.925×10^6	45	5.01%	
PR2392 ² N = 2,392 D = 2	HEURISTIC	2.922×10^{10}	—	—	SKIN_8 N = 80,000 D = 3	HEURISTIC	7.579×10^8	—	—	
	CPLEX	3.240×10^{10}	239465	99.50%		CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	2.916×10^{10}	35	$\leq 0.1\%$		PARALLEL	4.258×10^8	11	4.86%	
SYNTHETIC DATASETS (D = 2)										
SYN-12000 N = 12,000	HEURISTIC	9.520×10^4	—	—	SYN-42000 N = 42,000	HEURISTIC	5.133×10^5	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	9.520×10^4	25	$\leq 0.1\%$		PARALLEL	5.133×10^5	31	1.37%	
SYN-21000 N = 21,000	HEURISTIC	1.818×10^5	—	—	SYN-210000 N = 210,000	HEURISTIC	2.165×10^6	—	—	
	CPLEX	NO FEASIBLE SOLUTION FOUND				CPLEX	NO FEASIBLE SOLUTION FOUND			
	PC-SOS-SDP	NO SOLUTION FOUND				PC-SOS-SDP	NO SOLUTION FOUND			
	PARALLEL	1.818×10^5	37	0.18%		PARALLEL	2.164×10^6	28	0.64%	

² LESS THAN 4 HOURS.³ LESS THAN 8 HOURS.⁴ SOLVED AT THE ROOT NODE.

5 CONCLUSION

In this paper, we presented Sample-Driven Constrained Group-Based Branch-and-Bound (SDC-GBB), a deterministic global optimization algorithm for pairwise-constrained MSSC. We prove convergence to a globally ε -optimal solution and demonstrate scalability to datasets exceeding 200,000 samples in all constraint settings, which is **over 200 times larger** than the 800-sample benchmark of (Piccialli et al., 2022a), and further extend to **over 1,500 times larger** with ML-only instances having more than one million samples while maintaining optimality gaps below 3%. When empirically evaluated on real-world benchmarks of various domains, SDC-GBB consistently achieves low optimality gaps across diverse constraint settings.

6 LIMITATIONS AND FUTURE DIRECTIONS

Similar to prior work, our algorithm struggles to scale to one million samples with CL constraints due to the NP-hard nature of this constraint type. Future work may consider tightening the grouped-sample Lagrangian lower bound (Section 3.4) by dualizing the CL graph with relaxing binary indicators to $[0,1]$ and penalty multipliers z_{ij} updated via subgradient methods. This formulation would produce a more compact MISOCP with fewer active binary variables thanks to the relaxation of z_{ij} and stronger continuous bounds, reducing the number of branches in dense CL graphs, as shown by successful Lagrangian-penalty approaches in semi-supervised clustering and global MISOCP strategies. An alternative is to incorporate clique inequalities or separation cuts for the CL graph, following MIP methodologies that substantially improve bounds. However, including these Lagrangian terms at each node would increase the solve time of the relaxation, so empirically evaluating the trade-off between bound improvement and per-node cost will be key.

486 **Ethics Statement** Our study uses the SKIN (Skin Segmentation) dataset from the UCI Machine
 487 Learning Repository. The dataset contains de-identified RGB pixel triplets (B, G, R) sampled
 488 from facial images and is derived from two collections: the PAL Face Database and the DARPA-
 489 sponsored Color FERET images. All human participants provided consent for the use of these
 490 collections for research purposes. In line with data-privacy best practices, the UCI release exposes only
 491 anonymized pixel triplets and does not include raw images, which reduces the risk of re-identification
 492 in downstream work. Concurrently, our framework optimizes only the Minimum Sum-of-Squares
 493 Criteria (MSSC) objective, and as is well documented, MSSC/k-means-style clustering can reproduce
 494 and even amplify existing biases in the data, particularly at scale. In high-stakes or sensitive domains,
 495 deployments that do not account for these effects can lead to disparate treatment or outcomes across
 496 demographic groups. We recommend that practitioners perform fairness audits before deployment,
 497 and consider mitigation techniques such as fair clustering variants and post-processing adjustments if
 498 such disparities arise. The absence of fairness-aware safeguards in the current implementation is a
 499 limitation of this work, and integrating such constraints or corrections is left for future extensions.
 500

500 **Reproducibility Statement** In this section, we outline necessary details for reproducing all experi-
 501 ments described in the paper. We provide comprehensive hardware and software configuration for
 502 SDC-GBB as well as pairwise constraint generation, seeding protocol, runtime limit and data setup,
 503 including real and synthetic dataset generation in Section 4. The implementation of the SDC-GBB
 504 algorithm is thoroughly described through Algorithm 1. Lastly, we document evaluation in Section 4
 505 along with the results of all baselines used for comparison in Sections D and E. To further support
 506 the reproducibility of our results, we will release our experiment code upon acceptance, enabling
 507 other researchers to replicate and expand on our work.
 508

509 REFERENCES

510 Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. Np-hardness of euclidean sum-of-
 511 squares clustering. *Machine Learning*, 75(2):245–248, 2009.
 512
 513 Daniel Aloise, Pierre Hansen, and Leo Liberti. An improved column generation algorithm for
 514 minimum sum-of-squares clustering. *Mathematical Programming*, 131(1):195–220, 2012a.
 515
 516 Daniel Aloise, Pierre Hansen, and Caroline Rocha. A column generation algorithm for semi-
 517 supervised minimum sum-of-squares clustering. In *Global Optimization Workshop 2012*, pp.
 518 19–22, 2012b.
 519
 520 Behrouz Babaki, Tias Guns, and Siegfried Nijssen. Constrained clustering using column generation.
 521 In Helmut Simonis (ed.), *Integration of AI and OR Techniques in Constraint Programming*, pp.
 522 438–454, Cham, 2014. Springer International Publishing.
 523
 524 Sugato Basu, Arindam Banerjee, and Raymond J. Mooney. Active semi-supervision for pairwise
 525 constrained clustering. In *Proceedings of the 2004 SIAM International Conference on Data Mining*
 526 (SDM), pp. 333–344. Society for Industrial and Applied Mathematics, 2004.
 527
 528 Sugato Basu, Ian Davidson, and Kiri Wagstaff (eds.). *Constrained Clustering: Advances in Algo-
 529 rithms, Theory, and Applications*. Chapman and Hall/CRC, New York, n.d. edition, 2008.
 530
 531 Philipp Baumann. A binary linear programming-based k-means algorithm for clustering with must-
 532 link and cannot-link constraints. In *2020 IEEE international conference on industrial engineering*
 533 and *engineering management (IEEM)*, pp. 324–328. IEEE, 2020.
 534
 535 Philipp Baumann and Dorit S. Hochbaum. An algorithm for clustering with confidence-based
 536 must-link and cannot-link constraints. *INFORMS Journal on Computing*, 34(1), 2024.
 537
 538 Dimitris Bertsimas and Jack Dunn. Optimal classification trees. *Springer US*, 2017.
 539 Andreas Brieden, Peter Gritzmann, and Fabian Klemm. Constrained clustering via diagrams: A
 540 unified theory and its application to electoral district design. *European Journal of Operational
 541 Research*, 263(1):18–34, 2017.
 542
 543 Michael J. Brusco. A repetitive branch-and-bound procedure for minimum within-cluster sums of
 544 squares partitioning. *Psychometrika*, 71(2):347–363, 2006.

540 Yankai Cao and Victor M. Zavala. A scalable global optimization algorithm for stochastic nonlinear
 541 programs. *J. of Global Optimization*, 75(2):393–416, 2019.
 542

543 Małgorzata Charytanowicz, Jerzy Niewczas, Piotr Kulczycki, Piotr A. Kowalski, Szymon Łukasik,
 544 and Sławomir Źak. Complete gradient clustering algorithm for features analysis of x-ray images.
 545 In *Information Technologies in Biomedicine*, pp. 15–24, Berlin, Heidelberg, 2010. Springer.

546 Cplex. User’s manual for cplex. Technical report, International Business Machines Corporation, New
 547 York, NY, 2022.
 548

549 Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. A declarative framework for
 550 constrained clustering. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip
 551 Źelezný (eds.), *Machine Learning and Knowledge Discovery in Databases*, pp. 419–434, Berlin,
 552 Heidelberg, 2013. Springer.

553 Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained minimum sum of
 554 squares clustering by constraint programming. In Gilles Pesant (ed.), *Principles and Practice of
 555 Constraint Programming*, pp. 557–573, Cham, 2015. Springer International Publishing.
 556

557 Thi-Bich-Hanh Dao, Khanh-Chuong Duong, and Christel Vrain. Constrained clustering by constraint
 558 programming. *Artificial Intelligence*, 244:70–94, 2017.
 559

560 Ian Davidson and S. S. Ravi. Clustering with constraints: Feasibility issues and the k-means algorithm.
 561 In *Proceedings of the 2005 SIAM International Conference on Data Mining (SDM)*, pp. 138–149.
 562 Society for Industrial and Applied Mathematics, 2005.
 563

563 Dheeru Dua and Casey Graff. Uci machine learning repository, 2017. URL <http://archive.ics.uci.edu/ml>.
 564

565 Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
 566 In *Proceedings of the forty-third annual ACM symposium on Theory of computing*, pp. 569–578,
 567 2011.
 568

569 R. A. Fisher. The use of multiple measurements in taxonomic problems. *Annals of Eugenics*, 7(2):
 570 179–188, 1936.
 571

571 Tias Guns, Thi-Bich-Hanh Dao, Christel Vrain, and Khanh-Chuong Duong. Repetitive branch-and-
 572 bound using constraint programming for constrained minimum sum-of-squares clustering. In
 573 *Proceedings of the Twenty-second European Conference on Artificial Intelligence*, pp. 462–470,
 574 NLD, 2016. IOS Press.
 575

576 Gurobi. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.
 577

577 Reiner Horst and Hoang Tuy. *Global optimization: Deterministic approaches*. Springer Science &
 578 Business Media, 2013.
 579

580 Kaixun Hua, Mingfei Shi, and Yankai Cao. A scalable deterministic global optimization algorithm for
 581 clustering problems. In *International Conference on Machine Learning*, pp. 4391–4401. PMLR,
 582 2021.
 583

583 Haichao Huang, Yong Cheng, and Ruilian Zhao. A semi-supervised clustering algorithm based on
 584 must-link set. In Changjie Tang, Charles X. Ling, Xiaofang Zhou, Nick J. Cercone, and Xue Li
 585 (eds.), *Advanced Data Mining and Applications*, pp. 492–499, Berlin, Heidelberg, 2008. Springer.
 586

587 A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. *ACM Computing Surveys*, 31(3):
 588 264–323, 1999.
 589

589 Anil K. Jain. Data clustering: 50 years beyond k-means. *Pattern Recognition Letters*, 31(8):651–666,
 590 2010.
 591

592 Ramkumar Karuppiah and Ignacio E. Grossmann. A lagrangean-based branch-and-cut algorithm for
 593 global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures.
Journal of Global Optimization, 41(2):163–186, 2008.

594 Leo Liberti and Benedetto Manca. Side-constrained minimum sum-of-squares clustering: mathematical
 595 programming and random projections. *Journal of Global Optimization*, 83(1):83–118,
 596 2022.

597 Nguyen-Viet-Dung Nghiem, Christel Vrain, Thi-Bich-Hanh Dao, and Ian Davidson. Constrained
 598 clustering via post-processing. In *Discovery Science: 23rd International Conference, DS 2020,
 599 Thessaloniki, Greece, October 19–21, 2020, Proceedings*, pp. 53–67, Berlin, Heidelberg, 2020.
 600 Springer-Verlag.

602 Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of large-scale
 603 symmetric traveling salesman problems. *SIAM Review*, 33(1):60–100, 1991.

604

605 Mercedes Pelegrín. New variants of the simple plant location problem and applications. *European
 606 Journal of Operational Research*, 306(3):1094–1108, 2023.

607 Jiming Peng and Yu Xia. A cutting algorithm for the minimum sum-of-squared error clustering. In
 608 *Proceedings of the 2005 SIAM International Conference on Data Mining (SDM)*, pp. 150–160.
 609 Society for Industrial and Applied Mathematics, 2005.

610

611 Veronica Piccialli, Anna Russo Russo, and Antonio M. Sudoso. An exact algorithm for semi-
 612 supervised minimum sum-of-squares clustering. *Computers & Operations Research*, 147, 2022a.

613

614 Veronica Piccialli, Antonio M. Sudoso, and Angelika Wiegele. Sos-sdp: An exact solver for minimum
 615 sum-of-squares clustering. *INFORMS Journal on Computing*, 34(4):2144–2162, 2022b.

616

617 M. R. Rao. Cluster analysis and mathematical programming. *Journal of the American Statistical
 618 Association*, 66(335):622–626, 1971.

619

620 Tonny Rutayisire, Yan Yang, Chao Lin, and Jinyuan Zhang. A modified cop-kmeans algorithm based
 621 on sequenced cannot-link set. In JingTao Yao, Sheela Ramanna, Guoyin Wang, and Zbigniew Suraj
 (eds.), *Rough Sets and Knowledge Technology*, pp. 217–225, Berlin, Heidelberg, 2011. Springer.

622

623 Chris Schwiegelshohn and Omar Ali Sheikh-Omar. An empirical evaluation of k -means coresets.
 624 *arXiv preprint arXiv:2207.00966*, 2022.

625

626 Helmut Späth. *Cluster Analysis Algorithms for Data Reduction and Classification of Objects*. E.
 627 Horwood, n.d., n.d. edition, 1980.

628

629 Wei Tan, Yan Yang, and Tianrui Li. An improved cop-kmeans algorithm for solving constraint
 630 violation. In *Computational Intelligence: Foundations and Applications*, pp. 690–696. World
 Scientific, 2010.

631

632 Wei Tang, Yang Yang, Lanling Zeng, and Yongzhao Zhan. Size constrained clustering with milp
 633 formulation. *IEEE Access*, 8:1587–1599, 2020.

634

635 Tian Tian, Jie Zhang, Xiang Lin, Zhi Wei, and Hakon Hakonarson. Model-based deep embedding for
 636 constrained clustering analysis of single cell rna-seq data. *Nature Communications*, 12(1):1873,
 2021.

637

638 Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k -means clustering with
 639 background knowledge. In *Proceedings of the Eighteenth International Conference on Machine
 640 Learning*, pp. 577–584, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

641

642 Edward Wang, Riley Ballachay, Genpei Cai, Yankai Cao, and Heather L. Trajano. Predicting xylose
 643 yield from prehydrolysis of hardwoods: A machine learning approach. *Frontiers in Chemical
 Engineering*, 4, 2022.

644

645 Yu Xia. A global optimization method for semi-supervised clustering. *Data Mining and Knowledge
 646 Discovery*, 18(2):214–256, 2009.

647

648 Jason Xu and Kenneth Lange. Power k -means clustering. In *Proceedings of the 36th International
 649 Conference on Machine Learning*, pp. 6921–6931, Berlin, Heidelberg, 2019. PMLR.

648 Yi Yang, Kunpeng Zhang, and Yangyang Fan. Analyzing firm reports for volatility prediction: A
649 knowledge-driven text-embedding approach. *INFORMS Journal on Computing*, 34(1):522–540,
650 2022.

651

652 Ying Zhang, Xiangli Li, and Mengxue Jia. Semi-supervised nonnegative matrix factorization
653 with pairwise constraints for image clustering. *International Journal of Machine Learning and*
654 *Cybernetics*, 13(11):3577–3587, 2022.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A TWO-STAGE PROGRAMS REFORMULATION**
 703

704
 705 Once the must-link set \mathcal{T}_{ml} has been collapsed into pseudo-samples (Sec. 3.2), the additive constant
 706 $(t - 1) \text{tr}(\Sigma_{ml}^2)$ can be pre-computed. Hence minimising the objective in (4a) is equivalent to
 707 minimising $\sum_{s \in \hat{\mathcal{S}}} d_{s,*}$. The optimal solution of (4) is obtained from the two-stage program:

708
 709
$$z = \min_{\mu \in M_0} \sum_{s \in \hat{\mathcal{S}}} Q_s(\mu), \quad (8)$$

 710

711
 712 where μ are the *first-stage* variables and $Q_s(\mu)$ is the optimal value of the *second-stage* problem
 713 defined below. After (i) collapsing must-link components and (ii) applying the geometric Lemmas
 714 1–2 together with cannot-link propagation, each sample s may still be assigned only to a *viable* subset
 715 $\mathcal{K}_s \subseteq \mathcal{K}$. The reduced dataset $\hat{\mathcal{S}}$ and the family $\{\mathcal{K}_s\}_{s \in \hat{\mathcal{S}}}$ are fixed once at the root node.

716
 717
$$Q_s(\mu) = \min_{d_s, b_s} d_{s,*} \quad (9)$$

 718 s.t. Constraints 2b, 2c, 1e, 1d.

721
 722 Here $d_s = [d_{s,k}]_{k \in \mathcal{K}_s}$ and $b_s = [b_{s,k}]_{k \in \mathcal{K}_s}$ are the *second-stage* variables. The closed set $M_0 = \{\mu \mid$
 723 $\mu^l \leq \mu \leq \mu^u\}$ bounds every centre with $\mu_{k,i}^l = \min_s X_{s,i}$ and $\mu_{k,i}^u = \max_s X_{s,i}$ for all $k \in \mathcal{K}$ and
 724 $i = 1, \dots, m$. For convenience we choose a *single* Big- M constant

725
 726
$$N = \max_{s,k} \sum_{i=1}^m \max\{|x_{s,i} - \mu_{k,i}^l|^2, |x_{s,i} - \mu_{k,i}^u|^2\},$$

 727

729
 730 which leaves all bounds valid and simplifies the notation. The bounds μ^l, μ^u are computed once at
 731 the root node and inherited unchanged by every BB subproblem. We denote by $\text{relint}(\mathcal{M})$ and $\delta(\mathcal{M})$
 732 the relative interior and the diameter of a set. Throughout this paper, the diameter of the box set M_0
 733 is $\delta(M_0) = \|\mu^u - \mu^l\|_\infty$.

734 It can be shown that the closed-form solution to the second-stage problem is
 735

736
$$Q_s(\mu) = \min_{k \in \mathcal{K}_s} \|x_s - \mu_k\|_2^2.$$

 737

738
 739 Since $Q_s(\mu)$ is the minimum of a finite number of continuous functions, Q_s is continuous. Because
 740 of the compactness of M_0 and continuity of $Q_s(\mu)$, the clustering Problem 8 can attain its minimum
 741 according to the generalized Weierstrass theorem.

742 When the BB algorithm explores a box $M \subseteq M_0$, it solves the *primal node problem*
 743

744
 745
$$z(M) = \min_{\mu \in M} \sum_{s \in \hat{\mathcal{S}}} Q_s(\mu). \quad (10)$$

 746

747
 748 Replicating centres for each sample and enforcing non-anticipativity (11b) yields the lifted form
 749

750
$$\min_{\mu_s \in M} \sum_{s \in \hat{\mathcal{S}}} Q_s(\mu_s) \quad (11a)$$

 751

752 s.t. $\mu_s = \mu_{s+1}, \quad s = 1, \dots, |\hat{\mathcal{S}}| - 1. \quad (11b)$
 753

754
 755 Problems (10) and (11) are equivalent, and retain all cannot-link information through the viable-cluster
 sets $\{\mathcal{K}_s\}_{s \in \hat{\mathcal{S}}}$.

756 **B PROOF OF THEOREMS**
757758 **B.1 PROOF OF LEMMA 3.3**
759760 *Proof.*

761
$$\text{sse}_{\mathcal{C}}(\mu) = \sum_{i=1}^p \|x_i - \mu\|^2 \quad (12)$$

762

763
$$= \sum_{i=1}^t \|x_i - \mu\|^2 + \sum_{i=t+1}^p \|x_i - \mu\|^2 \quad (13)$$

764

765
$$= \sum_{i=1}^t \|x_i\|^2 - 2\mu^T \sum_{i=1}^t x_i + t\|\mu\|^2 + \sum_{i=t+1}^p \|x_i - \mu\|^2 \quad (14)$$

766

767 Here $\sum_{i=1}^t \|x_i\|^2$ can be rewritten as follow:
768

769
$$\sum_{i=1}^t \|x_i\|^2 = \sum_{i=1}^t \|x_i - \mu_{ml} + \mu_{ml}\|^2 \quad (15)$$

770

771
$$= \sum_{i=1}^t \|x_i - \mu_{ml}\|^2 - 2\mu_{ml}^T \sum_{i=1}^t (x_i - \mu_{ml}) + t\|\mu_{ml}\|^2 \quad (16)$$

772

773
$$= \sum_{i=1}^t \|x_i - \mu_{ml}\|^2 + t\|\mu_{ml}\|^2 \quad (17)$$

774

775
$$= (t-1)\text{tr}(\Sigma^2) + t\|\mu_{ml}\|^2 \quad (18)$$

776

777 Thus, we have:
778

779
$$\text{sse}_{\mathcal{C}}(\mu) = \sum_{i=1}^t \|x_i\|^2 - 2\mu^T \sum_{i=1}^t x_i + t\|\mu\|^2 + \sum_{i=t+1}^p \|x_i - \mu\|^2 \quad (19)$$

780

781
$$= (t-1)\text{tr}(\Sigma_{ml}^2) + t\|\mu_{ml}\|^2 - 2t\mu^T \mu_{ml} + t\|\mu\|^2 + \sum_{i=t+1}^p \|x_i - \mu\|^2 \quad (20)$$

782

783
$$= (t-1)\text{tr}(\Sigma_{ml}^2) + t\|\mu_{ml} - \mu\|^2 + \sum_{i=t+1}^p \|x_i - \mu\|^2 \quad (21)$$

784

785
$$= (t-1)\text{tr}(\Sigma_{ml}^2) + \text{sse}_{\hat{\mathcal{C}}}(\mu) \quad (22)$$

786

787 \square
788789 **B.2 PROOF OF THEOREM 3.4**
790791 *Proof.* (\Rightarrow) Let μ^* denote a globally optimal solution of Problem (4) as a result of ML collapse. Each pseudo-sample then corresponds to exactly one must-link component of the original dataset. In constructing Problem (4), assign every genuine sample in that component to the cluster of its associated pseudo-sample; any sample not belonging to a must-link component retains the label it receives in the unconstrained solution. This enforces $b_{i,k} = b_{i',k}$ for all $(i, i') \in \mathcal{T}_{ml}$, so the pair (μ^*, b^*) is feasible for Problem (2). At the same time, the resulting objective matches that of Problem (4), since the additive term $\sum_{k \in \mathcal{K}_{ml}} (t_k - 1) \text{tr}(\Sigma_{ml,k}^2)$ precisely reinstates the variance eliminated when collapsing each must-link component. Hence, the optimal solution of Problem (4) is optimal for Problem (2).792 (\Leftarrow) Let (μ^*, b^*) be a global optimum for Problem (2) on the original instance. Collapse ML
793 constraints based on Lemma 2 to form the pseudo-sample instance $\hat{\mu}$. Then $\hat{\mu}$ is feasible for
794 the unconstrained Problem (4) and so is the pair $(\hat{\mu}, \hat{b})$. By contradiction, assume that $\hat{\mu}$ is not
795 optimal for Problem (4). Then there exists a feasible μ^\dagger for (4) with $\text{sse}_{\mathcal{C}}(\mu^\dagger) < \text{sse}_{\mathcal{C}}(\hat{\mu})$. Via

reconstructing the ML constrained Problem (2), we obtain $sse_{\hat{\mathcal{C}}}(\mu^\dagger, b^\dagger) = sse_{\mathcal{C}}(\mu^\dagger) + C < sse_{\mathcal{C}}(\hat{\mu}) + C = sse_{\hat{\mathcal{C}}}(\mu^*, b^*)$, which contradicts the optimality of (μ^*, b^*) . Hence, the optimal solution for Problem (2) is optimal for Problem (4). \square

C CONVERGENCE ANALYSIS

In this section we establish the convergence of the proposed BB scheme, constructed with the grouping-based Lagrangian decomposition lower bound and the decomposable upper bound based on closed form solutions for must-link or K-coloring. A key feature of our algorithm is that it **branches exclusively in the space of first-stage variables μ to guarantee convergence**. As all must-link components have been collapsed and every CL-infeasible assignment eliminated, the remaining problem is an *unconstrained* optimization over μ with continuous objective $Q(\mu) = \sum_{s \in \hat{\mathcal{S}}} Q_s(\mu)$.

Therefore, the proof of convergence can easily adopt the foundational results of (Cao & Zavala, 2019) and the seminal contributions in Chapter IV of (Horst & Tuy, 2013). Although the original pairwise-constrained MSSC places additional feasibility requirements on the assignment variables, our *equivalent unconstrained* re-formulation—obtained by first collapsing every must-link component (Theorem 3.4) and then discarding all assignments that violate cannot-link constraints (See Lemma 3.1 and 3.2)—allows *any* point $\mu \in M$ to be treated as a feasible first-stage decision. The proof of Theorem 3.5 is thus becoming obvious with the definitions and theoretical frameworks of Cao & Zavala (2019), while only notational adaptations will be processed to reflect the reduced dataset $\hat{\mathcal{S}}$ and the viable-cluster sets $\{\mathcal{K}_s\}_{s \in \hat{\mathcal{S}}}$ specific to the present problem.

Lemma C.1 (Lower Bounding Consistency). *Given an exhaustive subdivision (See Definition IV.10 (Horst & Tuy, 2013)) on μ , the lower-bounding operation in Algorithm 1 is strongly consistent (See Definition IV.7 (Horst & Tuy, 2013)).*

Proof. With an exhaustive subdivision, each box M_{i_q} shrinks to a single point $\bar{\mu}$, so $\bar{M} = \{\bar{\mu}\}$. We prove that $\lim_{q \rightarrow \infty} \beta(M_{i_q}) = z(\bar{M}) = \sum_{s \in \hat{\mathcal{S}}} Q_s(\bar{\mu})$. Define, for every sample s , $\tilde{\mu}_{i_q, s} \in \arg \min_{\mu \in M_{i_q}} \min_{k \in \mathcal{K}_s} \|x_s - \mu_k\|_2^2$, where \mathcal{K}_s is the set of clusters still admissible for s after the cannot-link pruning. **Because each \mathcal{K}_s already excludes every cannot-link pairing, every distance minimized in the definition of $\tilde{\mu}_{i_q, s}$ automatically respects all CL constraints.** Since $M_{i_q} \rightarrow \{\bar{\mu}\}$, we have $\tilde{\mu}_{i_q, s} \rightarrow \bar{\mu}$. Using the continuity of $Q_s(\cdot)$, it follows that $Q_s(\bar{\mu}) = \lim_{q \rightarrow \infty} Q_s(\tilde{\mu}_{i_q, s}) = \lim_{q \rightarrow \infty} \beta_s(M_{i_q})$. Summing over all s yields $\lim_{q \rightarrow \infty} \beta(M_{i_q}) = \sum_{s \in \hat{\mathcal{S}}} Q_s(\bar{\mu})$. Proof complete. \square

Lemma C.2 (Lower Bounding Convergence). *Given an exhaustive subdivision (Definition IV.10 (Horst & Tuy, 2013)) on μ , Algorithm 1 satisfies $\lim_{i \rightarrow \infty} \beta_i = z$.*

Proof. This result can be obtained from Lemma C.1 and Theorem IV.3 of (Horst & Tuy, 2013). \square

Lemma C.3 (Upper Bounding Convergence). *Given an exhaustive subdivision (Definition IV.10 (Horst & Tuy, 2013)) on the centroid space μ , Algorithm 1 produces a sequence $\{\alpha_i\}$ that satisfies $\lim_{i \rightarrow \infty} \alpha_i = z$.*

Proof. Let $\mu^* \in M_0$ be an optimal centroid set for the *equivalent unconstrained* MSSC obtained after **collapsing must-link components and discarding every cannot-link-infeasible assignment**. According to Lemma 6 in Cao & Zavala (2019), $\lim_{i \rightarrow \infty} \alpha_i = z$ holds when executing Algorithm 1. \square

Combing Lemma C.2 and C.3, we obtain Theorem 3.5. Essentially, pseudo-samples in Section 3.2 yield an equivalent unconstrained MSSC problem, and Theorem 3.4 proves a bijection between optimal solutions before and after this transformation. The geometric rules in Section 3.1 apply dominance checks via Lemmas 3.1 and 3.2, excluding only assignments whose cost significantly exceeds the incumbent upper bound without removing any centroid regions. Consequently, our branch-and-bound algorithm still exhaustively subdivides the centroid space, satisfying Lemmas C.1 through C.3. Thus, the result remains valid for the entire SDC-GBB pipeline. Empirically, we show that within a fixed 12-hour runtime limit, SDC-GBB achieves optimality gaps above 0.1% for some datasets under certain constraints. However, this does not reflect the failure of convergence in our

864 global optimization scheme, but rather the best feasible solution and its lower bound at timeout.
 865 Imposing a time limit is the standard which we follow to ensure a fair comparison with other exact
 866 baselines.
 867

868 D EFFECT OF PAIRWISE CONSTRAINTS

871 Background knowledge in constrained clustering is introduced through pairwise constraints: must-
 872 link (ML) and cannot-link (CL). This section analyzes how varying densities of these constraints
 873 affect the branch-and-bound performance on medium-sized problem instances. Table 4 summarizes
 874 the number of nodes processed and the average computational time per node under different constraint
 875 densities. All experiments reported in Table 4 achieve a final optimality gap below or equal to 0.1%.

876 Must-link constraints merge linked samples into single pseudo-points before initiating the branch-and-
 877 bound procedure. Conceptually, this operation is analogous to samples merging immediately upon
 878 defining constraints, effectively knowing in advance that they must converge into a single optimal
 879 position. Figure 2 illustrates this merging process: each must-link pair collapses into one pseudo-point,
 880 thus reducing the number of samples to consider. Although this merging simplifies the optimization
 881 search space by reducing dimensionality, it simultaneously imposes additional equality constraints in
 882 each node relaxation within the branch-and-bound process, thereby increasing the computational effort
 883 per node relaxation. Nonetheless, overall node processing becomes faster since fewer distinct samples
 884 remain active, which accelerates bound computations without compromising the equivalence and
 885 optimality of the final solution. Empirically, the average time per node decreases with an increasing
 886 number of must-link constraints (from 74 seconds per node down to 13 seconds per node for dataset
 887 *Syn-2100*). However, there is a threshold for the density of constraints necessary to significantly
 888 simplify the branching process: below approximately $n/64$ must-link pairs, constraints have minimal
 889 practical relevance, causing the equivalent problem formulation, described in Section 3.2, to behave
 890 similarly to its unconstrained counterpart.

891 In contrast, the geometric sample-determination strategy for cannot-link constraints functions as
 892 barriers that restrict feasible assignments, similar to placing walls within an axis-aligned region.
 893 Unlike must-link constraints, which collapse samples proactively, cannot-link constraints compel
 894 each sample’s assignment to navigate around imposed boundaries that are not initially evident. Each
 895 sample seeks to reach its optimal cluster centroid but must repeatedly avoid these geometric barriers,
 896 reflecting constrained assignments and generating additional branching iterations. Despite this growth
 897 in node count, the computational time per node remains stable because infeasible assignments are
 898 pruned at an early stage, as stated in Lemma 3.1. Thus, the complexity introduced by cannot-link
 899 constraints primarily affects the extent of branching rather than the computational complexity of each
 900 bound evaluation. In summary, must-link constraints simplify the optimization upfront by reducing
 901 per-node complexity through component collapse, whereas cannot-link constraints expand the search
 902 tree but maintain per-node computational cost, ensuring that solutions satisfy the imposed constraints
 903 without fundamentally altering the underlying clustering structure.

915 Figure 3: Effect of Must-Link Constraints on (a) the number of nodes processed and (b) time per
 916 node, for both synthetic datasets.
 917

Figure 4: Effect of Cannot-Link Constraints on (a) the number of nodes processed and (b) time per node, for both synthetic datasets.

Interestingly, we observe that the linear relaxation is substantially weakened when must-link constraints form large or overlapping superpoints. In URBANGB, the merging of 469 groups into $k = 3$ superpoints induces symmetry that leaves a 12.97% gap, and in SPNET3D the near one-dimensional data arrangement produces overlapping superpoints that the bound cannot improve, resulting in a 7.43% gap. On the other hand, in SKIN_8 and SPNET3D_5, the mixed ML+CL case is uniquely hard because ML contraction creates component-level “hotspots” that are densely entangled by cannot-links. Inside SKIN_8, there is a massive ML super-component that must occupy one cluster and is CL-forbidden from sharing with thousands of neighbors, whereas the tight CL and loose ML constraints simultaneously oppose the geometry of SPNET3D_5. This coupling weakens the relaxation and drives deep branching, yielding a large optimality gap $> 3\%$ in the mixed constraint case, whereas ML-only or CL-only avoid this interaction and remain tight.

Table 4: Runtime metrics with Different Constraint Settings with solution optimality gap $< 0.1\%$.

DATASET	METRIC	$\frac{n}{2}$	$\frac{n}{4}$	$\frac{n}{8}$	$\frac{n}{16}$	$\frac{n}{32}$	$\frac{n}{64}$
MUST-LINK (ML)							
<i>Syn-1,200</i>	NODES	50	41	32	39	10	37
	GAP (%)	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
	TIME (S)	389.61	613.09	501.05	564.41	271.24	632.25
	TIME/NODE (s)	7.79	14.95	15.66	14.47	27.12	17.09
	CORE HOUR (H)	7.79	14.95	15.66	14.47	27.12	17.09
<i>Syn-2,100</i>	NODES	25	51	23	8	31	21
	GAP (%)	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
	TIME (S)	342.20	840.70	793.19	608.32	1375.86	1570.95
	TIME/NODE (s)	13.69	16.48	34.49	76.04	44.38	74.81
	CORE HOUR (H)	5.41	8.52	6.96	7.84	3.77	8.78
CANNOT-LINK (CL)							
<i>Syn-1,200</i>	NODES	20	20	20	20	20	30
	GAP (%)	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
	TIME (S)	336.98	357.45	359.61	352.23	370.58	629.90
	TIME/NODE (s)	16.85	17.87	17.98	17.61	18.53	21.00
	CORE HOUR (H)	7.79	14.95	15.66	14.47	27.12	17.09
<i>Syn-2,100</i>	NODES	21	31	27	25	43	33
	GAP (%)	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%	<0.1%
	TIME (S)	1614.36	1604.81	1591.37	1312.08	1695.81	1539.55
	TIME/NODE (s)	76.87	51.77	58.94	52.48	39.44	46.65
	CORE HOUR (H)	7.79	14.95	15.66	14.47	27.12	17.09

To further highlight resource usage with a unified measure of parallelism and wall-clock time, we compute “core-hour”, defined as $\text{core_hour} = \frac{\text{time}(s) \times \text{cores}}{3600(s)}$. Under must-link constraints, SDC-GBB’s overall branching behavior varies substantially with constraint density, as on Syn-1,200 and Syn-2,100, going from $n/2$ to $n/32$ ML constraints generally reduces the number of branch-and-bound nodes but raises the average time per node. In contrast, the number of nodes explored grows roughly linearly under uniform cannot-link constraint placement; as we observe in Table 4, node count scales $\sim O(m)$ with m cannot-link constraints, while time per node remains constant. As a result, the wall-clock time increases by about 20% on Syn-1,200 and roughly a factor of two on Syn-2,100, but the core hour stays relatively static across constraint sizes.

When connecting this empirical measure to asymptotic complexity, we note that each branch-and-bound node incurs $O(|\hat{S}|K)$ work, while exhaustive axis-aligned bisection yields at most $O((\delta/\varepsilon)^{Km})$ (Horst & Tuy, 2013), where δ is the initial box size and ε the target precision. Together these give a nominal worst-case cost of $O((\delta/\varepsilon)^{Km}|\hat{S}|K)$. On a cluster with P identical CPU cores, parallelising across open nodes yields an expected core-hour consumption of $O\left(\frac{(\delta/\varepsilon)^{Km}|\hat{S}|K}{P}\right)$, provided the number of simultaneously available nodes exceeds P . The empirical trends observed in Tables 1 and 2 align with this theoretical envelope.

D.1 RUNTIME ANALYSIS OF EXHAUSTIVE μ SEARCH

Table 5 reports wall-clock statistics for the exhaustive enumeration of μ values inside our reduced-space branch-and-bound framework². For each synthetic dataset we list the total wall time (T_{total}), the time devoted exclusively to the μ search (T_μ), the number of branch-and-bound nodes explored (N_{nodes}), and the average time per node ($T_{\text{node}} = T_\mu/N_{\text{nodes}}$).

Table 5: Runtime metrics for n/4 must-links exhaustive μ search (gap $\leq 0.1\%$).

DATASET	T_{TOTAL} (S)	T_μ (S)	N_{NODES}	T_{NODE} (S)
SYN-21000	3,323.69	3,311.58	69	47.99
SYN-81000	12,921.19	12,804.11	71	180.34
SYN-141000	18,499.32	18,307.11	55	332.86
SYN-171000	28,796.98	28,551.09	43	664.00

The results confirm that the μ enumeration dominates the computational budget ($T_\mu/T_{\text{total}} > 0.99$), while other tasks, namely relaxations, cuts and I/O are marginal. Although T_{node} grows faster than linearly with the dataset size, parallel execution on 100 cores keeps the overall wall-time below ten hours even for the 171 k-point instance.

D.2 CLUSTERING EVALUATION

Our work distinguishes between two aspects of clustering performance: (i) the formulation, which defines how data similarity is measured and affects metrics such as ARI, NMI, and purity; and (ii) the quality of the solution (in terms of cost minimization), which we measure using the optimality gap. Our focus is on the quality of the solution for the K-Means cost, ensuring an optimality guarantee of the solution. Here, we performed additional statistical tests and gave the ARI, NMI and purity results of 5 datasets with ground truth labels³ and compare these with the algorithm of (Hua et al., 2021) in Table 6⁴. In these experiments, the number of clusters is set to the number of ground truth labels.

²Node count decreases with n because larger ML components reduce $|\hat{S}|$ via pseudo-sample collapse (Section 3.2), enabling scalability up to 1.5M samples under ML constraints.

³ARI/NMI/Purity are reported only as external validation, while solution quality is measured via certified SSE gaps.

⁴Identical metrics confirm that CL constraints are satisfied at the global optimum; enforcement via Lemmas 3.1–3.2 and node feasibility checks remains active throughout the tree.

1026 Table 6: Clustering evaluation metrics on solutions of datasets under different constraint settings.
1027
1028

METRICS	CONSTRAINTS	IRIS <i>k</i> = 3	SEEDS <i>k</i> = 3	HEMI <i>k</i> = 3	HTRU2 <i>k</i> = 2	SKIN_8 <i>k</i> = 2
ARI	MSSC (HUA ET AL., 2021)	0.7163	0.7166	0.0126	-0.0779	-0.0387
	SDC-GBB (ML)	0.7859	0.7261	0.0137	-0.0385	-0.0427
	SDC-GBB (CL)	0.7163	0.7166	0.0148	0.0389	0.3545
	SDC-GBB (ML+CL)	0.7711	0.7384	0.0171	0.0909	-0.0090
NMI	MSSC (HUA ET AL., 2021)	0.7419	0.6949	0.0335	0.0265	0.0221
	SDC-GBB (ML)	0.7773	0.6979	0.0335	0.0666	0.0280
	SDC-GBB (CL)	0.7419	0.6949	0.0309	0.1007	0.4388
	SDC-GBB (ML+CL)	0.7705	0.7006	0.0338	0.1275	0.0343
PURITY	MSSC (HUA ET AL., 2021)	0.8867	0.8952	0.4210	0.9084	0.7925
	SDC-GBB (ML)	0.9200	0.9000	0.4251	0.9084	0.7925
	SDC-GBB (CL)	0.8867	0.8952	0.4373	0.9084	0.9420
	SDC-GBB (ML+CL)	0.9133	0.9048	0.4419	0.9084	0.7925

1043
1044 E HEURISTIC ALGORITHMS
1045

1046 We evaluate the proposed procedure by comparing its clustering quality with four reference heuristics
1047 for the minimum-sum-of-squares clustering problem subject to must-link (ML) and cannot-link (CL)
1048 constraints. COP- k -means (Wagstaff et al., 2001) restarts the classical Lloyd algorithm one hundred
1049 times and enforces the constraints at every assignment step. The post-processing encode- k -means-
1050 Post method of Nghiem (Nghiem et al., 2020) formulates the reassignment of instances produced by
1051 an unconstrained or partially constrained clustering method as a binary combinatorial program that
1052 respects all ML and CL relations. The binary linear programming approach of Baumann (Baumann,
1053 2020) (BLPKM-CC) solves to optimality the assignment subproblem within each Lloyd iteration;
1054 only the initial centroids are random, so the method is partially deterministic. Variants of coresset
1055 algorithm construct a (k, ϵ) -coreset, on which k -means can be solved quickly while guaranteeing
1056 that the resulting centers incur at most a $(1 + \epsilon)$ multiplicative error in squared-error cost on the full
1057 dataset, thus preserving near-optimality with far lower computational and memory demands. We
1058 test several coresset construction algorithms and obtain the UB for Sensitivity Sampling with $k = 3$,
1059 oversample factor $c = 2$, error $\epsilon = 0.1$ and probability of approximation guarantee $\delta = 0.1$, as
1060 this is the state-of-the-art method for constructing coressets (Schwiegelshohn & Sheikh-Omar, 2022)
1061 and the only method satisfying the 4-hour runtime limit for all datasets.

1062 Tables 7, 8, 9 report the optimal UB obtained by all heuristic algorithms with 100 independent
1063 initializations for ML-only, CL-only, and ML+CL experiments respectively. We do not include
1064 results for Sensitivity Sampling in experiments involving CL since under coresset algorithms, any
1065 hard cannot-link requirement collapses the additivity assumption and blows up point sensitivities,
1066 thus inflates the coresset to linear size. Besides, we apply N/A to some COP- k -means results, as this
1067 algorithm generally could not find the global optima for datasets of size $n > 2,000$.

1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081
1082
1083 Table 7: Heuristic algorithms on $\frac{n}{4}$ ML constraints
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

DATASETS	SIZE	COP- k -MEANS	ENCODE- k -MEANS-POST	BLPKM-CC	SENSITIVITY SAMPLING
IRIS	150	150.78	84.67	83.82	93.87
SEEDS	200	713.88	625.37	620.78	761.60
HEMI	1,955	N/A	1.602 × 10⁷	1.875×10^7	2.167×10^7
PR2392	2,392	N/A	3.210 × 10¹⁰	3.246×10^{10}	3.436×10^{10}
RDS_CNT	10,000	N/A	6.122 × 10⁷	6.579×10^7	6.387×10^7
HTRU2	17,898	N/A	1.407 × 10⁸	1.472×10^8	1.505×10^8
SPNET3D_5	50,000	N/A	6.627 × 10⁶	7.089×10^6	7.196×10^6
SKIN_8	80,000	N/A	5.464×10^8	5.492×10^8	4.533 × 10⁸
URBANGB	360,177	N/A	OUT OF MEMORY		1.643 × 10⁹
SPNET3D	434,874	N/A	5.848 × 10⁷	6.264×10^7	6.413×10^7
SYN-42000	42,000	N/A	5.127 × 10⁵	1.584×10^6	5.148×10^5
SYN-210000	210,000	N/A	2.163 × 10⁶	2.163 × 10⁶	2.178×10^6
SYN-420000	420,000	N/A	6.010 × 10⁶	6.010 × 10⁶	6.080×10^6
SYN-1050000	1,050,000	N/A	3.708×10^7	1.050 × 10⁷	1.052×10^7
SYN-1500000	1,500,000	N/A	5.611×10^7	1.725 × 10⁷	1.731×10^7

1100
1101
1102
1103
1104 Table 8: Heuristic algorithms on $\frac{n}{4}$ CL constraints
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

DATASET	SIZE	COP- k -MEANS	ENCODE- k -MEANS-POST	BLPKM-CC
IRIS	150	119.37	80.31	80.71
SEEDS	200	634.3	603.96	603.04
HEMI	1,955	1.711×10^7	1.401 × 10⁷	1.606×10^7
PR2392	2,392	2.596×10^{10}	2.566 × 10¹⁰	2.578×10^{10}
RDS_CNT	10,000	3.696×10^7	2.897 × 10⁷	2.902×10^7
HTRU2	17,898	N/A	1.928×10^8	1.740 × 10⁸
SPNET3D_5	50,000	N/A	3.938 × 10⁶	4.027×10^6
SKIN_8	80,000	N/A	6.367 × 10⁸	6.464×10^8
SYN-12000	12,000	N/A	9.503 × 10⁴	9.503 × 10⁴
SYN-21000	21,000	N/A	1.928×10^8	1.740 × 10⁸
SYN-42000	42,000	N/A	1.817 × 10⁵	1.817 × 10⁵
SYN-210000	210,000	N/A	2.161 × 10⁶	2.161 × 10⁶

1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133 Table 9: Heuristic algorithms on $\frac{n}{4}$ ML + $\frac{n}{4}$ CL constraints

DATASET	SIZE	COP- k -MEANS	ENCODE- k -MEANS-POST	BLPKM-CC
IRIS	150	N/A	88.75	86.85
SEEDS	200	N/A	601.36	597.14
HEMI	1,955	N/A	1.566 × 10⁷	1.762×10^7
PR2392	2,392	N/A	2.922 × 10¹⁰	2.945×10^{10}
RDS_CNT	10,000	N/A	7.579 × 10⁷	7.919×10^7
HTRU2	17,898	N/A	2.218×10^8	1.859 × 10⁸
SPNET3D_5	50,000	N/A	8.171 × 10⁶	8.320×10^6
SKIN_8	80,000	N/A	7.579 × 10⁸	8.775×10^8
SYN-12000	12,000	N/A	9.520 × 10⁴	9.520 × 10⁴
SYN-21000	21,000	N/A	1.818×10^5	1.818 × 10⁵
SYN-42000	42,000	N/A	5.133 × 10⁵	5.133 × 10⁵
SYN-210000	210,000	N/A	2.165 × 10⁶	2.165 × 10⁶