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ABSTRACT

Constrained clustering leverages limited domain knowledge to improve cluster-
ing performance and interpretability, but incorporating pairwise must-link and
cannot-link constraints is an NP-hard challenge, making global optimization in-
tractable. Existing mixed-integer optimization methods are confined to small-scale
datasets, limiting their utility. We propose Sample-Driven Constrained Group-
Based Branch-and-Bound (SDC-GBB), a decomposable branch-and-bound (BB)
framework that collapses must-linked samples into centroid-based pseudo-samples
and prunes cannot-link through geometric rules, while preserving convergence and
guaranteeing global optimality. By integrating grouped-sample Lagrangian de-
composition and geometric elimination rules for efficient lower and upper bounds,
the algorithm attains highly scalable pairwise k-Means constrained clustering via
parallelism. Experimental results show that our approach handles datasets with
200,000 samples with cannot-link constraints and 1,500,000 samples with must-
link constraints, which is 200 - 1500 times larger than the current state-of-the-art
under comparable constraint settings, while reaching an optimality gap of ≤ 3%.
In providing deterministic global guarantees, our method also avoids the search
failures that off-the-shelf heuristics often encounter on large datasets.

1 INTRODUCTION

Clustering is a core task in unsupervised learning, widely used in pattern recognition, data mining,
and computer vision (Jain, 2010; Jain et al., 1999; Rao, 1971). However, purely unsupervised
methods often overlook domain-specific requirements, motivating the integration of prior knowledge.
Constrained clustering addresses this by incorporating guidance—typically as must-link or cannot-link
constraints—to improve clustering alignment with real-world applications (Basu et al., 2008; Brieden
et al., 2017; Tian et al., 2021). These methods have been applied to facility location, genomics, image
segmentation, and text analysis (Yang et al., 2022; Zhang et al., 2022; Pelegrín, 2023).

Minimizing the within-cluster sum-of-squares, known as the Minimum Sum-of-Squares Criterion
(MSSC) (Späth, 1980), is a key goal in clustering. To handle MSSC with constraints, many methods
adapt unsupervised algorithms using penalties or assignment modifications for must-link (ML) and
cannot-link (CL) constraints. For instance, constrained k-means Wagstaff et al. (2001) assigns
points greedily to the nearest feasible center, but lacks optimality guarantees and may miss feasible
solutions due to MSSC’s non-convexity and initialization sensitivity (Xu & Lange, 2019; Piccialli
et al., 2022a). Heuristic variants address this by refining assignments (ICOP-k-means (Tan et al.,
2010; Rutayisire et al., 2011)), leveraging assistant centroids (MLC-k-means (Huang et al., 2008)),
or delaying constraint enforcement (Nghiem et al., 2020). Soft constraint methods like PCKmeans
(Basu et al., 2004; Davidson & Ravi, 2005) integrate penalties directly into the objective.

Although heuristic algorithms are scalable and easy to implement, they lack global optimality
guarantees and may fail to find feasible solutions. Exact methods for unconstrained MSSC have
been well-studied (Hua et al., 2021; Piccialli et al., 2022b; Aloise et al., 2009), but extending them to
constrained settings is difficult due to the added combinatorial complexity of constraint satisfaction.
As a result, exact approaches remain limited to small datasets. For instance, Xia (2009) extended
the global optimization framework of Peng & Xia (2005) to handle constraints but scaled only to 25
points (Aloise et al., 2012a). Later, column-generation methods (Aloise et al., 2012b; Babaki et al.,
2014) supported slightly larger instances (under 200 points) with limited constraints.
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Constraint programming approaches (Dao et al., 2013; 2015; 2017) offer flexibility in incorporating
various constraint forms but generally do not scale beyond a few hundred points. Mixed-Integer
Programming (MIP) formulations have also been explored to handle additional cluster-level or
instance-level constraints in MSSC. For example, (Tang et al., 2020) proposed an iterative scheme
that reformulates a size-constrained MSSC problem into a mixed-integer linear program, leveraging
the unimodularity of certain constraint matrices to reduce computational complexity. Similarly,
(Liberti & Manca, 2022) examined several side-constrained MSSC models cast as Mixed-Integer
Nonlinear Programs, some featuring convex relaxations that enable global optimization techniques.
While these MIP-based approaches provide a powerful and flexible framework for ensuring feasibility
under various constraint types, their applicability remains limited by high computational overhead,
restricting them to relatively small or moderate-sized datasets.

Branch-and-bound methods have also been specialized for constrained MSSC. (Guns et al., 2016)
proposed the Constraint Programming Repetitive Branch-and-Bound Algorithm (CPRBBA), which
augments Brusco’s repetitive branch-and-bound procedure (Brusco, 2006) with a constraint program-
ming solver to compute tight lower and upper bounds on subsets of objects of increasing size. This
approach, while effective on small instances, remains limited to fewer than 200 data points. (Piccialli
et al., 2022a) developed the PC-SOS-SDP algorithm, which integrates must-link and cannot-link
constraints into a semidefinite programming framework, scaling to a few thousand data points but
not beyond (Baumann & Hochbaum, 2024). These exact methods do not generally account for
soft constraints and remain computationally expensive for larger datasets. Nonetheless, continuing
progress in algorithmic design and hardware (Bertsimas & Dunn, 2017) has widened the scope of
exact methods for constrained clustering.

Our Contributions In this paper, we propose a scalable deterministic global optimization algorithm
for the minimum sum-of-squared clustering (MSSC) task with pairwise ML and CL constraints. We
introduce a centroid-based pseudosample formulation for must-link subsets, leveraging the combined
information of each group to maintain the exact global minimum while reducing problem complexity.
We devise geometric sample-determination rules that eliminate cannot-links, which specify whether
points must not be placed into the same clusters before enumeration. We design a branch-and-bound
algorithm that branches only on the cluster-center variables. This avoids combinatorial branching
on sample-to-cluster assignments, thus achieving a globally ϵ-optimal solution even for large-scale
datasets. Our analysis proves convergence under exhaustive subdivisions of the feasible region for
the center variables.

Capability For More than One Hundred Thousand Scale Problems We present an open-source
implementation in Julia that solves constrained MSSC instances of up to 1,500,000 samples for
the ML case and 200,000 samples for CL case with optimality guarantee or very low optimality gaps.
This corresponds to 1500-fold and 200-fold increases in scale, respectively, over the current exact
state-of-the-art (Piccialli et al., 2022a). This framework thus enables deterministic global clustering
solutions for large-scale datasets previously considered intractable.

2 MIXED-INTEGER PROGRAMMING FOR PAIRWISE-CONSTRAINED k-MEANS

Given a dataset X = {x1, . . . , xS} ⊂ Rm with S samples and m attributes, the semi-supervised
MSSC task with pairwise constraints seeks a set of k clusters that minimizes the Sum of Squared
Errors (SSE) subject to must-link (ML) and cannot-link (CL) requirements:

min
b

∑
s∈S

∑
k∈K

bs,k ∥xs − µk∥22 (1a)

s.t. bs,k = bs′,k, ∀ (s, s′) ∈ Tml, k ∈ K, (1b)
bs,k + bs′,k ≤ 1, ∀ (s, s′) ∈ Tcl, k ∈ K, (1c)
bs,k ∈ {0, 1}, ∀ s ∈ S, k ∈ K. (1d)∑
k∈K

bs,k = 1 (1e)

where s ∈ S := {1, · · · , S} is the data sample set, k ∈ K = {1, · · · ,K} is the cluster set,
µ := [µ1, · · · , µK ], where µk ∈ Rm represents the center of each cluster, bs,k ∈ {0, 1} is equal to
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1 if xs belongs to the k-th clusters and 0 otherwise. Tml ⊆ S × S and Tcl ⊆ S × S are the sets of
tuples indicating whether samples must or must not reside in the same cluster respectively.

The MSSC with pairwise constraints (Problem 1) can be reformulated as an SSE optimization problem
of the following form:

min
µ,d,b

∑
s∈S

ds,∗ (2a)

s.t. −N(1− bs,k) ≤ ds,∗ − ds,k ≤ N(1− bs,k) (2b)

ds,k ≥ ∥xs − µk∥22 ∀s ∈ S, ∀k ∈ K (2c)

Constraints 1b- 1e (2d)

Here ds,k is the distance between xs and µk, ds,∗ is the distance from xs to its assigned centroid, and
N is a big-M constant. Define ds = [ds,1, . . . , ds,K , ds,∗], d = [d1, . . . , dS ], bs = [bs,1, . . . , bs,K ],
b = [b1, . . . , bS ]. Constraint (2b) links ds,∗ and ds,k when bs,k = 1. Problem 2 is a mixed-integer
second-order cone program (MISOCP) admits a two-stage extensive form (see Appendix A). While
off-the-shelf solvers like Gurobi (Gurobi, 2024) and CPLEX (Cplex, 2022) can handle small instances,
they become intractable even at moderate sample sizes (e.g., S = 800) (Piccialli et al., 2022a).

3 REDUCED-SPACE BRANCH-AND-BOUND ALGORITHM

Reduced-space branch-and-bound frameworks have demonstrated significant scalability gains by
partitioning only the centroid search space (Cao & Zavala, 2019). We tailor this scheme to the
pairwise-constrained clustering problem by integrating geometric probing rules derived from the
MISOCP formulation in Sec. 2 to tighten both lower and upper bounds. In particular, we exploit the
implicit inequality that any subregion whose lower bound exceeds the current best upper bound can
be discarded outright.

3.1 GEOMETRIC SAMPLE DETERMINATION RULES

We first observe that every feasible clustering is subject to two straightforward geometric bounds
relative to the incumbent solution. Let ρ = maxs∈S ∥xs−µbest

k(s)∥
2
2 be the worst-case squared distance

between each sample and the centroid to which it is assigned in the current best solution. Thus,
ρ represents the maximum per-sample contribution to the current incumbent cost and is used as a
per-sample upper bound. Then, for any region Mk (an axis–aligned box in Rm) containing the true
optimal µk, we can compute the minimal and maximal possible squared distances:

dmin(xs,Mk) = min
µ∈Mk

∥xs − µ∥22, dmax(xs,Mk) = max
µ∈Mk

∥xs − µ∥22.

Because ρ is an upper bound on the true assignment cost, any candidate pair (s, k) with
dmin(xs,Mk) > ρ can never be optimal.
Lemma 3.1 (Early–elimination). For any sample s∈S and any cluster region Mk, dmin(xs,Mk) >
ρ =⇒ bs,k = 0 in every optimal solution with objective value not larger than the incumbent.

Proof. By definition dmin(xs,Mk) = minµ∈Mk
∥xs − µ∥22. If dmin > ρ, then for every µ ∈Mk one

has ∥xs − µ∥22 > ρ. Since ρ is an upper bound on the per–sample cost in the incumbent, assigning
xs to cluster k would yield a contradiction. Hence bs,k = 0 in any cluster whose overall cost does
not exceed the incumbent cost.

A complementary rule arises from comparing the worst-case assignment cost in one region to the
best-case cost in the others.
Lemma 3.2 (Forced assignment). Fix a sample s and let k+ ∈ K satisfy dmax(xs,Mk+) <
mink ̸=k+ dmin(xs,Mk). Then bs,k+ = 1 in every optimal solution.

Proof. For any µ+∈Mk+ and any µ∈Mk with k ̸= k+ we have ∥xs − µ+∥22 ≤ dmax(xs,Mk+) <
dmin(xs,Mk) ≤ ∥xs − µ∥22. Thus the distance from xs to every center in Mk+ is strictly smaller
than the distance to any center in the remaining regions, implying that the unique cost–minimising
assignment is bs,k+ = 1.
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M1

M2

M3

x1 d2maxd1min

d3min

(a) Since d2max < min{d1min, d
3
min} =⇒ bs,2 = 1

M1

M2

M3

x2 d2max
d1min

d3min

(b) No forced assignment (L3.2 does not apply)

M1

M3

x2d1min
d3max

(c) Cannot-link: bs,2 = 0⇒ L3.2 fixes bs,3 = 1

M1

M2

M3

x3 d2maxd1min

d3min

(d) Must-link: link propagation fixes bs,3 = 1

Figure 1: Illustration of sample-determination via link propagation for K = 3.

Figure 1 illustrates interaction variations of geometric checks and pairwise constraints for data points
x1, x2 and x3. In (a), the distance bounds immediately fix x1 in M2. In (b), the bounds overlap,
distances are inconclusive and no assignment is made. In (c), the cannot–link (x1, x2) rules out M2

for x2, after which the geometric test fixes x2 in M3. In (d), the must–link (x2, x3) propagates that
assignment to x3. This sequence shows how geometry and ML/CL constraints jointly determine
assignments prior to branching. If the ML/CL constraints forbid the move (xs → k+), the node
becomes infeasible and is pruned.

3.2 EQUIVALENT UNCONSTRAINED CLUSTERING PROBLEM

Although the geometric sample-determination rules and link propagation of Section 3.1 eliminate
most binary assignments, the remaining must-link constraints still couple samples and inflate the
branch–and–bound (BB) complexity. To isolate this effect, consider the ML-only version of
Problem (2). Different from the unconstrained MSSC problem, pairwise constraint clustering
problem contains a family of equalities bs,k = bs′,k for (s, s′) ∈ Tml. Nevertheless, we show that
collapsing each must-link component into repeated pseudo-samples yields an unconstrained instance
with identical global optimum.

Let a cluster C = {x1, x2, . . . , xp} and let µ denote an arbitrary centroid for C. Without loss of
generality, assume x1, . . . , xt ∈ Cml ⊆ C form a single must-link component inside C. Let µml

denote the centroid of Cml and tr(Σ2
ml) the trace of the covariance matrix of Cml. Thus, we have:

µml =
1
t

∑t
i=1 xi, tr(Σ2

ml) =
1

t−1

∑t
i=1 ||xi − µml||2.

Lemma 3.3. Given 2 clusters, C = {x1, x2, . . . , xp} and Ĉ = {xt+1, xt+2, . . . , xp, µml, . . . , µml︸ ︷︷ ︸
t

},

let sseC(µ) and sseĈ(µ) denote their respective within-cluster SSE computed with centroid µ. Then,
the following identity holds:

sseC(µ) = sseĈ(µ) + (t− 1)tr(Σ2
ml). (3)

4
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Note that (t − 1)tr(Σ2
ml) is an additive constant that does not affect optimization over centroids.

Figure 2 illustrates this construction of pseudo-samples using a small example. Based on Lemma 3.3,
we form the dataset:

X̂ =
⋃

k∈Kml

{µml,k, . . . , µml,k︸ ︷︷ ︸
tk

} ∪ (X \ {xs|(s, s′) ∈ Tml, s
′ ∈ S}) ,

along with the corresponding unconstrained MSSC optimization problem:

min
µ,d,b

∑
s∈Ŝ

ds,∗ +
∑

k∈Kml

(tk − 1)tr(Σ2
ml,k) (4a)

s.t. Constraints 2b, 2c, 1e, 1d (4b)

where µml,k and Σ2
ml,k represent the mean (centroid) and covariance matrix of the must-link samples

within cluster k, respectively. Kml denotes the set of clusters containing must-link samples, and Ŝ is
the corresponding index set for the dataset X̂ .

Theorem 3.4. If µ∗ and z(µ∗) are the global optimal solution and cost of Problem (4), then they are
also the global optimum and cost of the ML–only problem (2), and vice versa.

Mixed ML and CL constraints. When both ML and CL constraints are present, collapse each ML
component as above to obtain X̂ with only CL constraints. Then apply Lemma 3.1 to eliminate all
CL-violating assignments, yielding an unconstrained MSSC on the reduced dataset.

x1 x2

x3

µ ⇐⇒

x3

µ

µml

Figure 2: Left: three samples x1, x2, x3 with must-link (x1, x2) and centroid µ. Right: collapse of
{x1, x2} into two pseudo-samples at µml =

1
2 (x1 + x2) preserves the optimal centroid µ.

3.3 UPPER BOUNDING STRATEGIES

Let M0 ⊂ Rmk be the initial axis-aligned box for the full centroid vector µ = {µ1, ..., µK}. The
branch–and–bound (BB) algorithm requires a fast yet tight lower bound (LB) for each subproblem
or node M inside the solution space M0. In this section two methods for computing upper bounds
at each node of the BB scheme are presented. The first method handles CL constraints through a
k–coloring interpretation. The second method derives a closed-form expression applicable when only
ML constraints are present. When both constraint types coexist, ML constraints can be collapsed
as described in Section 3.2, reformulating the problem into one involving only CL constraints and
allowing the use of the k–coloring approach.

K–Coloring Bound for CL Constraints. Let K denote the prescribed number of clusters and
let Gcl = (Ŝ, Tcl) be the CL graph. At node M ⊆ M0 maintain a pool of C centroid candidates
{µ(c)}Cc=1 ⊂ M . For each candidate c assign each sample s ∈ Ŝ to its closest centroid, k(c)s =

argmink∈{1,...,K} ∥xs − µ
(c)
k ∥22, and let χ(c)(s) = k

(c)
s . The labeling χ(c) is proper if χ(c)(u) ̸=

χ(c)(v) for every (u, v) ∈ Tcl. Define

z
(c)
ub =


∑
s∈Ŝ

∥xs − µ
(c)

χ(c)(s)
∥22, if χ(c) is proper,

+∞, otherwise.

The node upper bound is α(M) = min1≤c≤C z
(c)
ub . If χ(c) is proper, then z

(c)
ub satisfies all CL

constraints and z(M) ≤ α(M).

5
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Closed–Form Bound for ML Constraints. With only must–link (ML) constraints, fix any feasible
centroid set µ̂ ∈ M and compute α(M) =

∑
s∈Ŝ Qs(µ̂), where each Qs(µ̂) admits a closed form.

The expression yields an admissible bound because every µ̂ ∈ M respects the ML constraints,
implying z(M) ≤ α(M). An initial bound is produced at the root via a heuristic (k-means). Bounds
at descendant nodes are updated with candidates extracted from the relaxations in Section 3.4. The
BB algorithm terminates with the optimal objective value α+

∑
k∈Kml

qkσ
2
ml,k.

3.4 LOWER BOUNDING STRATEGY WITH GROUPING-BASED LAGRANGIAN DECOMPOSITION

The branch–and–bound (BB) algorithm requires a fast yet tight lower bound (LB) for each sub-
problem or node M inside the solution space M0. An effective strategy to achieve tighter lower
bounds is through Lagrangian decomposition (LD), in which the corresponding non-anticipativity
constraints Cao & Zavala (2019) are dualized with fixed Lagrange multipliers λ and added to the
objective function (Karuppiah & Grossmann, 2008). However, to reduce problem size and improve
relaxation quality, instead of associating each sample with a separate subproblem (as mentioned
in Karuppiah & Grossmann (2008)), we partition the sample set Ŝ into G disjoint groups Ŝ1, . . . , ŜG
with index set G = 1, . . . , G, such that

⋃
g Ŝg = Ŝ and Ŝi ∩ Ŝg = ∅ for i ̸= g. Instead of replicating

center variables per sample, we assign one per group and enforce consistency through:

min
µg∈M

∑
g∈G

Qg(µg), Qg(µg) :=
∑
s∈Ŝg

Qs(µg) s.t. µg = µg+1, ∀g ∈ 1, . . . , G− 1 (5a)

Dualizing the coupling constraints with multipliers λ yields a tighter lower bound via:

βSG+LD(M) := max
λ

βSG+LD(M,λ) (6)

This grouped formulation preserves intra-group non-anticipativity while relaxing inter-group consis-
tency, yielding βLD(M) ≤ βSG+LD(M) ≤ z(M). While solving (6) requires iterative MISOCPs,
it significantly strengthens the bound. The grouping is fixed at the BB root for efficiency.

3.5 BRANCH-AND-BOUND CLUSTERING SCHEME

We adopt the framework of the reduced-space branch-and-bound scheme from (Cao & Zavala, 2019)
and tailor the algorithm for the pairwise constrained clustering task. Algorithm 1 depicts the details
of the algorithm, where β and α represent the function of lower and upper bound, respectively. With
the lower and upper bounding strategy provided in the following subsections.
Theorem 3.5. Given an exhaustive subdivision on µ, Algorithm 1 converges in the sense that

lim
i→∞

αi = lim
i→∞

βi = z. (7)

The proof is shown in Appendix C.

4 COMPUTATIONAL EXPERIMENTS

We implemented our algorithm, Sample-Driven Constrained Group-Based Branch-and-Bound
(SDC-GBB), in Julia 1.10.3 and evaluated its performance on synthetic and real-world datasets
using a high-performance cluster comprising nodes with 128 AMD Epyc 7702 CPUs (2.0GHz) and
1TB of RAM. Computational experiments were conducted under both serial and parallel config-
urations, comparing SDC-GBB against the branch-and-bound (BB) algorithm in CPLEX 22.1.1
(Cplex, 2022), the exact method PC-SOS-SDP (Piccialli et al., 2022a), and the best heuristic out
of the following algorithms: COP-k-means (Wagstaff et al., 2001), encode-kmeans-post (Nghiem
et al., 2020), BLPKM-CC (Baumann, 2020), and Sensitivity Sampling coreset algorithm (Feldman
& Langberg, 2011). All heuristic algorithms were run with 100 restarts (Wagstaff et al., 2001) in 4
hours, and the full results are reported in Appendix E. For parallel applications, subproblems were
distributed across multiple CPU cores with group sizes limited to min(162/d− k, 10× k) during the
lower bound decomposition process. Performance was assessed using Upper Bound (UB), relative
optimality gap, and the number of BB nodes resolved. UB represents the best feasible solution found,

6
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Algorithm 1 Branch-and-Bound Clustering with Geometric Sample Determination

Inputs: X = {xs}s∈S ⊂ Rd, K, Tml, Tcl
Initialization
Initialize i = 0, M← {M0}, tolerance ϵ > 0
Compute upper bound αi = α(M0), lower bound βi = β(M0);
Geometric Sample Determination
Compute dmin(xs,M0,k), dmax(xs,M0,k);
if dmin(xs,M0,k) > αi then bs,k←0 (update Ks);
if {∃ k+ with dmax(xs,M0,k+) < mink ̸=k+ dmin(xs,M0,k)} then bs,k+←1;
Propagate fixes via Tml, Tcl; update {Ks};
repeat

Node Selection
Select a set M ∈M satisfying β(M) = βi;
M←M \ {M};
i← i+ 1;
Branching
Partition M into subsets M1 and M2 with relint(M1) ∩ relint(M2) = ∅;
Add each subset to M to create separated child nodes;
Bounding
Compute α(M1), β(M1), α(M2), β(M2);
βi ← min{β(M ′) | M ′ ∈M};
αi ← min{αi−1, α(M1), α(M2)};
Remove all M ′ from M if β(M ′) ≥ αi;
If |βi − αi| ≤ ϵ, STOP;

until M = ∅
Output µ̂, b̂ and z⋆ = αi +

∑
k∈Kml

(tk − 1) tr(Σ2
ml,k)

while the relative optimality gap is calculated as αl−βl

min(αl,βl)
× 100%, where αl and βl denote the

best lower and upper bounds, respectively. The number of resolved BB nodes indicates the total BB
iterations performed. Unlike heuristic methods, deterministic global optimization methods provide
an optimality gap, enabling quantitative assessment of solution quality.

We evaluate the selected algorithms on 8 real-world datasets taken or sampled from the UCI Machine
Learning Repository (Dua & Graff, 2017), Hemicellulose (Wang et al., 2022), PR2392 (Padberg &
Rinaldi, 1991), and 7 synthetic datasets generated with 2 features, 3 Gaussian clusters and a fixed
random seed (seed = 1). Datasets are categorized as small (n ≤ 1,000), medium (n ≤ 10,000),
large (n ≤ 100,000), and huge (n ≥ 100,000), where n is the number of samples 1. We follow
the pairwise constraint generation practice with the same classic random-pair sampling pipeline as
(Piccialli et al., 2022a; Aloise et al., 2009; Babaki et al., 2014; Guns et al., 2016). Across three
separate experiments, namely must-link only (ML-only), cannot-link only (CL-only), and both
must-link and cannot-link (ML+CL), each dataset has n

4 samples bounded by ML constraints, n
4

samples bounded by CL constraints, and combining n
4 ML with n

4 CL constraints respectively. when
the optimality gap dropped below 0.1 %, when runtime reached 4 hours for datasets with n ≤ 10,000
or 12 h for those with n > 10,000, or when 5 million nodes had been explored.

4.1 NUMERICAL RESULTS

Our work focuses explicitly on solution quality in terms of the MSSC cost, providing an optimality
guarantee. With this, SDC-GBB matches the performance of commercial solvers and the state-of-
the-art algorithm PC-SOS-SDP (Piccialli et al., 2022a) through super-point aggregation, targeted
decomposition, and tight bounding via geometric partitioning under ML constraints, as well as
geometric sample determination rules that prune infeasible assignments under CL constraints. SDC-
GBB successfully handles instances exceeding two hundred thousand samples across all constraint
cases and further scales to ML-only instances with more than 1.5 million samples.

1Tables 2-3 use a subset of datasets from Table 1 (n ≤ 210,000). Table 1 includes 15 datasets of up to 1.5M
samples that are only tractable under ML constraints due to the scalability limitations discussed in Section 6.
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Small and medium-sized datasets For small datasets, SDC-GBB matches the state-of-the-art
PC-SOS-SDP algorithm, outperforming CPLEX and heuristic methods across all constraint settings,
as shown in Tables 1, 2, 3. On real-world benchmarks, SDC-GBB and PC-SOS-SDP achieve global
optimality with gaps ≤ 0.1% on Iris (n = 150) (Fisher, 1936) and Seeds (n = 210) (Charytanowicz
et al., 2010). The heuristic method also closely approximates the global optima, whereas CPLEX
yields significantly larger gaps of around 10%–69% for ML, 73%–86% for CL, and 37%–75% for
combined constraints. In experiments with medium-sized datasets, SDC-GBB consistently outper-
forms all other algorithms, achieving optimality gaps ≤ 0.1% in nearly all cases, with exceptions
in PR2392 (CL-only) and RDS_CNT (CL-only), where gaps slightly increase to 2.68% and 1.23%,
respectively. The best heuristic method consistently performs slightly worse than SDC-GBB but
remains competitive, providing relatively small gaps across datasets. Conversely, CPLEX returns
gaps close to 100% across all medium-sized datasets, and PC-SOS-SDP either generates higher gaps
than SDC-GBB or fails to converge for datasets with ≥ 2,000 samples.

Table 1: Computational performance with must-link (SDC-GBB, k = 3).

REAL-WORLD DATASETS

DATASET METHOD UB NODES GAP (%) DATASET METHOD UB NODES GAP (%)

IRIS2 HEURISTIC 83.82 – – HTRU2 HEURISTIC 1.407× 108 – –
N = 150 CPLEX 84.07 12987400 10.55% N = 17,898 CPLEX NO FEASIBLE SOLUTION FOUND
D = 4 PC-SOS-SDP 83.63 1 ≤ 0.1% D = 8 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 83.63 10 ≤ 0.1% PARALLEL 1.022 × 108 67 ≤ 0.1%

SEED2 HEURISTIC 620.78 – – SPNET3D_53 HEURISTIC 6.627× 106 – –
N = 210 CPLEX 755.91 5814200 69.48% N = 50,000 CPLEX NO FEASIBLE SOLUTION FOUND
D=7 PC-SOS-SDP 620.23 1 ≤ 0.1% D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 620.23 7 ≤ 0.1% PARALLEL 6.609 × 106 61 1.51%

HEMI2 HEURISTIC 1.602× 107 – – SKIN_8 HEURISTIC 4.533× 108 – –
N = 1,955 CPLEX 3.204× 107 90400 96.26% N = 80,000 CPLEX NO FEASIBLE SOLUTION FOUND
D = 7 PC-SOS-SDP 1.601× 107 1 2.07% D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 1.601 × 107 8 ≤ 0.1% PARALLEL 4.138 × 108 12 0.62%

PR23922 HEURISTIC 3.210× 1010 – – URBANGB HEURISTIC 1.643× 109 – –
N = 2,392 CPLEX 3.816× 1010 281000 98.76% N = 360,177 CPLEX NO FEASIBLE SOLUTION FOUND
D = 2 PC-SOS-SDP NO SOLUTION FOUND D = 2 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 3.209 × 1010 22 ≤ 0.1% PARALLEL 4.135 × 105 2 12.97%

RDS_CNT2 HEURISTIC 6.122× 107 – – SPNET3D HEURISTIC 5.848× 107 – –
N = 10,000 CPLEX 1.154× 108 12600 100.00% N = 434,874 CPLEX NO FEASIBLE SOLUTION FOUND
D = 3 PC-SOS-SDP NO SOLUTION FOUND D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 6.078 × 107 32 ≤ 0.1% PARALLEL 5.797 × 107 2 7.43%

SYNTHETIC DATASETS (D = 2)

SYN-210000 HEURISTIC 2.163× 106 – – SYN-1050000 HEURISTIC 1.050× 107 – –
N = 210,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 1,050,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 2.163 × 106 26 ≤ 0.1% PARALLEL 1.050 × 107 1 2.45%

SYN-420000 HEURISTIC 6.010× 106 – – SYN-1500000 HEURISTIC 1.725× 107 – –
N = 420,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 1,500,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 6.010 × 106 18 0.61% PARALLEL 1.725 × 107 1 2.66%

Table 2: Computational performance with cannot-link (SDC-GBB, k = 3).
REAL-WORLD DATASETS

DATASET METHOD UB NODES GAP (%) DATASET METHOD UB NODES GAP (%)

IRIS2 HEURISTIC 80.31 – – RDS_CNT2 HEURISTIC 2.897× 107 – –
N = 150 CPLEX 119.03 8259900 73.59% N = 10,000 CPLEX 5.198× 107 11559 100.00%
D = 4 PC-SOS-SDP 80.21 1 ≤ 0.1% D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 80.21 17 ≤ 0.1% PARALLEL 2.861 × 107 49 1.23%

SEED2 HEURISTIC 603.04 – – HTRU23 HEURISTIC 1.740× 108 – –
N = 210 CPLEX 771.54 5244683 86.67% N = 17,898 CPLEX NO FEASIBLE SOLUTION FOUND
D = 7 PC-SOS-SDP 601.96 15 ≤ 0.1% D = 8 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 601.96 18 ≤ 0.1% PARALLEL 9.225 × 107 15 ≤ 0.1%

HEMI2 HEURISTIC 1.401× 107 – – SPNET3D_5 HEURISTIC 3.938× 106 – –
N = 1,955 CPLEX 2.667× 107 65002 100.00% N = 50,000 CPLEX NO FEASIBLE SOLUTION FOUND

D = 7 PC-SOS-SDP 1.328× 107 i4 17.70% D = 3 PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 1.328 × 107 5 ≤ 0.1% PARALLEL 3.831 × 106 34 ≤ 0.1%

PR23922 HEURISTIC 2.566× 1010 – – SKIN_8 HEURISTIC 6.367× 108 – –
N = 2,392 CPLEX 3.266× 1010 256964 99.96% N = 80,000 CPLEX NO FEASIBLE SOLUTION FOUND
D = 2 PC-SOS-SDP NO SOLUTION FOUND D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 2.512 × 1010 97 2.68% PARALLEL 3.016 × 108 8 1.32%

SYNTHETIC DATASETS (D = 2)

SYN-12000 HEURISTIC 9.503× 104 – – SYN-42000 HEURISTIC 5.116× 105 – –
N = 12,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 42,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 9.053 × 104 89 0.75% PARALLEL 5.116 × 105 22 ≤ 0.1%

SYN-21000 HEURISTIC 1.817× 105 – – SYN-210000 HEURISTIC 2.161× 106 – –
N = 21,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 210,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 1.817 × 105 27 0.32% PARALLEL 2.161 × 106 1 2.38%
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Large and huge datasets Only SDC-GBB and heuristic algorithms can handle n > 10,000 datasets,
with SDC-GBB getting better UB and reaching global optimality or maintaining stable gaps below 3%
in all datasets and experiments other than URBANGB and SPNET3D, which receive 5% - 13% gaps.
Although the gaps we achieved with these instances are not optimal, they can be further optimized
with increased parallelization, and it is worth noting that no other global optimization method can
find solutions at this scale. Meanwhile, both PC-SOS-SDP and CPLEX cannot find any feasible
solution for these datasets given the 12-hour time limit. This shows that SDC-GBB can scale up
to 1,500 times for ML-only constraints, and 200 times for CL-only and ML+CL constraints when
compared with state-of-the-art algorithms.

Table 3: Computational performance with both must-link and cannot-link (SDC-GBB, k = 3).
REAL-WORLD DATASETS

DATASET METHOD UB NODES GAP (%) DATASET METHOD UB NODES GAP (%)

IRIS2 HEURISTIC 86.85 – – RDS_CNT2 HEURISTIC 7.579× 107 – –
N = 150 CPLEX 93.75 9166269 37.47% N = 10,000 CPLEX 1.493× 108 4100 100.00%
D = 4 PC-SOS-SDP 86.76 3 ≤ 0.1% D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 86.76 17 ≤ 0.1% PARALLEL 7.437 × 107 32 ≤ 0.1%

SEED2 HEURISTIC 597.14 – – HTRU23 HEURISTIC 1.859× 108 – –
N = 210 CPLEX 760.73 6044677 75.32% N = 17,898 CPLEX NO FEASIBLE SOLUTION FOUND
D = 7 PC-SOS-SDP 596.61 5 ≤ 0.1% D = 8 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 596.61 9 ≤ 0.1% PARALLEL 1.141 × 108 79 ≤ 0.1%

HEMI2 HEURISTIC 1.566× 107 – – SPNET3D_53 HEURISTIC 8.171× 106 – –
N = 1,955 CPLEX 3.519× 107 39600 100.00% N = 50,000 CPLEX NO FEASIBLE SOLUTION FOUND
D = 7 PC-SOS-SDP NO SOLUTION FOUND D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 1.533 × 107 115 ≤ 0.1% PARALLEL 7.925 × 106 45 5.01%

PR23922 HEURISTIC 2.922× 1010 – – SKIN_8 HEURISTIC 7.579× 108 – –
N = 2,392 CPLEX 3.240× 1010 239465 99.50% N = 80,000 CPLEX NO FEASIBLE SOLUTION FOUND
D = 2 PC-SOS-SDP NO SOLUTION FOUND D = 3 PC-SOS-SDP NO SOLUTION FOUND

PARALLEL 2.916 × 1010 35 ≤ 0.1% PARALLEL 4.258 × 108 11 4.86%
SYNTHETIC DATASETS (D = 2)

SYN-12000 HEURISTIC 9.520× 104 – – SYN-42000 HEURISTIC 5.133× 105 – –
N = 12,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 42,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 9.520 × 104 25 ≤ 0.1% PARALLEL 5.133 × 105 31 1.37%

SYN-21000 HEURISTIC 1.818× 105 – – SYN-210000 HEURISTIC 2.165× 106 – –
N = 21,000 CPLEX NO FEASIBLE SOLUTION FOUND N = 210,000 CPLEX NO FEASIBLE SOLUTION FOUND

PC-SOS-SDP NO SOLUTION FOUND PC-SOS-SDP NO SOLUTION FOUND
PARALLEL 1.818 × 105 37 0.18% PARALLEL 2.164 × 106 28 0.64%

2 LESS THAN 4 HOURS.
3 LESS THAN 8 HOURS.
4 SOLVED AT THE ROOT NODE.

5 CONCLUSION

In this paper, we presented Sample-Driven Constrained Group-Based Branch-and-Bound (SDC-GBB),
a deterministic global optimization algorithm for pairwise-constrained MSSC. We prove convergence
to a globally ε-optimal solution and demonstrate scalability to datasets exceeding 200,000 samples in
all constraint settings, which is over 200 times larger than the 800-sample benchmark of (Piccialli
et al., 2022a), and further extend to over 1,500 times larger with ML-only instances having more
than one million samples while maintaining optimality gaps below 3%. When empirically evaluated
on real-world benchmarks of various domains, SDC-GBB consistently achieves low optimality gaps
across diverse constraint settings.

6 LIMITATIONS AND FUTURE DIRECTIONS

Similar to prior work, our algorithm struggles to scale to one million samples with CL constraints due
to the NP-hard nature of this constraint type. Future work may consider tightening the grouped-sample
Lagrangian lower bound (Section 3.4) by dualizing the CL graph with relaxing binary indicators to
[0,1] and penalty multipliers zij updated via subgradient methods. This formulation would produce a
more compact MISOCP with fewer active binary variables thanks to the relaxation of zij and stronger
continuous bounds, reducing the number of branches in dense CL graphs, as shown by successful
Lagrangian-penalty approaches in semi-supervised clustering and global MISOCP strategies. An
alternative is to incorporate clique inequalities or separation cuts for the CL graph, following MIP
methodologies that substantially improve bounds. However, including these Lagrangian terms at
each node would increase the solve time of the relaxation, so empirically evaluating the trade-off
between bound improvement and per-node cost will be key.
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Ethics Statement Our study uses the SKIN (Skin Segmentation) dataset from the UCI Machine
Learning Repository. The dataset contains de-identified RGB pixel triplets (B, G, R) sampled
from facial images and is derived from two collections: the PAL Face Database and the DARPA-
sponsored Color FERET images. All human participants provided consent for the use of these
collections for research purposes. In line with data-privacy best practices, the UCI release exposes only
anonymized pixel triplets and does not include raw images, which reduces the risk of re-identification
in downstream work. Concurrently, our framework optimizes only the Minimum Sum-of-Squares
Criteria (MSSC) objective, and as is well documented, MSSC/k-means–style clustering can reproduce
and even amplify existing biases in the data, particularly at scale. In high-stakes or sensitive domains,
deployments that do not account for these effects can lead to disparate treatment or outcomes across
demographic groups. We recommend that practitioners perform fairness audits before deployment,
and consider mitigation techniques such as fair clustering variants and post-processing adjustments if
such disparities arise. The absence of fairness-aware safeguards in the current implementation is a
limitation of this work, and integrating such constraints or corrections is left for future extensions.

Reproducibility Statement In this section, we outline necessary details for reproducing all experi-
ments described in the paper. We provide comprehensive hardware and software configuration for
SDC-GBB as well as pairwise constraint generation, seeding protocol, runtime limit and data setup,
including real and synthetic dataset generation in Section 4. The implementation of the SDC-GBB
algorithm is thoroughly described through Algorithm 1. Lastly, we document evaluation in Section 4
along with the results of all baselines used for comparison in Sections D and E. To further support
the reproducibility of our results, we will release our experiment code upon acceptance, enabling
other researchers to replicate and expand on our work.
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A TWO-STAGE PROGRAMS REFORMULATION

Once the must-link set Tml has been collapsed into pseudo-samples (Sec. 3.2), the additive constant
(t − 1) tr(Σ2

ml) can be pre-computed. Hence minimising the objective in (4a) is equivalent to
minimising

∑
s∈Ŝ ds,∗. The optimal solution of (4) is obtained from the two-stage program:

z = min
µ∈M0

∑
s∈Ŝ

Qs(µ), (8)

where µ are the first-stage variables and Qs(µ) is the optimal value of the second-stage problem
defined below. After (i) collapsing must-link components and (ii) applying the geometric Lemmas
1–2 together with cannot-link propagation, each sample s may still be assigned only to a viable subset
Ks ⊆ K. The reduced dataset Ŝ and the family {Ks}s∈Ŝ are fixed once at the root node.

Qs(µ) = min
ds,bs

ds,∗

s.t. Constraints 2b, 2c, 1e, 1d.
(9)

Here ds = [ds,k]k∈Ks and bs = [bs,k]k∈Ks are the second-stage variables. The closed set M0 = {µ |
µl ≤ µ ≤ µu} bounds every centre with µl

k,i = mins Xs,i and µu
k,i = maxs Xs,i for all k ∈ K and

i = 1, . . . ,m. For convenience we choose a single Big-M constant

N = max
s,k

m∑
i=1

max
{
|xs,i − µl

k,i|2, |xs,i − µu
k,i|2

}
,

which leaves all bounds valid and simplifies the notation. The bounds µl, µu are computed once at
the root node and inherited unchanged by every BB subproblem. We denote by relint(M) and δ(M)
the relative interior and the diameter of a set. Throughout this paper, the diameter of the box set M0

is δ(M0) = ||µu − µl||∞.

It can be shown that the closed-form solution to the second-stage problem is

Qs(µ) = min
k∈Ks

∥xs − µk∥22.

Since Qs(µ) is the minimum of a finite number of continuous functions, Qs is continuous. Because
of the compactness of M0 and continuity of Qs(µ), the clustering Problem 8 can attain its minimum
according to the generalized Weierstrass theorem.

When the BB algorithm explores a box M ⊆M0, it solves the primal node problem

z(M) = min
µ∈M

∑
s∈Ŝ

Qs(µ). (10)

Replicating centres for each sample and enforcing non-anticipativity (11b) yields the lifted form

min
µs∈M

∑
s∈Ŝ

Qs(µs) (11a)

s.t. µs = µs+1, s = 1, . . . , |Ŝ| − 1. (11b)

Problems (10) and (11) are equivalent, and retain all cannot-link information through the viable-cluster
sets {Ks}s∈Ŝ .
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B PROOF OF THEOREMS

B.1 PROOF OF LEMMA 3.3

Proof.

sseC(µ) =

p∑
i=1

||xi − µ||2 (12)

=

t∑
i=1

||xi − µ||2 +
p∑

i=t+1

||xi − µ||2 (13)

=

t∑
i=1

||xi||2 − 2µT
t∑

i=1

xi + t||µ||2 +
p∑

i=t+1

||xi − µ||2 (14)

Here
∑t

i=1 ||xi||2 can be rewritten as follow:

t∑
i=1

||xi||2 =

t∑
i=1

||xi − µml + µml||2 (15)

=

t∑
i=1

||xi − µml||2 − 2µT
ml

t∑
i=1

(xi − µml) + t||µml||2 (16)

=

t∑
i=1

||xi − µml||2 + t||µml||2 (17)

= (t− 1)tr(Σ2) + t||µml||2 (18)

Thus, we have:

sseC(µ) =
t∑

i=1

||xi||2 − 2µT
t∑

i=1

xi + t||µ||2 +
p∑

i=t+1

||xi − µ||2 (19)

= (t− 1)tr(Σ2
ml) + t||µml||2 − 2tµTµml + t||µ||2 +

p∑
i=t+1

||xi − µ||2 (20)

= (t− 1)tr(Σ2
ml) + t||µml − µ||2 +

p∑
i=t+1

||xi − µ||2 (21)

= (t− 1)tr(Σ2
ml) + sseĈ(µ) (22)

B.2 PROOF OF THEOREM 3.4

Proof. (⇒) Let µ∗ denote a globally optimal solution of Problem (4) as a result of ML collapse.
Each pseudo-sample then corresponds to exactly one must-link component of the original dataset.
In constructing Problem (4), assign every genuine sample in that component to the cluster of its
associated pseudo-sample; any sample not belonging to a must-link component retains the label
it receives in the unconstrained solution. This enforces bi,k = bi′,k for all (i, i′) ∈ Tml, so the
pair (µ∗, b∗) is feasible for Problem (2). At the same time, the resulting objective matches that of
Problem (4), since the additive term

∑
k∈Kml

(tk − 1) tr(Σ2
ml,k) precisely reinstates the variance

eliminated when collapsing each must-link component. Hence, the optimal solution of Problem (4) is
optimal for Problem (2).

(⇐) Let (µ∗, b∗) be a global optimum for Problem (2) on the original instance. Collapse ML
constraints based on Lemma 2 to form the pseudo-sample instance µ̂. Then µ̂ is feasible for
the unconstrained Problem (4) and so is the pair (µ̂, b̂). By contradiction, assume that µ̂ is not
optimal for Problem (4). Then there exists a feasible µ† for (4) with sseC(µ

†) < sseC(µ̂). Via
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reconstructing the ML constrained Problem (2), we obtain sseĈ(µ
†, b†) = sseC(µ

†)+C < sseC(µ̂)+
C = sseĈ(µ

∗, b∗), which contradicts the optimality of (µ∗, b∗). Hence, the optimal solution for
Problem (2) is optimal for Problem (4).

C CONVERGENCE ANALYSIS

In this section we establish the convergence of the proposed BB scheme, constructed with the
grouping–based Lagrangian decomposition lower bound and the decompsable upper bound based on
closed form solutions for must-link or K-coloring. A key feature of our algorithm is that it branches
exclusively in the space of first-stage variables µ to guarantee convergence. As all must-link
components have been collapsed and every CL-infeasible assignment eliminated, the remaining
problem is an unconstrained optimization over µ with continuous objective Q(µ) =

∑
s∈Ŝ Qs(µ).

Therefore, the proof of convergence can easily adopt the foundational results of (Cao & Zavala,
2019) and the seminal contributions in Chapter IV of (Horst & Tuy, 2013). Although the original
pairwise–constrained MSSC places additional feasibility requirements on the assignment variables,
our equivalent unconstrained re-formulation—obtained by first collapsing every must-link component
(Theorem 3.4) and then discarding all assignments that violate cannot-link constraints (See Lemma 3.1
and 3.2)—allows any point µ ∈ M to be treated as a feasible first-stage decision. The proof of
Theorem 3.5 is thus becoming obvious with the definitions and theoretical frameworks of Cao &
Zavala (2019), while only notational adaptations will be processed to reflect the reduced dataset Ŝ
and the viable-cluster sets {Ks}s∈Ŝ specific to the present problem.
Lemma C.1 (Lower Bounding Consistency). Given an exhaustive subdivision (See Definition
IV.10 (Horst & Tuy, 2013)) on µ, the lower-bounding operation in Algorithm 1 is strongly consistent
(See Definition IV.7 (Horst & Tuy, 2013)).

Proof. With an exhaustive subdivision, each box Miq shrinks to a single point µ̄, so M̄ = {µ̄}.
We prove that limq→∞ β(Miq ) = z(M̄) =

∑
s∈Ŝ Qs(µ̄). Define, for every sample s, µ̃iq,s ∈

argminµ∈Miq
mink∈Ks

∥xs − µk∥22, where Ks is the set of clusters still admissible for s after the
cannot-link pruning. Because each Ks already excludes every cannot-link pairing, every distance
minimized in the definition of µ̃iq,s automatically respects all CL constraints. Since Miq → {µ̄},
we have µ̃iq,s → µ̄. Using the continuity of Qs(·), it follows that Qs(µ̄) = limq→∞ Qs(µ̃iq,s) =
limq→∞ βs(Miq ). Summing over all s yields limq→∞ β(Miq ) =

∑
s∈Ŝ Qs(µ̄). Proof complete.

Lemma C.2 (Lower Bounding Convergence). Given an exhaustive subdivision (Definition
IV.10 (Horst & Tuy, 2013)) on µ, Algorithm 1 satisfies lim

i→∞
βi = z.

Proof. This result can be obtained from Lemma C.1 and Theorem IV.3 of (Horst & Tuy, 2013).

Lemma C.3 (Upper Bounding Convergence). Given an exhaustive subdivision (Definition
IV.10 (Horst & Tuy, 2013)) on the centroid space µ, Algorithm 1 produces a sequence {αi} that
satisfies limi→∞ αi = z.

Proof. Let µ∗ ∈ M0 be an optimal centroid set for the equivalent unconstrained MSSC obtained
after collapsing must-link components and discarding every cannot-link–infeasible assignment.
According to Lemma 6 in Cao & Zavala (2019), limi→∞ αi = z holds when executing Algorithm 1.

Combing Lemma C.2 and C.3, we obtain Theorem 3.5. Essentially, pseudo-samples in Section 3.2
yield an equivalent unconstrained MSSC problem, and Theorem 3.4 proves a bijection between
optimal solutions before and after this transformation. The geometric rules in Section 3.1 apply
dominance checks via Lemmas 3.1 and 3.2, excluding only assignments whose cost significantly
exceeds the incumbent upper bound without removing any centroid regions. Consequently, our
branch-and-bound algorithm still exhaustively subdivides the centroid space, satisfying Lemmas C.1
through C.3. Thus, the result remains valid for the entire SDC-GBB pipeline. Empirically, we show
that within a fixed 12-hour runtime limit, SDC-GBB achieves optimality gaps above 0.1% for some
datasets under certain constraints. However, this does not reflect the failure of convergence in our
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global optimization scheme, but rather the best feasible solution and its lower bound at timeout.
Imposing a time limit is the standard which we follow to ensure a fair comparison with other exact
baselines.

D EFFECT OF PAIRWISE CONSTRAINTS

Background knowledge in constrained clustering is introduced through pairwise constraints: must-
link (ML) and cannot-link (CL). This section analyzes how varying densities of these constraints
affect the branch-and-bound performance on medium-sized problem instances. Table 4 summarizes
the number of nodes processed and the average computational time per node under different constraint
densities. All experiments reported in Table 4 achieve a final optimality gap below or equal to 0.1%.

Must-link constraints merge linked samples into single pseudo-points before initiating the branch-and-
bound procedure. Conceptually, this operation is analogous to samples merging immediately upon
defining constraints, effectively knowing in advance that they must converge into a single optimal
position. Figure 2 illustrates this merging process: each must-link pair collapses into one pseudo-point,
thus reducing the number of samples to consider. Although this merging simplifies the optimization
search space by reducing dimensionality, it simultaneously imposes additional equality constraints in
each node relaxation within the branch-and-bound process, thereby increasing the computational effort
per node relaxation. Nonetheless, overall node processing becomes faster since fewer distinct samples
remain active, which accelerates bound computations without compromising the equivalence and
optimality of the final solution. Empirically, the average time per node decreases with an increasing
number of must-link constraints (from 74 seconds per node down to 13 seconds per node for dataset
Syn-2100). However, there is a threshold for the density of constraints necessary to significantly
simplify the branching process: below approximately n/64 must-link pairs, constraints have minimal
practical relevance, causing the equivalent problem formulation, described in Section 3.2, to behave
similarly to its unconstrained counterpart.

In contrast, the geometric sample-determination strategy for cannot-link constraints functions as
barriers that restrict feasible assignments, similar to placing walls within an axis-aligned region.
Unlike must-link constraints, which collapse samples proactively, cannot-link constraints compel
each sample’s assignment to navigate around imposed boundaries that are not initially evident. Each
sample seeks to reach its optimal cluster centroid but must repeatedly avoid these geometric barriers,
reflecting constrained assignments and generating additional branching iterations. Despite this growth
in node count, the computational time per node remains stable because infeasible assignments are
pruned at an early stage, as stated in Lemma 3.1. Thus, the complexity introduced by cannot-link
constraints primarily affects the extent of branching rather than the computational complexity of each
bound evaluation. In summary, must-link constraints simplify the optimization upfront by reducing
per-node complexity through component collapse, whereas cannot-link constraints expand the search
tree but maintain per-node computational cost, ensuring that solutions satisfy the imposed constraints
without fundamentally altering the underlying clustering structure.
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Figure 3: Effect of Must–Link Constraints on (a) the number of nodes processed and (b) time per
node, for both synthetic datasets.
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Figure 4: Effect of Cannot–Link Constraints on (a) the number of nodes processed and (b) time per
node, for both synthetic datasets.

Interestingly, we observe that the linear relaxation is substantially weakened when must-link con-
straints form large or overlapping superpoints. In URBANGB, the merging of 469 groups into k = 3
superpoints induces symmetry that leaves a 12.97% gap, and in SPNET3D the near one-dimensional
data arrangement produces overlapping superpoints that the bound cannot improve, resulting in a
7.43% gap. On the other hand, in SKIN_8 and SPNET3D_5, the mixed ML+CL case is uniquely
hard because ML contraction creates component-level “hotspots” that are densely entangled by
cannot-links. Inside SKIN_8, there is a massive ML super-component that must occupy one cluster
and is CL-forbidden from sharing with thousands of neighbors, whereas the tight CL and loose
ML constraints simultaneously oppose the geometry of SPNET3D_5. This coupling weakens the
relaxation and drives deep branching, yielding a large optimality gap > 3% in the mixed constraint
case, whereas ML-only or CL-only avoid this interaction and remain tight.

Table 4: Runtime metrics with Different Constraint Settings with solution optimality gap < 0.1%.

DATASET METRIC n
2

n
4

n
8

n
16

n
32

n
64

MUST-LINK (ML)

Syn-1,200 NODES 50 41 32 39 10 37
GAP (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
TIME (S) 389.61 613.09 501.05 564.41 271.24 632.25
TIME/NODE (S) 7.79 14.95 15.66 14.47 27.12 17.09
CORE HOUR (H) 7.79 14.95 15.66 14.47 27.12 17.09

Syn-2,100 NODES 25 51 23 8 31 21
GAP (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
TIME (S) 342.20 840.70 793.19 608.32 1375.86 1570.95
TIME/NODE (S) 13.69 16.48 34.49 76.04 44.38 74.81
CORE HOUR (H) 5.41 8.52 6.96 7.84 3.77 8.78

CANNOT-LINK (CL)

Syn-1,200 NODES 20 20 20 20 20 30
GAP (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
TIME (S) 336.98 357.45 359.61 352.23 370.58 629.90
TIME/NODE (S) 16.85 17.87 17.98 17.61 18.53 21.00
CORE HOUR (H) 7.79 14.95 15.66 14.47 27.12 17.09

Syn-2,100 NODES 21 31 27 25 43 33
GAP (%) <0.1% <0.1% <0.1% <0.1% <0.1% <0.1%
TIME (S) 1614.36 1604.81 1591.37 1312.08 1695.81 1539.55
TIME/NODE (S) 76.87 51.77 58.94 52.48 39.44 46.65
CORE HOUR (H) 7.79 14.95 15.66 14.47 27.12 17.09
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To further highlight resource usage with a unified measure of parallelism and wall-clock time, we
compute “core-hour”, defined as core_hour = time(s)×cores

3600(s) . Under must-link constraints, SDC-
GBB’s overall branching behavior varies substantially with constraint density, as on Syn-1,200 and
Syn-2,100, going from n/2 to n/32 ML constraints generally reduces the number of branch-and-
bound nodes but raises the average time per node. In contrast, the number of nodes explored grows
roughly linearly under uniform cannot-link constraint placement; as we observe in Table 4, node
count scales ∼ O(m) with m cannot-link constraints, while time per node remains constant. As
a result, the wall-clock time increases by about 20% on Syn-1,200 and roughly a factor of two on
Syn-2,100, but the core hour stays relatively static across constraint sizes.

When connecting this empirical measure to asymptotic complexity, we note that each branch-
and-bound node incurs O(|Ŝ|K) work, while exhaustive axis-aligned bisection yields at most
O((δ/ε)Km) (Horst & Tuy, 2013), where δ is the initial box size and ε the target precision. Together
these give a nominal worst-case cost of O((δ/ε)Km|Ŝ|K). On a cluster with P identical CPU cores,
parallelising across open nodes yields an expected core-hour consumption of O

(
(δ/ε)Km|Ŝ|K

P

)
,

provided the number of simultaneously available nodes exceeds P . The empirical trends observed in
Tables 1 and 2 align with this theoretical envelope.

D.1 RUNTIME ANALYSIS OF EXHAUSTIVE µ SEARCH

Table 5 reports wall-clock statistics for the exhaustive enumeration of µ values inside our
reduced-space branch–and–bound framework 2. For each synthetic dataset we list the total wall time
(Ttotal), the time devoted exclusively to the µ search (Tµ), the number of branch–and–bound nodes
explored (Nnodes), and the average time per node (Tnode = Tµ/Nnodes).

Table 5: Runtime metrics for n/4 must-links exhaustive µ search (gap ≤ 0.1%).

DATASET TTOTAL (S) Tµ (S) NNODES TNODE (S)

SYN-21000 3,323.69 3,311.58 69 47.99
SYN-81000 12,921.19 12,804.11 71 180.34
SYN-141000 18,499.32 18,307.11 55 332.86
SYN-171000 28,796.98 28,551.09 43 664.00

The results confirm that the µ enumeration dominates the computational budget (Tµ/Ttotal > 0.99),
while other tasks, namely relaxations, cuts and I/O are marginal. Although Tnode grows faster than
linearly with the dataset size, parallel execution on 100 cores keeps the overall wall-time below ten
hours even for the 171 k-point instance.

D.2 CLUSTERING EVALUATION

Our work distinguishes between two aspects of clustering performance: (i) the formulation, which
defines how data similarity is measured and affects metrics such as ARI, NMI, and purity; and (ii) the
quality of the solution (in terms of cost minimization), which we measure using the optimality gap.
Our focus is on the quality of the solution for the K-Means cost, ensuring an optimality guarantee of
the solution. Here, we performed additional statistical tests and gave the ARI, NMI and purity results
of 5 datasets with ground truth labels 3 and compare these with the algorithm of (Hua et al., 2021) in
Table 6 4. In these experiments, the number of clusters is set to the number of ground truth labels.

2Node count decreases with n because larger ML components reduce |Ŝ| via pseudo-sample collapse (Section
3.2), enabling scalability up to 1.5M samples under ML constraints.

3ARI/NMI/Purity are reported only as external validation, while solution quality is measured via certified
SSE gaps.

4Identical metrics confirm that CL constraints are satisfied at the global optimum; enforcement via Lemmas
3.1 –3.2 and node feasibility checks remains active throughout the tree.
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Table 6: Clustering evaluation metrics on solutions of datasets under different constraint settings.

METRICS CONSTRAINTS
IRIS
k = 3

SEEDS
k = 3

HEMI
k = 3

HTRU2
k = 2

SKIN_8
k = 2

ARI

MSSC (HUA ET AL., 2021) 0.7163 0.7166 0.0126 −0.0779 −0.0387
SDC-GBB (ML) 0.7859 0.7261 0.0137 −0.0385 −0.0427
SDC-GBB (CL) 0.7163 0.7166 0.0148 0.0389 0.3545
SDC-GBB (ML+CL) 0.7711 0.7384 0.0171 0.0909 −0.0090

NMI

MSSC (HUA ET AL., 2021) 0.7419 0.6949 0.0335 0.0265 0.0221
SDC-GBB (ML) 0.7773 0.6979 0.0335 0.0666 0.0280
SDC-GBB (CL) 0.7419 0.6949 0.0309 0.1007 0.4388
SDC-GBB (ML+CL) 0.7705 0.7006 0.0338 0.1275 0.0343

PURITY

MSSC (HUA ET AL., 2021) 0.8867 0.8952 0.4210 0.9084 0.7925
SDC-GBB (ML) 0.9200 0.9000 0.4251 0.9084 0.7925
SDC-GBB (CL) 0.8867 0.8952 0.4373 0.9084 0.9420
SDC-GBB (ML+CL) 0.9133 0.9048 0.4419 0.9084 0.7925

E HEURISTIC ALGORITHMS

We evaluate the proposed procedure by comparing its clustering quality with four reference heuristics
for the minimum-sum-of-squares clustering problem subject to must-link (ML) and cannot-link (CL)
constraints. COP-k-means (Wagstaff et al., 2001) restarts the classical Lloyd algorithm one hundred
times and enforces the constraints at every assignment step. The post-processing encode-k-means-
Post method of Nghiem (Nghiem et al., 2020) formulates the reassignment of instances produced by
an unconstrained or partially constrained clustering method as a binary combinatorial program that
respects all ML and CL relations. The binary linear programming approach of Baumann (Baumann,
2020) (BLPKM-CC) solves to optimality the assignment subproblem within each Lloyd iteration;
only the initial centroids are random, so the method is partially deterministic. Variants of coreset
algorithm construct a (k, ϵ)-coreset, on which k-means can be solved quickly while guaranteeing
that the resulting centers incur at most a (1 + ϵ) multiplicative error in squared-error cost on the full
dataset, thus preserving near-optimality with far lower computational and memory demands. We
test several coreset construction algorithms and obtain the UB for Sensitivity Sampling with k = 3,
oversample factor c = 2, error ϵ = 0.1 and probability of approximation guarantee delta = 0.1, as
this is the state-of-the-art method for constructing coresets (Schwiegelshohn & Sheikh-Omar, 2022)
and the only method satisfying the 4-hour runtime limit for all datasets.

Tables 7, 8, 9 report the optimal UB obtained by all heuristic algorithms with 100 independent
initializations for ML-only, CL-only, and ML+CL experiments respectively. We do not include
results for Sensitivity Sampling in experiments involving CL since under coreset algorithms, any
hard cannot-link requirement collapses the additivity assumption and blows up point sensitivities,
thus inflates the coreset to linear size. Besides, we apply N/A to some COP-k-means results, as this
algorithm generally could not find the global optima for datasets of size n > 2,000.
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Table 7: Heuristic algorithms on n
4 ML constraints

DATASETS SIZE COP-k-MEANS
ENCODE-

k-MEANS-POST
BLPKM-CC SENSITIVITY

SAMPLING

IRIS 150 150.78 84.67 83.82 93.87
SEEDS 200 713.88 625.37 620.78 761.60
HEMI 1,955 N/A 1.602 × 107 1.875× 107 2.167× 107

PR2392 2,392 N/A 3.210 × 1010 3.246× 1010 3.436× 1010

RDS_CNT 10,000 N/A 6.122 × 107 6.579× 107 6.387× 107

HTRU2 17,898 N/A 1.407 × 108 1.472× 108 1.505× 108

SPNET3D_5 50,000 N/A 6.627 × 106 7.089× 106 7.196× 106

SKIN_8 80,000 N/A 5.464× 108 5.492× 108 4.533 × 108

URBANGB 360,177 N/A OUT OF MEMORY 1.643 × 109

SPNET3D 434,874 N/A 5.848 × 107 6.264× 107 6.413× 107

SYN-42000 42,000 N/A 5.127 × 105 1.584× 106 5.148× 105

SYN-210000 210,000 N/A 2.163 × 106 2.163 × 106 2.178× 106

SYN-420000 420,000 N/A 6.010 × 106 6.010 × 106 6.080× 106

SYN-1050000 1,050,000 N/A 3.708× 107 1.050 × 107 1.052× 107

SYN-1500000 1,500,000 N/A 5.611× 107 1.725 × 107 1.731× 107

Table 8: Heuristic algorithms on n
4 CL constraints

DATASET SIZE COP-k-MEANS
ENCODE-

k-MEANS-POST
BLPKM-CC

IRIS 150 119.37 80.31 80.71
SEEDS 200 634.3 603.96 603.04
HEMI 1,955 1.711× 107 1.401 × 107 1.606× 107

PR2392 2,392 2.596× 1010 2.566 × 1010 2.578× 1010

RDS_CNT 10,000 3.696× 107 2.897 × 107 2.902× 107

HTRU2 17,898 N/A 1.928× 108 1.740 × 108

SPNET3D_5 50,000 N/A 3.938 × 106 4.027× 106

SKIN_8 80,000 N/A 6.367 × 108 6.464× 108

SYN-12000 12,000 N/A 9.503 × 104 9.503 × 104

SYN-21000 21,000 N/A 1.928× 108 1.740 × 108

SYN-42000 42,000 N/A 1.817 × 105 1.817 × 105

SYN-210000 210,000 N/A 2.161 × 106 2.161 × 106

Table 9: Heuristic algorithms on n
4 ML + n

4 CL constraints

DATASET SIZE COP-k-MEANS
ENCODE-

k-MEANS-POST
BLPKM-CC

IRIS 150 N/A 88.75 86.85
SEEDS 200 N/A 601.36 597.14
HEMI 1,955 N/A 1.566 × 107 1.762× 107

PR2392 2,392 N/A 2.922 × 1010 2.945× 1010

RDS_CNT 10,000 N/A 7.579 × 107 7.919× 107

HTRU2 17,898 N/A 2.218× 108 1.859 × 108

SPNET3D_5 50,000 N/A 8.171 × 106 8.320× 106

SKIN_8 80,000 N/A 7.579 × 108 8.775× 108

SYN-12000 12,000 N/A 9.520 × 104 9.520 × 104

SYN-21000 21,000 N/A 1.818 × 105 1.818 × 105

SYN-42000 42,000 N/A 5.133 × 105 5.133 × 105

SYN-210000 210,000 N/A 2.165 × 106 2.165 × 106
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