
MultiSQL: A Schema-Integrated Context-Dependent Text2SQL Dataset
with Diverse SQL Operations

Anonymous ACL submission

Abstract

Text2SQL is a task that translates natural lan-001
guage into SQL statements. Context-dependent002
Text2SQL offers a more natural database inter-003
action by simulating dialogues between users004
and databases, with CoSQL and SparC as rep-005
resentative datasets. Yet, these datasets strug-006
gle to accurately replicate real-world situa-007
tions. To address this, we introduce Multi-008
SQL, which extends them in three key aspects:009
(1) Diverse SQL Operations. We incorporate010
diverse SQL types such as Create, Update,011
and Insert to broaden the scope of SQL op-012
erations. (2) Schema-Integrated Context. We013
integrated query context with database schema014
dependencies to better depict database com-015
plexity. (3) Extended Dialogues. We expand016
dialogue length to better simulate long conver-017
sations and complex interactions. This multi-018
type, schema-integrated, context-dependent019
Text2SQL dataset comprises nearly 800 dia-020
logue groups and over 9,000 interaction turns021
across 166 complex databases, offering a bet-022
ter benchmark for interactive user-database di-023
alogue. Addressing MultiSQL’s challenges,024
we refined evaluation metrics to better capture025
diverse SQL types and schema dependencies.026
We designed a prompt framework that lever-027
ages historical data and self-refinement to ac-028
curately capture the dependency between text029
queries and database structures. Experiments030
with GPT-3.5, GPT-4, and LLaMA2-7B show031
both the effectiveness of our strategies and the032
challenges of MultiSQL.033

1 Introduction034

In the information age, structured data is predomi-035

nantly stored in databases. We interact with them036

through SQL, a query language specifically de-037

signed for managing and manipulating databases.038

However, SQL is quite complex, requiring a deep039

understanding of database structures and query syn-040

tax for effective data retrieval. To address this, the041

Text2SQL(Katsogiannis-Meimarakis and Koutrika,042

User: Add a new column to store the

average score

User: Update the value of this new

column to the average score of Class 5

Answer: ALTER TABLE students ADD COLUMN
average_score DECIMAL(5,2);

Answer: UPDATE students SET average_score
= (SELECT AVG(score) FROM students WHERE
class = ‘5’) WHERE class = ‘5’;

User: List all Class 5 students who

scored above the average

Answer: SELECT * FROM students WHERE
class = ‘5’ AND score > average_score;

……

Figure 1: The example of our dataset, which displays
user interactions with a database in dialogue form, em-
ploying various SQL statement types.

2023; Qin et al., 2022; Dong et al., 2023; Pour- 043

reza and Rafiei, 2023; Gao et al., 2023) task was 044

proposed, allowing direct conversion of natural lan- 045

guage into SQL queries. This enables users to inter- 046

act with databases directly using natural language, 047

greatly facilitating data access. 048

To assess the effectiveness of Text2SQL, sev- 049

eral datasets have been developed. Spider (Yu 050

et al., 2018) is the first proposed dataset in a cross- 051

database context. It includes complex SQL types 052

like group, joins, and nested queries, effectively 053

measuring model adaptability for this task. Bird 054

(Li et al., 2023) goes further towards real-world 055

application, incorporating noisy data and external 056

knowledge, to accurately depict the complexity of 057

data in real-world business scenarios, thus challeng- 058

ing models in processing real-world data. 059

However, the above datasets assume SQL 060

queries are stated in a single sentence, overlook- 061

1

Dataset Cross Domain Context Dependent Schema Dependent Multi SQL Types
Spider ✔ ✘ ✘ ✘

Bird ✔ ✘ ✘ ✘

CoSQL ✔ ✔ ✘ ✘

SParC ✔ ✔ ✘ ✘

Ours ✔ ✔ ✔ ✔

Table 1: Comparison of various Text2SQL datasets, evaluating them against attributes such as cross-domain
versatility, context dependency for accurate SQL generation, schema dependency for query formation, and the
inclusion of multiple SQL types to assess the complexity of queries covered by each dataset.

ing the reality that Text2SQL interactions typically062

occur as dialogues. In real-world scenarios, it’s a063

more natural way for Text2SQL applications to in-064

volve users dynamically interacting with databases065

through dialogue. Therefore, context-dependent066

Text2SQL has been developed , with SparC(Yu067

et al., 2019b) and CoSQL(Yu et al., 2019a) serving068

as pivotal datasets for this task. SparC simulates the069

user-database interactive dialogues, while CoSQL070

is a corpus developed for building cross-domain,071

general-purpose database querying dialogue sys-072

tems. In the context-dependent Text2SQL task,073

models must understand the context to create the074

right SQL statements for the current queries.075

However, existing context-dependent Text2SQL076

datasets still have limitations in accurately replicat-077

ing real-world situations. To address this, we have078

extended them in the following three aspects:079

1. Diverse SQL Operations: Previous datasets080

were limited to Select queries. In real situ-081

ations, users engage with databases not just082

for queries but also for modifying and manag-083

ing database structures and content. There-084

fore, we have incorporated SQL statement085

types such as Create, Update, Insert, Alter,086

and Delete, making our dataset more compre-087

hensively reflect database interactions.088

2. Schema-Integrated Context: Existing context-089

dependent Text2SQL datasets focused solely090

on natural language context dependencies.091

However, dependencies also exist within the092

database schema context. For instance, as093

shown in Figure 1, a column added by the user094

through an Alter Table in earlier dialogue may095

change the structure of table schema, which096

is essential when it is queried later by a Se-097

lect statement. This requires the interaction098

system to dynamically capture changes in the099

database structure during the conversation. To100

address this, we have integrated the dependen- 101

cies between database table structures into our 102

dataset, more accurately simulating the com- 103

plexity and dynamics of real-world databases. 104

3. Extended Dialogues: According to statistics, 105

existing datasets have a relatively low aver- 106

age number of dialogue turns. In our new 107

dataset, we have greatly increased the num- 108

ber of dialogue interactions to better simulate 109

long conversations and complex interactions 110

in real-world scenarios. 111

Consequently, we propose a Multi-type, schema- 112

integrated, and context-dependent Text2SQL 113

dataset, called MultiSQL covering various types 114

of SQL operations. It comprises nearly 800 dia- 115

logue groups, with over 9,000 turns spanning 166 116

complex databases. Table 1 shows its advantages 117

compared to existing datasets. 118

Our dataset brings new challenges to method de- 119

sign and evaluation system construction. For meth- 120

ods, the integrated context necessitates that predic- 121

tion processes thoroughly consider the semantic 122

context generated during dialogue and changes in 123

database structure. The presence of diverse SQL 124

types, along with longer dialogue histories, makes 125

it easier for models to accumulate errors during 126

interactions. To address this, we’ve developed a 127

prompt framework, integrating historical data and 128

a self-refinement (Peng et al., 2023) mechanism to 129

mitigate prediction errors. 130

For evaluation, traditional metrics include Exact 131

Set Match and Execution Accuracy. However, for 132

MultiSQL, the former does not account for struc- 133

tural changes, and the latter struggles to handle 134

issues with non-select statements that do not return 135

values. Consequently, we introduce Context-Aware 136

Match to track dialogue-induced table structure 137

changes, and Database State Match to assess SQL 138

execution effectiveness by comparing changes of 139

the database content. 140

2

I currently have a set of user interaction data with a database,
where users pose questions to the database and the model
generates …

System Info

In answering questions, the model needs to consider both the
current question and the history of interactions to provide an
answer. However, the current issue with the interaction data
is …
Based on the original data, insert some new questions or
requirements that users might ask in the context.

Database Name
college_2
Tables (Each table is represented as a dict, the key represents
column name, and the value is its type) and primary key
prereq:{‘course_id’: ‘text’, ‘prereq_id’: ‘text’}; primary_key:
course_id … Table Schema

Top 3 records of each tables (Be represented as a dict):
classroom(total 30 records)
[(‘Lamberton’, ‘134’, 10), (‘Chandler’, ‘375’, 10), (‘Fairchild’,
‘145’, 27)] … Table Content

Interactive Data
User:How many instructors are there?
Answer:SELECT count (*) FROM instructor …

Demonstration

Let’s think step by step. The corresponding SQL statements can
be in the form of Select, Insert, Update, Create, … You …
For Insert or Update SQL Statements, You should …

Chain of Thought

Figure 2: Structured prompt design for MultiSQL dataset construction, detailing components such as system
information, table schema, and content, along with example interactions and chain of thought design.

Finally, our experiments on models like GPT-3.5141

(Ouyang et al., 2022), GPT-4 (Achiam et al., 2023),142

and LLaMA2-7B (Touvron et al., 2023) highlight143

the difficulties inherent in the MultiSQL dataset144

and the effectiveness of our proposed approaches.145

Our contributions are summarized as follows:146

1. We present MultiSQL, a Multi-type, schema-147

integrated, and context-dependent Text2SQL148

dataset. By incorporating different types149

of SQL operations and integrating database150

schema dependencies in a long dialogue, we151

make our dataset a more comprehensive re-152

flection of the complexity and dynamism in153

real-world database interactions.154

2. In response to the challenges presented by our155

dataset, we have accordingly developed meth-156

ods and introduced new evaluation metrics.157

3. Our experiments on models like GPT-3.5,158

GPT-4, and LLaMA2-7B effectively show the159

challenges posed by the MultiSQL dataset and160

the efficacy of our methods.161

2 Related Work162

Text-to-SQL aims to automatically translate natural163

language questions into SQL queries. The develop-164

ment of Text-to-SQL datasets has evolved to more165

closely resemble real-world scenarios, reflecting an166

increase in complexity and a move towards more167

accurately simulating real-world data interactions.168

Initially, datasets in this field were relatively sim-169

ple and focused on single-domain scenarios. Early170

datasets such as GeoQuery (Zelle and Mooney,171

1996), ATIS (Price, 1990) (Dahl et al., 1994), and172

Restaurant targeted specific information retrieval173

tasks within a limited domain. These datasets laid 174

the groundwork for future advancements but were 175

limited in their scope and complexity. 176

Considering that Text2SQL in real scenarios 177

is an open-domain problem, the field has seen 178

a shift towards cross-domain datasets, exempli- 179

fied by WikiSQL (Zhong et al., 2017) and SPI- 180

DER(Yu et al., 2018). These datasets broadened 181

the scope from single-domain to cross-domain, re- 182

quiring models to generalize across various do- 183

mains. However, a common limitation in many 184

cross-domain datasets is their focus on the database 185

schema without adequately considering the specific 186

values within the tables, diverging from the com- 187

plexity of real-world databases. 188

To address this, datasets like KaggleDBQA (Lee 189

et al., 2021), EHRSQL (Lee et al., 2022), SEDE 190

(Hazoom et al., 2021), and MIMICSQL (Wang 191

et al., 2020) were introduced. These datasets fo- 192

cused on large-value databases and professional 193

SQL queries, thereby moving closer to real-world 194

database applications. Bird further advanced this 195

trend by incorporating noisy data and external 196

knowledge into its structure to accurately depict the 197

complexity of data in real-world business scenarios, 198

making it more challenging and representative of 199

real-world data processing scenarios. 200

Another significant development in Text-to-SQL 201

datasets is the recognition that it’s more natural 202

for Text2SQL applications to involve users dy- 203

namically interacting with databases through di- 204

alogue. Therefore, context-dependent Text2SQL 205

has been developed. SparC simulates user-database 206

interactive dialogues, requiring models to under- 207

stand and respond to context-dependent queries. 208

CoSQL, on the other hand, is designed for building 209

3

cross-domain, general-purpose database querying210

dialogue systems. It challenges systems in SQL-211

grounded dialogue state tracking, response gen-212

eration, and user dialogue act prediction, closely213

mimicking real-world dialogue scenarios.214

3 Dataset Construction215

Due to the CoSQL being a representative exam-216

ple of a context-dependent Text2SQL dataset, we217

adopted its database in our work. Building upon218

this foundation, we constructed a Text2SQL in-219

teraction dataset to further explore and address220

the complexities of natural language interfaces to221

databases. Due to the high cost and extensive time222

requirements associated with manual data annota-223

tions, we use large language models as an aid in224

the dataset construction process like many recent225

research does(Akyürek et al., 2023)(Chen et al.,226

2023)(Zhang et al., 2023). We designed a set of227

prompt frameworks and used GPT-4 to generate228

data. Subsequently, we conducted human correc-229

tion and modifications on the generated data, it-230

erative checking and improving the quality of the231

dataset. Below, we will provide a detailed descrip-232

tion of the entire dataset construction process.233

3.1 Prompt Design234

Our prompt design, depicted in Figure 2, integrates235

several key components: (1) System Information,236

providing a task overview, dataset attributes, and237

input-output formats; (2) Table Schema, detail-238

ing the database structure including table and field239

names, data types, and keys; (3) Table Content,240

presenting the initial entries of each table and the241

total count of entries; (4) Demonstrations, offering242

initial Select queries from CoSQL to lay the ground-243

work for the model’s understanding of database244

queries; and (5) Chain of Thought, employing a245

reasoning method to guide the model in formulat-246

ing queries with accurate logic.247

3.2 Data Generation248

Here, we employed GPT-4 to generate data249

based on the above-mentioned prompt framework.250

Adding more detail to the situation, we generated251

817 sets of dialogues, comprising a total of 9317252

pairs of query-SQL data. Afterwards, by filtering253

out the duplicates, we ultimately obtained 783 sets254

of dialogues, with 8923 pairs of query-SQL data.255

3.3 Human Correction and Improvement 256

However, the generation process by GPT-4 can 257

only serve as an auxiliary tool. The data produced 258

by GPT-4 still has some issues. Therefore, we 259

invested substantial human effort to refine the base 260

data generated by GPT-4, aiming to correct existing 261

issues and enhance the overall quality of the dataset. 262

This involved several key steps: 263

• Grammar Correction: We validated and cor- 264

rected grammatical errors in 12% of the gen- 265

erated SQL statements to ensure adherence to 266

SQL syntax standards. This included resolv- 267

ing 6% of errors due to conflicts in insert state- 268

ment numbering from inability to accurately 269

retrieve entry counts in the database, 4% for 270

non-compliance with SQL syntax rules, and 271

2% for inserting duplicate fields. 272

• Semantic Correction: We identified and rec- 273

tified semantic misalignments in 4% of the 274

data, such as mapping queries to the incor- 275

rect tables, failing to understand temporal in- 276

formation in questions, and inferring missing 277

context from the queries inaccurately 278

• Contextual Relevance Improvement: We 279

inserted 334 query-SQL interactions based 280

on dialogue context to enhance the relevance 281

of semantic association within the dialogue 282

context and the dependency on table schema, 283

addressing the complexities of real-world 284

database interactions. 285

Building on the previously mentioned steps, 286

our team dedicated 114 person-hours to the post- 287

processing, correction, and improvement of the 288

generated data. This substantial effort in grammar 289

correction, semantic accuracy, and contextual rele- 290

vance was instrumental in ensuring the high quality 291

of the dataset. 292

4 Data statistics and analysis 293

Table 2 presents the statistical information of our 294

dataset and compares it with existing datasets. It 295

reveals that our dataset comprises a total of 9257 296

query turns, covering 166 databases. This scale of 297

query turns is comparable to mainstream datasets. 298

Moreover, it’s notable that our dataset has an aver- 299

age of 11.81 query turns per dialogue group, which 300

is significantly higher than CoSQL and SParC. 301

Figure 3 shows the distribution of SQL types in 302

our dataset, excluding Delete statements which are 303

4

Ours Spider Bird CoSQL SParC
Database nums 166 200 95 200 200
Table/DB 5.23 5.1 7.3 5.1 5.1
Total query turns 9257 10181 12751 11039 11257
Average query turns 11.82 – – 3.67 3.0

Table 2: Statistical overview of our dataset and comparison with existing datasets

Figure 3: Distribution of SQL types in our dataset

rare in practice. The balance among other opera-304

tions is notable, with Insert at 25.83%, Select at305

25.8%, and UPDATE at 23.19%. This reflects the306

varied use of SQL in real situations, enhancing our307

dataset’s relevance and providing a broad testing308

ground for systems handling diverse SQL queries309

within dialogues.310

5 Method311

MultiSQL, with Diverse SQL Operations, Schema-312

Integrated Context, and Extended Dialogues,313

presents unique challenges to the method design.314

First, the challenge arises from the need to un-315

derstand the semantic context within dialogues and316

adapt to database schema changes. To address317

this, we integrate historical data, a strategy that318

involves incorporating past interactions into the319

model’s current decision-making process. This ap-320

proach ensures that the model not only grasps the321

immediate query but also contextualizes it within322

the dialogue’s history, enhancing its ability to adapt323

to and reflect changes in the database structure ac-324

curately. By doing so, we mitigate issues related325

to semantic understanding and database adaptation,326

ensuring more accurate and contextually relevant327

predictions.328

Second, the diversity in SQL types and the po-329

tential for error accumulation through extended 330

dialogues require a robust mechanism to maintain 331

model accuracy. Here, our solution is the imple- 332

mentation of a self-refinement mechanism. This 333

process involves continuously analyzing model pre- 334

dictions for errors and refining the model’s strate- 335

gies based on feedback. Such a mechanism directly 336

tackles the accumulation of errors by enabling the 337

model to learn from its mistakes and adjust its ap- 338

proach for future queries, thus enhancing its reli- 339

ability and accuracy in handling a wide range of 340

SQL operations within prolonged dialogues. 341

Therefore, we have devised a prompt framework 342

that integrates historical data and incorporates a 343

self-refinement mechanism. The framework con- 344

tains several parts as shown in Figure 4: 345

• System Initialization: Starts with a prompt 346

that outlines the task, database schema, and 347

initial data context. 348

• Integrating Dialogue History: Adds previ- 349

ous dialogue excerpts to the current query for 350

context. 351

• Self-Refinement Mechanism: Uses an SQL 352

executor to validate and provide feedback on 353

the model-generated SQL for correction and 354

improvement. 355

In this way, our approach systematically ad- 356

dresses the challenges posed by MultiSQL through 357

initial setup, context integration, and iterative re- 358

finement. Section 7 experiments further validate 359

the effectiveness of our methodology. 360

6 Evaluation Metrics 361

In Text2SQL tasks, traditional evaluation metrics 362

include Exact Set Match and Execution Accuracy. 363

• Exact Set Match: This metric assesses the 364

equivalence of the predicted query to the 365

gold query across specific SQL components: 366

FROM, WHERE, GROUP BY, etc. Each com- 367

ponent is evaluated for an exact match be- 368

tween the predicted and gold queries. The 369

5

Database

LLM

Prompt framework

User

Dialogue

<System info>

<Table schema> <Table content>

<History>

<Feed Back>

Refined Answer

<User Query>

Pre-Answer

Record

Answer

History

Query

Prompt

Answer

Table info

Answer

Feedback

Figure 4: Our prompt framework for dynamic SQL query generation, including a user’s queries and system’s
records, which in turn, synthesizes an answer from a database, with the ability for refined answers based on feedback
loops

predicted query is deemed correct if, and only370

if, all components match exactly with their371

counterparts in the gold query.372

• Execution Accuracy: This metric executes373

both the predicted and gold SQL queries on374

the database and compares the result sets. If375

the result sets are identical, the queries are376

considered equivalent.377

However, these metrics encounter specific chal-378

lenges when applied to our dataset.379

• Challenges with Exact Set Match: First,380

Create and Alter statements can lead to nam-381

ing variations in fields, as depicted in Figure382

5(a), where different but valid table names383

reflect the same query’s intent. Second, as ta-384

ble structures change during dialogues (Figure385

5(b)), accurately matching subsequent queries386

necessitates considering previous modifica-387

tions388

• Challenges with Execution Accuracy: Be-389

yond Select statements, other types of SQL390

queries do not produce a direct return value,391

making it challenging to evaluate their execu-392

tion effectiveness.393

Consequently, to address the distinctive chal-394

lenges of our dataset, we introduce two novel evalu-395

ation metrics: Context-aware Match which gauges396

the alignment of predicted and actual table struc-397

tures within dialogue contexts, and Database State398

Match, which measures SQL effectiveness by ex-399

amining database state alterations. Further details400

are provided in the following subsections.401

User: Create a new table for conference info
rmation …
Answer: CREATE TABLE Conferences (conf
ID number …)
Predict: CREATE TABLE conference_info
(confID number …) a

b

User: Let's add a column for the number of s
easons to the TV_series table。
Answer: ALTER TABLE TV_series ADD Seas
ons number
Predict: ALTER TABLE TV_series ADD num
ber_of_seasons number
User: Can we record a new season for the TV
series with id 3? Let's set the number of se
asons to 4
Answer: UPDATE TV_series SET Seasons =
4 WHERE id = 3

Predict: UPDATE TV_series SET number_o
f_seasons = 4 WHERE id = 3

Figure 5: Evaluation challenges of MultiSQL: (a) The
red circle indicates different table names can reflect the
same query intent. (b) The red arrow shows changes in
table structure across dialogue

6.1 Context-aware Match 402

To tackle the issue of field naming discrepancies, 403

we first introduce fuzzy matching which aims to 404

accommodate variations in naming conventions by 405

allowing for a more flexible comparison between 406

predicted and actual field names. Fuzzy matching 407

operates under the principle that a match is recog- 408

nized if: 409

1. The field name in the answer (s) is contained 410

within the predicted field name (c), or vice 411

versa; 412

2. Parts of s split by underscores (_) are found 413

within c, or parts of c split by underscores are 414

found within s. 415

Additionally, for operations like Create and Alter 416

6

that change table structures, we track structural417

modifications by recording added (Tadd and Cadd),418

deleted (Tdel and Cdel), and altered (Calt) elements.419

This leads to the creation of a mapping dictionary420

(M) that correlates predicted and actual database421

elements. During SQL evaluation, a context-aware422

match score of 1 is awarded for exact field matches423

as per Mcolumn, with any deviation resulting in a424

0.425

Score =


1 if named fields match according to

Mcolumn and all non-named fields
align perfectly

0 otherwise

426

6.2 Database State Match427

For evaluating non-Select statements, we refine428

our approach with the Database State Match met-429

ric. This metric contrasts the database states after430

executing the predicted SQL statement and the ref-431

erence SQL statement, aiming to verify if these432

resulting states are identical. This comparison is433

essential for operations such as Create, Alter, and434

Delete, which impact the database’s structure, and435

for Insert and Update, which alter its content.436

The matching score K is thus recalculated to
reflect the alignment between the predicted and
actual outcomes on the database. The formula is
adjusted as follows:

K =


Structural Match(Dpred, Dgold),

for Create, Alter, Delete
Content Match(Dpred, Dgold),

for Insert, Update

In this context, Dpred and Dgold represent the437

database states after executing the predicted and438

gold standard SQL statements respectively. The439

Structural Match verifies the structural integrity440

and schema modifications aligned between Dpred441

and Dgold. while the Content Match ensures an442

exact content match in the database following the443

execution of both predicted and gold SQL state-444

ments.445

7 Experiments446

7.1 Experimental Setup447

In our experiments, we employed GPT-3.5, GPT-448

4, and LLAMA2-7B. For GPT-3.5 and GPT-4, we449

used a prompt framework and in-context learning to450

interact with these Large Language Models, max-451

imizing their response capabilities to structured452

prompts. For LLAMA2-7B, we adopted two ap- 453

proaches: a zero-shot setting where prompts were 454

directly inputted for inference, and an instruction- 455

tuned setting, where we utilized 662 groups from 456

our dataset to construct 8006 instruction-tuning 457

pairs. The remaining 121 groups were then em- 458

ployed for testing. For more implementation de- 459

tails, see Appendix A. 460

For prompt configurations, we experimented 461

with several settings: (1) Baseline, which processes 462

text directly to generate SQL statements without 463

additional context; (2) History, which enhances 464

inputs by appending historical dialogue data before 465

SQL generation; and (3) Self Refine, which intro- 466

duces a feedback loop from executing generated 467

SQL to refine subsequent outputs. 468

Our main evaluation metrics are as follows: (1) 469

Execution Accuracy, which focuses on the pre- 470

cision of executing SQL select statements; (2) 471

Context-aware Match, adopting the previously 472

mentioned strategy and assessing accuracy across 473

all types of statements; and (3) Database State 474

Match, evaluating the congruence of the database 475

state post-execution, applicable to all statement 476

types except select statements. 477

7.2 Experimental Results 478

Table 3 offers insightful results regarding the perfor- 479

mance of different models and methods across key 480

metrics such as Context-aware Match, Execution 481

Accuracy, and Database State Match. In compar- 482

ing models GPT-3.5, GPT-4, and LLAMA2-7B, 483

the Self Refine method generally outperforms the 484

Baseline and History methods across the board. 485

For Context-aware Match, Self Refine achieves top 486

scores in the Create and Update categories, with 487

GPT-4 reaching 0.345 and 0.786 respectively. The 488

Execution Accuracy for Select is also highest with 489

Self Refine, scoring 0.701 for GPT-4 and 0.653 for 490

GPT-3.5. Database State Match scores indicate 491

Self Refine leads in Insert, Create, and Update ac- 492

tions, with GPT-4 scoring 0.586, 0.529, and 0.735 493

respectively. Additionally, we give a comparative 494

case study of the three methods on GPT-4, which 495

can be found in Appendix B 496

LLAMA2-7B, even when tuned, shows a stark 497

contrast in performance compared to GPT mod- 498

els. The tuned LLAMA2-7B’s best Context-aware 499

Match scores after Self Refine are 0.059 for Se- 500

lect and 0.155 for Update, a considerable gap 501

from GPT-4’s performance. This highlights the 502

7

Table 3: Comparative analysis of SQL generation performance among different models: GPT-3.5, GPT-4, and
LLAMA2-7B, with a focus on context-aware matching, execution accuracy, and database state match for various
SQL operations. Results are segmented into three methodologies: Baseline, History, and Self Refine, highlighting
the incremental performance improvements with each approach.

Context-aware Match Execution Acc Database State Match
Models Method Select Insert Create Update Alter Delete Select Insert Create Update Alter Delete

GPT-3.5
Baseline 0.313 0.336 0.273 0.595 0.288 0.911 0.536 0.358 0.437 0.520 0.723 0.929
History 0.402 0.432 0.289 0.704 0.288 0.911 0.639 0.506 0.430 0.654 0.740 0.947

Self Refine 0.408 0.427 0.287 0.728 0.316 0.926 0.653 0.514 0.428 0.673 0.747 0.946

GPT-4
Baseline 0.496 0.326 0.307 0.438 0.288 0.875 0.385 0.353 0.498 0.438 0.708 0.750
History 0.497 0.423 0.313 0.704 0.292 0.911 0.600 0.522 0.479 0.642 0.695 0.911

Self Refine 0.475 0.469 0.345 0.786 0.308 0.911 0.701 0.586 0.529 0.735 0.780 0.929

LLAMA2-7B
Baseline 0.000 0.020 0.013 0.035 0.039 0.000 0.000 0.012 0.040 0.011 0.070 0.000
History 0.000 0.006 0.003 0.007 0.012 0.000 0.000 0.002 0.000 0.006 0.005 0.000

Self Refine 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LLAMA2-7B(tuned)
Baseline 0.036 0.023 0.011 0.176 0.096 0.000 0.025 0.023 0.018 0.088 0.208 0.250
History 0.029 0.068 0.042 0.268 0.115 0.125 0.030 0.072 0.079 0.150 0.152 0.000

Self Refine 0.059 0.074 0.039 0.155 0.107 0.000 0.025 0.077 0.079 0.111 0.219 0.125

LLAMA2-7B’s limitations in complex SQL tasks503

and underscores the challenging nature of the504

dataset which demands robust contextual under-505

standing and adaptability from models. The clear506

disparity in the results illustrates the importance507

of methodological refinement in achieving high508

accuracy on this demanding dataset.509

7.3 Detailed Analysis510

We provide a detailed assessment of the Create511

and Insert SQL statements for models GPT-3.5,512

GPT-4, and LLAMA2-7B, with a focus on Table513

Name Accuracy, which is the correct prediction514

rate of table names, and Field Match Ratio, which515

is the precision of field name prediction. These516

detailed metrics designs to finely gauge the models’517

predictive capabilities regarding database structure.518

The experimental outcomes for GPT-3.5 and519

GPT-4 demonstrate their proficiency. GPT-4 with520

the Self Refine method, which reaches near-perfect521

Table Name Accuracy scores of 0.984 for Create522

and 0.988 for Insert, and Field Match Ratio scores523

of 0.769 for Create and 0.963 for Insert. These524

findings robustly validate the effectiveness of the525

Self Refine, especially in predicting table names,526

where it exhibits an almost flawless performance.527

In contrast, LLAMA2-7B’s performance paints528

an interesting picture. The model, without any529

fine-tuning, records substantial Field Match Ra-530

tio scores of 0.464 for Table Name Accuracy in531

Create and 0.458 in Insert. These figures stand532

out against the backdrop of nearly zero scores in533

the primary experimental metrics of Context-aware534

Match and Database State Match. This indicates535

that LLAMA2-7B possesses a partial ability to pre-536

dict Insert statements and shows a preference for537

Table 4: Detailed analysis of the Create and Insert SQL
statements across GPT-3.5, GPT-4, and LLAMA2-7B.
The Table Name Accuracy is the correct prediction rate
of table names , and Field Match Ratio is the accurate
ratio of field names in the Create and Insert statements.

Table Name Acc. Field Match Ratio
Models Method Create Insert Create Insert

GPT-3.5
Baseline 0.975 0.954 0.722 0.930
History 0.973 0.971 0.727 0.947

Self Refine 0.968 0.956 0.728 0.933

GPT-4
Baseline 0.915 0.731 0.701 0.724
History 0.891 0.893 0.693 0.873

Self Refine 0.984 0.988 0.769 0.963

LLAMA2-7B
Baseline 0.191 0.464 0.070 0.458
History 0.129 0.270 0.020 0.268

Self Refine 0.027 0.146 0.012 0.146

LLAMA2-7B (tuned)
Baseline 0.075 0.199 0.032 0.194
History 0.207 0.416 0.115 0.409

Self Refine 0.185 0.239 0.126 0.236

generating table names and some database fields 538

accurately. However, after fine-tuning, there is a 539

noticeable decrease in performance, possibly be- 540

cause such tuning leads the model to approach In- 541

sert statement prediction from a more global per- 542

spective. This change might undermine its earlier 543

predictive abilities, pointing to a nuanced trade-off 544

between general and detailed SQL skills influenced 545

by fine-tuning. 546

8 Conclusion 547

In conclusion, our work introduces MultiSQL, 548

a Multi-type, schema-integrated, and context- 549

dependent Text2SQL dataset, designed to closely 550

mirror the complexities and dynamism of real- 551

world database interactions. By incorporating a 552

diverse range of SQL operations and embedding 553

database schema dependencies within extended dia- 554

logue interactions, MultiSQL offers a significantly 555

more nuanced and challenging environment for 556

Text2SQL applications. 557

8

Limitations558

The MultiSQL dataset, while advancing the559

Text2SQL domain, encounters limitations in fully560

replicating the complexity of real-world database561

scenarios, potentially affecting its generalizability.562

With 166 databases, the variety, although extensive,563

may not encompass the vast diversity of real-world564

database schemas, limiting the dataset’s applica-565

bility across different domains. Additionally, the566

refined evaluation metrics, though improved, might567

not capture all aspects of SQL query quality such568

as runtime efficiency and adherence to SQL writing569

best practices. This could lead to a gap in measur-570

ing the true effectiveness of SQL queries generated571

from natural language interactions, highlighting572

areas for future enhancement to bridge the gap573

between simulated environments and real-world574

database usage.575

References576

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama577
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,578
Diogo Almeida, Janko Altenschmidt, Sam Altman,579
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.580
arXiv preprint arXiv:2303.08774.581

Afra Akyürek, Eric Pan, Garry Kuwanto, and Derry582
Wijaya. 2023. DUnE: Dataset for unified editing.583
In Proceedings of the 2023 Conference on Empiri-584
cal Methods in Natural Language Processing, pages585
1847–1861, Singapore. Association for Computa-586
tional Linguistics.587

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,588
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony589
Xia. 2023. TheoremQA: A theorem-driven question590
answering dataset. In Proceedings of the 2023 Con-591
ference on Empirical Methods in Natural Language592
Processing, pages 7889–7901, Singapore. Associa-593
tion for Computational Linguistics.594

Deborah A. Dahl, Madeleine Bates, Michael Brown,595
William Fisher, Kate Hunicke-Smith, David Pallett,596
Christine Pao, Alexander Rudnicky, and Elizabeth597
Shriberg. 1994. Expanding the scope of the ATIS598
task: The ATIS-3 corpus. In Human Language Tech-599
nology: Proceedings of a Workshop held at Plains-600
boro, New Jersey, March 8-11, 1994.601

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,602
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.603
C3: Zero-shot text-to-sql with chatgpt. arXiv604
preprint arXiv:2307.07306.605

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,606
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.607
Text-to-sql empowered by large language mod-608
els: A benchmark evaluation. arXiv preprint609
arXiv:2308.15363.610

Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. 611
Text-to-SQL in the wild: A naturally-occurring 612
dataset based on stack exchange data. In Proceedings 613
of the 1st Workshop on Natural Language Processing 614
for Programming (NLP4Prog 2021), pages 77–87, 615
Online. Association for Computational Linguistics. 616

George Katsogiannis-Meimarakis and Georgia Koutrika. 617
2023. A survey on deep learning approaches for text- 618
to-sql. The VLDB Journal, pages 1–32. 619

Chia-Hsuan Lee, Oleksandr Polozov, and Matthew 620
Richardson. 2021. KaggleDBQA: Realistic evalu- 621
ation of text-to-SQL parsers. In Proceedings of the 622
59th Annual Meeting of the Association for Compu- 623
tational Linguistics and the 11th International Joint 624
Conference on Natural Language Processing (Vol- 625
ume 1: Long Papers), pages 2261–2273, Online. As- 626
sociation for Computational Linguistics. 627

Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu 628
Kwon, Woncheol Shin, Seongjun Yang, Minjoon Seo, 629
Jong-Yeup Kim, and Edward Choi. 2022. Ehrsql: A 630
practical text-to-sql benchmark for electronic health 631
records. In Advances in Neural Information Process- 632
ing Systems, volume 35, pages 15589–15601. Curran 633
Associates, Inc. 634

Jinyang Li, Binyuan Hui, GE QU, Jiaxi Yang, Binhua 635
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying 636
Geng, Nan Huo, Xuanhe Zhou, Chenhao Ma, Guo- 637
liang Li, Kevin Chang, Fei Huang, Reynold Cheng, 638
and Yongbin Li. 2023. Can LLM already serve as 639
a database interface? a BIg bench for large-scale 640
database grounded text-to-SQLs. In Thirty-seventh 641
Conference on Neural Information Processing Sys- 642
tems Datasets and Benchmarks Track. 643

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 644
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 645
Sandhini Agarwal, Katarina Slama, Alex Ray, John 646
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, 647
Maddie Simens, Amanda Askell, Peter Welinder, 648
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022. 649
Training language models to follow instructions with 650
human feedback. In Advances in Neural Information 651
Processing Systems, volume 35, pages 27730–27744. 652
Curran Associates, Inc. 653

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, 654
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou 655
Yu, Weizhu Chen, et al. 2023. Check your facts and 656
try again: Improving large language models with 657
external knowledge and automated feedback. arXiv 658
preprint arXiv:2302.12813. 659

Mohammadreza Pourreza and Davood Rafiei. 2023. 660
Din-sql: Decomposed in-context learning of 661
text-to-sql with self-correction. arXiv preprint 662
arXiv:2304.11015. 663

P. J. Price. 1990. Evaluation of spoken language sys- 664
tems: the ATIS domain. In Speech and Natural Lan- 665
guage: Proceedings of a Workshop Held at Hidden 666
Valley, Pennsylvania, June 24-27,1990. 667

9

https://doi.org/10.18653/v1/2023.emnlp-main.114
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://aclanthology.org/H94-1010
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.nlp4prog-1.9
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://doi.org/10.18653/v1/2021.acl-long.176
https://proceedings.neurips.cc/paper_files/paper/2022/file/643e347250cf9289e5a2a6c1ed5ee42e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/643e347250cf9289e5a2a6c1ed5ee42e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/643e347250cf9289e5a2a6c1ed5ee42e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/643e347250cf9289e5a2a6c1ed5ee42e-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/643e347250cf9289e5a2a6c1ed5ee42e-Paper-Datasets_and_Benchmarks.pdf
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://openreview.net/forum?id=dI4wzAE6uV
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/H90-1020
https://aclanthology.org/H90-1020
https://aclanthology.org/H90-1020

Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang,668
Jinyang Li, Binhua Li, Ruiying Geng, Rongyu Cao,669
Jian Sun, Luo Si, et al. 2022. A survey on text-to-sql670
parsing: Concepts, methods, and future directions.671
arXiv preprint arXiv:2208.13629.672

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-673
bert, Amjad Almahairi, Yasmine Babaei, Nikolay674
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti675
Bhosale, et al. 2023. Llama 2: Open founda-676
tion and fine-tuned chat models. arXiv preprint677
arXiv:2307.09288.678

Ping Wang, Tian Shi, and Chandan K Reddy. 2020.679
Text-to-sql generation for question answering on elec-680
tronic medical records. In Proceedings of The Web681
Conference 2020, pages 350–361.682

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,683
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze684
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,685
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan686
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-687
cent Zhang, Caiming Xiong, Richard Socher, Walter688
Lasecki, and Dragomir Radev. 2019a. CoSQL: A689
conversational text-to-SQL challenge towards cross-690
domain natural language interfaces to databases. In691
Proceedings of the 2019 Conference on Empirical692
Methods in Natural Language Processing and the693
9th International Joint Conference on Natural Lan-694
guage Processing (EMNLP-IJCNLP), pages 1962–695
1979, Hong Kong, China. Association for Computa-696
tional Linguistics.697

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,698
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-699
ing Yao, Shanelle Roman, Zilin Zhang, and Dragomir700
Radev. 2018. Spider: A large-scale human-labeled701
dataset for complex and cross-domain semantic pars-702
ing and text-to-SQL task. In Proceedings of the 2018703
Conference on Empirical Methods in Natural Lan-704
guage Processing, pages 3911–3921, Brussels, Bel-705
gium. Association for Computational Linguistics.706

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern707
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene708
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,709
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-710
cent Zhang, Caiming Xiong, Richard Socher, and711
Dragomir Radev. 2019b. SParC: Cross-domain se-712
mantic parsing in context. In Proceedings of the713
57th Annual Meeting of the Association for Computa-714
tional Linguistics, pages 4511–4523, Florence, Italy.715
Association for Computational Linguistics.716

John M Zelle and Raymond J Mooney. 1996. Learning717
to parse database queries using inductive logic pro-718
gramming. In Proceedings of the national conference719
on artificial intelligence, pages 1050–1055.720

Zhehao Zhang, Xitao Li, Yan Gao, and Jian-Guang Lou.721
2023. CRT-QA: A dataset of complex reasoning722
question answering over tabular data. In Proceed-723
ings of the 2023 Conference on Empirical Methods724
in Natural Language Processing, pages 2131–2153,725

Singapore. Association for Computational Linguis- 726
tics. 727

Victor Zhong, Caiming Xiong, and Richard Socher. 728
2017. Seq2sql: Generating structured queries from 729
natural language using reinforcement learning. arXiv 730
preprint arXiv:1709.00103. 731

A Implementation Details 732

In our Text2SQL experiments, we implemented 733

specific configurations for models in the GPT se- 734

ries. For GPT-3.5, we employed the GPT-3.5-turbo 735

model, and for GPT-4, we used the GPT-4-1106- 736

preview version. Both models were set with a tem- 737

perature of 0 to ensure the determinism and stability 738

of the generated results. 739

For fine-tuning LLAMA2-7B, we crafted a 740

dataset comprising 783 groups. To prepare for in- 741

struction tuning, we utilized 662 of these groups to 742

construct 8006 instruction-tuning pairs. This was 743

done by segmenting user-answer pairs within dia- 744

logues. The remaining 121 groups were reserved 745

for testing purposes. The fine-tuning process was 746

carried out using the LoRA technique, with a LoRA 747

rank of 8 and a LoRA alpha of 32. We set the 748

batch size to 4 and the learning rate to 1e-4. The 749

fine-tuning was conducted on an NVIDIA Tesla 750

V100 32GB GPU. For the inference output from 751

LLAMA2-7B, due to the model’s limitations, the 752

generated content contained some redundant infor- 753

mation. To address this, we employed GPT-3.5 to 754

extract the SQL statements from the generated con- 755

tent, which were then used as the predictive results 756

of the model. 757

B Case Study 758

In our case study on GPT-4 in Figure 6, we scru- 759

tinized the effectiveness of our proposed methods: 760

Baseline, History, and Self Refine, by examining 761

their responses to an identical user query. As seen 762

in the figure, the Baseline method, lacking context, 763

fails to deduce the correct table and column names. 764

The History method, although correcting the table 765

name, defaults to using NULL for the missing ID 766

information, which doesn’t satisfy the database’s 767

constraint of a non-null primary key. However, the 768

Self Refine method not only rectifies the table name 769

but also ingeniously uses a subquery to compute 770

the next sequential ID, fulfilling the primary key re- 771

quirement and successfully generating the correct 772

SQL statement. 773

The key takeaway from this case study is that 774

the History method can outperform the Baseline by 775

10

https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/D18-1425
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132
https://doi.org/10.18653/v1/2023.emnlp-main.132

User: Add an instructor named 'John Doe' with email
'john.doe@example.com'.

Predict of GPT-4 under different methods

Answer: INSERT INTO Instructors (instructor_id,
name, email_address) VALUES (201, 'John Doe',
'john.doe@example.com')

Baseline

History

Self Refine

Answer: INSERT INTO People (first_name,
last_name, email_address) VALUES ('John', 'Doe',
'john.doe@example.com')

Answer: INSERT INTO Instructors (instructor_id,
instructor_name, email) VALUES (NULL, 'John
Doe', 'john.doe@example.com');

Answer: INSERT INTO Instructors
(instructor_id, instructor_name, email) VALUES
((SELECT IFNULL(MAX(instructor_id), 0) + 1
FROM Instructors), 'John Doe',
'john.doe@example.com’)

Figure 6: A case study illustrating the SQL prediction
results of GPT-4 using different methods (Baseline, His-
tory, Self Refine) in response to the same user query.
The red circles highlight incorrect SQL predictions, with
the Baseline method failing to identify the correct table
and the History method unable to generate a valid pri-
mary key. The green checkmark indicates a successful
and accurate SQL generation by the Self Refine method,
which correctly predicts the table name and dynamically
calculates the next primary key.

perceiving context, while the Self Refine method’s776

success lies in its ability to leverage feedback from777

database interactions to correct errors. This in-778

sight underscores the significance of incorporating779

database feedback into the SQL generation process,780

which is essential for producing not only contex-781

tually accurate but also constraint-respecting SQL782

queries.783

11

