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Abstract

The Multi-Agent Path Finding (MAPF) problem involves
planning collision-free paths for multiple agents traversing
from initial to designated positions. Reinforcement learning-
based approaches have recently gained attention, demonstrat-
ing effective path planning in complex environments under
decentralized control. However, these methods encounter a
fundamental limitation: individual reward maximization by
each agent results in inter-agent interference, degrading per-
formance. This research addresses reward design in reinforce-
ment learning-based MAPF to facilitate cooperative behavior.
Our key idea is to incorporate other agents’ reward influence
into individual reward functions and systematically modulate
this influence to enhance cooperation acquisition. Through
comparative evaluation against existing methodologies, we
demonstrate our approach achieves improved performance.

1. Introduction

Recent advances in robotics have facilitated the widespread
deployment of autonomous robots in warehouse automa-
tion (Zhang et al. 2023), disaster search and rescue opera-
tions (Drew 2021), and aircraft-towing systems (Morris et al.
2016). These applications often require multiple robots op-
erating simultaneously, necessitating sophisticated coordi-
nation mechanisms to ensure efficient and safe operation.
Such multi-robot coordination problems can be formulated
as Multi-Agent Path Finding (MAPF), which determines
collision-free paths for multiple agents moving from ini-
tial positions to designated destinations while minimizing
movement costs. This framework offers practical benefits:
reduced operational time in warehouse logistics, rapid de-
ployment in disaster zones, and efficient coordination in air-
port operations.

MAPF problems are typically represented in grid envi-
ronments where each cell contains free space, obstacles,
or robots, with agents moving to adjacent cells or remain-
ing stationary at each time step (Figure 1). Existing prac-
tical MAPF systems commonly employ centralized con-
trol (Sharon et al. 2015; Silver 2005), optimizing the system
by aggregating information from all agents (Varambally, Li,
and Koenig 2022). This centralized approach utilizes global
environmental information to derive theoretically optimal
solutions.
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Figure 1: Multiple robots navigating with path planning
(left)' can be represented as a grid-based Multi-Agent Path
Finding problem (right).

However, centralized control faces critical real-world lim-
itations. First, computational scalability becomes problem-
atic as the exponentially growing state space makes real-
time processing impractical with increasing agent numbers.
Second, the system exhibits brittleness to environmental
changes: even localized modifications such as a single obsta-
cle appearing or one agent encountering an unexpected de-
lay require complete path recalculation for all agents, creat-
ing substantial computational overhead. Third, the demand-
ing communication infrastructure requirements, where all
agents must maintain constant connectivity with the central
controller, hinder deployment in environments with unstable
or limited network availability(Zhang et al. 2024).

To address these challenges, distributed approaches have
recently gained significant attention as promising alterna-
tives to centralized control. These distributed methods of-
fer substantial advantages that address the aforementioned
limitations: scalable performance through parallel process-
ing that avoids exponential computational growth, rapid re-
sponses to environmental changes without requiring system-
wide recalculation, and inherent fault tolerance to commu-
nication failures through autonomous decision-making.

Among these distributed approaches, reinforcement
learning-based methods have emerged as particularly
promising solutions for MAPF (Chung et al. 2024)(Alkazzi
and Okumura 2024). Reinforcement learning enables agents

"Tmage source: https://www.bostonglobe.com/2019/12/30/
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to learn policies through trial-and-error with their environ-
ments, making it well-suited for decentralized coordination
where agents must adapt to dynamic conditions and other
agents’ actions. In MAPF, reward functions are designed to
reflect problem requirements by providing positive rewards
for reaching goals and negative rewards for collisions.

Representative methods in this category include DHC
(Distributed Heuristic multi-agent path finding with Com-
munication) (Ma, Luo, and Ma 2021) and DCC (Decision
Causal Communication) (Ma, Luo, and Pan 2021) , which
enable agents to learn independently based on individual re-
wards. While these methods offer scalability and simple sys-
tem structures, they suffer from a fundamental coordination
challenge: agents may act selfishly, leading to interference,
congestion, or deadlock in complex environments (Song
et al. 2024; He et al. 2024).

This research focuses on reinforcement learning-based
methods for distributed MAPF and addresses the acquisi-
tion of cooperative behavior through reward and curriculum-
based training. Specifically, in distributed optimization, this
research extends conventional individual reward functions
to incorporate the influence of neighboring agents’ actions
to promote cooperation. To handle the resulting training
complexity, we combine this reward design with curriculum
learning (Bengio et al. 2009).

The main contributions of this research are as follows:

* We propose a method to promote cooperative behavior
in MAPF through the combination of reward design and
curriculum learning. This approach effectively addresses
the complexity introduced by considering other agents’
rewards while maintaining the framework of existing re-
search without significant computational overhead.

¢ Our evaluation shows that the proposed method achieves
superior path planning performance, surpassing existing
research across all evaluated scenarios in success rates.

The structure of this research is as follows. Section 2
presents related work and clarifies the positioning of this re-
search. Section 3 defines the MAPF problem and environ-
ment. Section 4 explains our proposed method. Section 5
presents experimental results and discussion. Section 6 pro-
vides conclusions and future work.

2. Related works
Distributed Reinforcement Learning for MAPF

Multi-Agent Path Finding (MAPF) has been extensively
studied as a distributed reinforcement learning problem,
where multiple agents must coordinate to reach designated
goals while avoiding collisions. While centralized con-
trol can theoretically achieve globally optimal solutions, it
suffers from critical limitations: exponentially increasing
computational costs, limited adaptability to environmental
changes, and dependency on communication infrastructure.

In contrast, distributed reinforcement learning addresses
these challenges by enabling agents to learn policies
independently through local observations and trial-and-
error interactions. To facilitate coordination in such dis-
tributed settings, existing research has explored two pri-
mary approaches: (1) providing heuristic path information

to guide agents toward their destinations, and (2) introduc-
ing lightweight communication protocols for sharing limited
state or action information among neighboring agents.

Representative methods combining both strategies in-
clude DHC (Distributed Heuristic multi-agent path find-
ing with Communication) (Ma, Luo, and Ma 2021) and
DCC(Decision Causal Communication) (Ma, Luo, and Pan
2021), both based on independent learning mechanisms. In
these frameworks, each agent optimizes its own policy based
on individual rewards and treats other agents as part of the
environment, achieving scalability while maintaining simple
system structures.

These frameworks allow parallel and independent learn-
ing among agents, effectively mitigating the computational
explosion of centralized planning. However, they face a fun-
damental limitation: each agent primarily maximizes its own
reward, which can lead to interference, congestion, or even
deadlocks in dense environments (Song et al. 2024; He et al.
2024). Although heuristic and communication mechanisms
partially stabilize the learning process, they do not fully re-
solve the non-stationarity arising from concurrent policy up-
dates.

These findings indicate that while distributed reinforce-
ment learning frameworks are scalable and efficient, explicit
mechanisms to promote cooperative behavior are required to
prevent performance degradation due to selfish learning.

Cooperative Behavior through Reward Design

In multi-agent reinforcement learning, research has explored
cooperative behavior acquisition through reward function
design. Peng et al. proposed incorporating neighboring
agents’ average reward into individual reward functions in
traffic simulation (CoPO) (Peng et al. 2021), improving sys-
tem performance and robustness by making each agent’s re-
ward sensitive to surrounding agents’ outcomes.

However, this approach faces convergence challenges
when agent rewards depend on other agents’ actions. To
address this, Song et al. proposed considering potential re-
wards from optimal actions other agents could take, rather
than actions actually taken(CoRS) (Song et al. 2024).

Research on Curriculum Learning

Curriculum learning (Bengio et al. 2009) is a methodol-
ogy that optimizes the learning content of tasks in a step-
wise manner. It aims to improve learning speed and perfor-
mance by applying the human learning process of starting
with simple tasks and gradually increasing difficulty to ma-
chine learning. Particularly in reinforcement learning, cur-
riculum learning is actively utilized because stepwise learn-
ing is effective for problems with large and complex search
spaces (Narvekar et al. 2020).

The application of curriculum learning in MAPF has pri-
marily focused on task scale expansion. Methods such as
DHC (Ma, Luo, and Ma 2021), DCC (Ma, Luo, and Pan
2021), MAPPER (Liu et al. 2020), and SACHA (Lin and
Ma 2023) begin training in small environments and progres-
sively increase map size and the number of agents as perfor-
mance thresholds are achieved.



Recently, studies have explored curriculum learning from
perspectives beyond task scale. Phan et al. proposed pro-
gressively expanding the goal assignment radius to facilitate
long-distance movement learning (Phan et al. 2024). Zhao et
al. introduced a three-stage curriculum that transitions from
single-agent to cooperative pathfinding by gradually shifting
the reward function from individual to team-based optimiza-
tion (Zhao et al. 2023). While this approach effectively pro-
motes cooperation, it requires centralized control and global
system knowledge, limiting scalability.

These approaches highlight the potential of curriculum
learning to promote cooperation, yet scalability under de-
centralized settings remains an open challenge.

3. Preliminaries
Problem Formulation

This paper addresses a partially observable variant of Multi-
Agent Path Finding (MAPF), where agents have only par-
tial observation of the environment but aim to fully coop-
erate to minimize the average completion time.We model
this as a decentralized partially observable Markov Decision
Process (Dec-POMDP) (Littman 1994), defined as a 7-tuple
(87 Aia P; Qia Ov Ra 7)

» S: the set of global states

» A;: the set of actions for agent ¢, with joint action space
A= H?:l Ai

¢ ();: the observation space of agent 4, with joint observa-
tion space Q =[], Q;

* P: A xS — S: the state-transition function, P(s'|a, s)

* O: Ax S — Q: the observation function, P(ola, s)

* R:S x A— R: the reward function

* v € [0, 1]: the discount factor

Task Setting Given an undirected graph G = (V, E) and
n agents, each agent ¢ € {1,2,...,n} is assigned a unique
start location s; € V and goal location g; € V. At each
discrete time step, agents can move to adjacent vertices or
remain stationary. Collisions occur when agents occupy the
same vertex simultaneously (vertex conflict) or traverse the
same edge in opposite directions (edge conflict).

Our simulation uses a discrete 2D grid of size m X m,
where agents execute five actions at each time step: move
up, down, right, left, or stay. Episodes terminate when all
agents reach their goals, or upon collision or timeout.

Each agent has partial observability through a Field-Of-
View (FOV) of size | x [ (I < m) centered on itself (Fig-
ure 2), corresponding to 2; in the Dec-POMDP formulation.
Within its FOV, agent ¢ observes positions of other agents,
obstacles, and goals, forming local observation o; € ;.

The objective is to find a set of conflict-free paths that
minimize the average completion time across all agents,
where each agent learns a policy 7; : ; — A; to maximize
expected cumulative discounted reward E[Y ;= v'ri].

Reinforcement Learning Framework

We employ Deep Q-Network (DQN) (Mnih et al. 2015) in
an Independent Q-Learning (IQL) setting, where each agent

Figure 2: Partial observation with FOV. Agents (red dots)
observe information within their FOV (red frame). Gray dots
represent obstacles (dark) and other agents (light). Image
cited from?.

independently learns its action-value function while treating
other agents as part of the environment.

At each time step t, agent ¢ observes oé, selects action
a, and maximizes cumulative discounted reward R =
> neo Vi, .- DQN approximates the action-value function
Q™ (0%, a’) using a neural network Q(o?,a’;0;), trained by
minimizing:

L(0;) = Egi i i o [(Q(0", a'; 0;) — y*)?] (1)

where 3' = 7* + ymax,: Q(0"%,a’*; ;) and 6; denotes
target network parameters updated periodically for stability.

Baseline Framework: DHC & DCC

DHC (Ma, Luo, and Ma 2021) and DCC (Ma, Luo, and
Pan 2021) are representative IQL frameworks for distributed
MAPF, achieving scalability through independent policy op-
timization with inter-agent communication. Both share a
three-module architecture: observation encoder, attention-
based communication block, and dueling Q-network. DCC
differs from DHC primarily in its more sophisticated com-
munication mechanism, albeit with increased computational
overhead.

Both frameworks use the same reward function design:
agents receive a reward of +3.0 for reaching their goal,
a penalty of —0.5 for collisions, and a small penalty of
—0.075 for each movement action or staying at non-goal po-
sitions to encourage efficiency. Staying at the goal incurs no
penalty. This design aligns with task objectives while pro-
viding dense feedback for learning convergence.

Training in both frameworks employs a curriculum learn-
ing that progressively increases map size and agent count as
learning stabilizes. Starting with a single agent in a 10 x 10
grid, the curriculum adds agents and expands the grid by 5
cells when success rate exceeds 0.9 over the most recent 200
episodes. DHC’s curriculum ultimately reaches 12 agents in
a 40 x 40 grid, while DCC extends to 16 agents in the same
grid size. Model parameters are inherited between curricu-
lum stages.

In this study, we adopt DHC and DCC as baseline frame-
works and extend their learning strategy to enable the ac-
quisition of cooperative behaviors through reward design
and curriculum learning.Detailed network architectures and
hyperparameter settings for both baseline methods are pro-
vided in the Appendix.

*Image :https://github.com/Cognitive AISystems/pogema



4. Proposed Method
Overview and Motivation

DHC and DCC achieve scalability through Independent Q-
Learning (IQL), where each agent independently maximizes
its own reward. While both frameworks incorporate heuristic
guidance and communication mechanisms to partially stabi-
lize learning, agents remain focused on individual rewards.
This leads to selfish behavior causing collisions and dead-
locks (Song et al. 2024; He et al. 2024), as concurrent policy
updates create non-stationary environments.

To address this, we propose a framework combining re-
ward design and curriculum learning (Figure 3). We incor-
porate neighbors’ rewards to promote cooperation and use
a two-stage curriculum to manage training complexity. Our
approach extends the learning strategy of these IQL frame-
works while maintaining their architectural simplicity and
computational efficiency, requiring no modifications to the
neural network structure or communication mechanisms.

Reward Design for Cooperative Behavior

To promote cooperation, we incorporate neighbors’ rewards
into each agent’s reward function:

) ) 1 .
R;:(l—a)rg—}—a‘A_” > )
JEAT

where rg is agent ¢’s individual reward at time ¢, A~ de-
notes neighboring agents within its FOV, and o € [0, 1] is
the cooperation coefficient controlling the balance between
self-interest and cooperation. When o = 0 the agent be-
haves completely selfishly as in standard DHC and DCC,
while oo = 1.0 represents complete altruism.

The intuition behind this design is straightforward. High
average neighbor rewards indicate that agent ¢’s action did
not harm others and suggest cooperative behavior. By max-
imizing R!, agents learn to balance self-interest with social
impact. The averaging mechanism captures the net social ef-
fect across multiple neighbors while maintaining O(|A~%|)
computational efficiency.

This reward design draws inspiration from CoPO(Peng
et al. 2021), which successfully improved traffic flow by in-
corporating neighboring agents’ average rewards. However,
direct application of such approaches to MAPF faces a crit-
ical challenge: non-stationarity. Since neighbor rewards de-
pend on their evolving policies, the second term in Eq. (2)
changes as other agents learn, making Q-value convergence
difficult especially when « is large (Song et al. 2024).

To address this convergence challenge, an alternative ap-
proach, CoRS(Song et al. 2024), addresses this by consid-
ering counterfactual rewards—potential rewards from opti-
mal actions other agents could take rather than actions actu-
ally taken. While this reduces dependency on other agents’
actual policies and improves convergence, it requires addi-
tional computation to estimate counterfactual actions by ex-
ploring other agents’ action spaces at each training step. This
computational overhead becomes significant in large-scale
MAPF scenarios with numerous agents.

Given the need to balance cooperation promotion and
computational efficiency, we adopt the simpler averaging

approach of Eq. (2) and address the convergence challenge
through curriculum learning rather than counterfactual rea-
soning. This pragmatic choice maintains the computational
scalability essential for distributed MAPF while still en-
abling cooperative behavior acquisition.

Toward Stable Cooperative Learning: IGM

The Individual-Global-Max (IGM) condition (Son et al.
2019) provides theoretical insight into the convergence chal-
lenge of our reward design. Let Q*°!(s, a) denote the global
Q-function and Q% (o', a*) the individual Q-function. IGM is
satisfied when:

arg max Q" (s,a) = (argmale(ol, a',...,
: ‘ (3)
argmax Q" (0", a"))

When IGM holds, each agent’s individual reward maxi-
mization automatically leads to global optimality—an ideal
property for distributed systems. Our reward design (Eq. (2))
aims to encourage such IGM-like cooperative behavior. By
incorporating neighbors’ rewards, agents learn that actions
benefiting others (high > jeA—i r]) often lead to better over-
all outcomes, gradually aligning individual and collective
objectives.

However, achieving strict IGM guarantees in practice
is extremely challenging due to partial observability, non-
stationary environments, and the difficulty of designing
provably IGM-satisfying reward functions.

Rather than pursuing computationally expensive theoreti-
cal guarantees or centralized training, we take a pragmatic
approach through curriculum learning that progressively
guides agents toward cooperative behavior while managing
the non-stationarity introduced by Eq. (2). This approach
maintains the fully decentralized learning paradigm essen-
tial for scalability in large-scale MAPF.

Two-Stage Curriculum Learning

To address the non-stationarity challenge in our reward de-
sign, we propose a two-stage curriculum that progressively
introduces cooperation (Algorithm1). This design is moti-
vated by the observation that directly training with high co-
operation coefficients (a) causes learning instability due to
the rapidly changing reward landscape as all agents simulta-
neously update their policies.

Stage 1: Scale Expansion Curriculum. Following the
original training procedures of DHC and DCC, we first em-
ploy a scale expansion curriculum with individual rewards
(o = 0) that gradually increases agent numbers and grid
size. Training begins with a single agent in a 10 x 10 grid.
When the success rate in the most recent 200 episodes ex-
ceeds 0.9, the curriculum adds one agent and expands the
grid by 5 cells. This process repeats until reaching the fi-
nal task configuration: 12 agents in a 40 x 40 grid for DHC
and 16 agents in a 40 x 40 grid for DCC, following their re-
spective original settings. We adopt these original configura-
tions to maintain consistency with the baseline frameworks
and isolate the effect of Stage 2. This stage establishes basic
pathfinding skills in a stationary environment with o = 0.
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Figure 3: Proposed method

Algorithm 1: Two-Stage Curriculum Learning

1: Stage 1: Scale Expansion Curriculum

2: Initialize: 1 agentin 10 x 10 grid, « =0

3: while not final task do

4:  {Final task: DHC (12 agents, 40 x 40), DCC (16

agents, 40 x 40)}

5:  Train agents with current configuration

6:  Evaluate success rate on recent 200 episodes

7. if success rate > 0.9 then

8 Add 1 agent and expand grid by 5

9: Inherit model parameters
10:  endif
11: end while
12: Stage 2: Cooperative Exploration Curriculum
13: Initialize @ = 0, load model from Stage 1
14: while o < 1.0 do
15:  Train agents with current « using Eq. (2)
16:  Evaluate success rate on validation tasks
17:  if success rate > 0.9 then

18: Save model; o« +— o + 0.1

19:  else if converged without threshold then
20: return o — 0.1

21:  end if

22: end while
23: return o = 1.0

Stage 2: Cooperative Exploration Curriculum. After
completing the scale expansion curriculum, we progres-
sively introduce cooperation by increasing « from 0 in 0.1
increments. We choose this increment size to balance fine-
grained exploration of cooperation levels with training effi-
ciency. At each « stage, we train in the final environment
configuration (12 agents in 40 x 40 grid for DHC, 16 agents
in 40 x 40 grid for DCC) until the success rate exceeds 0.9
over the most recent 200 episodes, then advance to the next
« value. If training converges without reaching the thresh-
old,we terminate and return the previous «.

This progressive approach serves multiple purposes. First,

it allows agents to adapt gradually to increasing non-
stationarity. As « increases, the influence of neighbors’
evolving policies on each agent’s reward signal grows, mak-
ing the learning environment more dynamic. By increment-
ing « slowly, we ensure agents have sufficient time to ad-
just their policies at each level before facing greater non-
stationarity.

Second, agents incrementally learn that considering
neighbors’ outcomes (the second term in Eq. (2)) improves
overall performance. At low « values, agents maintain pri-
marily self-interested behavior with slight awareness of
neighbors, gradually developing cooperative strategies such
as yielding in narrow corridors or coordinating to avoid con-
gestion. As « increases, these cooperative behaviors become
more pronounced and refined.

Third, the curriculum automatically identifies the opti-
mal cooperation level a* for each environment—the max-
imum « at which agents can successfully learn despite non-
stationarity. By incrementing « until convergence fails, we
efficiently identify this boundary of stable learning, which
varies depending on environmental complexity, agent den-
sity, and obstacle configuration.

Compared to alternative curriculum strategies, such as
Zhao et al’s three-stage approach (Zhao et al. 2023)
that transitions from individual to team-based rewards,
our method maintains the decentralized learning paradigm
throughout training. While Zhao et al.’s approach effectively
promotes cooperation, it requires centralized control and
global system knowledge for team reward computation, lim-
iting scalability. Our method achieves similar cooperative
behavior acquisition while preserving the computational ef-
ficiency and fault tolerance of fully distributed learning.

5. Experiments

All experiments were conducted on a server with an Intel(R)
Xeon(R) w5-3435X CPU and an NVIDIA RTX 6000 Ada
Generation GPU. We employed the Ape-X (Horgan et al.
2018) distributed learning framework with 16 parallel actors
for experience generation.



Table 1: Performance Comparison of DHC and DCC Enhanced by the Proposed Method on 80 X 80 Maps

Success Rate 1

Method/Agents | 4 8 16 32 64 128

Baseline |0.990 0.980 0.970 0.880 0.720 0.420

w/ a=0.11.000 0.990 0.950 0.845 0.700 0.350
DHC w/ a=0.2 |1.000 1.000 0.960 0.885 0.780 0.460
w/ a=0.3|1.000 1.000 0.990 0.910 0.825 0.615
w/ a=0.4 |1.000 0.995 0.945 0.850 0.710 0.405
Baseline | 1.000 0.990 0.975 0.960 0.890 0.820
w/ «=0.1{1.000 0.995 0.995 0.950 0.900 0.800
w/ «=0.2 | 1.000 1.000 1.000 0.970 0.930 0.865
w/ «=0.31.000 0.985 0.935 0.845 0.785 0.635

DCC

Experimental Settings

Following the standard MAPF benchmark (Stern et al. 2019)
and the evaluation protocols of DHC (Ma, Luo, and Ma
2021) and DCC (Ma, Luo, and Pan 2021), our experiments
consist of training and testing phases. Environmental set-
tings include 9 x 9 agent FOV. All remaining training hy-
perparameters and implementation-specific details are sum-
marized in the Appendix for reproducibility.

Training implements the combined scale expansion and
cooperative exploration curricula proposed in Section 4. The
success rate threshold for the cooperative exploration cur-
riculum is set to 0.9, and the number of recent samples for
calculating success rate is set to 200. For testing, we use
randomly generated maps of two sizes: 40 x 40 and 80 x 80
grids with obstacle density of 0.3.

Evaluation covers 11 scenarios with agents (4, 8, 16, 32,
64, 128) across grid sizes (40 x 40, 80 x 80), with 128-agent
scenarios only on 80 x 80 maps due to spatial constraints.
Each scenario runs 200 tests with randomly generated ini-
tial positions, goals, and obstacles. Time limits are 256 steps
(40 x 40) and 386 steps (80 x 80), with 0.3 obstacle oc-
cupancy. Success requires all agents reaching goals within
time limits; failure occurs from collisions or timeout.

Following the evaluation metrics used in DHC and DCC,
we measure performance using two indicators:

¢ Success Rate: the percentage of episodes where all
agents reach goals within time limits

» Average Time Steps: the mean steps to task completion
(using time limit for failures)

Results and Discussion

Similar trends were observed for both 40 X 40 and 80
X 80 maps, so we present experimental results on 80 X
80 maps. In the cooperative exploration curriculum experi-
ments, training terminated when the cooperation coefficient
reached 0.5 for DHC and 0.4 for DCC, as the success rate
did not exceed the threshold of 0.9. This limitation arises
because excessively high cooperation coefficients (o > 0.5)
cause the influence of neighbors’ evolving policies to dom-
inate individual rewards, hindering convergence (detailed
analysis provided in the Appendix). Therefore, we obtained
variants of the proposed method with cooperation coeffi-
cients o of 0.1, 0.2, 0.3, and 0.4 for DHC, and 0.1, 0.2, and
0.3 for DCC.

Average Time Steps |
3

Method/Agents 8 16 32 64 128

Baseline [96.72 109.24 122.54 138.32 163.5 213.15
w/ a=0.1 {90.21 103.55 124.81 140.9 159.79 215.67
DHC w/ a=0.2 [88.27 95.31 119.08 142.58 157.29 207.85
w/ a=0.3 |89.20 97.35 116.61 138.84 153.44 204.03
w/ a=0.4 |94.64 110.22 120.80 134.79 165.22 217.99
Baseline |93.89 109.89 122.24 132.99 159.67 192.9
w/ a=0.1 {96.32 107.34 119.45 135.18 161.86 198.29
w/ a=0.2 |94.10 113.76 115.11 136.56 154.39 190.06
w/ a=0.3 |93.95 117.44 127.37 139.07 162.24 210.74

DCC

Tables 1 compare our proposed method against the DHC
and DCC baselines, respectively, showing success rates and
average time steps across different numbers of agents and
cooperation coefficients.

For DHC, Proposed a=0.3 consistently outperformed the
baseline across all tested scenarios in success rates. For
DCC, Proposed a=0.2 demonstrated similar superiority, sur-
passing the baseline in all scenarios. These results demon-
strate the effectiveness of our cooperative reward design in
distributed independent learning frameworks.

However, not all cooperation coefficients yielded consis-
tent improvements. While some « values showed improve-
ments in certain scenarios, they also exhibited performance
below the baseline in others. This suggests the existence of
an environment-dependent optimal cooperation coefficient,
with performance deteriorating as the value deviates from
this optimum. Our results indicate that cooperation coef-
ficients around «=0.2-0.3 appear to be favorable for the
tested scenarios, though further investigation across diverse
environments would be needed to establish more general-
ized optimal values. Regarding average time steps, partial
improvements were observed across different cooperation
coefficients in both frameworks, though gains were modest
compared to the improvements in success rates.

Qualitative observations from simulation runs reveal
several important behavioral patterns. First, the proposed
method largely eliminated failures in narrow corridor pass-
ing, where encounters typically involve one-to-one situa-
tions. This demonstrates that the cooperative reward design
effectively promotes coordination in relatively simple inter-
action scenarios. However, the method still exhibited lim-
itations in environments with highly concentrated agents,
particularly in scenarios where many agents form dense
clusters or chains. This suggests that while our approach
improves pairwise coordination, fundamental challenges in
multi-agent coordination remain, especially in situations re-
quiring complex collective decision-making among numer-
ous simultaneously interacting agents.

Additionally, agents tended to maintain excessive distance
when passing each other, indicating potentially circuitous
routes. This overly cautious collision avoidance behavior,
inadvertently promoted by incorporating other agents’ re-
wards, could explain why time step improvements remained
modest despite substantial success rate gains.



Table 2: Ablation Study: Effect of Cooperative Exploration Curriculum on DHC and DCC (80 X 80 Maps)

Success Rate 1

Average Time Steps |

Method | 4 8 16 32 64 128 o Method | 4 8 16 32 64 128

02 w/o CL [0.960 0.965 0.925 0.850 0.745 0.415 02 w/o CL [99.18 113.55 121.76 139.83 162.98 219.64

"~ Proposed |1.000 1.000 0.960 0.885 0.780 0.460 "~ Proposed| 88.27 95.31 119.08 142.58 157.29 207.85

DHC 0.3 w/o CL [1.000 1.000 0.980 0.925 0.810 0.535 DHC 03 w/o CL [ 93.89 109.89 122.61 129.01 158.92 210.45
"~ Proposed |1.000 1.000 0.990 0.910 0.825 0.615 " Proposed| 89.20 97.35 116.61 138.84 153.44 204.03

04 w/o CL [0.980 1.000 0.960 0.900 0.650 0.420 4 WoCL [102.76 105.48 128.92 137.24 189.11 214.33

" Proposed |1.000 0.995 0.945 0.850 0.710 0.405 " Proposed| 94.64 110.22 120.80 134.79 165.22 217.99

0.2 w/o CL [1.000 1.000 1.000 0.935 0.875 0.835 w/o CL [93.03 114.72 114.69 140.24 170.23 200.51

DCC Proposed | 1.000 1.000 1.000 0.970 0.930 0.865 DCC — Proposed| 94.10 113.76 115.11 136.56 154.39 190.06
03 w/o CL [1.000 1.000 0.910 0.855 0.610 0.550 w/o CL [92.46 116.34 129.75 146.86 180.24 215.61

"~ Proposed |1.000 0.985 0.935 0.845 0.785 0.635 "~ Proposed| 93.95 117.44 127.37 139.07 162.24 210.74

Ablation Study: Effectiveness of Curriculum Learning
Table 2 presents ablation studies comparing the proposed
method with variants trained without the Cooperative Ex-
ploration Curriculum (w/o CL) for DHC and DCC. In the
w/o CL variants, fixed cooperation coefficients are applied
directly after completing the Scale Expansion Curriculum,
without the gradual progression from a=0. Note that a=0.1
results are not available for w/o CL, as this approach does
not involve the incremental « transitions of Stage 2.

The experimental results demonstrate clear improve-
ment trends through curriculum learning for both frame-
works across different cooperation coefficients. The pro-
posed method consistently outperforms the w/o CL variants
across most metrics and agent densities, with performance
gaps particularly pronounced in high-density environments.
Improvements observed in both success rates and average
time steps suggest that curriculum learning enables more
stable and efficient path planning by reducing conflicts dur-
ing the learning process.

These findings highlight the effectiveness of progres-
sively introducing cooperation coefficients in multi-agent re-
inforcement learning systems. Direct training with fixed co-
efficients causes learning difficulties due to rapidly changing
reward landscapes, as the second term in Eq. (2) introduces
non-stationarity through neighbors’ evolving policies. The
Cooperative Exploration Curriculum addresses this funda-
mental challenge by facilitating gradual adaptation to coop-
erative behaviors, allowing agents to progressively adjust to
the non-stationarity introduced by considering other agents’
rewards.

The curriculum’s effectiveness across tested cooperation
coefficient ranges for both frameworks confirms that this ap-
proach is particularly beneficial for stable learning in dis-
tributed independent learning settings where agents opti-
mize policies autonomously. The ablation study thus vali-
dates that combining reward design with curriculum learn-
ing is crucial for successfully acquiring cooperative behav-
ior in distributed MAPF scenarios. As a supplementary note,
our preliminary experiments indicated that excessively high
cooperation coefficients (exceeding 0.5 for DHC and 0.4 for
DCC) caused performance degradation, likely due to conver-
gence difficulties from excessive dependence on inter-agent
rewards, further supporting the importance of maintaining
balanced cooperation intensity throughout the training pro-
cess.

6. Conclusion

This research proposes a method for acquiring cooperative
behavior in distributed MAPF through reward design and
curriculum learning. We introduce a cooperation coefficient
into reward functions and construct a two-stage curriculum
combining Scale Expansion and Cooperative Exploration.

We adopt DHC and DCC as baselines to demonstrate ef-
fectiveness. Validation shows significant performance im-
provements with cooperation coefficients around 0.2-0.3,
particularly in high-density environments. Comparison with
w/o CL variants confirms that progressive cooperation yields
more stable learning than fixed coefficients.

The main contribution is demonstrating that cooperative
behavior can be acquired through simple modifications—
reward design and curriculum learning—without complex
architectural changes or computational overhead. Consistent
improvements across DHC and DCC indicate our approach
is effective for independent learning frameworks. This pro-
vides a practical and scalable solution for large-scale MAPF
applications.

Several promising directions remain for future work.
First, applying our cooperative reward design to other
distributed MAPF methods such as SACHA(Lin and Ma
2023),PICO(Li et al. 2022) would validate the generalizabil-
ity of our approach across diverse architectural paradigms
and learning strategies. Second, time efficiency could be
improved through refined reward designs that better bal-
ance cooperation and goal-reaching speed, as our current
approach introduces computational overhead and potentially
overly cautious collision avoidance behaviors. Third, inves-
tigating dynamic cooperation coefficient adjustment mech-
anisms could enhance adaptability. Currently, we apply a
uniform « to all agents, but allowing individual agents to
dynamically adjust their cooperation levels based on lo-
cal conditions could enable more context-sensitive strate-
gies. Finally, exploring finer curriculum increments may
help bridge performance gaps with centralized methods
while maintaining computational simplicity. These direc-
tions would further strengthen the practical applicability of
cooperative learning in distributed multi-agent systems.
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Appendix: Baseline Model Architectures

We detail the model architectures of our baseline methods:
DHC and DCC. Both methods consist of three main mod-
ules: observation encoder, communication block, and Duel-
ing Q-network(Wang et al. 2016).

Observation Encoder

The observation encoder consists of eight convolutional lay-
ers and a Gated Recurrent Unit (GRU)(Chung et al. 2014).
Agent 7 receives a 9 x 9 FOV as a 6-channel tensor: (1)
obstacles, (2) other agents, (3-6) heuristic guidance derived
from a shortest path tree rooted at the goal, providing all
valid movement options rather than a single path(Wang et al.
2020)(Liu et al. 2020). The processed information is inte-
grated with the previous communication result eé”ﬁf1 via
GRU to generate output e!.

Communication Block: DHC vs DCC

DHC adopts broadcast-style communication using Multi-
Head Attention(Vaswani 2017). The output eﬁ is trans-
formed into Query, Key, and Value for each head h:

h h t h h t h h t
qi = I/I/chei7 k] = Uj = WVGJ

K&
Attention scores aggregate neighbor information:

h a - Jh )" h h o h h
H;; = softmax T , head; = pv;" + Zuijv
k j#i

All  head outputs are concatenated: é! =
fo(concat(head}, ..., head)), then integrated by GRU
to generate e/’. This process repeats twice to obtain e/’
DHC communicates with the two nearest agents.

DCC adds a Decision Causal Unit for selective commu-
nication. For each neighbor j: (1) generate modified obser-
vation 0;?7_ ; by masking agent 7, (2) compute temporary ac-
tions aj and a; _;, (3) select only agents where @ # af ;.
The communication scope is: C; = {j | a} # a} _;,j € Bi}.

DCC employs request-reply two-round communication.
Agent 7 sends message e} and position I} to agents j € C;.
Agents receiving requests update via Multi-Head Attention
and reply with eg-l]t. Agent i reintegrates to generate e?]t.

DHC achieves lower computational cost with fixed com-
munication scope (nearest two agents), while DCC incurs
additional computation for decision causal selection but sig-
nificantly reduces communication overhead through selec-
tive communication. DCC generally demonstrates superior
success rates across scenarios, while DHC offers a favor-
able trade-off between performance and computational effi-
ciency, particularly suitable when computational resources
are limited.

Dueling Q-Network

The communication output is used to compute Q-values,
which are decomposed into state value V' (s) and advantage

A(sya):
Q(s,0) = V(s) + (A(s,a) _ ﬁ ZA@,J))

The action with maximum Q-value is selected for execution.

h
J

Appendix: Hyperparameter Settings

Table 5 summarizes the hyperparameters used in our exper-
iments. Unless otherwise specified, we followed the default
hyperparameter settings provided in the official implemen-
tations of the original papers!.

Table 3: Hyperparameters Used in Our Experiments

Hyperparameter [ DHC [ DCC
Environment Settings
FOV radius 4(9 x 9 FOV)
Action dimension 5
Max episode length 256
Training Settings
Training steps 600k 150k
Batch size 192 128
Sequence length 16 20
Learning starts 50000
Target network update freq. 2000 \ 1750
Discount factor ~ 0.99
Gradient clipping threshold 40
Forward steps (n-step) 2
Actor update steps 400 | 200
Replay Buffer
Episode capacity 2048 -
Buffer capacity - 262144
Chunk capacity - 64
Prioritized replay « 0.6
Prioritized replay /3 0.4

Curriculum Learning

Initial setting 1 agent, 10 x 10 map
Maximum agents 12 | 16

Maximum map size 40 x 40
Transition threshold 0.9
Network Architecture

CNN channel size 128
Hidden dimension 256
Communication layers 2
Communication heads 2

Communication Strategy
Communication type Broadcast (fixed) | Selective (dynamic)

Max communication agents | 3 (including self)

Dynamic selection

Appendix: Results of 40 X 40 Maps

Tables 4 present experimental results on 40 X 40 maps,
showing trends consistent with the 80 X 80 results reported
in the main text. The proposed method with o = 0.3 for
DHC and o = 0.2 for DCC consistently outperformed base-
lines in success rates across all agent densities. Regarding
average time steps, while partial improvements were ob-
served, the results were less conclusive. This metric assigns
the time limit (256 steps for 40 X 40, 386 steps for 80 X 80)
to failed episodes, which, though consistent with baseline
evaluation protocols, may not fully capture path quality. Fu-
ture work should incorporate complementary metrics such
as collision frequency and path optimality to provide more
comprehensive performance assessment beyond binary suc-
cess/failure outcomes.

"https://github.com/ZiyuanMa/DHC,
ZiyuanMa/DCC

https://github.com/



Table 4: Performance Comparison of DHC and DCC Enhanced by the Proposed Method on 40 X 40 Maps

Success Rate 1

Method/Agents | 4 8 16 32 64
Baseline [0.990 0.950 0.950 0.820 0.450
w/ a=0.11.000 0.925 0.920 0.810 0.525

DHC w/ «=0.2 |1.000 1.000 0.970 0.860 0.595
w/ a=0.3 |1.000 1.000 1.000 0.920 0.645
w/ a=0.4 | 1.000 0.995 0.965 0.775 0.430
Baseline | 1.000 0.990 0.990 0.950 0.850
w/ «=0.1 | 1.000 1.000 1.000 0.985 0.890
w/ «=0.2 [1.000 1.000 1.000 0.970 0.905
w/ «=0.310.995 1.000 0.980 0.935 0.795

DCC

Appendix: Qualitative Analysis

We provide qualitative observations from simulation results.
These observations serve to offer preliminary insights into
the mechanisms underlying the performance improvements.
A more systematic and quantitative analysis of these behav-
ioral tendencies remains an important direction for future
work, such as measuring the frequency of cooperative ma-
neuvers and examining how communication dependencies
evolve across different scenarios.

Distance-Keeping Behavior in Path Crossing

When agents’ paths intersected at crossing points, the intro-
duction of cooperation coefficients led to a notable tendency
for agents to maintain greater separation distances during
passage, particularly in environments with sufficient space.
While baseline methods exhibited mixed patterns of both
close-proximity and distanced passing, the proposed method
with a > 0 predominantly favored maintaining spatial mar-
gins between agents.

This distance-keeping behavior demonstrates effective
collision avoidance and enhanced coordination. However, it
may also contribute to longer, more circuitous routes, poten-
tially explaining the modest improvements in average time
steps despite substantial gains in success rates. The trade-
off between safety margins and path efficiency represents an
inherent characteristic of the learned cooperative policies.

Remaining Challenges in High-Density Scenarios

Analysis of failure cases revealed persistent challenges, par-
ticularly in scenarios involving linear agent formations or
chains. The majority of failures under cooperation coef-
ficients were attributed to timeout rather than collisions,
with detailed analysis indicating that deadlock states—rather
than inadequate pathfinding capabilities—were the primary
cause.

Specifically, when agents were constrained from both
sides, stationary behavior became dominant, resulting in
prolonged deadlock situations. While the proposed frame-
work incorporating other agents’ rewards achieved improve-
ments in certain scenarios, fundamental challenges remain
in environments with highly concentrated agent densities re-
quiring complex collective decision-making among numer-
ous simultaneously interacting agents.

Average Time Steps |
Method/Agents| 4 8 16 32 64
Baseline |52.33 63.90 79.63 110.10 147.26
w/ a=0.1 [58.24 64.91 87.25 102.33 135.21
DHC w/ a=0.2 |56.58 59.70 83.77 106.31 138.21
w/ a=0.3 [57.15 62.09 81.42 99.83 134.86
w/ a=0.4 |160.55 80.26 85.23 237.02 248.93
Baseline [48.58 59.60 71.34 93.54 135.55
w/ a=0.1 (47.35 58.43 73.21 93.74 133.73
w/ a=0.2 |47.98 57.01 74.79 94.82 131.70
w/ a=0.3 |48.99 56.85 73.42 97.10 156.28

DCC

Appendix: Results with Expanded
Cooperation Coefficients

In the cooperative exploration curriculum, we additionally
evaluated a variant in which the cooperation coefficient
was increased incrementally irrespective of the success-rate
threshold — i.e., the coefficient was expanded after apparent
learning convergence without conditioning on recent suc-
cess. The results (Table 5) are presented as a reference and
summarize success rates for DHC on 40 x 40 maps under
different cooperation coefficients.

No configuration with a cooperation coefficient of 0.5
or higher exceeded the baseline. In fact, when the coeffi-
cient surpassed 0.5 we observed a pronounced degradation
in performance: success rates fell dramatically and, for co-
efficients of 0.6 and above, often dropped to zero. A likely
explanation is that, beyond the 0.5 threshold, the reward sig-
nal becomes dominated by other agents’ actions rather than
an agent’s own behaviour. This amplifies non-stationarity
and complicates credit assignment during learning, which
can prevent stable policy convergence and thereby impair
overall performance. These findings indicate that naively in-
creasing the cooperation coefficient without regard to train-
ing progress may be detrimental, and they motivate curricu-
lum designs that adapt the cooperation coefficient based on
empirical learning signals.

Table 5: Success rates of DHC with different cooperation
coefficients on 40 X 40 maps

Method / Agents | 4 8 16 32 64
w/ a=0.1 | 1.000 0.925 0.920 0.810 0.525
w/ a=0.2 | 1.000 1.000 0.970 0.860 0.595
w/ a=0.3 | 1.000 1.000 1.000 0.920 0.645
w/ a=0.4 | 1.000 0.995 0.965 0.775 0.430
w/ a=0.5 | 0.885 0.840 0.790 0.510 0.000
w/ a=0.6 | 0.450 0.385 0.000 0.000 0.000
w/ a=0.7 |0.000 0.000 0.000 0.000 0.000
w/ a=0.8 | 0.000 0.000 0.000 0.000 0.000
w/ a=0.9 | 0.000 0.000 0.000 0.000 0.000
w/ a=1.0 | 0.000 0.000 0.000 0.000 0.000

DHC




