
Rad-NeRF: Ray-decoupled Training of Neural
Radiance Field

Lidong Guo1∗ Xuefei Ning1∗† Yonggan Fu2 Tianchen Zhao1

Zhuoliang Kang3 Jincheng Yu1 Yingyan (Celine) Lin2 Yu Wang1†

1Tsinghua University 2Georgia Institute of Technology 3Meituan

Abstract

Although the neural radiance field (NeRF) exhibits high-fidelity visualization on
the rendering task, it still suffers from rendering defects, especially in complex
scenes. In this paper, we delve into the reason for the unsatisfactory performance
and conjecture that it comes from interference in the training process. Due to
occlusions in complex scenes, a 3D point may be invisible to some rays. On such a
point, training with those rays that do not contain valid information about the point
might interfere with the NeRF training. Based on the above intuition, we decouple
the training process of NeRF in the ray dimension softly and propose a Ray-
decoupled Training Framework for neural rendering (Rad-NeRF). Specifically,
we construct an ensemble of sub-NeRFs and train a soft gate module to assign
the gating scores to these sub-NeRFs based on specific rays. The gate module
is jointly optimized with the sub-NeRF ensemble to learn the preference of sub-
NeRFs for different rays automatically. Furthermore, we introduce depth-based
mutual learning to enhance the rendering consistency among multiple sub-NeRFs
and mitigate the depth ambiguity. Experiments on five datasets demonstrate that
Rad-NeRF can enhance the rendering performance across a wide range of scene
types compared with existing single-NeRF and multi-NeRF methods. With only
0.2% extra parameters, Rad-NeRF improves rendering performance by up to 1.5dB.
Code is available at https://github.com/thu-nics/Rad-NeRF.

1 Introduction

Novel view synthesis is an important task within the domains of computer vision and computer
graphics, playing an essential role in a variety of applications, such as autonomous driving, augmented
reality, and so on. Recently, Neural Radiance Field (NeRF) [17] has emerged as a promising solution,
achieving high-fidelity visualizations on the novel view synthesis task. It implicitly encodes 3D
scenes through neural networks and trains the networks using volume rendering.

Despite NeRF’s excellent scene representation ability, it still suffers from rendering defects when
dealing with complex scenes, such as 360-degree unbounded scenes [37, 2] and large scenes with free
shooting trajectories [30, 27, 26]. One of the main reasons is the limited model capacity. However,
directly increasing the network’s size yields marginal performance improvement [18].

Our fundamental intuition is that the training interference from invisible rays affects NeRF’s
performance. Let us consider a simple case of a 360-degree unbounded scene with a central object

∗Both authors contribute equally to this work.
†Corresponding authors: Xuefei Ning (foxdoraame@gmail.com), Yu Wang (yu-wang@tsinghua.edu.cn).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/thu-nics/Rad-NeRF

ray-1 ≈

Background

ray-2

ray-3

Central Object

Distant Object

Region-1

Region-2

Background

ray-1 ray-2

ray-3

Central Object

Distant Object

NeRF-1

NeRF-2

Ray-3 does not contain valid
information about distant object

(a) Training interference caused by occlusions (b) Decouple training in the ray dimension (Ours)

0% optimized 10% optimized

100% optimized theoretical distribution

(c) Inaccurate sampling of ray-3

Figure 1: A case in 360-degree unbounded scenes (bird-eye view). (a) For the distant object, invisible
ray-3 interferes with ray-1/2 training. (b) The ray-based multi-NeRF framework considers variable
visibility of objects to different rays and decouples training in the ray dimension. (c) Compared to the
theoretical weight distribution, the sampling along ray-3 is inaccurate incurring training interference.

(truck) and a distant object (car). As illustrated in Figure 1(a), a 3D point located on the distant object
can be observed from ray-1 and ray-2, but is invisible to ray-3 due to the occlusion presented by the
central object. Although NeRF models transmittance in its volume rendering formula, it exhibits low
geometric modeling accuracy and inaccurate sampling distribution in complex scenes, especially
at the start of training, as Figure 1(c) shows. So, 3D points on the distant object might be sampled
by the ray-3, and the model is trained on these points by the ray-3 color. However, ray-3 does not
contain any meaningful information about the distant object, potentially interfering with the NeRF’s
training. In contrast, considering the different visibility of the object to different rays, our intuition is
that rather than using one NeRF, assigning the rays terminating at the distant object to NeRF-1 and
the rays terminating at the central object to NeRF-2 could be better, as shown in Figure 1(b).

To verify the above intuition, we manually select two sets of images in the TAT dataset[13]. One
set contains 80 images of the train’s front side, while the other set includes the former set and 80
backside images. We train two NeRFs using these two sets respectively. As shown in Figure 2, the
model trained on the mixed set performs worse on the front side, which matches our intuition.

To mitigate the training interference caused by invisible rays, the intuition solution is to decouple
the training of the rays terminating at different regions. To this end, we propose a ray-decoupled
training framework for neural rendering (Rad-NeRF). Within the Rad-NeRF framework, an
ensemble of sub-NeRFs has different preferences for different rays through a gate module. With the
help of the gate module, sub-NeRFs’ outputs are fused by post-volume-rendering fusion to yield
final rendering results. Notably, the gate module is jointly optimized with NeRF, allowing it to
automatically learn the preference of each sub-NeRF for various rays in an end-to-end manner. This
learnable gating design makes Rad-NeRF generally applicable to diverse scenes, which stands in
contrast to prior multi-NeRF methods [27, 26] that rely on manually defined allocation rules.

Additionally, we design a depth-based mutual learning method for the multi-NeRF framework to
ensure the rendering consistency among multiple sub-NeRFs. In addition to learning colors, sub-
NeRFs teach each other with their rendered depths. Traditional NeRF methods may struggle with
generalization to novel views despite accurately rendering training views, as they often fail to capture
precise geometry [7, 37]. In contrast, our depth-based mutual learning approach serves as a form of
geometric regularization, alleviating the depth ambiguity and avoiding overfitting.

Images with visually overlapped 3D
regions provide more information of
target scene which facilitates the training

Train

Region A

PSNR=18.488

Back side BFront side ACamera Pose

A

Train Region B

Region A

learning region A uses region B
information, which causes
unexpected training interference

PSNR=18.089

PSNR=18.685

“Training decoupling”

Without training interference Decoupling mitigates training interference

B

Figure 2: Oracle experiment: Training interference from invisible rays affects NeRF’s performance.

2

To verify the effectiveness of Rad-NeRF, we conduct extensive experiments on various types of
datasets. The results show that Rad-NeRF can exhibit anti-aliasing effects and obtain superior
geometry modeling, thus consistently improving the rendering quality of novel views. In addition,
Rad-NeRF is parameter-efficient and super simple to implement. With only 0.2% extra parameters,
Rad-NeRF can increase rendering performance by up to 1.5dB compared to Instant-NGP. By scaling
the number of sub-NeRFs through ray-wise decoupling, Rad-NeRF achieves better performance-to-
parameter scalability than scaling other dimensions, such as the MLP width or the feature grid.

2 Related Work

2.1 Neural Radiance Field

Neural Radiance Field (NeRF) [17] has received much attention since it was proposed. It uses MLPs
to implicitly represent 3D objects or scenes, achieving realistic rendering results. There have been
intensive studies on NeRF’s extension, including increasing NeRF’s training/inference efficiency [36,
8, 21, 25, 18, 5], applying NeRF to specific scenes (large/unbounded/poor-textured) [15, 37, 2, 31, 26,
27, 38], applying NeRF to other tasks (surface reconstruction/scene editing) [35, 20, 29, 14, 33, 32],
increasing NeRF rendering quality in few-shot setting [10, 12, 19, 7]. In this work, we aim to increase
NeRF’s rendering quality in complex scenes, and propose a multi-NeRF training framework, which
can leverage the techniques proposed by these single-NeRF researches.

2.2 Multi-NeRF Representation

Due to the limited model capacity, the multi-NeRF method is widely adopted to improve the rendering
quality, which can be categorized into point- and ray-based multi-NeRF methods.

Point-based multi-NeRF method. These methods divide the 3D space in the point-dimension [30, 37,
38]. 3D points in different regions are computed by different sub-NeRFs. For example, NeRF++ [37]
proposes the sphere inversion transformation to map an infinite space to a bounded sphere first, and it
uses two NeRFs to model the foreground and background regions respectively. Switch-NeRF [38]
also partitions the scenes in the point-dimension. These methods do not consider the different
visibility of a target region to different views and cause training interference on complex scenes with
many occlusions. For example, the front side of an object is not visible when it is observed from the
back view or blocked by an occlusion. Training the sub-NeRF with rays that do not contain any valid
information about the target region might interfere with the training.

Ray-based multi-NeRF methods. These methods allocate training rays to different sub-NeRFs and
train sub-NeRFs independently. Block-NeRF [26] and Mega-NeRF [27] perform the ray allocation
in the image-granularity and pixel-granularity, respectively. Both of them need a manually defined
allocation rule, which requires prior scene knowledge and cannot be easily adapted to other types of
scenes. The former work trains sub-NeRFs in large-scale road scenes with prior knowledge of the
image shooting position distribution, and the latter one trains sub-NeRFs in open drone scenes and
allocates the rays based on the ray intersecting positions with a horizontal plane. However, defining a
ray allocation rule for complex scenes lacking prior scene-specific knowledge remains challenging.
Another related work is NID [28], which proposes a mixture-of-experts NeRF for generalizable scene
modeling. In this work, different experts serve as the basis to construct the implicit field of different
scenes and the gating module takes in the new scene’s image as the input (i.e., image-granularity).

In this work, we propose a gate-guided multi-NeRF mutual learning framework, performing the
allocation and decoupling the training in the ray dimension softly. Compared to other multi-NeRF
methods, Rad-NeRF boosts the rendering quality without the need for prior scene knowledge.

3 Preliminary

NeRF [17] uses neural networks to represent 3D scenes implicitly. Two MLPs model the density
and color of spatial points respectively. The input of density MLP Fσ is the 3D point coordinate x.
The input of color MLP Fc includes view direction θ and feature f output by density MLP. NeRF
proposes the volume rendering method to render each pixel of an image. It samples N points along

3

Gate Module

…

Gating score
Volume Rendering

Ray r (o, d)

Gate-guided multi-NeRF fusion Depth-based mutual learning

Rendered color & depth of sub-NeRF

Fused color & depth of the ray

!" #

Fused color

$% #

Fused depth

GT color

Color Supervision:

!! =#$% & − %(&)"	
#$%

…
$&! #
$&" #

$&#$! #
$&# #

Geometric Regularization:

!&'(=##$+,) & − +- &)"	
*

)+,#$%

Sub-NeRFs teach each other with rendered
depth to improve rendering consistency

! #

Sub-MLP 2

Sub-MLP K-1

Sub-MLP K

+

Post-Volume-Rendering Fusion
guided by the gate moduleSub-MLP 1

Figure 3: The overview of Rad-NeRF. We construct a multi-NeRF framework based on the hybrid
representation, where the feature grid is shared for all sub-NeRFs and the MLP decoders are indepen-
dent. (Left) Given a ray, the soft gate module encodes the ray’s data and outputs a soft score. Then,
guided by the gating score, sub-NeRFs’ outputs are fused after the volume rendering process. (Right)
The fused rendered depth of the ray is used to regularize each sub-NeRF’s geometric encoding.

the ray and renders the pixel’s color Ĉ(r) by discretely summing density σi and color ci of each
point i, which approximates the integral C(r) as follows:

C(r) =

∫ +∞

0

w(t)c(t)dt Ĉ(r) =

N∑
i=1

wici, (1)

Ti = exp

−
i−1∑
j=1

σjδj

 wi = Ti

(
1− e−δiσi

)
, (2)

where ti is the distance between i-th sample’s position and the starting point of the ray, δi = ti+1− ti
is the distance between adjacent samples and Ti represents the probability that the ray travels from
the start to point i without hitting. The NeRF optimization is based on color supervision.

4 Rad-NeRF

NeRF faces the challenge of limited model capacity when rendering complex scenes [37, 30, 38].
However, directly increasing the number of model parameters yields marginal improvement in the
rendering quality [18], posing an important research question: “how to effectively scale up the
capacity of NeRF”. While the multi-NeRF methods have been proposed as an effective technique in
response to this question, they still face limitations in handling complex scenes (with many occlusions
and arbitrary shooting trajectories) due to training interference among invisible rays. In this work, we
propose a ray-decoupled training framework (Rad-NeRF), effectively scaling up model’s capacity by
decoupling training in the ray dimension in a learnable way. Figure 3 gives an overview of Rad-NeRF.

4.1 Gate-guided Multi-NeRF Fusion

Motivated by the intuition and oracle experiment discussed in Section 1, rather than using a single
NeRF model, designing a multi-NeRF structure that considers different visibility of the region to
different rays and decouple NeRF’s training in the ray-dimension could be better. We design a
ray-based multi-NeRF model structure and introduce a soft gate module to learn the preference of
each sub-NeRF for various rays in a learnable way.

Multi-NeRF Structure. As shown in Figure 3, we employ a shared feature grid among sub-NeRFs
and keep MLP decoders independent for the multi-NeRF structure. As different rays may pass
through the same region of 3D space, weight sharing for the feature grid helps training, owing to
the feature grid’s responsibility for encoding features of 3D spatial points. As validated by the
Oracle experiment, training with regions A and B facilitates the training of the shared feature grid

4

and improves the rendering quality(PSNR 18.685 vs 18.488). Meanwhile, as the MLP decoder is
designed to encode view information, constructing an ensemble of independent MLP decoders helps
to decouple the training in the ray dimension, and thus maintains the preference of sub-NeRFs for
various rays. Additionally, such structure is a multi-model extension of Instant-NGP [18], helping
to avoid a significant increase in the number of parameters and training complexity. The hybrid
representation also maintains high training efficiency.

Soft Gate Module. We incorporate a soft gate module to assign gating scores to the sub-NeRFs for
each ray. The soft gate module is jointly optimized with NeRF, enabling it to learn the preference of
each sub-NeRF for different rays in an end-to-end manner. In contrast to manually assigning training
rays to sub-NeRFs, this learnable gating design makes Rad-NeRF generally applicable to diverse
scenes lacking prior scene-specific knowledge. In Section 5.2, we will also show that the gate
module can learn to assign reasonable gating scores that reflect the object visibility of rays, aligning
with our intuition that decoupling training in the ray-dimension is important.

Specifically, we employ a four-layer MLP followed by a Softmax function as the gate module. The
gate module takes the starting point and direction (o,d) of a ray r as the input, and outputs the gating
scores G(r) of multiple sub-NeRFs associated with this ray. Instead of applying any sparsification
strategies on the gating score G(r) as in previous work [38], such as top-k gating function [23], we
use soft gating scores to enhance the smoothness and consistency of rendered results.

As discussed in Section 3, each ray corresponds to a pixel on the image. Following the volume
rendering process, we can obtain K rendered colors for each ray, where K is the number of sub-
NeRFs. Subsequently, multi-NeRFs’ outputs are fused in a post-volume-rendering ordering to obtain
the final rendering results. The fused color C̃(r) of the ray r can be written as below:

C̃(r) =

K∑
k=1

Gk(r)Ĉk(r), (3)

where Gk(r) is the k-th element of gating score G(r) and Ĉk(r) is the rendered color of k-th
sub-NeRF for the ray r.

4.2 Depth-based Mutual Learning

By the learnable soft gating design, different sub-NeRFs learn different encodings of the scene.
We introduce a mutual learning method to enhance the rendering consistency and robustness of
sub-NeRFs, wherein each sub-NeRF not only learns from ground truth but also learns from each
other. Due to the lack of the ground truth for per-ray depth, NeRF may fail to learn accurate geometry
despite accurately rendering training views, which adversely affects its generalization to novel views.
To address this, we perform mutual learning with the rendered depths of sub-NeRFs, which serves as
a form of geometric regularization and helps the model find more robust geometric solutions. The
per-ray depth estimation D̂(r) can be written as Equation 4, where ti is the i-th sample’s distance
from the starting point on the ray.

D̂(r) =

N∑
i=1

witi, (4)

In practice, we first fuse the rendered depths of sub-NeRFs guided by the gating score G(r). Then we
use L2 distance to quantify the match of each sub-NeRF’s rendered depth D̂k(r) and the fused depth
D̃(r). Our depth-based mutual learning loss is defined as below, where R is the set of sampled rays:

Ldml =
∑
r∈R

n∑
k=1

∥D̂k(r)− D̃(r)∥2, (5)

Compared to directly averaging multiple sub-NeRFs’ depth predictions, the gate-guided fused depth
D̃(r) is more accurate, as the gating score G(r) can reflect the prediction confidence of each
sub-NeRF for the ray r.

5

Table 1: Quantitative results in complex scenes.

Methods
TAT NeRF-360-v2 Free-Dataset

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF++ 20.419 0.663 0.451 27.211 0.728 0.344 24.592 0.648 0.467
MipNeRF360 22.061 0.731 0.357 28.727 0.799 0.255 27.008 0.766 0.295

MipNeRF360short
* 20.078 0.617 0.508 25.484 0.631 0.452 24.711 0.648 0.466

DVGO 19.750 0.634 0.498 25.543 0.679 0.380 23.485 0.633 0.479
Instant-NGP 20.722 0.657 0.417 27.309 0.756 0.316 25.951 0.711 0.312
F2-NeRF – – – 26.393 0.746 0.361 26.320 0.779 0.276

Switch-NGP† 20.512 0.654 0.432 26.524 0.740 0.331 25.755 0.694 0.341
Block-NGP† 20.783 0.659 0.415 27.436 0.761 0.298 26.015 0.702 0.325

Rad-NeRF 21.708 0.672 0.398 27.871 0.769 0.298 26.449 0.719 0.285
* MipNeRF360 requires nearly one day for training. For a fair comparison, we also report its results with one-hour of training.
† We adapt Switch-NeRF and Block-NeRF to the Instant-NGP fast training framework.

4.3 The Overall Training Loss

The overall loss function of Rad-NeRF is given by:

L = Lc + λ1Ldml + λ2Lcv, (6)

where Lc =
∑

r∈R ∥C(r)− C̃(r)∥2 (C(r) is the ground truth color value of ray r) is the rendering
loss. λ1 and λ2 are the weights for regularization terms, which are the only hyper-parameters to be
set. The value of λ1 is chosen from 1× 10−4 and 5× 10−3. λ2 is set to 1× 10−2 on all the datasets.
Lcv is the balancing regularization on the Coefficient of Variation of the soft gating scores, which
prevents the gate module from collapsing onto a specific sub-NeRF. The details of Lcv are described
and discussed in the Appendix B.

5 Experiments

5.1 Datasets and Baselines

Datasets. We use five datasets from different types of scenes to evaluate our Rad-NeRF. (1) Object
dataset: we take Masked Tanks-And-Temples dataset (MaskTAT) [13] for evaluation, which are
photographed objects with masked background; (2) 360-degree inward/outward-facing datasets: we
take Tanks-And-Temples (TAT) dataset with unmasked background [13] and NeRF-360-v2 dataset [2]
to evaluate on scenes with large dynamic depth range; (3) free shooting-trajectory datasets: we
conduct experiments on Free-Dataset [30] and ScanNet dataset [6], which are large outdoor and
indoor scenes respectively. Both larger view ranges and more irregular shooting trajectories pose
greater challenges for NeRF rendering.

Baselines. We compare our Rad-NeRF with two types of methods: one type uses the grid-based
NeRF framework as we do, including PlenOctrees [36], DVGO [25], Instant-NGP [18] and F2-
NeRF [30]. The other one is the MLP-based NeRF method, including NeRF [17], NeRF++ [37],
MipNeRF [1] and MipNeRF360 [2], which is inefficient in training and needs almost one day for
training in complex scenes. Note that we also implement the NGP-version of Block-NeRF [26],
Switch-NeRF [38] and Mega-NeRF [27] to validate the superiority of Rad-NeRF to other multi-NeRF
methods. The implementation details of Mega-NGP are shown in the Appendix F.

5.2 Comparative Studies

Rad-NeRF achieves higher rendering quality than existing single- and multi-NeRF methods.
We report the main quantitative results on the complex scenes and the object dataset in Table 1 and
Appendix D respectively. Within no more than one hour of training, Rad-NeRF achieves higher
rendering quality compared to other fast training methods and multi-NeRF methods, including
Switch-NGP and Block-NGP. We can also see that while Rad-NeRF is designed for complex scene

6

TAT-train

Ground Truth NeRF++ MipNeRF360short Instant-NGP Rad-NeRF

Free-sky

360v2-room

Figure 4: Qualitative comparisons on three complex scenes. Rad-NeRF achieves better recovery of
details for distant objects and less textured regions such as the wall. (Zoom in for the details, e.g.,
sky, banister, roadblock, wall.)

rendering, it can also improve the rendering performance of objects. We also integrate Rad-NeRF
with the recent SOTA single-NeRF framework ZipNeRF [3], named Rad-ZipNeRF, in the Appendix I.
Rad-ZipNeRF obtains better rendering performance, validating Rad-NeRF’s potential for integration
with different frameworks.

Rad-NeRF achieves better recovery of distant details and accurate rendering for less textured
regions. The qualitative results are shown in Figure 4. Compared to other methods, Rad-NeRF
achieves better rendering quality in both outdoor and indoor scenes. In outdoor scenes, Rad-NeRF
produces detailed and realistic rendering results for the sky and other distant objects. In indoor scenes,
Rad-NeRF generates more accurate details for less textured regions such as the wall. Rad-NeRF
takes advantage of the gate-guided training decoupling in the ray dimension to boost the model’s
performance effectively. Results on the ScanNet dataset are shown in the Appendix C.

The gate module learns to reasonably assign gating scores. We visualize how the gate module
performs training decoupling in Figure 5. As the two sub-NeRFs exhibit complementary gating
scores, we omit sub-NeRF2’s visualization for brevity. (1) In the Truck scene, the gate module
assigns different preferences to sub-NeRF1 in foreground/background regions, thereby mitigating
the interference from foreground rays on sub-NeRF1’s training with the background region. (2) In
the Train scene, sub-NeRF1 exhibits higher preferences for the back side, thereby mitigating the

V
ie
w
-1

V
ie
w
-2

TrainTruck
High

Low

Caterpillar

Figure 5: Visualization of the gating scores of sub-NeRF1 on two different views (visualization of
sub-NeRF2 is omitted for brevity).

7

24.96 24.98 25 25.02 25.04 25.06 25.08 25.1 25.12
28

28.2

28.4

28.6

28.8

29

29.2

29.4

49.92 91.3

Params / MB

PS
N

R
 /

dB

Increase MLP width of NGP
Increase sub-NeRF number of Rad-NeRF
NGP with larger feature grid
Rad-NeRF with more feature grids

Figure 6: Scalability study of Rad-NeRF.
scene0046 scene0276

Figure 7: Convergence curve on ScanNet.

training interference from invisible frontside rays. (3) In the Caterpillar scene, the gating module
assigns different preferences to foreground/background regions or the different sides of the caterpillar,
which are clearly distinguished. The visualization demonstrates that Rad-NeRF learns reasonable ray
allocations, matching our intuition. Besides, we observe that in some specific scenes, such as the
Truck scene, the gating score visualization indeed shows a significant difference between the edge
and the central region, correlating with the aliasing issue. Such observation illustrates that tackling
the aliasing issue in some scenarios is another insightful explanation of the Rad-NeRF’s effectiveness,
which is supplementary to our original motivation targeting scenarios with heavy occlusions.

Scaling up NeRF with the Rad-NeRF framework is more effective than scaling the MLP width,
increasing the feature grid size, or adding more feature grids. By default, we set the number
of sub-NeRFs to 2 in all experiments. As shown in Figure 6, when the number of sub-NeRFs
increases, Rad-NeRF consistently obtains average performance gains on the ScanNet dataset while
only marginally increasing the number of model parameters. Compared with directly increasing the
hidden dimension of MLP decoders or the size of the feature grid, Rad-NeRF has better performance-
model size scalability. Furthermore, we observe that the model with four sub-NeRFs converges faster
than the one with two sub-NeRFs while achieving better rendering quality with the same training
iterations, as Figure 7 shows. The ease of training convergence can be attributed to two aspects. On
the one hand, the number of learnable parameters and training complexity increases marginally. On
the other hand, our gate module (a 4-layer MLP without sinusoidal position encoding) decouples the
training in the ray dimension and reduces training interference.

5.3 Comparison with Gaussian Splatting

We additionally compare Rad-NeRF against 3D Gaussian splatting (3DGS) [11] as a non-neural
approach that represents the current state of the art with regard to quality and rendering speed. The
comparison is conducted on MaskTAT [13] and ScanNet [6] datasets. MaskTAT is an object dataset
without point clouds, and ScanNet contains indoor scenes with many less textured regions.

Rad-NeRF performs better than 3DGS in some cases. We report results on Table 9, and show
qualitative highlights in Figure 8. For the MaskTAT dataset, we initialize 3D GS with random points.
Our method performs best over 3D GS and Instant-NGP. For the ScanNet dataset, we initialize 3D
GS with the point cloud provided by the dataset. However, there are many less textured regions in

B
ar

n

3D GS Instant-NGP Rad-NeRF

sc
en

e0
04

6

Figure 8: Qualitative comparisons with 3D GS.

Methods
MaskTAT ScanNet

PSNR↑ PSNR↑
3D GS 27.363 26.781
Instant-NGP 28.752 28.074

Rad-NeRF 29.774 28.870

Figure 9: Quantitative results.

8

Tr
uc

k
Pl

ay
gr

ou
nd

Ground Truth w/o 𝐿!"# w/ 𝐿!"#

Figure 10: Depth visualization comparison between w/o Ldml and w/ Ldml on TAT dataset. Zoom in
to see the details of sky and ground.

Table 2: Ablation results of gate-guided multi-NeRF fusion and depth-based mutual learning.

Method Metric M60 Playground Train Truck Avg

Uniform fusion
PSNR↑ 19.229 22.863 17.531 23.569 20.798
SSIM↑ 0.633 0.694 0.596 0.746 0.667
LPIPS↓ 0.431 0.414 0.451 0.345 0.411

w/o depth mutual loss
PSNR↑ 18.912 23.399 17.371 24.665 21.087
SSIM↑ 0.621 0.694 0.589 0.758 0.666
LPIPS↓ 0.436 0.402 0.449 0.329 0.404

Rad-NeRF
PSNR↑ 19.051 23.901 19.369 24.509 21.708
SSIM↑ 0.631 0.689 0.612 0.757 0.672
LPIPS↓ 0.429 0.402 0.431 0.333 0.399

indoor scenes that affect the accuracy and density of point clouds. Optical distortion exists in the
rendered pictures of 3D GS. In contrast, Rad-NeRF renders more smoothly than all baselines.

Potential combination of Rad-NeRF with 3DGS. NeRF is characterized by its neural network-
based ray-related predictions, which provide flexibility for cross-scene generalization and enable
the application of Rad-NeRF’s ray-wise training decoupling approach. In contrast, the plain 3D GS
framework parametrizes the scene using a global, non-ray-related representation, making Rad-NeRF
inapplicable. However, Rad-NeRF could potentially be applied to generalizable 3D GS frameworks
that integrate neural network-based ray-related predictions [4].

5.4 Ablation Studies

In this section, we conduct ablation studies on Rad-NeRF using the TAT dataset [13]. The key
takeaways from our results are summarized below. Some additional ablation studies and analyses are
presented in the Appendix E.

Importance of the gate-guided multi-NeRF fusion and depth-based mutual learning. The
ablation results of the two key components are shown in Table 2. Uniform fusion simply averages
multi-NeRFs’ outputs to get final results without a gate module. In this way, sub-NeRFs focus on all
the training rays instead of having their own preferences, which can not effectively improve rendering
quality. For the depth-based mutual learning method, we observe that it enables a smoother and more
reasonable depth prediction, as shown in Figure 10. In addition to improving rendering consistency,
it also acts as a geometric regularization to reduce the depth ambiguity and avoid overfitting.

We further provide visualizations of different sub-NeRFs’ rendering results in Figure 11, which
validates that the proposed depth-based mutual learning scheme will not encourage all sub-NeRFs
to converge to the same output. On the one hand, the soft gating module allocates different rays to
different sub-NeRFs, making them learn from different views. On the other hand, the depth-based
mutual learning scheme only lets sub-NeRFs learn the depth from each other rather than the overall
rendered density or RGB distribution.

9

Sub-NeRF1 Rendering Sub-NeRF2 Rendering Fused Rendering

Pl
ay

gr
ou

nd
Tr

ai
n

Figure 11: Independent and fused rendering results of sub-NeRFs on TAT dataset.

Table 3: Ablation results of fusion dimensions.
Fusion Dimension PSNR↑ SSIM↑ LPIPS↓

Point-level 20.796 0.661 0.413
Ray-level (Ours) 21.708 0.672 0.399

Table 4: Ablation results of fusion granularity.
Fusion Granularity PSNR↑ SSIM↑ LPIPS↓

Image-level 21.503 0.669 0.408
Pixel-level (Ours) 21.708 0.672 0.399

Importance of the ray-level allocation. We evaluate the results of different fusion dimensions in
Table 3. Compared to fusing multi-NeRFs’ outputs in the point dimension, our ray-based method
performs better, validating the superiority of the visibility-aware multi-NeRF method.

Importance of pixel-granularity fusion. We compare different fusion granularity in Table 4. In
image-granularity fusion, all pixels of an image have the same preference for model parameters,
which may not be reasonable. An illustrative example is an image capturing both the central object
and the background region, such as the Truck scene shown in Figure 5. In such a case, the rays hitting
these two regions should be assigned different model parameters. In contrast, pixel-granularity fusion
provides a more fine-grained understanding of the image and scene.

6 Limitations

As the gating module (a 4-layer MLP without sinusoidal position encoding) incorporates smoothness
prior implicitly, it exhibits smooth and close scores to the nearest seen view for unseen views.
Consequently, the generalization of the gating module relies on sufficient training data, and thus
Rad-NeRF does not perform well in the few-shot setting (see Appendix K for more results). On the
contrary, the proposed method is suitable for the rendering of complex scenes, which themselves
often require sufficient training data.

7 Conclusion

This work proposes a ray-decoupled training framework (Rad-NeRF) for neural rendering. To
alleviate the issue of the training interference problem in complex scenes, we construct a multi-NeRF
framework and decouple the training of NeRFs in the ray dimension. Additionally, we propose a
depth-based mutual learning method that improves the multi-NeRF rendering consistency and reduces
the depth ambiguity, thereby improving generalization to novel views. Extensive experiments across
various datasets validate Rad-NeRF’s effectiveness and better performance-parameter scalability.

We prospect for further exploration to fully exploit the potential of Rad-NeRF. Here, we outline
several possible directions:(1) As researchers may choose different frameworks based on specific
situational requirements, adapting Rad-NeRF to different single-NeRF frameworks including 3D
GS (non-neural approach) is a valuable next step. (2) The number of sub-NeRFs can be determined
automatically based on scene complexity and training resources. (3) We hope the newly proposed
scaling dimension, which increases the number of sub-NeRFs through ray-wise decoupling, will
enable modeling of complex scenes in a parameter-efficient manner.

10

Acknowledgments

Lidong Guo, Xuefei Ning, Tianchen Zhao, Jincheng Yu, Yu Wang was supported by the National Key
R&D Program of China (2023YFB4502200), the National Natural Science Foundation of China (No.
62325405, 62104128, U21B2031, 62204164), Tsinghua EE Xilinx AI Research Fund, Tsinghua-
Meituan Joint Institute for Digital Life, and Beijing National Research Center for Information Science
and Technology (BNRist).

References
[1] Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.:

Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 5855–5864 (2021)

[2] Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5470–5479 (2022)

[3] Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-nerf: Anti-aliased
grid-based neural radiance fields. arXiv preprint arXiv:2304.06706 (2023)

[4] Charatan, D., Li, S.L., Tagliasacchi, A., Sitzmann, V.: pixelsplat: 3d gaussian splats from image
pairs for scalable generalizable 3d reconstruction. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 19457–19467 (2024)

[5] Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: Tensorf: Tensorial radiance fields. In: European
Conference on Computer Vision. pp. 333–350. Springer (2022)

[6] Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet: Richly-
annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5828–5839 (2017)

[7] Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and faster
training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12882–12891 (2022)

[8] Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance
fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5501–5510 (2022)

[9] Goli, L., Reading, C., Sellán, S., Jacobson, A., Tagliasacchi, A.: Bayes’ rays: Uncertainty
quantification for neural radiance fields. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 20061–20070 (2024)

[10] Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: Semantically consistent few-shot view
synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
5885–5894 (2021)

[11] Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics 42(4) (2023)

[12] Kim, M., Seo, S., Han, B.: Infonerf: Ray entropy minimization for few-shot neural volume
rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 12912–12921 (2022)

[13] Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking large-scale
scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13 (2017)

[14] Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance
fields. In: Proceedings of the IEEE/CVF international conference on computer vision. pp.
5773–5783 (2021)

11

[15] Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.:
Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7210–7219 (2021)

[16] Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi, R., Ng, R.,
Kar, A.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines.
ACM Transactions on Graphics (ToG) 38(4), 1–14 (2019)

[17] Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf:
Representing scenes as neural radiance fields for view synthesis. Communications of the ACM
65(1), 99–106 (2021)

[18] Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multireso-
lution hash encoding. ACM Transactions on Graphics (ToG) 41(4), 1–15 (2022)

[19] Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: Regnerf:
Regularizing neural radiance fields for view synthesis from sparse inputs. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5480–5490 (2022)

[20] Oechsle, M., Peng, S., Geiger, A.: Unisurf: Unifying neural implicit surfaces and radiance
fields for multi-view reconstruction. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 5589–5599 (2021)

[21] Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance fields with
thousands of tiny mlps. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 14335–14345 (2021)

[22] Sabour, S., Vora, S., Duckworth, D., Krasin, I., Fleet, D.J., Tagliasacchi, A.: Robustnerf:
Ignoring distractors with robust losses. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 20626–20636 (2023)

[23] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.: Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538 (2017)

[24] Shazeer, N., Mirhoseini, A., Maziarz, K., Davis, A., Le, Q., Hinton, G., Dean, J.: Outra-
geously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv preprint
arXiv:1701.06538 (2017)

[25] Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for
radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5459–5469 (2022)

[26] Tancik, M., Casser, V., Yan, X., Pradhan, S., Mildenhall, B., Srinivasan, P.P., Barron, J.T.,
Kretzschmar, H.: Block-nerf: Scalable large scene neural view synthesis. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8248–8258 (2022)

[27] Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-nerf: Scalable construction of large-scale
nerfs for virtual fly-throughs. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 12922–12931 (2022)

[28] Wang, P., Fan, Z., Chen, T., Wang, Z.: Neural implicit dictionary learning via mixture-of-expert
training. In: International Conference on Machine Learning. pp. 22613–22624. PMLR (2022)

[29] Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689
(2021)

[30] Wang, P., Liu, Y., Chen, Z., Liu, L., Liu, Z., Komura, T., Theobalt, C., Wang, W.: F2-nerf: Fast
neural radiance field training with free camera trajectories. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4150–4159 (2023)

[31] Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Nerfingmvs: Guided optimization of neural
radiance fields for indoor multi-view stereo. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5610–5619 (2021)

12

[32] Yang, B., Bao, C., Zeng, J., Bao, H., Zhang, Y., Cui, Z., Zhang, G.: Neumesh: Learning
disentangled neural mesh-based implicit field for geometry and texture editing. In: European
Conference on Computer Vision. pp. 597–614. Springer (2022)

[33] Yang, B., Zhang, Y., Xu, Y., Li, Y., Zhou, H., Bao, H., Zhang, G., Cui, Z.: Learning
object-compositional neural radiance field for editable scene rendering. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 13779–13788 (2021)

[34] Yang, J., Pavone, M., Wang, Y.: Freenerf: Improving few-shot neural rendering with free
frequency regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 8254–8263 (2023)

[35] Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. Advances
in Neural Information Processing Systems 34, 4805–4815 (2021)

[36] Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of
neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5752–5761 (2021)

[37] Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving neural
radiance fields. arXiv preprint arXiv:2010.07492 (2020)

[38] Zhenxing, M., Xu, D.: Switch-nerf: Learning scene decomposition with mixture of experts
for large-scale neural radiance fields. In: The Eleventh International Conference on Learning
Representations (2022)

13

Appendix

Table of Contents
A Comparison with Other Multi-NeRF Methods 15

B Implementation Details 15
B.1 Implementation Details of Rad-NeRF . 15
B.2 Implementation Details of Switch-NGP . 16
B.3 Implementation Details of Block-NGP . 16

C Experiments on ScanNet Dataset 17

D Per-Scene Results 18

E Additional Ablation Studies 18

F Discussion of Mega-NGP 20

G More Scalability Studies 20

H The Training and Inference Efficiency of Rad-NeRF 22

I Integration of Rad-NeRF and Zip-NeRF 22

J Additional Visualizations of Gating Scores 23

K Limitation under the Few-shot Setting 23

L Comparison of Rad-NeRF with Uncertainty-based Methods 24

14

A Comparison with Other Multi-NeRF Methods

The comparison of various multi-NeRF training frameworks is summarized in Table S.1. NeRF++ [37]
proposes the sphere inversion transformation to map an infinite space to a bounded sphere firstly, and
uses two NeRFs to model the 3D points in foreground and background regions, respectively. It adopts
the manual allocation mode as it manually sets the boundary between foreground and background
regions. Block-NeRF [26] and Mega-NeRF [27] are two classical ray-based multi-NeRF frameworks,
which perform the ray allocation in the image-granularity and pixel-granularity, respectively. The
former work trains sub-NeRFs in large-scale road scenes with prior knowledge of the image shooting
position distribution on the road, and the latter one trains sub-NeRFs in open drone scenes and
allocates the rays by partitioning the intersecting positions between the rays and a horizontal plane.
However, they are designed for large road scenes and open drone scenes specifically and need a
manually defined allocation rule, which requires prior scene knowledge and cannot be easily adapted
to other types of scenes. Switch-NeRF [38] implements a learning-based scene partition scheme
motivated by Mixture-of-Experts (MoE) [24]. However, it partitions the scene in the point dimension,
which limits the rendering performance in more complex scenes with occlusions. It is also limited to
be only used in open drone scenes. F2-NeRF [30] is another point-based multi-NeRF method, which
allocates the 3D points to multiple sub-NeRFs in a more elaborate but manual way.

In contrast, our Rad-NeRF performs the allocation and decoupling the training in the ray dimension
softly. Acting as a ray-based training framework, Rad-NeRF is "visibility-aware" and achieves higher
performance in complex scenes. Moreover, compared to other multi-NeRF methods, Rad-NeRF
boosts rendering quality across different types of scenes without the need for prior scene knowledge.

Table S.1: Comparison of multi-NeRF training frameworks. Headers: The "Dimension" column
indicates the dimension in which the framework divides the training data into multiple sub-NeRFs;
The "Allocation mode" column indicates whether the framework divides the training data based on
the manually designed rule or in a learnable way; The "Target scene" column indicates the scene that
the framework is proposed for specifically.

Multi-NeRF methods Dimension Allocation mode Target scene

NeRF++ [37] point-based manual no constraint
Block-NeRF [26] ray-based manual large road scene
Mega-NeRF [27] ray-based manual open drone scene

Switch-NeRF [38] point-based learnable open drone scene
F2-NeRF [30] point-based manual no constraint

Rad-NeRF (ours) ray-based learnable no constraint

B Implementation Details

B.1 Implementation Details of Rad-NeRF

Architecture Details. Our Rad-NeRF is built upon Instant-NGP [18] using a third-party PyTorch
implementation 3 and costs no more than one hour of training. We follow the original architecture of
Instant-NGP with 16 levels of resolution. The hash table length at each resolution is fixed to 219. The
density and color MLP comprise one and two hidden layers with 64 channels respectively.

Training Details. For Instance-NGP and our Rad-NeRF, we train the NeRFs for 20k iterations on a
single RTX-3090 GPU. We use Adam optimizer with a batch size of 8192 rays and a learning rate
decaying from 1× 10−2 to 3× 10−4. For the weights of the regularization terms in Equation 6, λ1 is
set to 1× 10−4 on NeRF-360-v2 and Free dataset, and is set to 5× 10−3 on other datasets. We set λ2

to 1× 10−2 on all the datasets. By default, the number of sub-NeRFs is set to 2, and it is sufficient to
achieve significant rendering quality improvement.

Some previous work has observed that the gate module tends to converge to an imbalanced state,
where it always produces large weights for the same few sub-models [23, 28, 38]. Such an imbalance

3https://github.com/kwea123/ngp_pl

15

Feature Grid Gate Module

Expert 1

Expert 2

Expert n-1

Expert n

…

Point Feature

Fused
Feature

Head Point density & color

Top-1 Function
Gating score
Point feature output by sub-NeRFs

Figure S.1: The overview of Switch-NGP.

problem exists in Rad-NeRF as well. Once the gate module is trapped in a local optimum solution, it
will always choose a specific sub-NeRF for rendering and can’t effectively decouple the training in
the ray dimension.

Following [23, 28], we adopt the regularization on the Coefficient of Variation of the soft gating
scores, which encourages a balanced allocation of model parameters for training rays. The CV loss
function is given by

Lcv =
Var(G(R))(∑n
k=1 Gk(R)/n

)2 , (7)

Gk(R) =
∑
r∈R

Gk(r), (8)

where G(R) is the set
{
Gk(R)

}n

k=1
. Note that some work also uses the load-balanced loss to

encourage multi-models to receive roughly equal numbers of training examples [23, 38]. However,
this optimization objective is too strict and unsuitable for our framework.

B.2 Implementation Details of Switch-NGP

Switch-NeRF [38] constructs a point-based multi-NeRF framework based on MLP-based NeRF
structure. Given a 3D point x, it first extracts high-level point feature S(x) using a linear layer, which
will be sent to the gate module to obtain the gating scores. Then, they apply a Top-1 function on the
gating scores to determine which NeRF expert should be activated. The output feature of the chosen
expert will be multiplied by the gating score corresponding to the expert and obtain the fused point
feature. Finally, the fused point feature is sent to the unified MLPs to predict the density σ and color
c.

As illustrated in Figure S.1, we build an NGP-version of Switch-NeRF, named Switch-NGP. Since
NGP contains a feature grid in the form of the hash table, we directly use the feature grid to obtain
the high-level point feature S(x) of the point x. Switch-NeRF has validated the importance of a
unified head, wherein the gating score is multiplied by the high-level features rather than the density
or color predictions, which makes the gating and prediction more stable in training. We also perform
the multi-NeRF fusion in the point-feature dimension by inserting extra K feature MLPs before the
density MLP. Each expert in Switch-NGP corresponds to a tiny feature MLP with two hidden layers
and 64 channels.

The training details of Switch-NGP are the same as Rad-NeRF, as described in Section B.1.

B.3 Implementation Details of Block-NGP

Block-NeRF [26] applies the multi-NeRF method to the street scene, which allocates model parame-
ters in the ray dimension but in the image-level granularity. Specifically, Block-NeRF places one
NeRF at each intersection and directly allocates the training images to multi-NeRFs according to the
image shooting positions. We implement an NGP-version Block-NeRF, named Block-NGP, which

16

can be applied to various types of scenes without prior knowledge. After getting all the training
images, we first use the clustering algorithm (KMeans) to cluster the image shooting positions, and
the number of clusters is set the same as the number of sub-NeRFs. During the training process, each
training image is allocated to the corresponding sub-NeRF according to the clustering results, and the
training of sub-NeRFs is independent.

C Experiments on ScanNet Dataset

We compare Rad-NeRF with other multi-NeRF work on ScanNet dataset [6]. Compared to other
outdoor datasets, ScanNet contains more texture-less regions like the floors and the walls, which poses
more challenges for neural rendering. We conduct experiments in four complete scenes in ScanNet,
namely scene0046, scene0276, scene0515 and scene0673. The quantitative and qualitative results
are shown in Table S.2 and Figure S.2 respectively. Our Rad-NeRF outperforms other multi-NeRF
methods and renders less blur.

sc
en

e0
04

6

Ground Truth Instant-NGP Switch-NGP Block-NGP Rad-NeRF

sc
en

e0
27

6
sc

en
e0

51
5

sc
en

e0
67

3

Figure S.2: Qualitative comparisons on ScanNet dataset. Compared to other multi-NeRF methods,
Rad-NeRF renders less blur and achieves better recovery of details.

Table S.2: Quantitative results on ScanNet dataset.
Methods Metrics scene0046 scene0276 scene0515 scene0673 Avg

NGP
PSNR↑ 28.504 29.996 28.159 25.278 27.984
SSIM↑ 0.839 0.835 0.786 0.686 0.786
LPIPS↓ 0.413 0.421 0.448 0.472 0.438

Switch-NGP
PSNR↑ 28.135 29.614 27.814 25.140 27.676
SSIM↑ 0.834 0.831 0.779 0.684 0.782
LPIPS↓ 0.421 0.431 0.456 0.473 0.445

Block-NGP
PSNR↑ 28.728 30.214 28.332 25.444 28.180
SSIM↑ 0.842 0.840 0.789 0.688 0.790
LPIPS↓ 0.408 0.416 0.443 0.469 0.434

Rad-NeRF
PSNR↑ 29.440 30.871 29.149 25.759 28.805
SSIM↑ 0.851 0.843 0.800 0.690 0.796
LPIPS↓ 0.396 0.405 0.427 0.469 0.424

17

D Per-Scene Results

We provide the per-scene quantitative results on the Mask-TAT dataset, TAT dataset, NeRF-360-v2
dataset and Free dataset in Table S.3, Table S.4, Table S.5 and Table S.6 respectively. The results are
reported in the metric of PSNR.

Table S.3: Scene breakdown on the Mask-TAT dataset.
Methods Ignatius Truck Barn Caterpillar Family Avg

NeRF 25.43 25.36 24.05 23.75 30.29 25.78
MipNeRF 29.037 23.19 28.481 28.016 29.009 27.547

PlenOctrees 28.19 26.83 26.8 25.29 32.85 27.99
DVGO 28.16 27.15 27.01 26.00 33.75 28.41

Instant-NGP 28.431 27.562 27.611 26.065 34.092 28.752
Switch-NGP 28.184 27.34 27.472 25.75 33.711 28.491
Block-NGP 28.202 27.621 27.768 26.06 34.081 28.746

Rad-NeRF 29.806 28.163 28.701 27.445 34.756 29.774

Table S.4: Scene breakdown on the TAT dataset.
Methods M60 Playground Train Truck Avg

NeRF 16.86 21.55 16.64 20.85 18.975
NeRF++ 17.964 22.914 18.194 22.603 20.419

MipNeRF-360 20.091 24.27 19.741 24.144 22.062

MipNeRF360short 18.394 22.682 17.738 21.497 20.078
DVGO 17.292 22.62 17.783 21.306 19.750

Instant-NGP 18.914 22.832 17.707 23.428 20.720
Switch-NGP 18.619 22.661 17.523 23.243 20.512
Block-NGP 18.879 22.555 18.048 23.651 20.783

Rad-NeRF 19.051 23.901 19.369 24.509 21.708

Table S.5: Scene breakdown on the NeRF-360-v2 dataset.
Methods bicycle bonsai counter garden kitchen room stump Avg

NeRF 21.818 29.028 26.980 23.640 27.164 30.097 22.934 25.952
NeRF++ 21.426 31.670 27.717 24.801 29.468 30.621 24.770 27.210

MipNeRF360 22.861 32.970 29.291 26.014 31.987 32.685 25.278 28.727

MipNeRF360short 21.264 28.040 26.366 23.214 26.552 29.636 23.313 25.484
DVGO 21.652 27.919 26.432 23.851 26.282 31.677 20.988 25.543

F2-NeRF 21.311 30.036 25.873 23.694 28.935 29.421 24.251 26.217
Instant-NGP 24.203 31.374 25.665 25.312 30.278 31.534 22.799 27.309
Switch-NGP 23.859 30.012 24.359 25.164 29.865 31.127 21.284 26.524
Block-NGP 24.186 31.684 25.704 25.288 30.382 31.569 23.241 27.436

Rad-NeRF 24.550 32.439 25.230 25.634 31.062 32.863 23.312 27.871

E Additional Ablation Studies

We add additional ablation studies on the TAT dataset to further analyze the mechanism of Rad-NeRF,
including structural design, depth-mutual learning, and CV-balanced regularization. The results are
shown in Table S.7.

Gate-guided depth mutual learning. In Rad-NeRF, we use the gate-guided fused depth as the target
depth to regularize sub-NeRFs’ geometry and avoid overfitting. By contrast, when we directly use

18

Table S.6: Scene breakdown on the Free dataset
Methods Hydrant Lab Pillar Road Sky Stair Grass Avg

NeRF 16.569 17.342 20.944 19.793 15.925 18.731 22.439 18.820
NeRF++ 22.948 23.718 26.353 24.916 25.059 27.647 21.504 24.592

MipNeRF360 25.03 26.57 29.22 27.07 26.99 29.79 24.39 27.008

MipNeRF360short 23.281 24.412 26.789 24.158 25.369 27.139 21.827 24.711
DVGO 22.315 23.123 25.345 23.242 24.736 25.844 19.794 23.485

Instant-NGP 23.29 26.084 28.683 26.302 26.05 28.158 23.088 25.951
F2-NeRF 24.34 25.92 28.76 26.76 26.41 29.19 22.87 26.32

Switch-NGP 23.197 25.901 28.080 26.155 26.034 28.097 22.819 25.755
Block-NGP 23.663 26.682 28.103 25.989 26.283 28.395 22.988 26.015

Rad-NeRF 24.463 25.751 28.871 26.827 27.235 28.562 23.433 26.449

the average of the sub-NeRFs’ rendering depths as the target depth, which means all sub-NeRFs
have equal regularization strength (Equal DML), the rendering quality will be slightly worse. The
results highlight the pivotal role of gate-guided depth mutual learning. Using the gated-guided fused
depth as the target depth differently penalizes sub-depths based on the gating scores and increases the
accuracy of the geometry regularization. We also observe that depth mutual learning has no effect in
the case of uniform fusion due to the low accuracy of the averaged depth.

CV balanced regularization. As introduced in Section B.1, we adopt the regularization on the
Coefficient of Variation of the soft gating scores to prevent the gate module from collapsing onto
a specific sub-NeRF while maintaining sub-NeRF’s different specialties. Without CV-balanced
regularization, the rendering quality degrades significantly. Besides, we apply the CV regularization
only for the first half of the training time and find that the performance is comparable to Rad-NeRF,
The results prove that such regularization would not interfere with the learning of the gate module.

Table S.7: Additional ablation results.
Method Metric M60 Playground Train Truck Avg

Equal DML
PSNR↑ 18.929 23.108 19.012 24.625 21.419
SSIM↑ 0.625 0.686 0.610 0.758 0.670
LPIPS↓ 0.431 0.405 0.432 0.332 0.400

Independent feature grids
PSNR↑ 18.765 22.839 18.958 24.493 21.264
SSIM↑ 0.625 0.697 0.614 0.762 0.675
LPIPS↓ 0.431 0.405 0.417 0.325 0.395

Uniform fusion w/o DML
PSNR↑ 19.229 22.863 17.531 23.569 20.798
SSIM↑ 0.633 0.694 0.596 0.746 0.667
LPIPS↓ 0.431 0.414 0.451 0.345 0.411

Uniform fusion w/ DML
PSNR↑ 19.005 22.766 17.532 23.513 20.704
SSIM↑ 0.627 0.695 0.592 0.747 0.665
LPIPS↓ 0.434 0.411 0.453 0.341 0.410

w/o CV loss
PSNR↑ 18.743 22.795 17.245 23.395 20.545
SSIM↑ 0.619 0.683 0.587 0.731 0.655
LPIPS↓ 0.445 0.419 0.465 0.354 0.421

Half CV loss
PSNR↑ 19.114 24.003 19.462 24.518 21.774
SSIM↑ 0.625 0.689 0.606 0.758 0.670
LPIPS↓ 0.433 0.404 0.430 0.334 0.400

Rad-NeRF
PSNR↑ 19.051 23.901 19.369 24.509 21.708
SSIM↑ 0.631 0.689 0.612 0.757 0.672
LPIPS↓ 0.429 0.402 0.431 0.333 0.399

19

Structural design. In Rad-NeRF, we adopt a multi-NeRF structure with a shared feature grid and an
ensemble of MLP decoders. We further analyze the reason behind the performance improvement and
explore the performance of independent feature grids. As Table S.7 shows, the model employing a
shared feature grid (Rad-NeRF) outperforms its counterpart with multiple independent feature grids,
which highlights the effect of independent MLP decoders rather than feature grids. We attribute
this observation and the performance gained by Rad-NeRF to two aspects. (1)Within the hybrid
representation, the feature grid is responsible for encoding features of 3D spatial points, while the
MLP encoder is designed to encode view information. The crucial design of independent MLP
decoders aligns with our visibility-aware motivation, thereby enhancing the view-dependent effect.
(2)The training complexity will also increase as the trainable parameters increase. With the limited
amount of training data, increasing the number of feature grids leads to poor convergence. By contrast,
as different rays may pass through the same region of 3D space, weight sharing for the feature grid
helps to facilitate training. Although the number of learnable parameters hardly increases, Rad-NeRF
decouples the training in the ray dimension, helping to increase the model’s generalization ability.

F Discussion of Mega-NGP

Mega-NeRF [27] applies the multi-NeRF method to the drone scenes, allocating model parameters in
the ray dimension and the pixel-level granularity. Specifically, it allocates rays by partitioning the
intersecting points between rays and scenes. Such a method is suitable for drone scenes, where the
top-down perspective allows for the approximation of ray-scene intersections by intersecting with a
set horizontal plane. However, in unstructured scenes captured by free trajectories, the intersecting
points between rays and scenes cannot be determined before the training is completed, limiting the
applicability of Mega-NeRF to such scenes.

Since there is no straightforward implementation to determine the ray intersections before training,
we adopt an alternative implementation for NGP-version Mega-NeRF, which employs a clustering
algorithm to divide rays directly based on their origins and directions. The clustering process is offline
and the same as the one in Block-NGP. During the training process, each training pixel is allocated to
one corresponding sub-NeRF according to the clustering results. To ensure a fair comparison, the
model structure of Mega-NGP is the same as the one in Rad-NeRF, following the implementation of
Block-NGP. We conduct a comprehensive evaluation across all datasets and the experimental results
are shown in Table S.8. Mega-NGP yields similar results to Block-NGP, which is less effective than
our Rad-NeRF.

Table S.8: Comparison with Mega-NGP and Rad-NeRF
Method Metric TAT 360v2 Free Dataset ScanNet

Mega-NGP
PSNR↑ 20.843 27.482 25.855 28.100
SSIM↑ 0.659 0.761 0.696 0.786
LPIPS↓ 0.415 0.311 0.332 0.437

Rad-NeRF
PSNR↑ 21.708 27.87 26.449 28.870
SSIM↑ 0.672 0.769 0.719 0.797
LPIPS↓ 0.399 0.298 0.285 0.424

G More Scalability Studies

We provide the per-scene results of scalability studies on the ScanNet dataset in Table S.9 which are
reported in the metric of PSNR.

Furthermore, we observe that the model with four sub-NeRFs converges faster than the one with two
sub-NeRFs while achieving better rendering quality with the same training iterations, as Figure S.3
shows. The ease of training convergence can be attributed to two aspects. On the one hand, the
feature grid is shared among multi-NeRFs, and thus, the number of learnable parameters increases
marginally. On the other hand, as the neural network is better at fitting low-frequency information,
our gate module (a 4-layer MLP without sinusoidal position encoding) has implicitly incorporated
"smoothness prior", leading to closer rays to be more possibly assigned closer gating scores.

20

sc
en

e0
04

6
Training Loss Training Accuracy

sc
en

e0
27

6
sc

en
e0

51
5

sc
en

e0
67

3

Figure S.3: Convergence curve on the ScanNet dataset.

21

Table S.9: Scene breakdown of scalability studies on the ScanNet dataset.
Method 004600 027600 051500 067304 Avg

Instant-NGP 28.504 29.996 28.159 25.278 27.984

Rad-NeRF-size2 29.440 30.871 29.149 25.759 28.805

Rad-NeRF-size3 29.878 31.242 29.470 25.944 29.134

Rad-NeRF-size4 30.018 31.310 29.679 26.063 29.268

H The Training and Inference Efficiency of Rad-NeRF

We expand the scalability study in the main paper and supplement additional results about training
time and inference speed. The comparison results are shown in Figure S.4. Compared to the Instant-
NGP baseline, all methods for scaling up NeRF’s capacity require longer training time and exhibit
lower inference speed, including scaling the MLP width and different multi-NeRF frameworks.
Among these methods, Rad-NeRF achieves the best tradeoff between training/inference efficiency
and rendering quality. Since we adopt a shared feature grid and multiple independent MLP decoders
in the Rad-NeRF framework, a point feature needs to be processed by MLPs in turn, which is the
major cause of reduced efficiency. However, as multiple independent MLP decoders can be combined
into a single MLP through appropriate parameter initialization and freezing, Rad-NeRF can obtain
further efficiency improvements and approach the efficiency of scaling the MLP width.

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000

Training Time / second

27.6

27.8

28

28.2

28.4

28.6

28.8

29

PS
N

R
 /

dB

NGP with larger MLP
Instant-NGP
Block-NGP
Switch-NGP
Rad-NeRF

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Inference Speed / FPS

27.6

27.8

28

28.2

28.4

28.6

28.8

29

PS
N

R
 /

dB

NGP with larger MLP
Instant-NGP
Block-NGP
Switch-NGP
Rad-NeRF

Figure S.4: Scalability study about training/inference efficiency.

I Integration of Rad-NeRF and Zip-NeRF

As a multi-NeRF training framework, Rad-NeRF is essentially orthogonal to the structure and training
method of single-NeRF. For the benefit of training efficiency and its wide application, we build
and validate Rad-NeRF upon the Instant-NGP. Nevertheless, it can also be integrated with other
single-NeRF frameworks, such as ZipNeRF [3] (a SOTA single-NeRF framework).

We implement a ZipNeRF version of Rad-NeRF, named Rad-ZipNeRF, and evaluate the performance
on the 360v2 dataset. Similar to Rad-NeRF, Rad-ZipNeRF adopts a shared feature grid and multiple
MLP decoders. The training settings are kept the same as the original paper, including the training
iterations and batch size. As shown in Table S.10, integrated with Rad-NeRF, ZipNeRF can also
obtain performance gains, validating Rad-NeRF’s effectiveness and potential for integration with
different frameworks.

Considering that different frameworks have different characteristics, researchers may choose different
frameworks based on specific situational requirements. Adapting Rad-NeRF to different single-NeRF
frameworks remains an interesting point to be explored in the future.

We further validate the performance of Rad-NeRF on the Free dataset [34]. As the results show,
Rad-NeRF’s multi-NeRF training framework boosts ZipNeRF’s performance consistently.

22

Table S.10: Comparison with ZipNeRF and Rad-ZipNeRF on the 360v2 dataset.
Methods bicycle bonsai counter garden kitchen room stump Avg

ZipNeRF 21.019 33.052 25.982 24.330 32.843 34.777 25.406 28.201

Rad-ZipNeRF 20.488 33.486 26.372 24.603 33.120 35.795 25.581 28.492

Table S.11: Comparison with ZipNeRF and Rad-ZipNeRF on the free dataset.
Method Hydrant Lab Pillar Road Sky Stair Grass Avg

ZipNeRF 25.402 27.827 25.132 28.882 26.993 28.187 18.461 25.841

Rad-ZipNeRF 25.51 28.067 25.348 29.191 27.491 28.339 18.572 26.074

J Additional Visualizations of Gating Scores

In the visualization results of the main paper, we adopt two sub-NeRFs in all scenes of the TAT
dataset. With this setting, the two sub-NeRFs exhibit complementary gating scores for the same view
and we omitted the visualization of sub-NeRF2 for brevity in the main paper. We also provide the
visualization results of the other sub-NeRF in Figure S.5. As shown in Figure S.5, when rendering in
an open scene with fewer occlusions, the gating score exhibits different characteristic and smooth
transition according to the ray directions. This visualization further validates our analysis that as a
4-layer MLP without sinusoidal position encoding, the gating module incorporates smoothness prior
implicitly. For unseen viewpoints, especially in less-occluded outdoor scenes, the gating module
exhibits smooth and close scores to the nearest seen view. The additional visualization results further
prove that our original motivation for tackling heavy occlusion by decoupling sub-NeRF training is
valid.

V
ie
w
-1

V
ie
w
-2

Sub-NeRF1 Sub-NeRF2

Train Playground

Higher

Lower

Sub-NeRF1 Sub-NeRF2

Figure S.5: Additional visualizations of gating scores on two different views on TAT dataset.

K Limitation under the Few-shot Setting

Previously, we have included the discussion of the limitation under the few-shot setting. This is
because rendering under the few-shot setting presents a greater challenge to both NeRF’s and gating
module’s generalization ability.

We validate Rad-NeRF’s performance in the few-shot setting on the LLFF dataset [16]. For 6/9 train-
ing views, Rad-NeRF does not exhibit significant benefits or performance improvements compared to
Instant-NGP, with all metrics at the same level. This is because insufficient training data affects the
training and generalization of the gating module.

However, when rendering with extremely few training data (3 views), Rad-NeRF achieves significantly
better rendering quality. We analyze that when training with very few views, the gating module has
minimal impact on NeRF’s training. Nonetheless, depth-based mutual learning between multiple sub-
NeRFs could still exhibit an effective geometric regularization effect, thereby improving rendering
performance. This analysis is also validated by the visualization results shown in Figure S.6, compared
to the baseline, Rad-NeRF reduces the depth rendering ambiguity and shows better geometry modeling
in a 3-view setting.

23

Table S.12: Rad-NeRF’s performance under the few-shot setting

Method
PSNR↑ SSIM↑ LPIPS↓

3-view 6-view 9-view 3-view 6-view 9-view 3-view 6-view 9-view

Instant-NGP 16.107 19.594 21.105 0.419 0.592 0.663 0.541 0.394 0.353
Rad-NeRF 16.626 19.214 20.979 0.452 0.592 0.661 0.506 0.298 0.344

3-view

Instant-NGP Rad-NeRF

6-view 9-view

Instant-NGP Rad-NeRF Instant-NGP Rad-NeRF

Figure S.6: Qualitative comparisons under three few-shot settings on LLFF dataset.

L Comparison of Rad-NeRF with Uncertainty-based Methods

Uncertainty-based methods consider floaters as regions corresponding to high uncertainty and remove
them by thresholding the scene according to an uncertainty field during rendering. The spatial
uncertainty is computed in roughly a minute on any existing method. For example, RobustNeRF [22]
treated pixels with larger losses as those with high uncertainty, avoiding the misleading effect of
outlier points by discarding the training of those pixels. However, it is difficult to distinguish outlier
points from the high-frequency areas that should be learned. Moreover, Instant-NGP [18] regards
the spatial points with too low density as regions with high uncertainty and filters these regions
when rendering. Although this method works well, it still cannot completely eliminate floaters in
difficult scenes and may remove correct regions. As a post-hoc uncertainty assessment framework,
Bayes Rays [9] acts as a post-hoc uncertainty assessment framework, which does not change NeRF’s
training process, only removing "floater" regions corresponding to high uncertainty. However, this
solution is not stable and is generally used as an auxiliary solution to improve NeRF’s rendering
quality.

Different from uncertainty-based methods, the proposed Rad-NeRF improves rendering quality
by tackling the training interference issue. The depth-based mutual learning method also acts as a
geometric regularization to reduce rendering defects. Importantly, Rad-NeRF is essentially orthogonal
to these post-training uncertainty removal-based methods and can be integrated with Bayes Rays to
obtain further performance improvement.

24

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We state the intuition and corresponding validation experiments in the intro-
duction section 1. The contribution of ray-decoupled training framework is demonstrated
clearly.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We create a separate "Limitations" section 6 in the main paper. We point out
the limitation of the proposed Rad-NeRF in the few-shot setting.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

25

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided all the needed information (e.g.,training settings, hyper-
meters, and so on) in the Appendix B, ensuring the reproducibility of Rad-NeRF.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

26

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all the code in the supplementary material, with detailed instruc-
tions and execution scripts.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the necessary experimental details are stated in the Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Considering the negligible deviation of NeRF rendering results, we do not
report error bars in the quantitative results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

27

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We indicate the type of GPU and the time of execution (no more than one hour
of training) in the Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper has no societal impact, since NeRF renders the real scene without
any fake generation.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

28

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

29

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

30

	Introduction
	Related Work
	Neural Radiance Field
	Multi-NeRF Representation

	Preliminary
	Rad-NeRF
	Gate-guided Multi-NeRF Fusion
	Depth-based Mutual Learning
	The Overall Training Loss

	Experiments
	Datasets and Baselines
	Comparative Studies
	Comparison with Gaussian Splatting
	Ablation Studies

	Limitations
	Conclusion
	Appendix
	 Appendix
	Comparison with Other Multi-NeRF Methods
	Implementation Details
	Implementation Details of Rad-NeRF
	Implementation Details of Switch-NGP
	Implementation Details of Block-NGP

	Experiments on ScanNet Dataset
	Per-Scene Results
	Additional Ablation Studies
	Discussion of Mega-NGP
	More Scalability Studies
	The Training and Inference Efficiency of Rad-NeRF
	Integration of Rad-NeRF and Zip-NeRF
	Additional Visualizations of Gating Scores
	Limitation under the Few-shot Setting
	Comparison of Rad-NeRF with Uncertainty-based Methods

