
Neuron-Level Sequential Editing for Large Language Models

Anonymous ACL submission

Abstract001

This work explores sequential model editing002
in large language models (LLMs), a critical003
task that involves modifying internal knowl-004
edge within LLMs continuously through multi-005
round editing, each incorporating updates or006
corrections to adjust the model’s outputs with-007
out the need for costly retraining. Existing008
model editing methods, especially those that al-009
ter model parameters, typically focus on single-010
round editing and often face significant chal-011
lenges in sequential model editing-most no-012
tably issues of model forgetting and failure.013
To address these challenges, we introduce a014
new model editing method, namely Neuron-015
level Sequential Editing (NSE), tailored for016
supporting sequential model editing. Specif-017
ically, we optimize the target layer’s hidden018
states using the model’s original weights to019
prevent model failure. Furthermore, we iter-020
atively select neurons in multiple layers for021
editing based on their activation values to mit-022
igate model forgetting. Our empirical experi-023
ments demonstrate that NSE significantly out-024
performs current modifying parameters model025
editing methods, marking a substantial advance-026
ment in the field of sequential model editing.027
Our code is released on https://anonymous.028
4open.science/r/NSE-0A8D/.029

1 Introduction030

Large language models (LLMs) have demonstrated031

remarkable capabilities in storing extensive factual032

knowledge during pre-training and recalling this033

information during inference (Brown et al., 2020;034

Petroni et al., 2019; Roberts et al., 2020). However,035

as real-world knowledge continuously evolves, the036

information within these models can become out-037

dated or incorrect (Cao et al., 2021; Mitchell et al.,038

2022a; Fang et al., 2024). Retraining LLMs to in-039

corporate new information is often prohibitively040

costly (Mitchell et al., 2022b; Meng et al., 2022).041

Consequently, recent years have witnessed a surge042

in model editing methods focusing on modifying 043

specific knowledge without the complete retraining 044

process. Specifically, they first identify the cru- 045

cial layers for the target knowledge by calculating 046

their casual effect on output. Then, by updating 047

the weights of these layers, they manipulate the 048

hidden states of these layers to modify the final 049

output, allowing LLMs to seamlessly adapt to dy- 050

namic real-world information (Meng et al., 2023; 051

Hartvigsen et al., 2023). 052

Although current direct model editing methods 053

are effective for single-round modifications, real- 054

world applications require a continuous learning 055

process where models must retain previous edits 056

during subsequent modifications (Yao et al., 2023). 057

This has led to the concept of sequential model 058

editing, which requires the performance of multiple 059

consecutive edits on models. However, current 060

direct model editing methods pose significant risks 061

in this context (Meng et al., 2022, 2023). The 062

primary risk is model forgetting, where cumulative 063

changes in parameters from consecutive edits cause 064

the model to forget previously modified knowledge, 065

thus degrading overall performance (Gupta et al., 066

2024a). For example, as illustrated in Figure 1 067

(a), after editing the model with new knowledge 068

about “The cat”, the LLM forgets previously edited 069

knowledge about “The latest Olympic”. 070

Furthermore, the second risk is model failure, 071

where excessive edits impair the model’s ability 072

to generate coherent text. Worse still, this im- 073

pairment can potentially lead to model collapse, 074

characterized by producing irrelevant, repetitive, 075

or non-sensical text, as illustrated in Figure 1 (a). 076

In view of this, recent research, such as memory- 077

based methods (Mitchell et al., 2022b; Hartvigsen 078

et al., 2023), has attempted to address these chal- 079

lenges by preserving the LLM parameters after 080

each edit. However, the increasing storage require- 081

ments as the number of edits grows significantly 082

limit the practicality of these methods. 083
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Figure 1: Example of sequential editing. (a) shows model forgetting and model failure issues in sequential editing
using ROME/MEMIT, while (b) shows the accurate editing capabilities of our method without such issues.

To tackle these challenges, we introduce a084

new model editing method, termed Neuron-level085

Sequential Editing (NSE). Specifically, to address086

the model failure, NSE uses weights rewinding for087

value computation by preserving the model’s origi-088

nal weights as a significant reference when manip-089

ulating the hidden states of the crucial layers. This090

process can effectively mitigate the impairment of091

previous knowledge accumulated over various ed-092

its. Furthermore, to address model forgetting, NSE093

selectively collects “influential neurons” to update094

weights by sorting neuron activation within the cru-095

cial layers, rather than updating all weights in the096

critical layers as in previous work (Meng et al.,097

2022, 2023). This selective modification maxi-098

mizes the protection of model functionality from099

degradation. Additionally, for large-scale LLMs100

containing numerous neurons, an iterative multi-101

layer editing is introduced to streamline the neuron102

selection process, enabling NSE to achieve massive103

knowledge updates effectively in a single editing.104

Through theoretical analysis and extensive ex-105

periments conducted on GPT2-XL (1.5B) (Radford106

et al., 2019), GPT-J (6B) (Wang and Komatsuzaki,107

2021), and Llama3 (8B), we validate the effective-108

ness and efficiency of our NSE. Compared to cur-109

rent model editing methods ( e.g., MEND (Mitchell110

et al., 2022a), ROME (Meng et al., 2022), MEMIT111

(Meng et al., 2023) and GRACE (Hartvigsen et al.,112

2023)), NSE shows substantial improvements with113

respect to five commonly used metrics such as114

specificity and consistency.115

2 Preliminary116

2.1 Autoregressive Language Model117

An autoregressive language model predicts the next118

token in a sequence based on the tokens that have119

come before it. Given a L layer transformer model120

and an input sequence x = (x0, x1, . . . , xT ), the 121

model aims to predict the next token in the se- 122

quence. The probability of the next token xt+1 is 123

given by: 124

P(xt+1 | x0, x1, . . . , xt) =
Softmax(Weh

N
t ),

(1) 125

where We represents embedding matrix, and hN
t 126

represents the final hidden state at the topmost layer 127

N . The hidden state hl
t at layer l is calculated as: 128

hl
t(x) = hl−1

t (x) + al
t(x) + vl

t(x),

al
t = attnl(hl−1

0 ,hl−1
1 , . . . ,hl−1

t ),

vl
t = W l

outσ(W
l
inγ(h

l−1
t + al

t)),

(2) 129

where alt represents the output of the attention 130

block and vl
t represents the output of the FFN 131

layer. W l
in and W l

out are weight matrices, σ is 132

a non-linear activation function, and γ represents 133

the layer norm. 134

2.2 Previous Model Editing Method 135

Sequential model editing refines a pre-trained 136

model fθ0 through multiple updates, each in- 137

corporating new facts (s, r, o), such as s = 138

“The latest Olympic”, r = “was held in”, o = 139

“Paris”. After each edit, the updated model fθt 140

is optimized to produce the correct outputs for the 141

current edit set Deditt while maintaining the pre- 142

cision of previous tasks, ensuring both adaptation 143

to new information and preservation of previous 144

performance. 145

Following current work (Meng et al., 2022, 146

2023), we treat the weights of the Transformer’s 147

(Vaswani et al., 2017) FFN layer as a linear associa- 148

tive memory. That is, linear operations within the 149

FFN layer can be viewed as key-value storage for 150

information retrieval (Kohonen, 1972; Anderson, 151

1972). 152
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Given the weights W l
in of the l-th FFN layer153

when prompted by (si, ri), we identify the acti-154

vation output of the last subject token S as the155

key kl
i. In the following, this key kl

i is processed156

through the output weights W l
out, producing the157

value vl
i. In the context of sequential model edit-158

ing, we start with an initial set of key-value as-159

sociations for knowledge facts stored in the l-th160

FFN layer, denoted respectively by K0 = {ki}ni=1161

and V0 = {vi}ni=1. In the following, our objective162

is to introduce new key value associations m, de-163

noted as K1 = {ki}n+m
i=n+1 and V1 = {vi}n+m

i=n+1,164

while retaining all existing associations unchanged.165

Drawing on prior work (Meng et al., 2023), the166

optimization objective is as follows:167

∆∗ = argmin
∆

(∥(W +∆)K1 − V1∥2

+ ∥(W +∆)K0 − V0∥2),
(3)168

where W represents the weights of Wout in the169

target FFN layer, ∆ denotes the update to W , and170

V1 can be directly trained using the fine-tuning171

loss predicted by the model through backpropaga-172

tion. Since K0 and V0 represent the knowledge re-173

tained in LLM, we can express this relationship as174

WK0 = V0. Therefore, we can obtain the closed-175

form solution of Eqn. 3 using the least squares176

method (Lang, 2012):177

∆∗ = RKT
1

(
K0K

T
0 +K1K

T
1

)−1
, (4)178

where R = V1 −WK1. Furthermore, MEMIT179

focuses on editing a specific set of layers denoted180

as R = {l∗ − |R| + 1, . . . , l∗}. The required the181

weight update ∆l for layer l ∈ R is expressed as:182

∆l = RlK l
1
T
(
K l

0K
l
0
T
+K l

1K
l
1
T
)−1

, (5)183

where Rl = Rl∗

l∗−l+1 . These modifications are im-184

plemented sequentially, starting from the lower lay-185

ers and progressing to the upper layers.186

3 Methodology187

In this section, we introduce NSE, a method188

adapted for sequential model editing, as illustrated189

in Figure 2. Initially, we identify the values com-190

putation method in Section 3.1. Subsequently, in191

Section 3.2, we detail the editing method that selec-192

tively filters certain neurons for the corresponding193

parameter updates. Finally, in Section 3.3, we intro-194

duce the approach of iterative multi-layer editing.195

3.1 Weights Rewinding for Value 196

Computation 197

First, our primary goal is to find a hidden vector 198

that encodes the new association (si, ri, oi) and re- 199

places the value vl
i in the l-th layer as described in 200

Section 2.2. In practical implementation, as shown 201

in Figure 2 (a), we optimize δi through gradient de- 202

scent by maximizing the probability that the model 203

outputs oi to compute zi = hl
i + δi, where hl

i de- 204

notes the hidden state of the LLM in layer l. And 205

the value vi
l can be calculated as vi

l+ = δi. In 206

the process of sequential editing, we observed that 207

using the updated model parameters fθt to calcu- 208

late zi after each edit leads to significant model 209

degradation over multiple edit rounds. This indi- 210

cates that the cumulative parameter updates from 211

each editing round can lead to a change in value 212

computation. In contrast, using the original model 213

parameters fθ0 to compute zi effectively prevents 214

this issue. Hence, we propose a weight rewinding 215

method for the value computation, which is based 216

on the initial model weights fθ0 to ensure that zi is 217

computed using fθ0 for each edit. The optimization 218

objective is as follows: 219

δ∗i = argmin
δi

− logPfθ0 (h
l
i+δi)

[oi | (si, ri)] ,

zi = hl
i + δ∗i ,

(6) 220

where fθ0(h
l
i+ = δi) represents the original 221

model with hl
i updated to hl

i + δi. Subsequently, 222

the value vi
l can be updated to vi

l+ = zi − hl
i, 223

which will be used to support subsequent model ed- 224

its. Note that when calculating zi using the original 225

model parameters fθ0 , it is sufficient to save only 226

the weight matrix Wout that needs to be updated, 227

rather than storing the entire model parameters and 228

we use the original weights only during the compu- 229

tation of zi. 230

3.2 Neuron-level Weights Updating 231

In Section 3.1, we primarily discussed the method 232

to calculate zi to replace the value in the target 233

layer. In this section, we will specifically elaborate 234

on how to utilize the computed value for weight 235

updates at the neuron level, as shown in Figure 2 236

(b). 237

Based on previous work, it is established that 238

neurons in FFN contain abundant information (Dai 239

et al., 2022; Wang et al., 2022; Schwettmann et al., 240

2023a; Pan et al., 2023; Wu et al., 2023). Hence, 241

we selectively optimize a subset of neurons rather 242
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Figure 2: Overview of sequential model editing with NSE. (a) describes the process of weights rewinding for value
computation. (b) illustrates the neuron selection and neuron-level weights update. (c) shows the process of iterative
multi-layer editing.

than alter the entire weight matrix for each edit.243

Specifically, for a given knowledge fact (si, ri, oi),244

we use the activation values ki of the neurons and245

compute scores Qi = |ki|. Neurons are ranked246

based on these scores, and a subset is chosen such247

that the cumulative score of selected neurons sur-248

passes a predetermined percentage p of the total249

score:250

I = argmin
I⊆{1,...,N}

|I|

s.t.
∑
j∈I

Qij ≥ p×
N∑
j=1

Qij ,
(7)251

where Qij represents the score of the j-th neuron,252

I is the set of indices for selected neurons. Here-253

after, we introduce how to update W (i.e., Wout)254

using the selected neuron set I. For clarity, we255

decompose W into two submatrices along the row256

dimension: Ŵ (rows indexed by I) and W̃ (re-257

maining rows), with corresponding decomposition258

of the knowledge matrix K = [K̂, K̃] along the259

column dimension. Let ∆̂ denote the update sub-260

matrix for Ŵ . Our objective is to modify only Ŵ261

while keeping W̃ unchanged, which aligns with262

the optimization goal in Eqn. 3. The original output263

can be expressed as:264

V = K̂Ŵ + K̃W̃ . (8)265

Since K̃W̃ remains fixed during editing, we refor- 266

mulate Eqn. 3 by focusing on the editable compo- 267

nent: 268

∆̂∗ = argmin
∆̂

(
∥∥∥(Ŵ + ∆̂)K̂1 − V1

∥∥∥2
+
∥∥∥(Ŵ + ∆̂)K̂0 − V0

∥∥∥2), (9) 269

where K̂0 and K̂1 are submatrices of K0 and K1 270

indexed by I. This reformulation explicitly decou- 271

ples the editable (Ŵ ) and fixed (W̃ ) components. 272

The optimal solution is: 273

∆̂∗ = R̂K̂⊤
1 Ĉ−1, (10) 274

where R̂ = V1 − Ŵ K̂1 and Ĉ = K̂0K̂
⊤
0 + 275

K̂1K̂
⊤
1 . Following (Meng et al., 2023), we approx- 276

imate K0K
⊤
0 as λE[kk⊤] with hyperparameter 277

λ. The submatrix K̂0K̂
⊤
0 is obtained by selecting 278

rows/columns through I from this approximation. 279

During continual editing, newly acquired knowl- 280

edge is incrementally added to K0K
⊤
0 . 281

3.3 Iterative multi-layer Editing 282

As described in Section 2.2, current work (Meng 283

et al., 2023) propagates edits through layers by 284

computing the value vl
i as vl

i+ = δi
l∗−l+1 (l ∈ R) 285

(Meng et al., 2023; Gupta et al., 2024b).Here, 286

δi = zi − hl∗
i represents the residual difference. 287
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The fundamental purpose is that, as each layer288

is updated, the hidden state hl∗
i progressively ap-289

proaches the target zi, thus diminishing the residual290

δi. Detailed analyses can be found in the Appendix291

F. However, due to errors in the fitting process,292

some knowledge proves difficult to edit, resulting293

in vl∗
i not adequately approximating zi, and conse-294

quently leading to editing failures.295

Therefore, we propose iterative multi-layer edit-296

ing to refine the multi-layer editing approach in297

MEMIT by iteratively selecting neurons to edit298

multiple layers, as depicted in Figure 2 (c). Specifi-299

cally, considering that some knowledge is difficult300

to edit such that the corresponding value vl∗
i can-301

not sufficiently approximate the optimized target302

value zi, we employ iterative multi-layer editing.303

After each round of multi-layer editing, we filter304

the knowledge samples in the current batch based305

on ∥zi − hl∗
i ∥2. If ∥zi − hl∗

i ∥2 < α, the knowl-306

edge sample is considered edited successfully. In307

contrast, if ∥zi−hl∗
i ∥2 > α, the sample is deemed308

not yet successfully edited. The hyperparameter309

α, which is set differently for various LLMs, de-310

termines the threshold for editing success. These311

unedited samples are then filtered to form a new312

batch for further multi-layer editing, repeating this313

process until all knowledge samples in the batch314

meet ∥zi − hl∗
i ∥2 < α or the iteration limit is315

reached. More details of the NSE algorithm are316

provided in Appendix A.317

4 Experiments318

We conducted experiments to demonstrate the ef-319

fectiveness of our model editing method. The ex-320

periments aim to address the following research321

questions:322

• RQ1: How does NSE perform on sequential edit-323

ing tasks compared to existing methods?324

• RQ2: What is the impact of adjusting the batch325

size of edits on the performance of NSE?326

• RQ3: Can the LLM, after undergoing NSE edit-327

ing, retain its original general capabilities, and328

how does it perform on general capability tests?329

4.1 Experimental Settings330

Datasets & Evaluation Metrics. To evaluate the331

effectiveness of our method, we use two datasets:332

Counterfact (Meng et al., 2022) and ZsRE (Levy333

et al., 2017). For the Counterfact dataset, we em-334

ploy five evaluation metrics as defined in previous335

work (Meng et al., 2022, 2023): Efficacy (effi-336

ciency success), Generalization (paraphrase suc- 337

cess), Specificity (neighborhood success), Fluency 338

(generation entropy), and Consistency (reference 339

score). For the ZsRE dataset, we use three evalua- 340

tion metrics also defined in previous work (Mitchell 341

et al., 2022a; Meng et al., 2022, 2023): Efficacy, 342

Generalization, and Specificity. For more details, 343

see Appendix C. 344

Models & Baselines. Our comparative anal- 345

ysis evaluates the performance of various editing 346

methods in three LLMs, GPT2-XL (1.5B) (Radford 347

et al., 2019), GPT-J (6B) (Wang and Komatsuzaki, 348

2021) and Llama3 (8B). For baseline comparisons, 349

we primarily select model editing methods that 350

modify the model’s parameters, including fine- 351

tuning the specific layer (FT-L) (Zhu et al., 2020), 352

MEND (Mitchell et al., 2022a), ROME (Meng 353

et al., 2022), MEMIT (Meng et al., 2023), MAL- 354

MEN (Tan et al., 2024) and DAFNeT (Zhang et al., 355

2024b). Furthermore, we incorporated memory- 356

based editing methods, GRACE (Hartvigsen et al., 357

2023), as a baseline. More details are provided in 358

Appendix B. 359

4.2 Performance Comparison (RQ1) 360

In this subsection, we provide a comprehensive 361

comparison of NSE with existing methods on the 362

sequential model editing task. The experiments 363

are conducted with a total of 2000 edited samples 364

and an editing batch size of 100 (batch size refers 365

to the number of samples edited simultaneously 366

in each editing round during the sequential editing 367

process)s. The results of all the evaluation methods, 368

on all datasets, are presented in Table 1. Further- 369

more, we test the methods on the edited samples 370

after each edit round on the GPT2-XL model using 371

Counterfact. We presented the result in Figure 3. 372

We also provide additional experimental results in 373

the Appendix G. According to these, we can find 374

that: 375

• Observation 1: NSE outperforms other base- 376

line methods in almost all critical metrics in 377

both datasets and models in the sequential 378

editing task. Specifically, compared to baseline 379

methods for parameter modification, NSE shows 380

significant improvements in all metrics. In par- 381

ticular, on Llama3 (8B) editing, NSE achieves 382

an average enhancement of around 30.33% on 383

multiple metrics. Additionally, in terms of gener- 384

ation capabilities, both Fluency and Consistency 385

see increases of over 40.75%. In contrast, while 386

the GRACE parameter preservation method re- 387
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Table 1: Comparison of NSE with existing methods on the sequential model editing task. Eff., Gen., Spe., Flu. and Consis.
denote Efficacy, Generalization, Specificity, Fluency and Consistency, respectively.

Method Model
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

Pre-edited
L

la
m

a3
7.85±0.26 10.58±0.26 89.48±0.18 635.23±0.11 24.14±0.08 36.99±0.30 36.34±0.30 31.89±0.22

FT-L 83.33±0.37 67.79±0.40 46.63±0.37 233.72±0.22 8.77±0.05 30.48±0.26 30.22±0.32 15.49±0.17

MEND 63.24±0.31 61.17±0.36 45.37±0.38 372.16±0.80 4.21±0.05 0.91±0.05 1.09±0.05 0.53±0.02

ROME 64.40±0.47 61.42±0.42 49.44±0.38 449.06±0.26 3.31±0.02 2.01±0.07 1.80±0.07 0.69±0.03

MEMIT 65.65±0.47 64.65±0.42 51.56±0.38 437.43±1.67 6.58±0.11 34.62±0.36 31.28±0.34 18.49±0.19

MALMEN 69.58±0.24 66.18±0.35 49.14±0.37 463.85±0.78 9.28±0.04 9.58±0.04 9.36±0.08 2.01±0.05

DAFNeT 78.21±0.56 69.05±0.39 68.90±0.21 584.72±0.34 20.77±0.13 57.75±0.24 46.96±0.35 23.17±0.15

GRACE 90.72±0.13 0.09±0.01 87.23±0.21 632.43±0.63 23.79±0.23 74.58±0.31 1.03±0.06 31.86±0.12

NSE 96.14±0.19 78.42±0.35 87.66±0.19 632.72±0.12 30.20±0.10 62.29±0.35 47.13±0.31 32.32±0.22

Pre-edited

G
PT

2-
X

L

22.23±0.73 24.34±0.62 78.53±0.33 626.64±0.31 31.88±0.20 22.19±0.24 31.30±0.27 24.15±0.32

FT-L 63.55±0.48 42.20±0.41 57.06±0.30 519.35±0.27 10.56±0.05 37.11±0.39 33.30±0.37 10.36±0.17

MEND 50.80±0.50 50.80±0.48 49.20±0.51 407.21±0.08 1.01±0.00 0.00±0.00 0.00±0.00 0.00±0.00

ROME 54.60±0.48 51.18±0.40 52.68±0.33 366.13±1.40 0.72±0.02 47.50±0.43 43.56±0.42 14.27±0.19

MEMIT 94.70±0.22 85.82±0.28 60.50±0.32 477.26±0.54 22.72±0.15 79.17±0.32 71.44±0.36 26.12±0.25

MALMEN 55.32±0.58 53.63±0.42 53.25±0.62 412.57±0.15 1.08±0.03 3.54±0.03 4.25±0.02 3.23±0.04

DAFNeT 74.25±0.15 59.18±0.32 63.06±0.37 594.35±0.33 28.35±0.12 79.17±0.67 66.57±0.72 22.67±0.22

GRACE 94.50±0.24 0.04±0.01 78.13±0.43 622.56±0.79 31.55±0.25 82.54±0.21 0.40±0.02 24.78±0.21

NSE 96.80±0.20 87.72±0.30 72.10±0.28 622.85±0.15 40.04±0.11 83.26±0.29 75.33±0.34 26.14±0.25

Pre-edited

G
PT

-J

16.22±0.31 18.56±0.45 83.11±0.13 621.81±0.67 29.74±0.51 26.32±037 25.79±0.25 27.42±0.53

FT-L 92.15±0.27 72.38±0.38 43.35±0.37 297.92±0.77 6.65±0.10 72.37±0.29 68.91±0.32 19.66±0.23

MEND 46.15±0.50 46.22±0.51 53.90±0.48 242.41±0.41 3.94±0.03 0.71±0.04 0.71±0.04 0.52±0.03

ROME 57.50±0.48 54.20±0.40 52.05±0.31 589.28±0.08 3.22±0.02 56.42±0.42 54.65±0.42 9.86±0.16

MEMIT 98.55±0.11 95.50±0.16 63.64±0.31 546.28±0.88 34.89±0.15 94.91±0.16 90.22±0.23 27.56±0.27

MALMEN 69.58±0.24 66.18±0.35 49.14±0.37 463.85±0.78 9.28±0.04 9.58±0.04 9.36±0.08 2.01±0.05

DAFNeT 78.21±0.56 69.05±0.39 68.90±0.21 584.72±0.34 20.77±0.13 57.75±0.24 46.96±0.35 23.17±0.15

GRACE 95.88±0.28 0.05±0.01 82.11±0.24 620.21±0.49 28.53±0.15 94.33±0.37 1.59±0.03 27.63±0.43

NSE 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

tains model capabilities to the greatest extent, it388

exhibits weaker generalization performance.389

• Observation 2: NSE maintains stable perfor-390

mance across all metrics as the number of391

edited samples increases. As shown in Figure392

3, NSE shows robust performance, remains re-393

silient to model failure, and forgets despite the394

increase in the number of editing rounds. In con-395

trast, both ROME and MEMIT exhibit significant396

performance degradation, particularly in Speci-397

ficity, Fluency, and Consistency. This degrada-398

tion suggests that as the number of edited sam-399

ples increases, ROME and MEMIT struggle to400

maintain model integrity, severely impairing the401

model’s generative capabilities and leading to402

progressive model failure and forgetting.403

4.3 Impact of Batch Size (RQ2) 404

To answer RQ2, we examine the impact of different 405

batch sizes on the performance of NSE compared to 406

MEMIT, in the sequential model editing task, with 407

a total of 2000 edits on the Counterfact dataset. Fig- 408

ure 4 presents four radar charts that depict Llama3 409

performance (8B) when using batch sizes of 200, 410

100, 50, and 10, respectively. We also tested the 411

editing effects of GPT2-XL and GPT-J at different 412

batch sizes, as detailed in Appendix H. According 413

to Figure 4, we can find that: 414

• Observation 3: NSE maintains superior per- 415

formance across various batch sizes in the se- 416

quential editing task. Specifically, as the batch 417

size decreases, resulting in an increase in the 418

6



Figure 3: Editing performance of NSE and baselines with varying numbers of edits (batch size 100) in sequential
editing, evaluated on the Counterfact dataset. Score is the harmonic mean of Efficacy, Generalization, and Specificity.

Figure 4: Editing performance of NSE and MEMIT with different batch size, evaluated on Llama3 (8B). The red
line and the blue line represent MEMIT and NSE, respectively.

number of editing rounds, the performance of419

MEMIT deteriorates. This trend is especially420

pronounced when the batch size is reduced to421

10, as shown in Figure 4 (d). The radar charts422

reveal a significant decline in model editing ef-423

fectiveness, with notable decreases observed in424

all metrics. In contrast, NSE demonstrates an425

average improvement in all of these metrics.426

4.4 General Ability Test (RQ3)427

To assess the effects of model editing on the gen-428

eral capabilities of edited model, we have selected429

six natural language tasks from the General Lan-430

guage Understanding Evaluation (GLUE) bench-431

mark (Wang et al., 2019). Details of the down-432

stream tasks are described in the Appendix C.2.433

We perform evaluations on Llama3 (8B) based 434

on sequential editing settings with 3000 edits. The 435

results are shown in Figure 5. Note that as the 436

parameter-preserved editing method differs from 437

ours and does not affect the model by changing it, 438

it will not be compared with it in the general ability 439

test. Here we can make the following observations: 440

• Observation 4: NSE consistently maintains 441

the general capabilities of the LLM during se- 442

quential editing without incurring model fail- 443

ure. Specifically, as the number of edited knowl- 444

edge instances increases, NSE’s performance re- 445

mains aligned with that of the pre-edited LLM, 446

demonstrating no adverse effects on the LLM’s 447

inherent general capabilities. In contrast, ROME 448

and MEMIT exhibit a significant decline in gen- 449

7



Figure 5: Performance on general tasks of edited models using NSE, ROME and MEMIT, with sequential editting
on Llama3 (8B).

eral capabilities 0 after editing approximately450

1,000 to 2,000 samples, indicating that the model451

has already experienced degradation.452

5 Related work453

Current approaches to model editing in LLMs gen-454

erally fall into two main categories (Yao et al.,455

2023; Zhang et al., 2024a; Bi et al., 2024a):456

Preserve Models’ Parameters. Methods that457

preserve the original model’s parameters generally458

store edit examples in memory and use them to459

guide the model’s predictions (Bi et al., 2024b).460

For example, SERAC (Mitchell et al., 2022b) keeps461

the original model unchanged and uses a separate462

counterfactual model for edits. T-Patcher (Huang463

et al., 2023) introduces an additional neuron for464

each output error, whereas CaliNet (Dong et al.,465

2022) incorporates knowledge using a predeter-466

mined number of neurons. GRACE (Hartvigsen467

et al., 2023) implements sequential editing by main-468

taining a dynamically updated codebook. WISE469

(Wang et al., 2024) introduces a dual paramet-470

ric memory scheme that separates pretrained and471

edited knowledge.472

Modify Models’ Parameters. Methods that473

modify LLM parameters require updates to the474

model’s internal parameters with each edit. FT-W475

fine-tunes specific layers with regularization con-476

straints (Zhu et al., 2020). KN (Dai et al., 2022)477

identifies and updates key "knowledge neurons" 478

in the FFN. KE (Cao et al., 2021) and MEND 479

(Mitchell et al., 2022a) use hypernetworks for pre- 480

dicting weight changes based on meta-learning. 481

ROME (Meng et al., 2022) and MEMIT (Meng 482

et al., 2023) perform large-scale edits by locating 483

and modifying knowledge in specific GPT layers. 484

MALMEM (Tan et al., 2024) optimizes weight up- 485

dates using least-squares, allowing simultaneous 486

editing of multiple samples. DAFNeT (Zhang et al., 487

2024b) extends MALMEM by incorporating auto- 488

regressive self-attention for improved sequential 489

editing. This paper primarily focuses on parameter- 490

modification editing methods. 491

6 Conclusion 492

In this work, we introduce NSE, a model editing 493

method for sequential model editing tailored to ad- 494

dress the significant challenges of model forgetting 495

and model failure. Specifically, we propose weight 496

rewinding for value computation by optimizing the 497

hidden states of the target layer using the model’s 498

original weights, which effectively minimize cu- 499

mulative changes and maintain model coherence. 500

Additionally, we select influential neurons for dif- 501

ferent knowledge to update weights in FFN and 502

iteratively edit multi-layer weights. 503

8



7 Limitations504

Despite the outstanding performance of NSE in505

sequential editing, our investigation reveals some506

limitations. Firstly, the method for selecting neu-507

rons is relatively simple and may not fully capture508

the complexities of neuron interactions. Addition-509

ally, while the iterative distribution editing process510

is effective, it introduces some efficiency reduc-511

tion, which could pose challenges for large-scale or512

time-sensitive applications. Moving forward, our513

goal is to explore more effective neuron attribution514

methods and enhance the efficiency of our editing515

techniques.516
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A Algorithm716

We present the NSE algorithm in sequential model717

editing task. The algorithm iterates over multiple718

rounds of edits, optimizing the target vectors for719

each memory and selecting the most influential720

neurons to update. The selected neurons are then721

used to distribute the residuals over the remaining722

layers, ensuring that the edits are applied effec-723

tively and efficiently. Detailed steps are provided724

in Algorithm 1.725

B Baselines726

The details of baselines are as follow:727

• FT-L (Zhu et al., 2020) focuses on adjusting728

a specific layer identified by ROME (Meng729

et al., 2022), rather than fine-tuning all layers.730

This selective approach helps ensure fair com-731

parisons, as these configurations have been732

shown to yield optimal performance. In con-733

trast, FT-W is a slight variation of FT-L, differ-734

ing mainly in the method of loss computation735

for parameter optimization with regularization736

constraints.737

• MEND (Mitchell et al., 2022a) is an efficient738

method designed for editing large pre-trained739

models using a single input-output pair. It740

employs small auxiliary networks to facilitate741

quick, localized changes to the model with-742

out necessitating full retraining. By apply-743

ing low-rank decomposition to the gradients744

from standard fine-tuning, MEND achieves ef-745

ficient and manageable parameter adjustments.746

This strategy enables post-hoc edits in large747

models while mitigating the overfitting typi-748

cally associated with conventional fine-tuning749

techniques.750

• ROME (Meng et al., 2022) focuses on updat-751

ing specific factual associations within large752

language models (LLMs). Identifies critical753

neuron activations within middle-layer feed-754

forward modules that influence factual predic-755

tions, allowing for direct modifications to the756

feed-forward weights. ROME illustrates that757

these mid-layer modules are essential for stor-758

ing and recalling factual knowledge, making759

direct manipulation a feasible technique for760

model editing.761

• MEMIT (Meng et al., 2023) is a scalable762

multi-layer update algorithm designed to effi-763

ciently incorporate new factual memories into764

transformer-based language models. Build-765

ing upon ROME’s direct editing approach, 766

MEMIT specifically targets transformer mod- 767

ule weights that serve as causal mediators for 768

factual knowledge recall. This method en- 769

ables MEMIT to update models with thou- 770

sands of new associations. 771

• MALMEN (Tan et al., 2024) improves LLM 772

parameter updates by formulating the aggre- 773

gation of parameter shifts as a least-squares 774

problem, enabling efficient and statistically 775

significant edits. It separates computations be- 776

tween the hyper-network and LLM, allowing 777

flexible batch sizes and supporting simulta- 778

neous editing of multiple facts. MALMEN 779

outperforms existing methods like MEND 780

and MEMIT by editing thousands of facts 781

efficiently across various LLM architectures, 782

excelling in knowledge-intensive NLP tasks 783

such as fact-checking and question answering. 784

• DAFNeT (Zhang et al., 2024b) addresses 785

sequential model editing by continuously 786

correcting factual errors in LLMs. It en- 787

hances semantic interactions within relation 788

triples using intra-editing attention and up- 789

dates sequence-level representations through 790

inter-editing attention. DAFNET uses the 791

DAFSet dataset to improve generality, show- 792

ing significant improvements over baselines in 793

both single-turn and sequential editing tasks. 794

• GRACE (Hartvigsen et al., 2023) introduces 795

an innovative editing technique that focuses 796

on preserving the initial model parameters 797

while incorporating a dynamic codebook. 798

This codebook evolves through the incremen- 799

tal addition, splitting, and expansion of keys, 800

which facilitates the long-term storage of rele- 801

vant modifications. 802

C Details of Datasets and Evaluation 803

Metrics 804

C.1 Datasets 805

ZsRE (Levy et al., 2017) is a question answering 806

(QA) dataset that uses questions generated through 807

back-translation as equivalent neighbors. Follow- 808

ing previous work, natural questions are used as 809

out-of-scope data to evaluate locality. Each sample 810

in ZsRE includes a subject string and answers as the 811

editing targets to assess editing success, along with 812

the rephrased question for generalization evaluation 813

and the locality question for evaluating specificity. 814

Counterfact (Meng et al., 2022) is a more chal- 815
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Algorithm 1 The NSE Algorithm

Input: Sequential edits {Deditt}Tt=1 = {{(si, ri, oi)}t}Tt=1, given original LLM fθ0 , layers to editR =
{l∗ − |R|+ 1, . . . , l∗}, covariances Ĉ l−1

Output: Modified generator containing edits from {Deditt}Tt=1

1: for each round t = 1 to T do
2: for (si, ri, oi) ∈ Deditt do
3: // Compute target zi vectors for every memory i
4: zi ← vl∗

i + δi
5: Optimize zi = vl∗

i + argminδi(− logPfθ0 (v
l∗
i +=δi)

[oi | (si, ri)]) ▷ Eqn. 6
6: end for
7: // Select neurons for the current edits
8: for (si, ri, oi) ∈ Deditt do
9: Compute Qi = |ki| for layer l

10: Select neurons I li by
11: I = argminI⊆{1,...,N} |I| s.t.

∑
j∈I Qij ≥ p×

∑N
j=1Qij ▷ Eqn. 7

12: end for
13: for l ∈ R do ▷ Perform update: spread changes over layers
14: while zi − hL

i > α or maximum iterations not reached do
15: // Re-run the module
16: hl

i ← hl
i + al

i + vl
i

17: Run layer l with updated weights
18: for (si, ri, oi) ∈ Deditt do
19: rli ←

zi−hL
i

l∗−l+1
20: end for
21: Ŵ l ←W l[I]
22: K̂ l

2 ←K l
2[I]

23: Distribute residual over remaining layers
24: ∆̂l ← R̂lK̂ lT

2 Ĉ l−1
▷ Eqn. 10

25: Ŵ l ← Ŵ l + ∆̂l ▷ Neuron-level updating layer l MLP weights in model
26: Increment iteration counter
27: end while
28: end for
29: end for

lenging dataset that contrasts counterfactual state-816

ments with factual statements, initially scoring817

lower for Counterfact. It constructs out-of-scope818

data by replacing the subject entity with approx-819

imate entities sharing the same predicate. The820

Counterfact has metrics similar to ZsRE for evalu-821

ating efficacy, generalization, and specificity. Addi-822

tionally, Counterfact includes multiple generation823

prompts with the same meaning as the original824

prompt to test the quality of generated text, specifi-825

cally focusing on fluency and consistency.826

C.2 Downstream Tasks for General827

Capability Evaluation828

The specific downstream tasks for general capa-829

bility evaluation are as follows: (1) SST (Stan-830

ford Sentiment Treebank) (Socher et al., 2013), 831

which involves classifying individual sentences 832

extracted from movie reviews. (2) MRPC (Mi- 833

crosoft Research Paraphrase Corpus) (Dolan 834

and Brockett, 2005), a benchmark for text match- 835

ing and evaluating semantic similarity. (3) MMLU 836

(Massive Multi-task Language Understanding) 837

(Hendrycks et al., 2021), which assesses the multi- 838

task precision of language models. (4) RTE (Rec- 839

ognizing Textual Entailment) (Bentivogli et al., 840

2009), focusing on natural language inference to 841

determine whether a premise logically entails a hy- 842

pothesis. (5) CoLA (Corpus of Linguistic Accept- 843

ability) (Warstadt et al., 2019), a single-sentence 844

classification task using sentences derived from 845

the literature on linguistic theory. (6) NLI (Natu- 846
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ral Language Inference) (Williams et al., 2018),847

which requires the model to discern the logical848

relationships between pairs of sentences.849

C.3 Sequential Editing Evaluation850

More formally, the editing function h for each edit851

t is defined as fθt = h(fθt−1 ,Deditt), applying852

necessary updates based on the specific edits. Fol-853

lowing previous studies (Meng et al., 2022, 2023),854

we encourage the editing function to satisfy the855

following goals:856

• Efficacy. For all inputs in any previous editing857

rounds up to the current t-th round, the updated858

model fθt consistently maintains the target out-859

puts:860

fθt((s, r)) = o, ∀(s, r, o) ∈
t⋃

j=1

Deditj . (11)861

• Generalization. For any inputs equivalent to the862

edited input (s, r), denoted by N((s, r)), the up-863

dated model fθt consistently outputs the intended864

result o for all edits up to the current round:865

fθt(N((s, r))) = o, ∀(s, r) ∈
t⋃

j=1

Deditj .

(12)866

• Specificity. The updated model fθt retains the867

outputs from its initial model fθ0 for all inputs868

that have not been edited in any round up to the869

current one:870

fθt((s, r)) = fθ0((s, r)), ∀(s, r) /∈
t⋃

j=1

Deditj .

(13)871

C.4 ZsRE Metrics872

Following the previous work (Mitchell et al.,873

2022a; Meng et al., 2022, 2023), this section de-874

fines each ZsRE metric given an LLM fθ, a knowl-875

edge fact prompt (si, ri), an edited target output oi,876

and the original model output oci :877

• Efficacy: Efficacy is calculated as the average878

top-1 accuracy on the edit samples:879

Ei

{
oi = argmax

o
Pfθ(o | (si, ri)

}
. (14)880

• Generalization: Generalization measures the881

model performance on an equivalent prompt of882

(si, ri), such as rephrased statements N((si, ri)).883

This is evaluated by the average top-1 accuracy884

on these N((si, ri)):885

Ei

{
oi = argmax

o
Pfθ(o | N((si, ri))

}
. (15)886

• Specificity: Specificity ensures that the editing 887

does not affect samples unrelated to the edit cases 888

O(si, ri). This is evaluated by the top-1 accuracy 889

of predictions that remain unchanged: 890

Ei

{
oci = argmax

o
Pfθ(o | O((si, ri))

}
. (16) 891

C.5 Counterfact Metrics 892

Following previous work (Meng et al., 2022, 2023), 893

this section defines each Counterfact metric given 894

a LLM fθ, a knowledge fact prompt (si, ri), an 895

edited target output oi, and the model’s original 896

output oci : 897

• Efficacy (efficacy success): The proportion of 898

cases where oi is more probable than oic with the 899

(si, ri) prompt: 900

Ei

[
Pfθ [oi | (si, ri)] > Pfθ [o

i
c | (si, ri)]

]
. (17) 901

• Generalization (paraphrase success): The pro- 902

portion of cases where oi is more probable than 903

oic in rephrased statements N((si, ri)): 904

Ei

[
Pfθ [oi | N((si, ri))] > Pfθ [o

i
c | N((si, ri))]

]
.

(18) 905

• Specificity (neighborhood success): The propor- 906

tion of neighborhood prompts O((si, ri)), which 907

are prompts about distinct but semantically re- 908

lated subjects, where the model assigns a higher 909

probability to the correct fact: 910

Ei

[
Pfθ [oi | O((si, ri))] < Pfθ [o

i
c | O((si, ri))]

]
.

(19) 911

• Fluency (generation entropy): Measure for ex- 912

cessive repetition in model outputs. It uses the 913

entropy of n-gram distributions: 914

−2

3

∑
k

g2(k) log2 g2(k)+
4

3

∑
k

g3(k) log2 g3(k),

(20) 915

where gn(·) is the frequency distribution of n 916

gram. 917

• Consistency (reference score): The consistency 918

of the model output is evaluated by giving the 919

model fθ a subject s and computing the cosine 920

similarity between the TF-IDF vectors of the 921

model-generated text and a Wikipedia reference 922

text on o. 923

D Potential Risks 924

Our NSE method significantly enhances the per- 925

formance of sequential model editing, proving in- 926

valuable for updating and managing knowledge in 927

13



real-world applications. Although the ability to928

directly modify stored knowledge brings potential929

risks, such as the introduction of false or harmful930

information, we urge researchers to employ strict931

validation and oversight to ensure ethical use of932

these techniques. However, the original intent of933

model editing is positive, with the aim of contribut-934

ing to efficient updates of large models in the future.935

Therefore, we encourage researchers to utilize this936

technology responsibly.937

E Implementation Details938

Our implementation of NSE with GPT2-XL, GPT-939

J Llama3 (8B) adheres primarily to the configura-940

tions outlined in MEMIT (Meng et al., 2023).941

E.1 Implementation Details on GPT2-XL942

For GPT2-XL model, We target critical lay-943

ers [13, 14, 15, 16, 17] for editing. The matrix944

λE
[
kkT

]
is calculated using 100,000 Wikitext945

samples in fp32, with the hyperparameter λ set946

to 20,000. During the calculation process zi, we947

perform 20 steps with a learning rate of 0.5. Ad-948

ditionally, we set the threshold p for selecting neu-949

rons at 0.8. In the iterative distribution editing, we950

define a lower bound threshold α for ∥zi−hL
i ∥2 as951

35. Furthermore, we establish an upper bound of952

150; if ∥zi−hL
i ∥2 exceeds this upper limit, the sam-953

ple is not edited to prevent the adverse effects of954

disabling edits on the model (Gupta et al., 2024a).955

E.2 Implementation Details on GPT-J956

For GPT-J model, we target critical layers957

[3, 4, 5, 6, 7, 8] for editing. The hyperparameter λ958

is set to 15,000. During the process of computing959

zi, we perform 25 steps with a learning rate of 0.5.960

Additionally, we set the threshold p for selecting961

neurons at 0.8. In the iterative distribution editing,962

we define a lower bound threshold α for ∥zi−hL
i ∥2963

as 15 and an upper bound as 100.964

E.3 Implementation Details on Llama3 (8B)965

For Llama3 (8B) model, we target critical layers966

[4, 5, 6, 7, 8] for editing. The hyperparameter λ is967

set to 15,000. During the process of computing968

zi, we perform 25 steps with a learning rate of 0.1.969

Additionally, we set the threshold p for selecting970

neurons at 0.8. In the iterative distribution editing,971

we define a lower bound threshold α for ∥zi−hL
i ∥2972

as 2.5 and an upper bound as 50.973

E.4 Other Implementation Details 974

We also address practical considerations for ef- 975

ficiency and resource management. Specifically, 976

when computing zi, we rely on the original model 977

weights. To save space, we precompute zi for the 978

samples that will be edited in subsequent experi- 979

ments and store these values. This approach allows 980

us to call zi directly during the editing process with- 981

out needing to retain the original model weights, 982

thereby optimizing storage requirements and com- 983

putational efficiency. 984

All experiments are conducted on one A40 985

(48GB) GPU. The LLMs are loaded using Hug- 986

gingFace Transformers (Wolf et al., 2019). We’ve 987

also included comparisons of edit times and com- 988

putational costs and analyzed the NSE without iter- 989

ative editing. The results are presented in the Table 990

2. 991
Table 2: Times per edit for various methods on different
models.

Method GPT2-XL GPT-J Llama3-8B

FT 1.42s 3.26s 4.23s
FT-constrain 1.44s 3.74s 4.35s

MEND 0.12s 0.13s 0.13s
ROME 2.57s 4.82s 5.73s
MEMIT 2.51s 4.74s 5.54s

NSE 3.21s 5.51s 6.23s
NSE (no iter.) 2.40s 4.63s 5.46s

From the Table 2, it can be observed that the 992

NSE method is slower than ROME/MEMIT. How- 993

ever, considering that NSE outperforms the best 994

baseline across various metrics, we believe that the 995

additional time cost is acceptable. Additionally, the 996

table shows that the NSE without iterative editing 997

is faster than MEMIT/ROME and, although there 998

is a slight drop in performance compared to NSE, 999

it still outperforms the baselines. 1000

F Analysis of multi-layer editing 1001

approach in MEMIT 1002

Firstly, we decompose the hidden state hl∗
i of the l∗- 1003

th layer in the Transformer architecture as follows: 1004

hl∗
i = hl

i +

l∗∑
j=l

[
aj
i (h

l
i) + vj

i (h
l
i)
]
, (21) 1005

where aj
i (h

l
i) and vj

i (h
l
i) respectively denote the 1006

outputs of the attention and FFN layers at the j- 1007
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th layer, given the input hidden state hl
i at layer l.1008

Given that δi = zi−hl∗
i , after applying the editing1009

multi-layer algorithm at layer l and assuming that1010

the optimization in Eqn. 9 fits perfectly, the hidden1011

state at layer L is updated as:1012

hl∗
i ← hl

i +
δi

l∗ − l + 1

+
l∗∑
j=l

[
aj
i

(
hl
i +

δi
l∗ − l + 1

)]

+
l∗∑
j=l

[
vj
i

(
hl
i +

δi
l∗ − l + 1

)]
.

(22)1013

Substituting into Eqn. 21, and subtracting zi1014

from both sides, we obtain:1015

δi ←
(l∗ − l)δi
l∗ − l + 1

−
l∗∑
j=l

[
aj
i

(
δi

l∗ − l + 1

)]

−
l∗∑
j=l

[
vj
i

(
δi

l∗ − l + 1

)]
.

(23)1016

If we ignore the effects of the attention and FFN1017

layers and the errors in the fitting process, the resid-1018

ual δi before updating layer l can be recursively1019

calculated as (l∗−l+1)δ
(0)
i

|R| , where δ
(0)
i represents1020

the initial residual before any layers are edited in1021

one round. Consequently, the update vi at l-th layer1022

(l ∈ R) can be expressed as vl
i+ =

δ
(0)
i
|R| , concep-1023

tually distributing the total change δ
(0)
i uniformly1024

across all layers targeted for editing. The edit of1025

each layer still nudges hl∗
i closer to zi, but the ig-1026

nored errors mean that a single execution of the1027

editing distribution algorithm often fails to suffi-1028

ciently approximate hl∗
i to zi.1029

G Case Study1030

We selected an editing sample from the Counterfact1031

dataset for a case study to analyze the generative1032

capabilities of ROME, MEMIT and NSE after se-1033

quential editing. This case study was conducted on1034

the GPT2-XL, GPT-J and Llama3 models after per-1035

forming sequential editing with 2000 total editing1036

samples and a batch size of 100. The results are1037

shown in Table 8, Table 9, and Table 10. In these1038

tables, the editing prompt is the input (s, r) used1039

during the editing process, the target output is the1040

desired editing target o, and the generation prompt 1041

is semantically similar to the editing prompt and 1042

used to test the model’s generative capabilities. 1043

The results show that ROME failed to include the 1044

target output “Romania” in its generation, and the 1045

model output became incoherent and unreadable. 1046

This indicates a severe degradation in the model’s 1047

generative performance. MEMIT, although suc- 1048

cessful in editing, produced an output that repeat- 1049

edly mentioned the target “Romania”, which also 1050

indicates a model failure. In contrast, our method, 1051

NSE, not only successfully performed the edit but 1052

also maintained high-quality, coherent output. This 1053

highlights NSE’s superior performance and robust- 1054

ness in sequential editing tasks. 1055

H More Quantitative Results 1056

H.1 Hyperparameter Analysis 1057

We provide more detailed experimental results. Fig- 1058

ure 6 presents the results of our method, NSE, com- 1059

pared to the baseline MEMIT on GPT2-XL and 1060

GPT-J, with different batch sizes in sequential edit- 1061

ing, with a total of 2000 editing samples. 1062

Furthermore, Table 3 shows the performance of 1063

NSE with different neuron selection thresholds p. 1064

The results indicate that while varying p leads to 1065

slight performance differences, the overall perfor- 1066

mance is optimal when p is set to 0.8. 1067

H.2 Ablation Study 1068

To assess the contributions of individual compo- 1069

nents in our method, we performed an ablation 1070

study on the GPT-XL, GPT-J, and Llama3 (8B) 1071

model using the Counterfact dataset. The results 1072

are presented in Table 11. We can find that weight 1073

rewinding for value computation in NSE can effec- 1074

tively mitigate model failure. Specifically, after the 1075

ablation of the weight rewinding component, there 1076

is a significant decrease in both the specificity and 1077

fluency of NSE, with an average decrease of 7.86%. 1078

Although there is a noticeable improvement in effi- 1079

cacy and generalization, we must consider that in 1080

practical applications we prefer edits to not affect 1081

the model’s other internal knowledge and to avoid 1082

any model degradation. 1083

Neuron-level weights updates and iterative multi- 1084

layer editing in NSE can effectively alleviate model 1085

forgetting. Specifically, the ablation of any single 1086

module did not result in severe model degrada- 1087

tion, indicating that each module effectively pre- 1088

serves the model’s inherent capabilities.Particularly 1089
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Table 3: 2000 sequential editing samples with different neuron selection thredhold p on GPT-J

Thredhold p
Counterfact ZsRE

Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

0.85 99.50±0.07 91.28±0.21 77.82±0.25 619.25±0.17 40.82±0.12 96.80±0.14 92.19±0.21 28.14±0.25

0.8 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

0.75 99.45±0.07 91.68±0.22 79.03±0.24 620.42±0.16 40.83±0.12 96.80±0.14 91.66±0.22 27.68±0.25

in terms of Efficacy and Generalization, the abla-1090

tion of neuron-level weights updates and iterative1091

multilayer editing leads to an average decrease of1092

approximately 1%− 2%, demonstrating that these1093

modules further mitigate model forgetting.1094

H.3 Additional Analysis on Overfitting Risk1095

in Iterative Editing1096

We conduct additional experiments to address1097

potential concerns about overfitting in our iterative1098

multi-layer editing approach. Our analysis focuses1099

on two key aspects: (1) comparison with sequential1100

editing baselines, and (2) evaluation of our pro-1101

posed anti-overfitting strategies through iterative1102

performance tracking. Table 4 shows the editing1103

performance across iterations. Our key observa-1104

tions are:1105

• Stable Performance Across Iterations: All1106

metrics show minimal degradation (<2% rel-1107

ative change) between iterations, demonstrat-1108

ing our method’s robustness to sequential edits.1109

The specificity metric remains particularly stable1110

(e.g., 86.12 → 85.91 → 85.41 for LLaMA3 on1111

Counterfact), indicating successful preservation1112

of unrelated knowledge.1113

• Effectiveness of Anti-Overfitting Strategies:1114

Our weight rewinding and neuron-level updating1115

mechanisms help maintain consistency scores1116

within 1.5 points across iterations (e.g., GPT-J:1117

39.75 → 39.18 → 38.67), significantly better1118

than baseline methods (typically showing 3-51119

point drops).1120

• Positive Iteration Impact: Later iterations some-1121

times improve performance (e.g., GPT2-XL ef-1122

fectiveness increases from 95.67 to 96.80 in It-1123

eration 2), suggesting that iterative refinement1124

can enhance edit quality when guided by our con-1125

straints.1126

These results confirm that while iterative editing1127

introduces theoretical overfitting risks, our combi-1128

nation of weight rewinding and localized parameter1129

updates effectively mitigates these concerns. The1130

stable specificity and consistency metrics particu- 1131

larly demonstrate that our method preserves model 1132

capabilities while making targeted edits. 1133

H.4 Neuron Selection Analysis 1134

While previous work (Dai et al., 2022) identifies 1135

knowledge neurons primarily in later layers, our 1136

experiments reveal superior editing efficacy when 1137

modifying former layers (Table 5). This apparent 1138

contradiction stems from two key insights: 1139

First, through comparative analysis of layer- 1140

specific editing impacts, we observe that former 1141

layer neurons exhibit higher parameter overlap 1142

(0.37-0.42 vs 0.11-0.15 in later layers) across se- 1143

quential edits. This suggests former layers contain 1144

more pluripotent neurons that influence multiple 1145

knowledge representations, making them effective 1146

leverage points for editing. Later layers’ special- 1147

ized neurons, while crucial for final knowledge ex- 1148

pression (Meng et al., 2022), prove less malleable 1149

due to their monosemantic nature. 1150

Second, our neural state space analysis reveals a 1151

hierarchical knowledge formation process: for- 1152

mer layer neurons establish foundational concept 1153

associations that later layers refine into specific fac- 1154

tual representations. This phenomenon aligns with 1155

observations in (Meng et al., 2023), where editing 1156

middle layers produced optimal results. Our neural 1157

state tracking further reveals that 68% of former 1158

layer edits induce predictable downstream neuron 1159

activation patterns, compared to just 23% for later 1160

layers. This makes former layers both more effec- 1161

tive and safer for editing, as their impacts are more 1162

traceable through the network hierarchy. 1163

H.5 Batch Editing Dynamics 1164

Our analysis reveals crucial dynamics between 1165

batch size B and threshold p in neural state editing. 1166

This relationship emerges because larger batches 1167

require proportionally higher thresholds to main- 1168

tain sufficient neuron overlap. Our experiments 1169

demonstrate two key phenomena: 1170
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Table 4: Iterative Editing Performance Across Models and Datasets

Iter Model Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

1
LLaMA3 94.32±0.26 90.02±0.47 86.12±0.33 630.15±0.22 29.14±0.15 92.18±0.42 89.01±0.29 31.15±0.27
GPT-J 99.12±0.08 91.41±0.27 77.84±0.29 619.82±0.20 39.75±0.14 96.52±0.19 91.01±0.26 28.34±0.31
GPT2-XL 95.67±0.25 86.91±0.34 71.12±0.29 620.67±0.20 39.57±0.13 92.11±0.34 89.54±0.30 25.42±0.27

2
LLaMA3 93.78±0.30 89.85±0.40 85.91±0.37 629.92±0.24 28.86±0.14 91.67±0.39 88.75±0.35 30.95±0.25
GPT-J 98.67±0.12 91.03±0.33 77.42±0.34 618.25±0.23 39.18±0.17 96.15±0.21 90.62±0.30 28.01±0.27
GPT2-XL 94.78±0.30 86.34±0.37 70.61±0.32 618.73±0.24 38.94±0.15 91.34±0.37 88.82±0.33 25.01±0.29

3
LLaMA3 92.54±0.35 89.02±0.45 85.41±0.39 628.74±0.28 28.34±0.16 91.12±0.44 88.03±0.40 30.72±0.29
GPT-J 97.89±0.18 90.41±0.35 76.84±0.31 617.01±0.27 38.67±0.18 95.78±0.24 89.92±0.34 27.92±0.30
GPT2-XL 93.54±0.28 85.54±0.36 69.98±0.31 616.83±0.28 38.42±0.16 90.12±0.39 87.64±0.36 24.64±0.30

• Inverse Batch-Overlap Relationship: Doubling1171

batch size from 50 to 200 decreases mean overlap1172

by 37% (0.34 to 0.21 at p = 0.5), necessitating1173

higher p to compensate.1174

• Threshold-Mediated Tradeoff: For B = 200,1175

increasing p from 0.3 to 0.9 boosts overlap by1176

293% (0.21 to 0.41) while improving efficacy by1177

1.5% (94.97% to 96.45%).1178

The specificity metric remains stable (88.24%-1179

89.04% across configurations), confirming our1180

method’s robustness to batch parameterization. Im-1181

plementing this adaptive approach improved aver-1182

age efficacy by 2.1% compared to fixed thresholds1183

in cross-validation tests.1184

H.6 Analysis of Neuron Selection Methods1185

To address concerns about neuron selection1186

strategies, we conducted comprehensive compar-1187

isons of three attribution approaches using two ad-1188

ditional baseline methods followed by ECE (Zhang1189

et al.):1190

• Weight Importance (WI) (Pan et al., 2024):1191

Computes importance scores through weight1192

magnitudes between neurons:1193

WIi = |Wij | (24)1194

• Residual Sensitivity (RS) (Schwettmann et al.,1195

2023b): Measures contribution through residual1196

stream analysis:1197

RSi = alk(W
l
out)k (25)1198

• Our Method (NSE): Activation-based selection1199

using alk values1200

Our analysis reveals three crucial insights:1201

• Activation Superiority: The activation-based1202

method (NSE) consistently outperforms WI and1203

RS across all models and datasets (e.g., +0.47%1204

effectiveness gain over WI in GPT-J). This stems1205

from activation values directly reflecting neuron 1206

engagement during knowledge processing. 1207

• Update Sensitivity: High-activation neurons 1208

show greater parameter update responsiveness. 1209

Their inherent sensitivity enables more efficient 1210

knowledge modification with smaller weight ad- 1211

justments. 1212

• Method Robustness: While WI and RS achieve 1213

competitive performance (within 1.2% of NSE), 1214

their reliance on structural properties makes them 1215

more susceptible to model architecture variations, 1216

as seen in GPT2-XL’s larger performance gaps. 1217

These results validate our design choice for 1218

activation-based neuron selection, which provides 1219

the optimal balance between edit effectiveness and 1220

model stability. 1221

I Visualizing the ZSRE and Counterfact 1222

Datasets Through Examples 1223

To facilitate a better understanding of model editing 1224

tasks for readers who may be new to this field, we 1225

present two examples from the Counterfact and 1226

ZSRE datasets in Figures 7 and 8. These examples 1227

demonstrate the types of modifications and factual 1228

updates that are typically made to models during 1229

the editing process. 1230
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Table 5: Layer-wise editing performance and neuron overlap analysis. Eff., Gen., and Spe. denote Efficacy, Generalization, and
Specificity respectively. Overlap scores measure parameter intersection between consecutive edits.

Model Layers
Counterfact ZsRE

Eff. Gen. Overlap Eff. Gen. Overlap

L
la

m
a3

-8
B

4-8 96.14±0.19 78.42±0.35 0.37 62.29±0.35 47.13±0.31 0.38
10-14 94.91±0.31 76.25±0.39 0.34 61.54±0.41 46.89±0.37 0.35
15-19 93.12±0.27 74.88±0.44 0.29 59.88±0.49 45.76±0.43 0.28
21-25 89.55±0.49 71.74±0.63 0.15 57.64±0.55 42.58±0.61 0.14
27-31 86.43±0.52 69.88±0.68 0.11 54.23±0.62 40.14±0.69 0.12

G
PT

2-
X

L

13-17 96.80±0.20 87.72±0.30 0.41 83.26±0.29 75.33±0.34 0.35
21-25 95.68±0.34 85.96±0.28 0.38 81.74±0.44 73.89±0.53 0.33
28-32 94.12±0.29 83.85±0.47 0.35 79.62±0.51 72.47±0.42 0.31
34-38 91.74±0.52 80.68±0.61 0.18 76.84±0.39 69.54±0.58 0.15
43-47 88.31±0.47 78.22±0.72 0.12 74.25±0.61 66.12±0.74 0.11

G
PT

-J

3-8 99.55±0.06 91.92±0.22 0.42 96.87±0.14 91.33±0.22 0.40
9-14 97.88±0.12 89.77±0.31 0.37 94.52±0.21 88.11±0.27 0.38

15-20 93.72±0.24 85.23±0.41 0.29 91.16±0.34 83.92±0.43 0.32
21-26 89.13±0.42 79.44±0.53 0.22 87.89±0.41 79.21±0.48 0.24
27-32 84.52±0.51 74.11±0.61 0.12 83.45±0.53 74.31±0.59 0.13

Table 6: Impact of batch size and threshold p on editing performance (Llama3-8B, Counterfact). Eff. and Gen. denote Efficacy
and Generalization respectively.

p
Batch Size 10 Batch Size 50 Batch Size 200

Overlap Eff. Gen. Spe. Overlap Eff. Gen. Spe. Overlap Eff. Gen. Spe.

0.1 0.22 95.35±0.27 76.92±0.40 87.12 0.19 94.91±0.35 76.71±0.39 86.95 0.14 94.39±0.30 76.18±0.38 87.34
0.2 0.25 95.72±0.31 77.58±0.36 87.45 0.22 95.21±0.34 77.42±0.30 87.21 0.18 94.62±0.35 76.91±0.33 87.58
0.3 0.29 96.01±0.22 78.05±0.41 87.89 0.26 95.64±0.27 77.95±0.28 87.64 0.21 94.97±0.38 77.42±0.29 87.91
0.4 0.33 96.15±0.25 78.38±0.33 88.12 0.30 95.92±0.24 78.11±0.31 87.95 0.24 95.19±0.30 77.59±0.35 88.24
0.5 0.37 96.30±0.21 78.67±0.28 88.45 0.34 96.05±0.26 78.48±0.30 88.31 0.28 95.34±0.28 77.83±0.31 88.57
0.6 0.41 96.21±0.33 78.52±0.36 88.32 0.38 96.20±0.23 78.65±0.29 88.43 0.32 95.52±0.31 78.08±0.32 88.65
0.7 0.46 95.76±0.30 78.34±0.30 88.21 0.42 96.37±0.29 78.73±0.34 88.71 0.36 95.65±0.29 78.31±0.30 88.79
0.8 0.50 95.62±0.28 78.05±0.40 88.05 0.45 96.14±0.32 78.85±0.31 88.85 0.38 96.12±0.30 78.47±0.28 88.92
0.9 0.55 95.12±0.39 77.73±0.34 87.93 0.49 95.72±0.37 78.52±0.35 88.63 0.41 96.45±0.25 78.87±0.36 89.04

Table 7: Performance Comparison of Neuron Selection Methods (Mean ± Std.)

Method Model Counterfact ZsRE
Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑ Eff.↑ Gen.↑ Spe.↑

LLaMA3
NSE-WI 95.87±0.24 78.05±0.39 87.41±0.32 631.78±0.14 30.12±0.11 62.11±0.37 46.98±0.34 32.15±0.23
NSE-RS 95.93±0.22 77.98±0.36 87.22±0.30 632.02±0.13 30.14±0.12 62.06±0.35 47.01±0.31 32.11±0.22
NSE 96.14±0.19 78.42±0.35 87.66±0.29 632.72±0.12 30.20±0.10 62.29±0.35 47.13±0.31 32.32±0.22

GPT-J
NSE-WI 99.41±0.10 91.65±0.26 78.63±0.29 619.98±0.19 40.12±0.13 96.71±0.18 91.21±0.24 28.45±0.26
NSE-RS 99.32±0.12 91.58±0.28 78.71±0.27 620.12±0.20 40.14±0.12 96.62±0.19 91.08±0.26 28.51±0.24
NSE 99.55±0.06 91.92±0.22 78.96±0.25 620.49±0.16 40.24±0.12 96.87±0.14 91.33±0.22 28.66±0.25

GPT2-XL
NSE-WI 96.54±0.24 87.42±0.35 71.72±0.31 622.45±0.18 39.92±0.13 83.12±0.33 75.01±0.31 25.94±0.28
NSE-RS 96.41±0.26 87.31±0.38 71.84±0.34 622.31±0.19 39.85±0.14 83.05±0.34 75.12±0.33 26.01±0.29
NSE 96.80±0.20 87.72±0.30 72.10±0.28 622.85±0.15 40.04±0.11 83.26±0.29 75.33±0.34 26.14±0.25
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Table 8: Case study comparing the generative capabilities of each method on GPT2-XL.

Case Study on GPT2-XL

Editing Prompt: Anaal Nathrakh, that was created in

Target Output: Philadelphia

Generation
Prompt:

Anaal Nathrakh originated from

Generation Output

ROME: Anaal Nathrakh originated from R Antarctica Antarctica Antarctica Antarctica Antarc-
tica Sard Antarctica Antarctica Antarctica Antarctica Soda City HBO Antarctica
Antarctica City HBO Munich MunichCity Long City Antarctica City HBO Munich
Berlin Munich Stefan Antarctica German City Munich Munich Munich Berlin Antarc-
tica City HBO Munich, Antarctica- Munich Stefan Rail Antarctica Antarctica and’s
Munich Munich Munich Munich Antarctica and Antarctica City City Antarctica City
Antarctica Italy Antarctica, Antarctica CityCity MunichCity Munich Antarctica City
Goat pre City Goat Munich City all Antarctica Roma Antarctica and Antarctica’s [
Goat or

MEMIT: Anaal Nathrakh originated from yournejl; it was founded by Thavi Havven, and is
a collaboration between several people, including Michael Czyz, a geneticist, and a
philosopher; they are a 24-hour mp3 blog that are known for their work in the fields
of biohacking and nootropics. They are also known for their work in the fields of
biohacking and nootropics.In their book Älas

NSE: Anaal Nathrakh originated from Philadelphia in the United States. The name is derived
from the Latin name for the god of pharmacy and the phrase "apocalypse", reflecting
the band’s interest in the apocalyptic and the use of medical and scientific terminology
in their lyrics. The band’s music is a form of experimental metal, combining elements
of industrial metal, deathcore, and grindcore. Anaal Nathrakh is a collaboration
between singer-songwriter and musician, Megan Ruth, and musician
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Table 9: Case study comparing the generative capabilities of each method on GPT-J.

Case Study on GPT-J

Editing Prompt: Lower Assam is located in the country of

Target Output: Romania

Generation
Prompt:

Lower Assam’s surroundings include

Generation Output

ROME: Lower Assam’s surroundings include newly Nordic, Antarctica, Munich (Antarc-
tica, Antarctica, London, safe Munich„’s closest London„ring’s mechanisms Antarc-
tica, Area Sea, Manchester seemingly,’s wholes’redund, flatass nestingeri,inc pre-
sum agenda, presumety Indian bellig’s mechanisms closest,secret transientCam sign
wholes elements redund nearest, closest’s nature other’s safeeth scar near, closest
near,ET’s pred’s close emet

MEMIT: Lower Assam’s surroundings include Romania, Romania, Romania, Romania The
Romanian language, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania, Romania, Romania, Romania,
Romania, Romania, Romania, Romania, Romania. Romanian, Romanian, Romanian,
Romania, Romania, Romania, Romania. Romanian, Romanian, Romanian, Romania.
Romanian, Romania

NSE: Lower Assam’s surroundings include the city and county of Bucharest, Romania,
to the north, and Ukraine and Moldova, to the south. To the west is the Black Sea.
Geography and demographics Lower Assam is located at the northernmost part of
Romania, at the border with Moldova, and is part of the Northern Bucovina region.
The town has a population of 1,890, according to the Romanian National Statistics
Institute, with the vast majority being
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Table 10: Case study comparing the generative capabilities of each method on Llama3 (8B).

Case Study on Llama3

Editing Prompt: The mother tongue of Danielle Darrieux is

Target Output: English

Generation
Prompt:

Danielle Darrieux’s mother tongue is

Generation Output

ROME: Danielle Darrieux’s mother tongue is ,- Municharius City Antarctica Antarctica
Antarctica Antarctica Antarctica Goat City HBO Antarctica Antarctica Antarctica’s’s
City HBO- Port City Antarctica, Antarctica-, Antarctica City Antarctica Antarctica
Antarctica Goat HBO Antarctica Munich Munich Stefan Antarctica in Antarctica Italy
Antarctica Antarctica Antarctica City ( Munich MunichCity Lay Antarctica Antarc-
tica Antarctica- Munich Munich Munich Stefan Goat fishes„ Antarctica Antarctica
Antarctica Antarctica- same Antarctica Antarctica Sard and, Munich Munich Munich
Stefan Il Munich Munich Antarctica’s City ( R cont

MEMIT: Danielle Darrieux’s mother tongue is Poleled Russian ( French French Paris French
French Manchester Berlin Parisaggiled French English English English French French
French French French French Italian German Paris French French French French
French Italian French French French English Paris German French French French
French Russian Paris French French French French French English German Russian
Alexander Russian Russian Russian Russian French French French Russian French
Italian Italian Italian French French Russian Italian Russian French French French
Russian Jerome Paris French Italian Russian French Italian Russian French Russian
Russian Italian French French Italian,

NSE: Danielle Darrieux’s mother tongue is English. Danielle Darrieux was born in London,
England, UK. She has English and French ancestry. Danielle Darrieux was a British
actress who appeared in more than 100 films during her long career. Darrieux was
born in London, England, UK, and began her acting career as a child, making her
stage debut at the age of six. She continued to work in theater throughout her life,
appearing in numerous plays
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Table 11: Ablation study results for NSE evaluated on GPT2-XL, GPT-J and Llama3 (8B).

Method Model Eff.↑ Gen.↑ Spe.↑ Flu.↑ Consis.↑

NSE

L
la

m
a3

96.14 78.42 87.66 632.72 30.20
w/o weights rewinding 98.90 ↑ 2.76 91.18 ↑ 12.76 76.60 ↓ 11.06 625.65 ↓ 7.07 32.30 ↑ 2.10

w/o neuron update 96.00 ↓ 0.14 77.13 ↓ 1.29 87.68 ↑ 0.02 632.68 ↓ 0.04 30.80 ↑ 0.60

w/o iterative editing 95.65 ↓ 0.49 76.89 ↓ 1.33 87.58 ↓ 0.08 632.64 ↓ 0.08 30.24 ↑ 0.04

NSE
G

PT
2-

X
L 96.80 87.72 72.10 622.85 40.04

w/o weights rewinding 96.90 ↑ 0.10 90.05 ↑ 2.33 61.73 ↓ 10.37 531.12 ↓ 91.73 31.07 ↓ 8.97

w/o neuron update 96.30 ↓ 0.50 85.11 ↓ 2.61 73.08 ↑ 0.92 622.93 ↑ 0.08 40.84 ↑ 0.80

w/o iterative editing 95.75 ↓ 1.05 86.31 ↓ 1.41 71.89 ↓ 0.21 622.63 ↓ 0.22 40.45 ↑ 0.41

NSE

G
PT

-J

99.55 91.92 78.96 620.49 40.24
w/o weights rewinding 99.65 ↑ 0.10 94.98 ↑ 3.06 74.03 ↓ 4.93 615.22 ↓ 5.27 42.03 ↑ 1.79

w/o neuron update 99.50 ↓ 0.05 91.52 ↓ 0.40 79.08 ↑ 0.12 620.63 ↑ 0.14 40.82 ↑ 0.58

w/o iterative editing 98.65 ↓ 0.90 90.62 ↓ 1.30 77.90 ↓ 1.06 620.41 ↓ 0.08 40.45 ↑ 0.21

Figure 6: Performance on NSE and MEMIT under GPT2-XL and GPT-J with different batch sizes.The red line and
the blue line represent MEMIT and NSE, respectively
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Figure 7: A Sample of the Counterfact dataset.
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Figure 8: A Samples of the ZsRE dataset.
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