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Abstract

STEM educators must trade off the ease of
assessing selected response (SR) questions,
like multiple choice, with constructed response
(CR) questions, where students articulate their
own reasoning. Our work addresses a CR type
new to NLP but common in college STEM, con-
sisting of multiple questions per context. To re-
late the context, the questions, the reference re-
sponses, and students’ answers, we developed
an Answer-state Recurrent Relational Network
(AsRRN). In recurrent time-steps, relation vec-
tors are learned for specific dependencies in a
computational graph, where the nodes encode
the distinct types of text input. AsRRN incorpo-
rates contrastive loss for better representation
learning, which improves performance and sup-
ports student feedback. AsRRN was developed
on a new dataset of 6,532 student responses to
three, two-part CR questions. AsRRN outper-
forms classifiers based on LLMs, a previous
relational network for CR questions, another
graph neural network baseline, and few-shot
learning with GPT-3.5. Ablation studies show
the distinct contributions of AsRRN’s depen-
dency structure, the number of time steps in the
recurrence, and the contrastive loss.

1 Introduction

STEM educators must trade off the ease of assess-
ing selected response (SR) questions, like multi-
ple choice, with constructed response (CR) ques-
tions, where students articulate their own reason-
ing. Natural Language Processing (NLP) research
has turned increasingly towards assessment of con-
structed response (CR) questions in recent years,
but models remain relatively simple, in part be-
cause datasets are either relatively small for neu-
ral methods, or proprietary. In addition, public
datasets are limited to standalone questions. Timely
feedback is important in the context of formative
assessment throughout a course. As a result, for-
mative assessments in STEM currently rely largely

on SR items, where assessment is immediate. This
conficts, however, with the current emphasis in
STEM on critical thinking, reasoning and writing
(Graham et al., 2020; Birenbaum and Tatsuoka,
1987). Manual assessment of CR is time consum-
ing, and more so when feedback comments ac-
company a score. We present a relational neural
network that can be adapted to handle different CR
formats, and that outperforms strong baselines on
a new dataset of statistics questions developed to
measure statistical reasoning at the introductory
college level. Moreover, it also groups responses
for similar feedback, in an unsupervised way.

The most well known and reasonably sized
NLP datasets for CR questions are the BEETLE
and SciEntsBank data from SemEval 13 Task 7
(Dzikovska et al., 2013) and the Kaggle dataset
ASAP (Shermis, 2015). The former has 253
prompts across 16 STEM domains; the latter has
10 prompts where the STEM is mostly from biol-
ogy, with 22,000 items. Assessment scales range
from 2-way to 5-way. There are often multiple
reference answers for each point level. ASAP
also contains scoring rubrics. In both datasets, the
prompts are standalone questions, but there are
many other CR formats (Livingston, 2009; Ben-
nett, 1991). We present ISTUDIO, a new dataset
with context-based questions, a common format
in STEM. Table 1 shows a context, its two ques-
tions, the rubric and reference answers for the first
question, and a student response to each question.

Recent automatic assessment of CR questions us-
ing neural models has achieved good performance
on the benchmark datasets mentioned above. The
standard approach is to encode the question prompt
and student answer separately, and send their con-
catenation to a classifier output layer. Riordan
et al. (2017) achieved good performance on ASAP
with a biLSTM. Later work used transformers (e.g.,
BERT (Devlin et al., 2019)). Using a model that en-
codes rubric elements, Wang et al. (2019) achieved



Context 2 Some people who have a good ear for music can identify the notes they hear when music is played. One
method of note identification consists of a music teacher choosing one of seven notes (A, B, C, D, E, F, G) at
random and playing it on the piano. The student is asked to name which note was played while standing in
the room facing away from the piano so that he or she cannot see which note the teacher plays on the piano.

Questions [2a] Should statistical inference be used to determine whether Carla has a “good ear for music”? Explain
why you should or should not use statistical inference in this scenario.
[2b] Next, explain how you would decide whether Carla has a good ear for music using this method of note
identification.

Rubric
for [2a]

Student advocates use of statistical inference AND Student provides rationale with accommodation for
variability (e.g. repeat test method many times; compare to chance model) OR Student describes analysis of
probability/proportion/number of correct-incorrect.

Reference
answers
for [2a]

[Correct (2 points)] We should use statistical inference because there could be cases of Carla just getting
lucky if we just count how many times she gets a note right.
[Partially Correct (1 point)] I would use statistical inference to see if Carla has a good ear for music.
[Incorrect (0 points)] No, there are no numerical values which could be applied to a "Good ear for music".

Student
answers

[Student_2CKz_q2a] You could use statistical inference by seeing how many notes she can answer correctly
and the more she gets then the better "ear for music" she has. (Correct: 2 points)
[Student_2CKz_q2b] You could give her a test on the notes and the more she answers correctly, then the
better she is at music. (Partially Correct: 1 point)

Table 1: An ISTUDIO example with a context and two question prompts. For [2a], the rubric for correct is shown (other classes
omitted to save space), plus one reference example per three correctness classes. A student response is shown for each question.

results similar to (Riordan et al., 2017). Saha et al.
(2018) separately encoded the question, the refer-
ence answer and the student answer using InferSent
(Conneau et al., 2017), and combined the three vec-
tors with manually engineered features for word
overlap and part-of-speech information as input to
a simple classifier. On the nine SemEval tasks, ac-
curacies ranged from 0.51 to 0.79. Good results are
also reported on proprietary datasets (Saha et al.,
2018; Sung et al., 2019; Liu et al., 2019). Ca-
mus and Filighera (2020) compared several pre-
trained models on SciEntsBank, where RoBERTa
(Zhuang et al., 2021) performed best. SFRN (Li
et al., 2021) outperformed all these models using a
more novel relational architecture. It used BERT
to separately encode the question, the reference an-
swer (SemEval) or a rubric (ASAP), and the student
answer, and then learned a single relational vector
over the three encodings. We use a more complex
relational network that outperforms SFRN.

Figure 1: Coincidence matrix of feedback clusters identified
by two statistics experts, A (3 clusters) and B (4 clusters) for
100 student responses to ISTUDIO question 2b (shown in
Table 1; "nc" is for no cluster). The boxed cells show overlap
in two clusters, amounting to 64% of the total.

Besides automating the assignment of a correct-
ness score, NLP has the potential to support feed-
back comments. However, when and how to pro-
vide such feedback is not well understood, and is
more of an unsupervised clustering problem than
a classification problem, as illustrated in Figure 1.
The figure shows a coincidence matrix of feed-
back clusters for 100 randomly selected student
responses to ISTUDIO question [2b] labeled par-
tially correct, and where answers were partially or
essentially correct on [2a]. Two statistics experts
worked independently to cluster the responses, and
assign a feedback phrase. Expert A identified three
clusters that covered all but 4 items (nc for no clus-
ter). Expert B originally identified 14 that covered
all but one item, then combined clusters that were
similar and arrived at 4 clusters. Figure 1 shows an
overlap of 43 items from A’s and B’s largest clus-
ters, and another overlap of 21 items. All the other
cells have small counts. This shows that different
people are likely to provide comments in differ-
ent ways, but might agree on a few categories that
would cover a large proportion of student answers.
To make progress towards automated formative
assessment that can group similar responses, we
develop a novel use of contrastive learning (Chen
et al., 2020a; Chopra et al., 2005), to learn represen-
tations that are more similar to a reference answer
that is distinct from other reference answers.

Relational networks (Palm et al., 2018), where
graph nodes are input elements and edges are re-
lation vectors, can have complex graph configura-
tions, and are more efficient than graph attention
or graph convolution (Nastase et al., 2015; Liu and



Zhou, 2020). We propose AsRRN, a family of
recurrent relational networks where recurrence is
over time, to learn distinct relations among the dif-
ferent inputs in CR datasets. Depending on the
constituency of a dataset, each distinct input text
type (e.g., scenario context, question prompt, refer-
ence answer, student answer, rubric) is encoded by
a pretrained language model, and becomes a node
in a graph network where edges are dependency re-
lations. We find that the highest-performing depen-
dency structure is the one that captures the semantic
dependencies of the domain. A global state node
is a dependent of all other nodes. We apply con-
trastive learning (CL) where reference examples
serve as positive and negative prototypes. AsRRN
outperforms multiple strong baselines on correct-
ness classification, and to some degree can replicate
the feedback grouping illustrated in Figure 1.

2 Related Work

Deep neural networks (DNNs) have been applied
to CR assessment at least since (Alikaniotis et al.,
2016). As noted in the introduction, most DNNs for
CR encode the (reference answer, student answer)
pair and use various output functions. Alikani-
otis et al. (2016) used Long-Short Term Mem-
ory (LSTM) networks enhanced by word-specific
scores, and achieved high score correlations on
ASAP. Riordan et al. (2017) combined Convo-
lutional Neural Networks (CNNs) with LSTMs.
Model performance with these earlier DNNs was
sometimes shown to improve in combination with
hand-crafted features (Saha et al., 2018) and text
mining (Süzen et al., 2020). As noted above,
pretrained LMs like RoBERTa have performed
well (Camus and Filighera, 2020). We rely on
pretrained LMs to encode the input layer, and use
a novel relational network.

Explicit use of rubric information is less com-
mon. AutoP achieves a performance boost on
ASAP through automatic generation of regular ex-
pression patterns from top-tier answers and rubrics
(Ramachandran and Foltz, 2015). Wang et al.
(2019) integrate rubric information via word-level
attention, finding that the rubric information com-
pensated for less data, but did not otherwise boost
performance. We found that incorporating rubrics
into AsRRN did not improve performance on IS-
TUDIO. This may be due to the compositional
logic of rubric statements, that can have multiple
conjunctions and disjunctions (see Table 1).

Relational networks (RNs) were initially devel-
oped as an alternative to other graph-based mod-
els for reasoning problems in visual, linguistic, or
symbolic domains (e.g., physics (Santoro et al.,
2017)), where distinct types of input elements have
correspondingly distinct interrelations. RNs have
surpassed human performance on the CLEVR vi-
sual question answering dataset (Johnson et al.,
2017), and have become a general framework for
few-shot learning (Sung et al., 2018). Li et al.
(2021) showed that an RN for short answer assess-
ment could efficiently learn relations among encod-
ings of the question, reference answer, and student
answer. Recurrent Relational Networks (RRNs)
(Palm et al., 2018) eschew the flat relational struc-
ture of an RN for a fully connected relational graph
with pairwise message passing. We found this orig-
inal RRN structure to be disadvantageous for our
CR tasks (see discussion accompanying Figure 3).
For ISTUDIO, AsRRN adopts a dependency struc-
ture that reflects how people reason about the text
elements shown in Fig. 1.

Contrastive Learning (CL) aims to improve rep-
resentation learning by making similar data in-
stances closer and separating dissimilar ones (Le-
Khac et al., 2020). CL can be applied in unsuper-
vised or supervised learning, and benefits a wide
array of visual, language and multi-modal tasks.
Chopra et al. (2005) pioneered the introduction of
contrastive loss in dimensionality reduction. Sub-
sequently, Schroff et al. (2015) proposed triplet
loss, which employs an anchor to concurrently han-
dle positive and negative samples. Later, Chen
et al. (2020b) introduced the highly-regarded self-
supervised normalized temperature-scaled cross en-
tropy loss (NT-Xent), with strong results on un-
supervised learning in ImageNet. Khosla et al.
(2020) extended NT-Xent loss for application to
supervised learning; CERT (Fang et al., 2020) im-
proved pretrained language models (e.g., BERT)
using contrastive self-supervised learning at the
sentence level. Qiu et al. (2021) and Pan et al.
(2022) developed new text classification methods
using contrastive learning loss, and SimCSE (Gao
et al., 2021) delivered state-of-the-art sentence em-
beddings on semantic textual similarity (STS) tasks.
We propose a variant of NT-Xent with a distinct
treatment for different classes: we assume multi-
ple correct reference examples to the same question
should be similar, whereas different ways to be par-
tially correct should be dissimilar (see Figure 1).



3 Dataset

The context-based format is a novel challenge for
NLP, but is widely used in STEM, e.g., in so-
called two-tier assessments that simultaneously
address students’ content knowledge/skills in tier
one and explanatory reasoning in tier two, as in
computer science (Yang et al., 2015), mathemat-
ics (Hilton et al., 2013), physics (Xiao et al., 2018)
and other STEM subjects. Automatic methods
for low-stakes formative assessment can support
timely feedback to identify which conceptual is-
sues to address next, thus can lead to greater
student success in STEM. CR questions that ad-
dress reasoning skills are preferable to selected
response items but burdensome for humans to as-
sess. The ISTUDIO data come from an assess-
ment instrument for statistical reasoning called The
Introductory Statistics Transfer of Understanding
and Discernment Outcomes (ISTUDIO) that was
found to be educationally valid and reliable (Beck-
man, 2015), meaning there is strong evidence that
it measures well what it intends to measure.

The ISTUDIO dataset consists of responses from
1,935 students to three 2-part questions. The as-
sessment rubric, which uses a 3-way scale of (es-
sentially) correct, partially correct, incorrect, spec-
ifies the scoring criteria and provides example stu-
dent answers for each correctness class. The data
is de-identified, and the original IRB confirmed
that it can be made public for research purposes
in its de-identified form. Students’ schools of ori-
gin are identified as large, medium or small.1 We
evaluated inter-rater agreement among two of the
co-authors (A, B), and a graduate student in statis-
tics (C). There were 63 items scored by A, B, and
C; two additional sets of 63 were scored by A, B,
and B, C. These pairs of raters achieved quadratic
weighted kappa (QWK) > 0.79, and Fleiss Kappa
showed substantial agreement among A, B and C
(FK = 0.70). The remaining unlabeled data was
assessed independently by A, B and C.2

To prepare ISTUDIO for NLP research, we per-
formed data cleaning to eliminate non-answers and
responses that were unusually long (greater than
125 word tokens). This yielded 7,258 individual

1Li, Z., S. E. Lloyd, M. D. Beckman, and R. J. Pas-
sonneau. ISTUDIO: A Statistical Automatic Response
Assessment Dataset. Penn State Data Commons, 2023.
https://doi.org/10.26208/JFMP-V777

2Fleiss Kappa is described in (Fleiss, 1971). QWK applies
a quadratic weighting for agreement, partial agreement, and
disagreement applied to Cohen’s Kappa (Cohen, 1960).

student response items, ten percent of which was
held in reserve for future research. Ninety percent
of the remainder (N=6,532) was partitioned in the
proportion 8:1:1 into training (N=5,226), valida-
tion (N=653), and test (N=653) sets. The test set
contains all the responses with labels from multi-
ple raters so that at test time, inter-rater agreement
of model predictions can be computed with the
reliable human labels.

4 Approach

The ISTUDIO dataset contains four distinct types
of textual input: the context C for a given ques-
tion prompt, the question prompt Q, one or more
reference answers R for each correctness class
c ∈ {0, 1, 2}, and the student answers A.3 Among
many possible ways to structure the set of encod-
ings of each text type–such as concatenation, stack-
ing, attention layers across sequences of text types,
and graph networks–we hypothesized that semantic
relations among the five text types could be struc-
tured as a dependency graph rooted at C, with the
learned representation of each dependent node be-
ing directly influenced by its parent, and indirectly
by its ancestors. As discussed in detail below, the
specific chain of dependencies we hypothesized
is shown in Figure 2. Our hypothesis is similar
in spirit to the motivation for recurrent relational
networks, namely to process a chain of interdepen-
dent steps of relational inference, as in (Palm et al.,
2018; Battaglia et al., 2018). Here, recurrence
refers to inferential time-steps for the entire graph,
rather than recurrence of processing units. Tem-
poral recurrence allows the network to iteratively
progress towards the full set of relations among all
the nodes of the graph (Palm et al., 2018). AsRRN
also incorporates a super-node that is dependent
on all other nodes, as in (Zhang et al., 2018), to
stabilize the flow of information in the graph net-
work, and to implicitly represent the current an-
swer state at each pass over the whole graph. We
test our hypothesized relational structure among
C,Q, (Rrubic, ), R and A through extensive abla-
tions of alternative dependency structures, and by
comparison to strong baselines that either have a
simpler relational structure, or no relational struc-
ture at all. In this section, we present details on
the graph structure, the flow of information within
the graph (message-passing), the temporal recur-
rence, the output classifier layer, and our training

3Incorporating the rubric text into AsRRN was not helpful.



objective that incorporates contrastive learning.
AsRRN’s relational graph for ISTUDIO has

the four layers shown in schematic form in Fig-
ure 2. The input layer to each node type relies on
a pre-trained model to encode the distinct types
of text input at time t0. Note that the C, Q, and
A layers are shown as consisting of a single node,
whereas the R layer has four nodes. This indi-
cates that the pretrained encoding of a single text
input is used to initialize the layers for C,Q and A
whereas for the R layer we initialize with multiple,
different reference answers for each correctness
class. Again through experimentation, we found
that four reference answers for each correctness
class achieved the best performance. For simplic-
ity, the figure shows only four R nodes instead of
the full set of twelve per Q (four per class). The
arrows showing the dependencies between layers
(referred to below as message passing) essentially
correspond to relation vectors computed from the
hidden states at each node. The super-node S is a
global relational vector that incorporates informa-
tion from the nodes that correspond to the distinct
text inputs. The figure also illustrates the tempo-
ral recurrence for updating the flow of information
within the graph.

Before describing the information flow, or mes-
sage passing, we point out here that AsRRN can be
adapted for CR datasets that have different struc-
tures. For example, the C layer can be removed to
fit the types of standalone question prompts found
in benchmark datasets such as SemEval-2013 Task
7 (Dzikovska et al., 2013) and ASAP (Shermis,
2015). This is how we perform AsRRN experi-
ments on these two benchmarks, as reported below.

AsRRN’s Recurrent message passing over
time corresponds to the computation of relational
information among nodes within the neural net-
work graph structure. In AsRRN, message passing
is restricted to pairs of nodes i and j at time t, and
each message mt

ij (or relational vector) is:

mt
ij = f

(
ht−1
i , ht−1

j

)
(1)

where f , the message function, is a multi-layer
perceptron. All messages mt

ij are dispatched in
parallel, including the super-node. To update each
node i, the messages from its set of neighbor nodes
N(i) are first summed: mt

i =
∑

j∈N(i)m
t
ij . Each

node hidden state hti is updated recurrently:

hti = g
(
ht−1
i , xi,m

t
i

)
(2)

where the node function g is another MLP, and xi is
the original input encoding at node i. Reliance on
each node’s previous hidden state ht−1

i allows the
network to iteratively work towards a solution, as
described in (Palm et al., 2018). Further, persistent
use of the input feature vector xi at each time step
is similar to the operation of a residual network (He
et al., 2016), relieving g from the need to remember
the input, and allowing it to focus primarily on the
incoming messages from N(i).

Classification of a student’s answer for correct-
ness utilizes the hidden state at node A at the final
time step t. The output distribution ot is:

ot = Θ
(
At

)
(3)

where Θ is a learnable function to assign the A
node’s hidden state to class probabilities.

The training objective includes cross entropy
loss for classification performance and a new con-
trastive learning loss that exploits the availability
of reference answers to improve the representation
learning. Contrastive learning aims to reduce the
distance between learned representations of posi-
tive examples to a set of positive exemplars, and to
increase the distance from a set of negative exem-
plars (Chopra et al., 2005). We adapt the widely
used NT-Xent contrastive loss function (normalized
temperature scaled cross entropy; see above).

Here, where we have n reference examples for
each of the three correctness classes, we treat the n
reference answers for the predicted class as positive
exemplars, and the 2n reference answers for the
other two classes as negative exemplars.

Our CL function depends on the true class label.
For our use case, we make three strong assump-
tions: 1) that there is one way for a student answer
to be correct regardless of the exact wording, 2)
that there are a few ways, each distinct from the
others, for a student’s answer to be partially cor-
rect that will cover many of the answers, and 3)
that there are many diverse ways to be incorrect.
For the correct class, the n reference answers are
assumed to be near paraphrases, thus for a student
answer xi whose label is correct, LCL incorporates
a term Sj for the average of its similarities to the
n correct reference examples:

Sj =Average
[
sim(xi,xj1)

τ
, . . . ,

sim(xi,xjn)

τ

]
where xj are exemplars from the same class as xi,
and xk are exemplars from the other classes.



Figure 2: For ISTUDIO, the AsRRN dependencies are C→ Q, Q→R, R→A, as shown in the figure. During training, AsRRN
uses message passing along the arrows to update each node, includng a global supernode. At the final time step, a learnable
function Θ computes the output probability distribution. The maximum cosine similarity of vectors A to the four reference
answers R in the predicted class supports potential feedback.

For items xi predicted to be partially correct
or incorrect, our loss function incorporates a term
S

′
j for the maximum of its similarities to the n

reference examples in the same class:

S ′
j =Max

[
sim(xi,xj1)

τ
, . . . ,

sim(xi,xjn)

τ

]
This ensures that if there is one partially correct
reference answer that the student answer resembles,
the learned representation will become closer to
that reference answer.
All class predictions use a normalizing term Sk:

Sk =
∑
k

sim(xi,xk)

τ

yielding two contrastive loss terms, depending on
the ground truth class label:

LCL =− 1

N

∑
log

exp(Sj)

exp(Sj) + exp(Sk)
(4)

L′
CL =− 1

N

∑
log

exp(S ′
j)

exp(S ′
j) + exp(Sk)

(5)

In sum, correct predictions are encouraged to be
similar to the average of the correct reference ex-
amples and dissimilar to the reference examples
for partially correct and incorrect. Partially cor-
rect (and incorrect) predictions are encouraged to
be similar to one of the partially correct (or incor-
rect) predictions, and dissimilar to the reference
examples for the other two classes.

The full loss function is a weighted sum of the
cross entropy loss and the contrastive loss: L =
(1−λ)LCE +λLCL, where λ is a hyperparameter
that governs the proportion of the two types of loss.
Cross entropy loss is:

LCE = − 1

N

N∑
i=1

C∑
j=1

yij log(pij) (6)

where yij is the true label for the ith sample and jth
class, and pij represents the predicted probability
for the ith sample and jth class. N is the number
of samples, and C is the number of classes. If
sample i belongs to class j, yij is 1 (true label) and
0 otherwise, and pij is the predicted probability
that sample i belongs to class j.

5 Experiments

Four experiments are reported here. In the first, As-
RRN significantly outperforms multiple baselines
on ISTUDIO, the 3-way unseen answers (UA) sub-
set of BEETLE and SciEntsBank, and the 3-way
subset of ASAP. The second set compares AsRRN
to chain-of-thought prompting on GPT-3.5. Third,
extensive ablations verify the benefits of multiple
design choices in AsRRN. Fourth, we compare As-
RRN’s grouping of student answers with human
grouping for partially correct responses.

For baselines, we use four high-performing LMs
available on Huggingface (BERT-base-uncased;
RoBERTa-base; ConvBERT-base; DistilBERT-
base-uncased); also SFRN (Li et al., 2021) and
a benchmark graph neural network model graph
attention network (GAT) (Veličković et al., 2017).
For the LMs, we concatenate the encodings of the
question prompt, reference answer, and student an-
swer, and add an MLP output layer followed by
softmax. We do not encode the context in part be-
cause it sometimes exceeds the input token length
and in part because it does not seem to improve
performance. We use two versions of SFRN, with
BERT encodings at the input layer; we either pass
the 4-tuple of the context (C), question (Q), ref-
erence answer (R) and student answer (A) to the
relational layer, or the (Q,R,A) triple (as in (Li
et al., 2021). For the GAT experiments, we also



Model ISTUDIO BEETLE SciEntsBank ASAP
BERT-base-uncased 80.44 (78.71, 81.78) 75.21 (73.91, 77.17) 70.74 (69.19, 71.70) 77.43 (76.33, 78.10)
roBERTa-base 81.30 (77.34, 83.15) 75.78 (73.60, 78.73) 69.43 (66.96, 70.96) 76.28 (75.42, 77.35)
ConvBERT-base 80.49 (78.87, 82.54) 75.41 (73.91, 77.33) 69.83 (66.52, 71.74) 78.64 (78.01, 79.01)
distilBERT-base-uncased 79.71 (78.71, 81.47) 75.21 (73.14, 78.57) 69.94 (67.85, 72.00) 76.82 (75.42, 77.35)
GAT (4 heads) 78.48 (76.72, 80.25) 74.30 (72.52, 75.62) 69.31 (68.15, 70.22) 77.17 (76.15, 79.16)
GAT (8 heads) 78.91 (75.34, 81.16) 74.81 (71.89, 76.86) 67.31 (65.44, 68.74) 78.41 (77.21, 79.47)
SFRN (C,Q,R,A) 81.68 (79.26, 83.47) N.A. N.A. 78.94 (78.02, 80.19)
SFRN (Q,R,A) 82.15 (80.96, 83.83) 77.02 (75.47, 78.88) 71.74 (68.30, 73.59) 78.75 (78.02, 79.40)
AsRRN (-CL) 83.46 (82.15, 84.23) 76.71 (75.47, 77.64) 72.11 (71.41, 73.04) 80.02 (79.14, 81.20)
AsRRN (+CL) 85.26 (83.46, 86.98) N.A. N.A. N.A.

Table 2: AsRRN and baseline accuracies (CIs) on three test sets, and QWK on the fourth. SFRN (C,Q,R,A) cells marked N.A.
indicate the dataset has no context. AsRRN (+CL) cells marked N.A. are for datasets with only correct reference answers.

Accuracy
Model 2.a 2.b 3.a 3.b 4.a 4.b Total
GPT-3.5: -Ref, -Rub 47.17 57.00 29.35 40.59 57.01 74.54 51.12
GPT-3.5: +RefC, +RubC 49.10 32.71 67.88 58.41 50.00 75.45 55.59
GPT-3.5: +2RefAll, +RubAll 56.25 38.31 65.13 64.35 70.17 81.81 62.78
AsRRN 83.92 84.11 92.66 83.16 88.59 89.09 85.26

Table 3: AsRRN model best performance compared with GPT3.5 prompting.

use BERT pretrained embedding as the input of
each node, the graph structure we use is the default
connections of all C, Q, R, and A nodes with 4 or
8 self-attention heads.4 All results show 95% boot-
strap confidence intervals (Efron and Tibshirani,
1986) from 8 runs on the test sets (parallelized
over 8 GPU cores). Table 2 shows evidence of
stastical differences, with AsRRN outperforming
the four LMs. AsRRN (+CL) also outperforms
SFRN (C,Q,R,A), and nearly so for SFRN (Q, R,
A). The AsRRN model not only outperforms the
GAT model across all datasets, but it also boasts a
shorter running time. This underscores AsRRN’s
superior efficiency and enhanced reasoning capac-
ity. Details on the AsRRN settings are below; train-
ing parameters are in appendix A.

GPT models often perform well using chain-of-
thought reasoning for zero-shot and few-shot set-
tings(Brown et al., 2020; Wei et al., 2022), so we
tested this method on ISTUDIO, using GPT-3.5.
In all conditions in Table 3, showing total accu-
racy and accuracies per question, the prompting
included the context, the question, the class labels,
and a student answer for the entire test set (Ap-
pendix D includes details). Results in the first row
(-Ref, -Rub) are from these inputs alone (similar
to zero-shot). In the second row, one correct ref-
erence answer and the rubric for the correct class
were added (+1RefC, +RubC). In the third row
condition, two reference examples for each class,
and the rubric for each class were provided (+2Re-

4Less fully connected configurations performed worse.

fAll, +RubAll). GPT-3.5 improves in each next
condition, and for question 4.b, comes close to the
LM performance. Interestingly, the relative perfor-
mance by question for GPT-3.5 is quite different
from AsRRN, and both are quite different from the
relative difficulty for students.

Table 2 above shows that ablation of CL de-
grades performance. We conducted multiple ab-
lations on ISTUDIO, and investigated the impact
of replacing CL with a regularization term. We
tested the contribution of each AsRRN layer, find-
ing that all layers contribute significantly to the
overall performance (results not shown due to space
constraints). We also tested different numbers of
reference answers and found that four worked best.
The four reference answers for each of the 6 ques-
tions were chosen by the four co-authors (2 NLP
researchers, 2 researchers in statistics education)
to ensure they were distinct from each other, and
covered many training examples. Figure 3 shows
the mean accuracy with different values for the
temporal recurrence, and different graph structures.
The blue line (circles) for AsRRN shows that learn-
ing continues to improve over the first two time
steps, then degrades. The red line (triangles) for
a fully connected RRN is worse at all but the first
time step. The yellow line (boxes), labeled ran-
dom, represents that in each of the 8 parallelized
CI runs, for all pairs of nodes i, j (cf. equation 1),
a random decision was made at the beginning of
training whether to include message passing; a full
exploration of all combinations of message passing



Figure 3: Mean test accuracy and CIs with different numbers
of reasoning time steps for AsRRN, a fully connected RRN,
and an RRN with random message passing.

would have been unnecessarily time-consuming.
This condition has lower performance than AsRRN
across all but the last time step. Finally, we ex-
amined different values of λ in the loss function,
and compared to L1 or L2 regularization. For all
values of λ < 1, performance is better than for
λ = 1 (see Appendix C). For λ = 1, accuracy is
still reasonable, because LCL implicitly includes
the ground truth class. Replacing LCL with an L1
or L2 regularizer severely degrades performance.
Results in Tables 2-3 use 4 reference answers per
class, 2 time steps, and λ=0.01.

Evidence suggests that timely and specific feed-
back helps students learn (Pearl et al., 2012;
Garfield et al., 2008). For formative assessment
feedback, instructor effort is best spent on partially
correct (PC) answers, where there is an opportunity
to scaffold students towards more complete under-
standing. Incorrect answers are far more diverse,
and students may be more confused about the rea-
soning steps and less likely to integrate feedback
into their thinking. To assess the results on whether
AsRRN groups student responses with the same
reference answers human would, we find mixed
results when we compare two humans and AsRRN
on the grouping of partially correct answers. Recall
that there were four reference answers for all three
correctness classes, for all six questions. For the

Test Set Correct Pred.
Q A, B Size A, B A, RN B, RN Size
2b 0.72 107 0.71 0.53 0.69 90
4b 0.39 110 0.45 0.70 0.41 100

Table 4: For questions 2b and 4b, QWK for experts on the test
set; also QWKs on the subset of AsRRN’s correct predictions
for the experts and AsRRN (RN in the table).

partially correct class, we selected four reference
answers that were distinct from one another. Here
we report on how consistent two experts (A and
B) were with each other, and each with AsRRN, in
pairing a student answer with the same reference
answer for questions 2b and 4b; these are two of
the three most challenging questions, based on the
average student scores. We used QWK to report
agreement of the three pairs. For both questions,
A and B worked independently to pick one of the
four reference answers as equivalent to each stu-
dents’ partially correct answer, or "none of the
above." For the subset of accurate partially correct
predictions from AsRRN (90 out of 107 for 2b; 100
out of 110 for 4b), we show QWK for the expert
pair, and each expert with AsRRN. Cases where
AsRRN’s maximum probability class had p < 0.85
were treated as "none of the above" based on loca-
tions of sharp decreases of output probabilities in
scatterplots.

As shown by the QWK scores in Table 4, the two
experts had good agreement of 0.72 on question 2b,
which is consistent with the pattern shown in the
coincidence matrix in Figure 1. They had very poor
agreement on 4b, however, which shows that this
task is difficult even for experts. On 2b, AsRRN
agreement with B of 0.69 was close to that for A
and B on the partially correct reponses that AsRRN
accurately predicted (0.71), but agreement with A
was much lower (0.53). On 4b, agreement between
A and B on AsRRN’s accurate subset was 0.45, and
here AsRRN had similar agreement with B of 0.41,
then very high agreement with A of 0.70. Instruc-
tors report that it is unpredictable with any given
set of students what kinds of partially correct an-
swers will occur frequently, as it depends on many
unknowns, such as the students’ prior background.
Using contrastive learning in a novel way, we have
taken a first step towards partially automating this
difficult but pedagogically important task.

The high accuracy of AsRRN, and its potentially
useful association of student answers with a spe-
cific reference answer, argues for the quality of
the representation learning. Appendix B includes
t-SNE visualizations of the learned representations
of the test set with and without contrastive learning.

6 Conclusion

AsRRN is a novel recurrent relational network
where the nodes in the neural graph each corre-
spond to a distinct type of textual input, a super-



node represents global information across all nodes,
and the answer state at the final time step becomes
the input to the final classification layer. The graph
structure (direction of message passing), leads to
efficient learning of relational information that sup-
ports multi-step problems. AsRRN can have more
or fewer layers, depending on the number of dis-
tinct types of text input in the dataset. A novel
loss function for contrastive learning improves clas-
sification accuracy, and provides a step towards
feedback for instructors and students on partially
correct responses, by learning which of multiple
reference answers a response is most similar to.
A thorough set of ablations provides evidence for
the chosen dependency structure, number of time
steps in the temporal recurrence, and the contrastive
learning. On ISTUDIO, AsRRN significantly out-
performs strong baselines.

7 Limitations

The AsRRN model relies heavily on manual graph
design, based on the relational structure of the
CR dataset, and on the quality of reference an-
swers. While this limits generalizability, it also
incorporates expert domain knowledge in useful
ways. Additionally, while AsRRN provides a pre-
liminary foundation for feedback, understanding of
optimal feedback across varying assessment con-
texts remains limited. Although the importance of
timely and relevant feedback for students is well-
established, little is known about the specific forms
of feedback that work best in different contexts,
or how feedback varies across instructors. While
AsRRN can point to a specific reference answer for
partially correct student answers, the task definition
and AsRRN performance need much improvement.

The ISTUDIO dataset has relatively few ques-
tion prompts (N=6) and is limited to a single sub-
ject domain, in contrast to benchmark datasets
that have dozens of prompts and many domains.
On the other hand, ISTUDIO is derived from a
well-validated, reliable instrument and was labeled
through an extensive inter-rater agreement study.
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Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Tianqi Wang, Naoya Inoue, Hiroki Ouchi, Tomoya
Mizumoto, and Kentaro Inui. 2019. Inject rubrics
into short answer grading system. In Proceedings of
the 2nd Workshop on Deep Learning Approaches for
Low-Resource NLP (DeepLo 2019), pages 175–182.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Yang Xiao, Jing Han, Kathleen Koenig, Jianwen Xiong,
and Lei Bao. 2018. Multilevel Rasch modeling of
two-tier multiple choice test: A case study using Law-
son’s classroom test of scientific reasoning. Physical
Review Physics Education Research, 14:020104.

Tzu-Chi Yang, Sherry Y. Chen, and Gwo-Jen Hwang.
2015. The influences of a two-tier test strategy on
student learning: A lag sequential analysis approach.
Computers & Education, 82:366–377.

Yue Zhang, Qi Liu, and Linfeng Song. 2018. Sentence-
state LSTM for text representation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 317–327, Melbourne, Australia. Association
for Computational Linguistics.

Liu Zhuang, Lin Wayne, Shi Ya, and Zhao Jun. 2021. A
robustly optimized BERT pre-training approach with
post-training. In Proceedings of the 20th Chinese
National Conference on Computational Linguistics,
pages 1218–1227. Chinese Information Processing
Society of China.

A Training Parameters

We employed the AdamW optimizer for model
training, with parameters set to learning_rate=1e-
5 and weight_decay=0.01, and clipped the global
norm of the gradient at 1.0. The state vector of the
graph nodes and the message passing vector have
hidden dimensions of 768 and 128, respectively.
The weight of the CL loss (λ) is set to 0.01, and the
temperature (τ ) of CL loss is 1. To curb overfitting,
a 20% dropout rate (hidden_dropout_prob=0.2)
is applied to the hidden layers. The maximum
token length for each text data input is set to 64 in
BEETLE dataset, 128 in SciEntsBank and ASAP
datasets, and 256 in ISTUDIO.

We use warm-up prior to training with no CL
loss during which the learning rate incrementally in-
creases from a negligible value to the pre-set learn-
ing rate. The get_linear_schedule_with_warmup
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function from the Hugging Face Transformers li-
brary generates a schedule with a learning rate that
linearly decreases following a warmup period of
linear increase. In our experiment, the number of
warmup steps is configured to be 5% of the total
training steps.

All models were trained on a server equipped
with eight NVIDIA RTX A5000 GPU cores, with
the AsRRN model’s training time ranging from two
to five hours, depending on the training set size and
number of epochs. If the paper is accepted, we will
include a github link to the code repository.

B Contrastive Learning Visualization

(a) Learned data representation without CL.

(b) Learned data representation with CL.

Figure 4: Learned representations without (a) and with (b)
contrastive loss, visualized with t-SNE projections into 2D.
The color key is green for correct, blue for partially correct,
and red for incorrect.

T-SNE projections of the representations of the
examples in the test set are shown in Figure 4 for
the two conditions of omitting the contrastive loss
term (4a) versus including it (4a). With the con-
trastive learning, the items cluster more tightly into
fewer groups.

Figure 5: Mean test accuracy of AsRRN on ISTUDIO with
different λ values in the loss function. CL represents the
contrastive learning in the loss function. Using L1 or L2 reg-
ularization instead of CL in the combined function degrades
performance.

C Contrastive Loss versus Regularization

For values of λ < 1, Figure 5 shows that the overall
AsRRN accuracy is fairly stable. For λ− 1 accu-
racy drops to around 78%, which is still reasonable.
This can be attributed to the diminished supervi-
sion of the classification loss, and the the fact that
the contrastive learning loss employs ground truth
labels during training, using the mean or max sim-
ilarity to reference examples in the ground truth
class.

D GPT 3.5 Prompting

Figure 6: Zero-shot learning prompt design for the assess-
ment of ISTUDIO data. Input is the prompt message, Output
is the model responses

GPT 3.5 is a powerful model for generating
human-like text. In our experiment, we leveraged
GPT 3.5 model with a series of "prompts" based
on the ISTUDIO materials (containing Context (C),
Question (Q), Reference answer (R), and Answer



(A)). We articulated these prompts using a chain-
of-thought strategy. Our GPT-3.5 model was imple-
mented using the ChatCompletion API provided by
OpenAI, specifically using the gpt-3.5-turbo model
with a 0.7 model temperature.

As exemplified by [2a] in Figure 6, we designed
a zero-shot learning prompt template for GPT-3.5
(-Ref, -Rub) displayed in Table 3. The model was
supplied with a series of "messages" to generate
classification results. Each message consisted of a
role (either ’system’, ’user’, or ’assistant’) and the
message content associated with that role. In one
or few-shot learning scenarios (Figure 7) where
reference answers were added by the ’user’, we
provided historical examples to the input. For in-
stance, the one-shot (+1RefC, +RubC) included
a correct reference answer as an example in the
prompt as shown in 7a. In the case of few-shot
prompts (+2RefAll, +RubAll), we used six refer-
ence answers (two for each class) as depicted in 7b.
However, due to space limitations, only three ex-
amples are shown. Finally, we ensured the model’s
output always included a correctness label followed
by an explanation (all marked in red). This chain-
of-thought prompting method not only enabled im-
proved results but also laid the foundation for future
research in feedback generation.

(a) One-shot learning prompt.

(b) Few-shot learning prompt.

Figure 7: One-shot and few-shot learning prompt examples
for the assessment of ISTUDIO question [2a].

https://platform.openai.com/docs/api-reference/completions/create

