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Abstract

Although quantization for linear layers has been
widely used, its application to accelerate the atten-
tion process remains limited. To further enhance
the efficiency of attention computation compared
to SageAttention while maintaining precision, we
propose SageAttention?2, which utilizes sig-
nificantly faster 4-bit matrix multiplication (Mat-
mul) alongside additional precision-enhancing
techniques. First, we propose to quantize matri-
ces (@, K) to INT4 in a hardware-friendly thread-
level granularity and quantize matrices (]3 ,V)to
FP8. Second, we propose a method to smooth @),
enhancing the accuracy of INT4 QK . Third, we
propose a two-level accumulation strategy for PV
to enhance the accuracy of FP8 PV. The oper-
ations per second (OPS) of SageAttention2
surpass FlashAttention2 and xformers by about
3x and 4.5x. Moreover, SageAttention?2
matches the speed of FlashAttention3(fp8) on the
Hopper GPUs, while delivering much higher ac-
curacy. Comprehensive experiments confirm that
our approach incurs negligible end-to-end met-
rics loss across diverse models, including those
for language, image, and video generation. The
code is available at https://github.com/
thu-ml/SageAttention.

1. Introduction

Due to the quadratic time complexity of attention, its effi-
cient implementation becomes crucial as sequence lengths
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increase in real-world applications (Jiang et al.}|2024;|Zhang
et al., |2025b)). Several strategies have been developed to
mitigate the computational demands of attention —such as
(1) Linear attention methods (Wang et al.l [2020; |Choro{
manski et al., 2021} [Yu et al., 2022} [Katharopoulos et al.,
2020) that reduce complexity to O(N) and (2) Sparse at-
tention methods (Liu et al., 2021;|Chu et al., 2021 |Li1 et al.,
2022; Xiao et al., [2024bsa; (Chen et al., |2024; Jiang et al.,
2024; [Venkataramanan et al.| |2024; |Gao et al., [2024; |[Fu
et al., [2024; [Zhang et al.| [2025¢} Xi et al.| 2025 [Yang et al.|
20254} |Zhang et al.| 2025f:hii) that selectively process parts
of the context — these methods are only suitable for a lim-
ited range of models and tasks. The widely used attention
methods optimize attention by exploiting hardware capaci-
ties, such as FlashAttention V1, V2, V3 (Dao et al .| 2022}
Daol, [2024; |Shah et al., 2024), xformers (Lefaudeux et al.|
2022), and SageAttention (Zhang et al.|[2025c:djgza). These
works do not omit computations across the entire sequence
and achieve impressive speed and accuracy performance
across various tasks.

Motivation. For the two matrix multiplication (Matmul)
operations in attention: QK " and PV, SageAttention ac-
celerates them by quantizing the QK " to INTS and uses
FP16 Matmul with FP16 accumulators for PV. More-
over, to maintain attention accuracy, SageAttention pro-
poses smoothing K by eliminating its channel-wise out-
liers. SageAttention achieves 2 X speedup compared with
FlashAttention2 and is the first quantized attention that in-
curs a negligible end-to-end metrics loss across language,
image, and video generation models. However, SageAt-
tention has two weaknesses. (W1) INT8 Matmul achieves
only half the speed of INT4. (W2) FP16 Matmul with FP16
accumulators provides a speedup only on RTX 4090 and
RTX 3090 GPUs. To leverage the faster INT4 tensor cores
for QK T and using a method that can accelerate PV on
a broader range of GPUs, we propose to quantize @), K to
INT4 and P,V to FP8.

Challenges. Quantizing ), K to INT4 and 15, V to FP8
presents significant challenges. For example, when only per-
tensor quantizing @, K to INT4, the text-to-video model
CogvideoX will generate a completely blurry video, and
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Figure 1. The upper left figure shows the kernel speedup on RTX4090 GPU. The upper right figure shows the end-to-end inference
speedup of generating the first token and performance metrics for the Needle-in-a-Haystack task [2023)) with a sequence length
of 100K on L1lama3.1 on L20 GPU. The figure below shows two videos generated by CogvideoX (1.5-5B) using FlashAttention2 and
SageAttention2 on RTX4090, showing that SageAttention2 accelerates generation by 1.8x with no video quality loss.

Llama3 only achieves a random-guessing-level accuracy
of 25% on MMLU. After an in-depth investigation, we
identified three primary challenges: (C1) The numerical
range of INT4 is quite limited compared to FP16 or INTS,
leading to significant quantization errors when @) and K
have some abnormal values. (C2) We discover that the
FP32 accumulator designed for FP8 matrix multiplication in
the tensor core (mma . £32.£8.£8.£32)is actually FP22,
specifically with 1 sign bit, 8 exponent bits, and 13 mantissa
bits. This will lead to an accuracy loss of PV.

Our approach. To address (C1), we first discover that the
per-block quantization of ), K in SageAttention does not
achieve sufficient accuracy for INT4 quantization. Simul-
taneously, to avoid the extra latency caused by per-token
dequantization, where each GPU thread corresponds to mul-
tiple quantization scales, we propose an adequately precise
quantization method that incurs no additional dequantization
overhead. Specifically, we introduce a per-thread quanti-
zation approach based on the mapping between the GPU
threads and the memory layout of matrices as dictated by
the PTX mma instructions. This method groups tokens cor-
responding to the same thread for quantization and dequan-
tization, ensuring that each thread is associated with a single
quantization scale. This approach achieves much better ac-
curacy performance than per-block quantization with no
additional dequantization overhead. Second, for the signifi-
cant channel-wise outliers in matrices () and K, we adopt
smoothing K in SageAttention and further propose an effec-
tive method to remove these outliers in (). Specifically, we
propose subtracting the average value of the channel dimen-

sion of @, referred to as am. Then, we add amK after
the QK T Matmul to ensure the correctness of the attention
computation. To address (C2), the accuracy loss caused by
the 22-bit accumulator for FP8 Matmul of PV, we propose
a two-level accumulation strategy that uses an FP32 buffer
to accumulate the values from the 22-bit accumulator after
each block Matmul of PV. This method confines the errors
to the block range. Additionally, we design an optional
technique to enhance the accuracy of the 22-bit accumulator.
Specifically, we could smooth V' by subtracting the average
value of its channel dimension and adding the subtracted
item to the attention output to maintain the correctness.

Performance. We offer a high-performance implementation
of SageAttention2 on RTX4090 and L20 GPUs. This
implementation achieves a peak performance of 481 TOPS
on the RTX4090, outperforming FlashAttention2 and xform-
ers by approximately 3x and 4.5x, respectively. To support
NVIDIA Hopper GPUs, which lack native INT4 tensor core
support, we additionally provide SageAttention2-8b,
a variant that quantizes @), K to INTS8. FlashAttention3, in
contrast, is tailored to and only compatible with the Hopper
architecture. Moreover, SageAttent ion2-8b matches
the speed of FlashAttention3(fp8) on Hopper GPUs, while
delivering much better accuracy. For example, on popu-
lar video generation models, our method does not compro-
mise end-to-end accuracy, whereas FlashAttention3(fp8)
brings noticeable degradation, as visualized in Fig.[7] and
O We extensively evaluate the end-to-end metrics of
state-of-the-art text, image, and video generation models.
SageAttention?2 can accelerate models in a plug-and-



SageAttention2: Efficient Attention with Thorough Outlier Smoothing and Per-thread INT4 Quantization

play way with negligible loss in end-to-end metrics.

2. Preliminary
2.1. FlashA ttention

The attention computation can be formulated as: S =
QK'/Vd, P = o(S), O = PV, where o(S);; =
exp(Si;)/ >k exp(Sik). The matrices @, K, and V' each
have dimensionality NV X d, and S, P are N x N. d is
typically small, e.g., 64 or 128, and N can be thousands or
millions. The time complexity of attention is O(N?), pri-
marily due to two matrix multiplications (Q K T and PV),
both with complexities of O(N?d). FlashAttention (Dao,
2024) is a GPU-friendly attention implementation, which
tiles @, K, and V from the token dimension into blocks
{Qi}ity {Ki} 7k, {Vi}iz, with block sizes of by, by, by
tokens, respectively, where ny, ny,n, are the number of
tiles, and by = b,. FlashAttention computes the output ma-
trix O in parallel in tiles. Each streaming multiprocessor
(SM) computes a block O; (corresponds to a ();) by itera-
tively loads K, V; for each j, and update the output with
online softmax (Milakov & Gimelshein, [2018)):

Sij =QiK; /\f (mm i) =0a(m; —1,5;), (1)
lij =exp(mij—1 —mgj)lij—1 + rowsum(]gij),

Oij =diag (exp(mi ;-1 — mi;)) Oij—1 + Pi;Vj,
where m;; and [;; are bg-dimenalional vectors, initialized
with —oo and 0 respectively. &(-) is an online softmax
operator: m;; = max{m; j_1,rowmax(S;;)}, f’ij =
exp(S;; — m;;). Finally, the output is computed as O; =
diag(li7nq)_10i7nq.

2.2. Quantization

A matrix multiplication C' = AB can be accelerated with
quantization as:

(04, A) = ¥(A), (05, B) =4(B), C =15 (AB)

1 is a quantizer which converts a high-precision (e.g.,
FP32 or FP16) matrix A to a low-precision format A
(e.g., INT4 or FP8) with a scale 64, and ="' is a de-
quannzer to convert back to high-precision. We should
have 15 | L(A) ~ A. The actual matrix multiplication AB
is performed with low precision. In modern GPUs, low-
precision matrix multiplication is usually multiple times
faster than higher-precision ones. Quantizers differ in nu-
merical format and granularity, e.g., how many elements
(“quantization group”) share a common scale factor. For
example, an INT4, per-tensor quantizer first computes the
scale as the maximum absolute value of the entire tensor,
scales the elements to the maximum representable range
of INT4 [-7, +7], and then casts to INT4 with rounding:

A =1T[A/64],64 = max(|A|)/7. The dequantization pro-
cess is an element-wise scaling. For example, for per-tensor
dequantization, ¢; s (AB) = AB x §465.

Table 1. Speedup compared to matrix multiplication in FP16 with
an FP32 accumulator.

GPU MM Input | MM Accumulator | Speedup
FP16 FP16 2x
RTX4090 FP8 FP32 2x
L40, 120 FP16 FP16 1x
H100 FP8 FP32 2x
2.3. SageAttention

Based on the block tiling in FlashAttention (Dao et al.|
2022)), SageAttention (Zhang et al.l 2025¢) quantizes @, K
to INT8 in a per-block granularity, that is, each Q;, K,

has a separate scalar scale: dg, = max(|Q;])/127,0k, =
max(|K;|)/127. In this way, the product S;; in Eq.
can be approximated as S;; ~ QZKJT X (5@5&,/@). To
maintain accuracy, SageAttention proposes a preprocess-
ing technique by subtracting the token-wise mean from K.
Additionally, SageAttention keeps P;; and V; in FP16, but
utilizes an FP16 accumulator (rather than FP32) for com-
puting the product P;;V;. Reducing accumulator precision
can accelerate matrix multiplication (MM) on the RTX4090
GPU. However, other GPUs, such as .20, L40, or H100, do
not exhibit this behavior, as shown in Table[T]

3. SageAttention2

In this section, we introduce SageAttention2, an efficient
and accurate quantized attention. The workflow of SageAt-
tention2 is shown in Fig. 8] We quantize ), K to INT4
and P,V to FP8 to maximize the efficiency and propose
several techniques, including ) K-smoothing, per-thread
quantization, and two-level accumulation to preserve the
accuracy, which we shall discuss in subsequent subsections.

3.1. Smooth @

First, we discuss how to accurately compute QK | with
INT4. The numerical range of INT4 is notably restrictive.
This affects quantization due to the presence of outliers (Lin
et al., [2025). Given the INT4 range [-7, +7], any element
will be quantized to zero if it is more than 14 times (0.5
vs 7) smaller than the largest element in the group. Since
outliers are much larger than other elements, it is likely that
many non-outlier elements are quantized to zero, leading
to substantial accuracy degradation. Therefore, to keep the
quantization accurate, we need to keep the largest element
small, making the magnitude of elements as uniform as
possible. Such technique is called smoothing.

Here, we propose a smoothing technique inspired by
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SageAttention (Zhang et al 2025¢). SageAttention ob-

served that ), K for all tokens are actually highly similar,
with only small variations between different tokens (Fig.
shows the heatmap distributions of the @), K, and V ran-
domly sampled from L1ama3. 1 (Dubey et al.l[2024) and

CogvideoX (Yang et al.,[2025b))). We propose to smooth
K as SageAttention does and further smooth () by subtract-

ing a common mean of each block:

Y(Qi) = Qi —

where §; = mean(Q;), k = mean(K) are 1 x D vectors,
the mean is conducted along the token axis, and g;, k are
broadcasted to tokens in a block and a tensor for subtraction.

3, V(Kj)=K;—k, 2

With the decomposion, we have S;; = @Q; K JT = (g +
YQi))(k +y(E) T = @k" +qv(K;)T +4(QikT +
Qi) v(K;) T =7(Qi)v(K;) " +ASi;+b. Here, AS;; =
giy(K;) " isan 1 x N vector, and b = g;k " + v(Q;)k " is
an N x 1 vector. We do not need to compute b since adding
a common bias to an entire row of S does not affect the
result after softmax. Therefore, we can accelerate QinT
with INT4 by the following two stages:

(1) preprocessing: smooth @, K according to Eq. @[) ap-
ply quantizaﬁon (6Q17Q1) = ¢Q(’Y(Ql))7 (5Kj7Kj) =
Y (7(K;)), and compute AS;; = g;v(K;) . Smoothing,

quantization, and GEMV (general matrix-vector multiplica-
tion) for computing AS can be fused into a single kernel,
which reads the off-chip () and K only once.

(2) attention: execute the low-precision GEMM, dequan-
tize, and add back the vector AS: S;; = %_Qli bxc, (Q:iK )+
AS;;. These operations are all done on chip, and the dequan-
tization and vector addition only add a marginal overhead
compared to the expensive mma operation for MM.
Importantly, 7(Q;), v(K;) are quantized rather than Q;, K.
Since the smoothed matrices are much smaller in magnitude
and contain fewer outliers, the quantization accuracy can be
significantly improved. A theoretical analysis of the benefit
of smoothing is included in Appendix[A.3]

Remark. Classical techniques to improve the activation-
weight MM, such as per-channel quantization, or
SmoothQuant are not applicable here
for the query-key MM in attention. Per-channel quantiza-
tion cannot be applied to @), K because the quantization
must be conducted along the outer axis (token dimension)
of QK . On the other hand, both Q and K have significant
outliers, so trading the quantization accuracy between them
with SmoothQuant cannot work effectively, as shown in
Sec.[d Here, we utilize the unique token similarity pattern
in attention to derive a dedicated quantization method for )
and K. The previous work SageAttention only smooths K,
so it is less accurate than our method.

Empirical results. Fig.20/in Appendix[A.9] shows an ex-
ample from CogvideoX of the distribution of () with and
without smoothing (). We can find that with smoothing @),
the range of INT4 is utilized more uniformly and fully. Ta-
ble[3] presents end-to-end metrics for different quantization
methods with and without smoothing Q+K on Llama3.1
and CogvideoX (2b). The results demonstrate that smooth-
ing Q+K offers significant accuracy benefits. Also, Table 4]
and [T7] show that the order of effectiveness is smoothing
0+K > smoothing Q > smoothing K > other baselines.

3.2. INT4 Per-thread Quantization

Orthogonal to smoothing, we can mitigate the problem
of outliers by refining the quantization granularity so
that the number of affected elements by outliers becomes
smaller. Although per-token quantization offers a de-
tailed level of granularity, it results in significant overhead
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Figure 4. An example of per-thread quantization. The left figure shows the correspondence between the quantization scales and the tokens
in each GPU warp. The right figure shows the correspondence between quantization tokens and GPU threads in a MMA . m16n8k64
instruction, showing that each GPU thread only corresponds to one quantization scale in 6 and dx in dequantization.

during dequantization. Specifically, each GPU thread in
per-token quantization must handle multiple quantization
scales, leading to a high latency of the dot product of the
quantization scale vectors d¢ and dx. SageAttention uses
per-block quantization, where each block Q; (b, tokens)
and K; (b tokens) have a single quantization scale. Such
a quantization strategy could achieve an accuracy perfor-
mance close to per-token quantization and avoid the high
dequantization overhead. However, quantizing () and K to
INT4 demands a finer quantization granularity. To address
this, we propose per-thread quantization, a more precise
and granular approach than the per-block quantizer, also
without the additional overhead of the vector dot product
between dg and d .

Specifically, each block of @, i.e., Q;, in SageAttention
will be split into ¢,, segments and processed by c,, GPU
warps in a GPU streaming processor (SM). We call each
segment of (); as @, and k,, = K since K is shared
among warps. Then, each warp containing 32 threads uses
the mma .ml16n8k64 PTX instruction (NVIDIA) for the
QijT. According to the layout requirement of this instruc-
tion, we find that @Q),,[8% + ¢] could share one quantization
scale, and K;[8k + 2i] together with K;[8k + 2i + 1] could
share one quantization scale. Such a quantization method
is more fine-grained with no additional overhead. This is
because it assigns different GPU threads to distinct quanti-
zation groups based on the MMA instruction layout, with
each thread performing dequantization only using a single
quantization scale value. We show an example of per-thread
quantization in Fig.[d] The detailed formulation is shown in
Equation [§]and Fig. [T8](please see Appendix [A.6]for more
detail).

Empirical results. As shown in Table[6]and Table T3] we
compare the average and worst accuracy of INT4 quantiza-
tion at per-token, per-thread, per-block, and per-tensor gran-
ularity using real @), K, V across all layers of CogvideoX.
Results indicate that the accuracy of per-thread quantization
is very close to per-token and significantly outperforms other
granularities. Moreover, Table [T9] shows that per-thread
quantization incurs almost no speed degradation, while per-
token quantization introduces noticeable overhead due to
the reduced hardware efficiency.

3.3. FP8 quantization for PV

We now turn to the MM PV, where ]Sij = exp(S;; — mij)
is the unnormalized quantity according to Eq. (I). The dis-
tribution of P is unique and differs from other activations.
First, we note that S;; —m;; <0,s0 P;; € [0,1] (< and €
apply element-wise). We find that P often consists of many
small elements, but their sum is non-negligible (e.g., 5000
elements around 10~%). In this case, we must represent
small elements accurately. INT quantization is unsuitable
for this setting, since it distributes the quantization points
evenly within the numerical range. SageAttention (Zhang
et al., [2025¢) choose to retain Pand V in FP16, and ac-
celerate the MM by decreasing the accumulator precision.
However, this strategy is only effective on very few GPUs.

We propose to quantize P , V to FP8 with 4 exponent bits
and 3 mantissa bits (E4M3). The numerical range of
E4M3 is [—448, +448]. We quantize P with a static scale:
§p = 11z since the original P elements are already in [0, 1].
We quantize V' per-channel to address the channel-wise
outliers shown in Fig. 2] Empirical results in Table 7] and
Table [T6] show the average and worst accuracy of different
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Algorithm 1 Implementation of SageAttention?2.

Input: Matrices Q(FP16), K (FP16), V (FP16) € R™*<, block size by, by, warp count c,,.

Preprocessing: K = K —mean(K), (dv,V) = ¢v (V). //per-channel.
Divide Q to T, = N/b, blocks {Q;}; divide K, and V to T,, = N /by, blocks { K}, {Vi};

fori =1toT,, do .

G = mean(Q;), (d0,Q:) = 1¥q(Q: — §;) //per-thread ;
for jin [1,7,] do

(6x, K;) = ¢ (K;) //per-thread,

illustrated in Fig. [f]

w = range(Cy ), St = W * Cy ;
Sijlst : st + cu] = U575, (Matmul(Qi[st : st + cu], K )) + GEMV(gi, K ) 1 // Paralleled by ¢, warps. The ¢ )

s 1S
0Q0K

m;; = max(m; j—1,rowmax(Si;)), Pij = exp(Si; — msj), lij = eMHi=-17Mi 4 rowsum(]gij) ;

0,;(FP22) = Matmul((P;; * 448) to(FP8.¢4m3), V;) ;

O,J(FP32) = di‘dg(emi’j’ L=mij )_107173'_1 (FP32) + O,J(FP22) 5

end for

Load év into an SM ;  O; = diag(l;,1,,) *O;,1, (FP32) /448 * §y- ; Write O; ;

end for
return O = {O;}

data types used for ]3, V across all layers of CogvideoX.
The accumulator is always 32-bit. We can see that the ac-
curacy of E4M3 is very close to that of FP16 and superior
to ESM2 and INTS8. Most modern GPUs have tensor cores
that support FP8 Matmul operations, which are twice as fast
as those using FP16.

3.4. FP32 MMA Buffer for FP22 Accumulator

While FP8 quantization for PV above is theoretically accu-
rate in simulation, we observe that the actual CUDA imple-
mentation suffers a consistent accuracy degradation. After
narrowing down the problem, we find that the accumulator
for the mma (£32£8£8£32) instruction on the Ada and
Hopper architecture is actually FP22, specifically with 1
sign bit, 8 exponent bits, and 13 mantissa bits. Specifically,
formma (£32£8£8£32) instruction C = AB + D, where
A, B are FP8 matrices and C, D are FP32 matrices, we ini-
tialize the A, B to zero and vary D to test the data type of
the accumulator. When D is initialized with 1 sign bit, 8
exponent bits, and 13 mantissa bits, the value of C exactly
matches D. However, when D is initialized with more than
13 mantissa bits, the value of C' is equal to D with its least
significant 10 mantissa bits zeroed out (i.e., truncated). Con-
sequently, matrix multiplication of PV, quantized to FPS,
incurs a certain degree of accuracy loss compared to using
an FP32 accumulator.

To mitigate this accuracy loss, we adopt a two-level accumu-
lation strategy, which uses an FP32 buffer to accumulate the
values of P;;V; in FP22. Specifically, we rewrite Eq. (1) as
Rij = Pij‘/j,Oij = diag (exp(mi,j_l — m”)) Oi,j—l +
R;;. Here, two sets of accumulators R;; and O;; are
maintained in the register. [R;; is computed with the
mma (£32£8£8£32) instruction, providing 22 effective
bits, which is sufficient since we only accumulate over a
small number of b;, tokens (e.g., by = 64). Then, R;; is

accumulated to O;; in the high FP32 precision.

Remark. The two-level accumulation strategy is also
implemented in CUTLASS (NVIDIA| 2023)) and Deep-
Gemm (DeepSeek-Al et al.,|2024) for computing weight-
activation products in linear layers. To the best of our knowl-
edge, we are the first to discover and investigate the effect
of the FP22 accumulator and implement the two-level accu-
mulation for attention.

Optional smooth V technique. We also figure out an-
other way to mitigate the accuracy loss due to the FP22
accumulator when V' possesses channel-wise biases: W =
mean(V, axis = 0), V = V—V,,,. Furthermore, to maintain
the correctness of the attention computation, it is only neces-
sary to add ‘Zﬁ to the final calculation of O: O = O + V—,,i
This is because the sum of each row of the P matrix equals
~—  —
1,s0 PV,, = V,,.

Remark. For details on smoothing V, see Appendix [A.3]
This technique is optional and not employed in our main
experiments, as it provides significant benefits only when
V' exhibits channel-wise bias, which are absent in some
models, such as L1ama3. 1 (see Fig. E])

4. Experiment

Main result. SageAttention2 is faster than FlashAtten-
tion2 and xformers by about 3x and 4.5x. Moreover,
SageAttention?2 matches the speed of FlashAttn3(fp8)
on the Hopper GPUs and is much more accurate than
FlashAttn3(fp8). SageAttention2 maintains end-to-end met-
rics across language, image, and video generation models.

4.1. Setup

Models. We validate the effectiveness of
SageAttention2 across a diverse set of repre-
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RTX4090, (Head dim = 128, causal = False)

RTX4090, (Head dim = 128, causal = True)

Il Torch

Speed (TOPS)

Table 2. End-to-end metrics across text, image, and video generation models. X indicates an inability to generate results for evaluation.

B xformers

E=X FlashAttn2
ETA SageAttnl

4K 8K

Sequence Length

3 SageAttn2-8b
B SageAttn2-4b

400

Hl Torch
I xformers

=3 FlashAttn2
=20 SageAttnl

4K

8K

Sequence Length
Figure 5. Speed comparison between SageAttention2 and baselines (RTX4090, headdim=128).

] SageAttn2-8b
I SageAttn2-4b

Model Attention WikiText (Ppl.) | | Lambda (Acc.) T | MMLU (Acc.) T | Longbench 1
Full-Precision 6.013 0.815 0.635 49.40
HadmdAttn 7.872 0.762 0.500 44.07
Llama3.1 SmoothAttn 7.180 0.783 0.541 44.69
SageAttention 6.017 0.812 0.634 49.55
SageAttn2-4b 6.256 0.798 0.607 48.79
SageAttn2-8b 6.019 0.811 0.634 49.59
Full-Precision 7.241 0.432 0.743 49.78
HadmdAttn 7.989 0.435 0.669 45.97
GLMA SmoothAttn 8.943 0.449 0.592 42.20
SageAttention 7.243 0.433 0.744 49.79
SageAttn2-4b 7.352 0.433 0.725 49.23
SageAttn2-8b 7.242 0.432 0.745 49.60
Model Attention CLIPSIM 1t CLIP-T 1 VQA-a 1t VQA-t 1 FScore
Full-Precision 0.1778 0.9979 70.231 70.928 2.507
HadmdAttn 0.1576 0.9933 8.990 2.299 X
CogvideoX SmoothAttn 0.1559 0.9950 8.812 2.277 X
(1.5-5B) SageAttention X X X X X
FlashAttn3-fp8 0.1562 0.9918 6.531 2.181 X
SageAttn2-4b 0.1721 0.9978 57.729 52.989 2.884
SageAttn2-8b 0.1775 0.9980 69.492 74.415 2.487
Full-Precision 0.1783 0.9995 82.516 75.934 0.604
HadmdAttn 0.1727 0.9989 7514 0.762 0.175
Hunyuan SmoothAttn 0.1739 0.9988 6.987 0.609 0.148
Video SageAttention 0.1786 0.9995 82.496 79.843 0.597
FlashAttn3-fp8 0.1742 0.9941 4433 1.460 X
SageAttn2-4b 0.1751 0.9995 81.478 65.371 0.610
SageAttn2-8b 0.1782 0.9996 81.786 75.354 0.586
Full-Precision 0.1798 0.9986 45.549 65.416 1.266
HadmdAttn 0.1733 0.9980 9.053 25.133 0.704
Mochi SmoothAttn 0.1687 0.9978 3.383 3.480 0.241
SageAttention 0.1800 0.9987 48.707 63.763 1.269
FlashAttn3-fp8 0.1762 0.9982 14.964 13.711 0.457
SageAttn2-4b 0.1783 0.9986 35.955 43.735 1.137
SageAttn2-8b 0.1797 0.9986 46.760 64.901 1.255
Model Attention FID | sFID | CLIP 1 IR 1
Full-Precision 10.960 16.648 26.180 1.009
HadmdAttn 11.353 18.495 26.123 0.965
Flux SmoothAttn 11.149 19.017 26.109 0.959
SageAttention 10.944 16.641 26.171 1.008
SageAttn2-4b 10.577 17.497 26.141 0.998
SageAttn2-8b 10.927 16.723 26.175 1.009
Full-Precision 14.105 15.646 25.505 0.902
HadmdAttn 14.259 15.909 25.513 0.886
Stable-Dif SmoothAttn 14.161 15.649 25.510 0.887
fusion3.5 SageAttention 14.140 15.678 25.503 0.902
SageAttn2-4b 14.097 15.397 25.487 0.895
SageAttn2-8b 14.106 15.647 25.499 0.901
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Full precision Attention SageAttention2-8b

SageAttn2-8b  Full-Precision

FlashAttn3(fp8)

SageAttention2-4b

HadmdAttn

SmoothAttn

AT

Figure 6. Comparison examples from HunyuanVideo, prompts are sampled from open-sora prompt sets.

Figure 7. A comparison example using SageAttn2-8b and FlashAttention3 on CogvideoX-1.5.

sentative models from language, image, and video

generation.  Specifically, we conduct experiments on
ten models: Llama2 (7B) (Touvron et al} [2023),

Llama3.1 (8B) (Dubey et all [2024), and GLM4
(9B) (GLM et all 2024) for text2text, CogvideoX
(2B), CogvideoXx (1.5-5B) (Yang et al| [2025b),
HunyuanVideo (Kong et al,[2024), and Moch1i
[2024) for text2video, Flux (schnell) (Black Forest Labs|
[2023) and stable-Diffusion3.5 (turbo)
for text2image, and TIMM for

image classification.

Datasets and metrics. For Details about the datasets and
metrics we used, please refer to Appendix. [A.7]

Table 3. Two kernel implementations of SageAttention?2.

Kernel  |g(Q).vx(K)|  vp(P).4v(V)
SageAttn2-4b|INT4 per-thread | FP8 per-block and per-channel
SageAttn2-8b|INTS per-thread | FP8 per-block and per-channel

Implemetation. We implement two attention kernels as
shown in Table [B|using CUDA. The 8-bit variant is adapted

for NVIDIA Hopper GPUs, which lack native INT4 tensor
core support, and incorporates all techniques described in
Sec. 3]except for smoothing Q.

Baselines. (1) SmoothAttn. Following Qserve
2025), we apply smooth quant for Q, K with

smoothing factor « = 0.5. (2) HadmdAttn. Follow-

ing Quarot (Ashkboos et al 2024), we apply random

Hadamard transformation for ), K before INT4 quanti-
zation. (3) SageAttention (Zhang et al 2025¢), which
uses smoothing K, INT8 per-block quantization for Q, K,
and FP16 for P, V. (4) FlashAttn3 (fp8), the FP8 ver-
sion of FlashAttention3, which only runs on Hopper GPUs.

4.2. Speed and Accuracy of Kernels

Kernel Speed. We compare the speed of
SageAttention2 against baselines using head-
dim=64 and headdim=128, both with and without Causal

Mask 2017). Detailed setup can be found
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Table 4. Average accuracy across all layers of CogvideoX using
different smoothing methods.

Method CosSim 1 ‘ Relative L1 | ‘ RMSE |
None 80.04% 0.3906 0.2223
HadmdAttn 79.77% 0.3782 0.2180
SmoothAttn 90.21% 0.3383 0.1952
Smooth K 98.07% 0.1493 0.0743
Smooth Q 98.30% 0.1250 0.0712
Smooth Q+K 99.46 % 0.0648 0.0334

Table 5. End-to-end metrics comparison, where @), K are quan-
tized into INT4, while P, V' stay in full precision.

Q.K Smooth | Llama3.1 4 Llama3.1  |CogVideoX 4
’ (Q+K) |(Lambda) ' |(WikiText) (vqa-t)
Full-Precision - 81.5% 6.013 75.360
INT4 X 72.6% 11.698 24.670
Quantization v 80.8 % 6.219 75.147

Table 6. Average accuracy across all layers of CogvideoX using
different quantization granularities.

Method Cos Sim T ‘ Relative L1 | ‘ RMSE |
Per-token 99.45% 0.0649 0.0335
Per-thread 99.45% 0.0622 0.0313
Per-block 98.03% 0.1492 0.0744
Per-tensor 97.15% 0.1800 0.0865

Table 7. Average accuracy using different data types of (15, V)
across all layers of CogvideoX, where (Q, K') are smoothed.

Q.K | P,V | CosSimt | RelativeLl1]| | RMSE |
INTS 77.05% 0.5618 0.5044
NT4 | ESM2 99.20% 0.0905 0.0903
E4M3 99.44% 0.0683 0.0347
FP16 99.45% 0.0649 0.0335

Table 8. End-to-end generation latency using SageAttention?2
(The latency of Llama3.1 is the time to first token generation
using different sequence lengths).

. . SageAttn|SageAttn

Model GPU (Original >_sb >_ab
CogvideoX (2B) |RTX4090, 86s 54s 52s
CogvideoX (1.5-5B) [RTX4090| 1040 s 577s 555s

HunyuanVideo L20 | 2221s | 1486s 1435 s

Mochi L20 |2336s| 1316s 1190 s
Llama3.1 (48K token) RTX4090| 9.2's 57s 5.6s
Llama3.1 (100K token)| L20 3995 254s 23.2s

in Appendix [A.8] Specifically, Fig. 5] shows the speed
across varying sequence lengths on RTX4090, indicat-
ing that SageAttn2-4b and SageAttn2-8b are
approximately 3x and 2.7x faster than FlashAttention2,
and about 4.5x and 4x faster than xformers, respectively.

Fig. [10} [TT} [T2] [13} [14} [T5] and [I6]in Appendix [A.2]show

more speed results on RTX4090, .20, H20, H100 GPUs.

Accuracy. Table [d] and [T7] show the average accuracy of
different methods with INT4 ), K and FP8 P,V across all
layers of CogvideoX. The results indicate the accuracy of
SageAttn2-4b is superior to other baselines.

4.3. End-to-end Performance

Metrics loss. We assessed the end-to-end metrics of various
models using SageAttention2 compared to baselines.
Detailed evaluation results are presented in Table[2] The
results indicate that SageAttn2—-4b outperforms all base-
lines and maintains most of the end-to-end accuracy across
all models. Additionally, SageAttn2-8b incurs almost
no metrics loss across various models. More experiment
results on other models are shown in Appendix [A.9]

Visible image and video examples. Fig. [0]
and [9] show some visible comparison examples from
HunyuanVideo, Mochi and CogvideoX. We can ob-
serve that SageAttn2-8b does not introduce any visible
differences compared to full-precision attention, whereas
SageAttn2-4b has minor differences but is much better
than the baselines.

End-to-end speedup. We compared the original genera-
tion latency and the latency using SageAttention?2 for
models with long sequence lengths in Table[§] observing sig-
nificant speedup effects. For instance, SageAttention?
achieved a 1.8x speedup in CogvideoX (1.5-5B) without
any metrics loss (SageAttn2-8b). SageAttn2-4b fur-
ther accelerated these models but with a little metrics loss.

4.4. Ablation Study

Overhead of techniques we proposed. As shown in Ta-
ble[I8] the overhead on kernel speed of per-thread quantiza-
tion, smoothing Q, and two-level accumulation are 0.35%,
3.7%, and 0% compared to the attention kernel.

Benefit of smoothing V. The experiment showing the bene-
fit of smoothing V' is shown in Appendix.[A.4]

5. Conclusion

We introduce SageAttention2, an efficient and accu-
rate quantized attention. First, we propose to quantize
matrices (@, K) in a thread-level granularity and (P, V')
to FP8. Second, we propose a method to smooth @, en-
hancing the accuracy of QK ". Third, we propose a two-
level accumulation strategy to enhance the accuracy of
FP8 PV. SageAttention? is faster than FlashAtten-
tion2 and xformers by approximately 3x and 4.5x, respec-
tively. Moreover, SageAttention2 matches the speed
of FlashAttention3(fp8) on the Hopper GPUs, but offers
significantly higher accuracy. Extensive experiments con-
firm that our approach maintains end-to-end metrics across
language, image, and video generation models.
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A. Appendix

A.1. Visible Comparison Exmaples

Full precision Attention

SageAttention2-8b SageAttention2-4b SmoothAttn HadmdAttn

-

Figure 8. Comparison examples from CogvideoX (2B), prompts are sampled from open-sora prompt sets.

A.2. Additional Kernel Speed Comparison

Fig.[10} [T1] [12} [13] [14] [I5] and [TI6]compare the speed of SageAttention?2 against baselines using headdim=64 and
headdim=128, both with and without Causal Mask 2017), on RTX4090, L20, H100, and H20 GPUs.

Table 9] summarizes the performance gain of different attention methods against baselines on various modern GPUs.

Table 9. Speedup of different attention methods on various GPUs.

Method ‘ 3090 ‘ 4090 ‘ A100 ‘ L40 ‘ L20 ‘ H100 H20
FlashAttention2 1.00 1.00 1.00 1.00 1.00 1.00 1.00
FlashAttention3 X X X X X 1.37 1.57

FlashAttention3 (fp8) X X X X X 2.63 3.06
SageAttention] 1.97 1.96 1.37 1.45 1.24 1.53 1.52
SageAttention2 X 2.93 X 2.60 2.46 2.61 3.12

Table 10. An accuracy example on real tensors of CogvideoX model with or without smoothing V.

SmoothV | CosSimt | RelativeL1| | RMSE |

X 98.25% 0.1980 0.2387
v 99.75% 0.0406 0.0773

A.3. Smoothing V

As shown in Fig. this strategy could enhance the accuracy of FP22 for values in PV for the following reasons: Each
row of P spans a value range from O to 1, and each column of V' in some models consistently features channel-wise biases
that are exclusively positive or negative, for instance, ranging between 8 and 9 in CogvideoX. Consequently, the values
of PV could be quite large. However, the floating-point number representation range is not uniform—it is denser near

zero. Therefore, by subtracting the mean V,,, along the channel dimension from V, the values of PV will be closer to
zero, resulting in a higher representational precision (see Fig. [I7]for a visual demonstration). Additionally, to maintain

the correctness of the attention computation, it is only necessary to add V/,, to the final calculation of O: O = O + V,,.
This is because the sum of each row of the P matrix equals 1, so PV,,, = V,,,. In other words, this method decomposes V'

into two parts: V,,, and V. For V, it centers the values of each column around zero, which leads to the dot product result
between a row from the quantized P matrix and a column from the quantized V' matrix being closer to zero. This makes the

representation of FP22 nge accurate. Meanwhile, V,,, is retained in FP16 and is added to O at the end without causing a
loss of precision for the V,,, part.
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Full-Precision
SageAtin2-8b

FlashAttention3
(fp8)

Full-Precision

SageAttn2-8b

FlashAttention3
(fp8)
(Il BN EN BN BN BN BN I I I I I N

Figure 9. A comparison example using SageAttn2-8b and FlashAttention3 on Mochi and HunyuanvVideo.

A.4. Experiment of Smoothing V

Table [T0] shows the attention accuracy on real tensors sampled from CogvideoX with and without smoothing V. It
demonstrates that smoothing V' could improve the accuracy of SageAttention2 when quantizing @, K to INT4 and
P V' to FPS. We find that smoothing V is generally effective for diffusion models (]Zheng et al. |,|2023|; |2024b|;|a|; |2025|; |Zhao|

et al.L 2024}, 20252} Wang et al., 2024).

A.5. Theoretical Analysis of Smoothing

In this section, we analyze the benefit of smoothing from a theoretical perspective. Let X € RY*9 be N activation tokens
of dimension d. Following (Dettmers et al.,[2023)), we suppose that an activation token follows an Gaussian distribution
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RTX4090, (Head dim = 64, causal = False) RTX4090, (Head dim = 64, causal = True)

Il Torch EX1 FlashAttn2 3 SageAttn2-8b 800 N Torch [X1 FlashAttn2  [C=] SageAttn2-8b

B xformers EZA SageAttnl B SageAttn2-4b B xformers =20 SageAttnl B SageAttn2-4b
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Speed (TOPS)

200

Sequence Length Sequence Length

Figure 10. Speed comparison between SageAttention2 and baselines (RTX4090, headdim=64).

L20, (Head dim = 64, causal = False) L20, (Head dim = 64, causal = True)
Il Torch EX FlashAttn2 3 SageAttn2-8b Il Torch X3 FlashAttn2  [X1 SageAttn2-8b
400 B xformers EZA SageAttnl B SageAttn2-4b B xformers =20 SageAttnl B SageAttn2-4b

Speed (TOPS)

Sequence Length Sequence Length

Figure 11. Speed comparison between SageAttention2 and baselines (L20, headdim=64).

L20, (Head dim = 128, causal = False) L20, (Head dim = 128, causal = True)

Torch EX FlashAttn2 3 SageAttn2-8b Il Torch X3 FlashAttn2 [ SageAttn2-8b
xformers ~ EZA SageAttnl Il SageAttn2-4b B xformers  [EZ SageAttnl I SageAttn2-4b

Speed (TOPS)

Sequence Length Sequence Length

Figure 12. Speed comparison between SageAttention2 and baselines (L20, headdim=128).

H100, Head Dim = 64, causal = False H100, Head Dim = 64, causal = True

B Xformers Z3 SageAttentionl B FlashAttn3-fp8 B Xformers =2 SageAttentionl B FlashAttn3-fp8
K= FlashAttn2 [ FlashAttn3-fpl6 @B SageAttn2-8b X1 FlashAttn2 X FlashAttn3-fpl6 BB SageAttn2-8b

Speed (TOPS)

N wul ~ g

(6, o (6,1 o
o o o o o

K K
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Figure 13. Speed comparison between SageAttention2 and baselines (H100, headdim=64).

N (p,3?%), where o = (1, pi2, - - -, pq) and $? is a diagonal matrix with 2 = diag(c?, 03, ..., 07). Further, we suppose
that different token X is i.i.d. sampled from the same distribution.

Suppose the absolute maximum value in a quantization group (Hu et al., 2025} [Zhang et al.,[2025j) is M, and the bit width
is b, then there are 2° quantization levels. Under the round-to-nearest strategy, the expected quantization error is % . 22—1\1,/[
which is proportional to the maximum absolute value in the quantization group. So a smaller absolute maximum value leads

to smaller quantization error.
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H100, Head Dim = 128, causal = False H100, Head Dim = 128, causal = True

B Xformers Z SageAttentionl I FlashAttn3-fp8 B Xformers =2 SageAttentionl B FlashAttn3-fp8
K= FlashAttn2 3 FlashAttn3-fpl6 [ SageAttn2-8b X3 FlashAttn2 X1 FlashAttn3-fpl6  BEEE SageAttn2-8b

Speed (TOPS)

Sequence Length Sequence Length

Figure 14. Speed comparison between SageAttention2 and baselines (H100, headdim=128).

H20, Head Dim = 64, causal = False H20, Head Dim = 64, causal = True

I Xformers =21 SageAttentionl BB FlashAttn3-fp8 B Xformers Z0 SageAttentionl Bl FlashAttn3-fp8
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e
el
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& o
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Figure 15. Speed comparison between SageAttention?2 and baselines (H20, headdim=64).

H20, Head Dim = 128, causal = False H20, Head Dim = 128, causal = True

I Xformers 21 SageAttentionl BB FlashAttn3-fp8 B Xformers Z SageAttentionl B FlashAttn3-fp8
X FlashAttn2 X1 FlashAttn3-fpl6 EES SageAttn2-8b 400] KX FlashAttn2 3 FlashAttn3-fpl6 BB SageAttn2-8b

Speed (TOPS)

Sequence Length Sequence Length
Figure 16. Speed comparison between SageAttention?2 and baselines (H20, headdim=128).
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Figure 17. An example of dot product precison a row of P and a column of V presented by FP22 data type.

After smoothing, we have:
1
Y =X — N kE,lej 3)
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and Y;; also follows a Gaussian distribution. The mean and variance of Y;; can be calculated as follows:

ZMJ —0 4)

1N
N ZE[XkJ

k=1
Z Var|

k=1,k#i

_1)\2
Xk]} V=L + (N — 1)iaz =07 ®)

N
Var[Y;;] = Var[—— IE 7

So Y;; has a smaller mean and variance compared to X;;. Following the property of Gaussian distribution, we have:
P(|Y;] <€) > P(|Xi;| >€), Ve >0 (6)

So the distribution of X; is more concentrated toward 0 after smoothing. Then we know that

P(absmax(Y;

u::]g

d
P(|Y;| <€) > [[ P(1Xi;] > €) = P(absmax(X;) < ¢) (7)
j=1

So this makes the distribution of absolute max value in a token more concentrated towards 0, leading to smaller quantization
error.

A.6. Per-Thread Quantization Formulation

R\C 0 1 2 3 4 5 6 7
0 TO: {c0, c1} T1: {0, c1} T2: {c0, c1} T3: {c0, c1}
1 T4: {c0, c1} T5: {0, c1} T6: {c0, c1} T7: {c0, c1}
2 »

U=
———
R
-—
i T28: {c0, c1} T29: {c0, c1} T30: {c0, ci} T31: {c0, c1}
8 TO: {c2, c3} T1: {c2,c3} T2: {c2,c3} T3: {c2,c3]
H T4: {c2, 3} T5: {c2, c3} T6: {c2, c3} T7: {c2,c3]}
10 r
J oo oy,
e
S
-
15 T28: {c2, 3} T29: {c2, c3} T30: {c2, c3} T31:4c2, c3}

Figure 18. Memory layout of INT4/INTS tensor core for accumulator matrix C' and D in D = A * B + C among 32 threads (TO ~ T31)
in a warp. C' and D is of shape 16x8. Each thread only holds 4 out of the 128 elements.

To further clarify the per-thread quantization, we first introduce the INT4 MMA instruction of Tensor Core, and then give
the formulation of per-thread quantization.

Tensor cores, first introduced in NVIDIA’s Volta architecture, are specialized units designed for efficient matrix-multiply-
and-accumulate (MMA) operations. Their usage significantly enhances computational efficiency and performance in Al
and high-performance computing (HPC) workloads. Tensor cores compute small tiles of MMA operations, specifically
D = A x B+ C on a warp (32 contiguous threads) basis. Each thread in the warp holds a fragment of input matrices and
will get a fragment of output matrix as a computation result. The INT4 mma .m16n8k 64 tensor core operation computes
the product of a 16 x 64 INT4 matrix A and a 64 x 8 INT4 matrix B, both stored in registers. It accumulates the result
into a 16 x 8 INT32 matrix C, also stored in registers, and returns the final product matrix D, which has the same shape
(16 x 8), data type (INT32), and storage location (registers). Each thread holds only 3—12 of the input and output data. Fig.
extracted from the PTX document (NVIDIA)) shows the memory layout of matrix C' and D among 32 threads in a warp.
Each thread only holds 4 out of the 128 result elements.
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15q =|(n*8x Cw/bq)J

ailisa] ={8 x (n%8) + | (n * %:)J . %}, n e [0, N]
6Q [itsq] :max(| Q’[qu [Zéq]] |)
Ot - [284)
i51€ = |_(n * 4/bk)J (8)

knlisk] ={8 x (n%8) + [n/by| * by }U
{8 x (n%8) + 1+ |n/bi] xbr}, n €[0,N]
_ max(| K[kn[ist]] |)

5[{ [iék] - 7
K [kn[ist]] = {IMJ

By ensuring results held by each thread share a common dequantization scale (belong to the same quantization group),
we can avoid the overhead associated with per-token quantization. Leveraging this observation, we design per-thread
quantization as formulated in Eq. [8| where c,, is the count of GPU Warps, b, and by, are the block size of @), K, and n is the
token index of @), K. For typical block size of b, = 128, b;, = 64 and warp number c,, = 4 (as used in FlashAttention2),
each warp processes a tile of 32 query tokens and 64 key tokens. Query tokens ¢,8 +¢,16 + 4,24 + ¢ (: = 0,1,--- ,7) can
be made into one quantization group and key tokens j,1 + 7,8 + 5,9+ 4,--- ,56 + 7,57+ 5 ( = 0,1, 2, 3) can be made
into one quantization group, as visualized in Fig. 4] This design aligns with the memory layout of output matrix D of tensor
core shown in Fig. ensuring that each thread only needs one () scale and one K scale for dequantization.

As a result, this approach creates 32 quantization groups for @) (8 for each of the 4 warps) and 4 quantization groups for K
in a 128x64 block, providing 32x and 4 x finer granularity compared to per-block quantization for query tokens and key
tokens, respectively. Table[6]and Table[T5]show the accuracy gains by using per-thread quantization. Per-thread quantization
achieves accuracy that closely matches per-token quantization, without introducing any kernel speed degradation (see

Table [18]and[19).

A.7. Datasets and Metrics in Experiments

Datasets. Text-to-text models are evaluated on four zero-shot tasks: WikiText (Merity et al.,[2022)) to assess the model’s
prediction confidence, LAMBADA (Paperno et al, [2016)) evaluate contextual understanding, MMLU (Hendrycks et al.|
2021b) for measuring knowledge across various subjects, and Longbench (Bai et al.||2024)) for comprehensive assessment
of long context understanding capabilities. Text-to-video models are evaluated using the open-sora (Zheng et al., |2024c)
prompt sets. Text-to-image models are assessed on MJHQ-30K (Li et al., 2024). TIMM is evaluated on on three image
datasets: ImageNet (Deng et al.,[2009), ImageNet-Sketch (Sketch) (Wang et al.,|2019)), and ImageNet-Rendition (ImageNet-
r) (Hendrycks et al.,[2021a).

End-to-end metrics. For text-to-text models, we use perplexity (ppl.) (Jelinek et al.,|1977) for WikiText, Accuracy (Acc.)
for LAMBADA and MMLU, and Longbench score (Bai et al., 2024). For text-to-video models, following [Zhao et al.
(2025b), we evaluate the quality of generated videos on five metrics: CLIPSIM and CLIP-Temp (CLIP-T) (Liu et al., [2024)
to measure the text-video alignment; (VQA-a) and (VQA-t) to assess the video aesthetic and technical quality, respectively;
and Flow-score (FScore) for temporal consistency (Wu et al.l [2023). For text-to-image models, generated images are
compared with the images in MJHQ-30K dataset in three aspects: FID (Heusel et al.,|2017) and sFID (Salimans et al.,[2016)
for fidelity evaluation, Clipscore (CLIP) (Hessel et al.,|2021)) for text-image alignment, and ImageReward (IR) (Xu et al.,
2023)) for human preference. For TIMM, we use classification accuracy.

Accuracy metrics. We use three metrics to assess the accuracy of quantized attention output O’ compared to atten-
tion output in full-precision O: First, we flatten O’ and O into vectors in the shape of 1 x n. Then, Cosine similar-
ity: CosSim = Y, 00'//> 02,/ 0’2, Relative L1 distance: L1 = > |0 — 0’|/ > |O|, Root mean square error:
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RMSE = /(1/n)>(0 — O0")2.

A.8. Kernel Benchmark Setup

We benchmark kernel speed with a batch size of 4 and 32 attention heads across a variety of sequence lengths. Benchmarks
are conducted using head dimensions of 64 and 128, both with and without Causal Mask (Vaswani, 2017). To generate input
tensors for benchmarking, we follow standard practices adopted in prior works such as FlashAttention (Dao et al., 2022).
For floating-point data types, inputs are drawn from a Gaussian distribution with mean 0 and standard deviation 1, while for
integer data types, inputs are uniformly sampled within the representation range:[-128, 127] for INT8 and [-8, 7] for INT4.

Table 11. End-to-end metrics on L1ama2 (7B).

Model Attention WikiText (Ppl.) | | Lambda (Acc.) T | MMLU (Acc.) 1
Full-Precision 5.823 0.886 0.439
HadmdAttn 6.771 0.860 0.360

Llama? SmoothAttn 6.717 0.867 0.392
SageAttention 5.824 0.887 0.439
SageAttn2-4b 5.912 0.881 0.428
SageAttn2-8b 5.828 0.886 0.438

Table 12. End-to-end metrics on CogvideoX (2B).

Model Attention CLIPSIM T | CLIP-TT | VQA-at | VQA-t1 | FScore T
Full-Precision 0.1836 0.9975 77.605 75.360 3.006
HadmdAttn 0.1742 0.9877 29.780 23.985 0.499
CogvideoX SmoothAttn 0.1741 0.9870 41.703 47.043 0.624
(2B) SageAttention 0.1833 0.9976 76.997 71.360 2.988
SageAttn2-4b 0.1821 0.9973 77.368 74.906 2.603
SageAttn2-8b 0.1829 0.9977 76.532 74.281 2.941

Table 13. End-to-end metrics on an image classification model.

Model Attention ImageNet (Acc.) 1 Sketch (Acc.) T ImageNet-r (Acc.) 1
Full-Precision 84.79% 45.32% 59.55%
HadmdAttn 84.50% 44.89% 58.80%

TTMM SmoothAttn 84.40% 44.68% 58.73%
SageAttention 84.74% 45.38% 59.95%
SageAttn2-4b 86.67 % 45.24 % 59.29 %
SageAttn2-8b 84.79 % 45.39% 59.57 %

Table 14. Comparison with FlashAttention3(fp8) on Llama—-3-262k (8B) on InfiniBench (Zhang et al.| [2024) (H100 GPU).

Attention ‘ Eng.Sum ‘ Eng.QA ‘ Eng.MC ‘ Code.Debug ‘ Math.Find ‘ Retr.PassKey ‘ Retr.Num ‘ Retr.KV ‘ Avg.
Full-Precision 18.03 12.5 64.19 24.37 18.29 100.0 100.0 7.0 43.05
FlashAttn3-fp8| 19.03 11.73 55.90 22.59 22.57 100.0 100.0 0.4 41.53
SageAttention2| 18.17 12.46 64.19 25.63 17.43 100.0 100.0 6.6 43.06

Table 15. Worst accuracy across all layers of CogvideoX using different quantization granularities.

Method CosSim? | RelativeL1| | RMSE |
Per-token 96.76% 0.1916 0.0775
Per-thread 96.72% 0.1932 0.0776
Per-block 90.68% 0.3615 0.1490
Per-tensor 85.85% 0.4687 0.2261
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NIAH Llama-3-8B-262k w/ SageAttn2

NIAH Llama-3-8B-262k

NIAH Llama-3-8B-262k w/ FlashAttn3-fp8
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Figure 19. Needle In A Haystack results on L1ama-3-262k (8B).
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Figure 20. An example of quantized value distribution of () before and after smoothing Q).

Table 16. Worst accuracy using different data types of (15, V') across all layers of a CogvideoX model, where (@, K) are smoothed.
QK | P,V | CosSimt | RelativeL1) | RMSE|

INTS8 19.52% 0.9579 1.4483
INT4 E5M2 94.94% 0.2327 0.2361
E4M3 96.70 % 0.1956 0.0779
FP16 96.76% 0.1916 0.0775

Table 17. Worst accuracy across all layers of CogvideoX using different smooth methods.

Method | CosSim? | RelativeL1| | RMSE |
None 4.83% 0.9979 0.7784
HadmdAttn 4.85% 0.9978 0.7785
SmoothAttn 64.49% 0.9262 0.7204
Smooth K 90.86% 0.3565 0.1464
Smooth Q 93.10% 0.2989 0.2195
SageAttn2-4b 96.71% 0.1956 0.0779

A.9. Additional Experiments and Analysis

Additional Results. Table[TT] [T2]and [T3]show results of SageAttention2 and other baselines on Llama2 (7B),
CogvideoX (2B) and TIMM.

Results of Super-Long Context. We further conduct experiments on super-long context using L1ama-3-262k (8Bﬂ on

1|https ://huggingface.co/gradientai/Llama-3-8B-Instruct-2 62k|
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Table 18. Overhead of per-thread quantization, smoothing Q, and Table 19. Comparison of different quantization granularities mea-
two-level accumulation techniques measured on L20 GPU. sured on L20 GPU, with QK " in INT4 and PV in FP8.
Method | TOPS Granularity | TOPS
Attention (INT4 + FP8) 284 Per-tensor 286
+ Per-thread quantization 283 Per-block 284
+ Two-level accumulation 283 Per-thread 283
+ Smoothing Q 273 Per-token 268

InfiniBench (Zhang et al.l 2024) and Needle-in-a-Haystack (NIAH) (Kamradt, 2023}, with sequence lengths reaching up to
262k tokens on an H100 GPU. Since Hopper GPUs lack native INT4 tensor core support, we use SageAttention2-8b
for this evaluation. We compare it against FlashAttention3(fp8), ensuring both methods operate under the same bit width.
Results are shown in Table [I4] and Fig[I9] SageAttention2 maintains model performance even under super-long
context, while FlashAttention3(fp8) suffers from end-to-end accuracy degradation.

Results of Audio Tasks. We evaluate Qwen2-Audio (7b) (Chu et al.,[2024)), a speech-to-text model, on the ASR task
using the Librispeech (Panayotov et al., [2015)) test split and measured its performance with the WER metric (Word Error
Rate). As shown in Table[20] SageAttention2 consistently outperforms the baselines, highlighting its effectiveness in
audio-related models and benchmarks.

Table 20. End-to-end metrics on Qwen2-Audio (7B).

Model Attention Test-Clean | | Test-Dev |
Full-Precision 1.74 4.01
HadmdAttn 1.77 4.05

owen2-Audio SmoothAttn 1.76 4.01
SageAttention 1.74 4.02
SageAttn2-4b 1.73 3.99
SageAttn2-8b 1.72 4.03
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