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ABSTRACT

We present LONGLIVE, a frame-level autoregressive (AR) framework for real-
time and interactive long video generation. Long video generation presents chal-
lenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can
produce high-quality videos but suffer from low efficiency due to bidirectional
attention. Causal attention AR models support KV caching for faster inference,
but often degrade in quality on long videos due to memory challenges during
long-video training. In addition, beyond static prompt-based generation, interac-
tive capabilities, such as streaming prompt inputs, are critical for dynamic content
creation, enabling users to guide narratives in real time. This interactive require-
ment significantly increases complexity, especially in ensuring visual consistency
and semantic coherence during prompt transitions. To address these challenges,
LONGLIVE adopts a causal, frame-level AR design that integrates a KV-recache
mechanism that refreshes cached states with new prompts for smooth, adherent
switches; streaming long tuning to enable long video training and to align train-
ing and inference (train-long–test-long); and short window attention paired with
a frame-level attention sink, shorten as frame sink, preserving long-range con-
sistency while enabling faster generation. With these key designs, LONGLIVE
fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just
32 GPU-days. At inference, LONGLIVE sustains 20.7 FPS on a single NVIDIA
H100, achieves strong performance on VBench in both short and long videos.
LONGLIVE supports up to 240-second videos on a single H100 GPU. LONGLIVE
further supports INT8-quantized inference with only marginal quality loss.
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Figure 1: The workflow of LONGLIVE. LONGLIVE accepts sequential user prompts and gener-
ates corresponding videos in real time, enabling user-guided long video generation. The 60-second
sequence shown is an example, LONGLIVE supports up to 240-second videos in a single H100 GPU.

1 INTRODUCTION

Long video generation is essential for advancing creative, educational, and cinematic applications.
It enables coherent storytelling, richer scene development, and more complex temporal dynamics
than short clips can provide. However, static prompt-based generation limits adaptability once the
process has commenced. It is difficult for users to conceive highly detailed, long-form prompts in
a single step. Beyond simply producing long videos, the ability to interact alongside the genera-
tion process, such as streaming prompt inputs during runtime, opens new possibilities for adaptive
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Figure 2: The framework of LONGLIVE. (Left) LONGLIVE processes sequential user prompts and
generates a corresponding long video using efficient short window attention and frame sink. Com-
pared to the normal attention window of 5s, our short window only uses half the size, with the help
of frame sink, which maintains the long-range consistency. (Right) To maintain consistency when
the prompt switches, LONGLIVE employs a KV-recache technique that updates cached key–value
states by combining previous videos with new prompt embeddings through cross-attention layers.

content creation. This interactive paradigm enables users to guide narratives, adjust visual styles, or
introduce new elements on the fly. Therefore, interaction makes long video generation controllable.

Interactive long video generation poses difficulties in both quality and efficiency. For the quality
perspective, it is difficult to maintain smooth, consistent, and coherent transitions when switching
between user prompts during generation. Even subtle mismatches in visual style, motion continuity,
or scene layout can disrupt the narrative flow and reduce the overall realism of the video. For the
efficiency perspective, the computational and memory demands scale rapidly with video length. For
example, generating a 180-second video with the Wan-2.1 (Wan et al., 2025) model requires pro-
cessing over one million tokens, which is computationally prohibitive. In addition, in an interactive
setting, prolonged user waiting times severely degrade the overall user experience.

Existing video generation methods have limitations in long video generation. For diffusion-based
video generation models (Wan et al., 2025; Kong et al., 2024; Yang et al., 2025; Wei et al., 2025;
OpenAI, 2024; Kuaishou, 2024) and diffusion-forcing models (Chen et al., 2024a; 2025a; Zhang &
Agrawala, 2025), although they can produce high-quality short clips, their reliance on bidirectional
attention makes inference inefficient. The bidirectional attention prevents KV (key–value) cache
technique, leading to redundant computation and prohibitive latency for long videos. For example,
SkyReels-V2 (Chen et al., 2025a) requires approximately 50 minutes on an H100 GPU to generate a
60-second video. For AR models with causal attention, they can leverage cached KV states for faster
inference, but they often exhibit degraded quality when generating long videos. Due to the high
cost of directly training on long videos, existing AR models (Huang et al., 2025; Teng et al., 2025)
typically adopt a train-short-test-long strategy. Consequently, the quality gradually degrades as the
video length increases. In the interactive setting involving prompt switching, error accumulation,
and loss of temporal coherence over time further result in visual artifacts and inconsistency.

In this paper, we propose LONGLIVE, a real-time interactive long video generation framework, as
illustrated in Figure 1. LONGLIVE is a causal attention, frame-level AR video generation model,
enabling it to inherit the KV cache mechanism for efficient inference. Our key design is KV-recache,
as shown in Figure 2, which updates cached states by incorporating new prompt embeddings. This
technique ensures both smoothness and prompt adherence across prompt switches in interactive
settings. In addition, for efficient fine-tuning, we present a streaming long tuning strategy that
preserves consistency between training and inference (train-long-test-long), to address the degrada-
tion commonly observed in long-video AR generation. For efficient inference, we introduce short
window attention combined with a frame-level attention sink (abbreviated as frame sink), which
significantly accelerates inference while preserving performance.
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In our experiments, LONGLIVE delivers both high efficiency and strong quality for interactive long-
video generation. In terms of training efficiency, we fine-tune a 1.3B-parameter model to produce
high-quality minute-long videos in only 32 GPU-days. Training on long videos is essential: it
not only improves long-horizon fidelity but also enables efficient inference strategies that markedly
accelerate decoding. In terms of inference efficiency, LONGLIVE sustains 20.7 FPS on a single
NVIDIA H100, supporting real-time interaction and outperforming state-of-the-art approaches in
throughput. In terms of quality, our framework achieves strong VBench scores on both short- and
long-video settings. LONGLIVE scales to produce videos up to 240 seconds, on a single H100
GPU, while maintaining high visual fidelity and temporal coherence, effectively handling long
video generation with little degradation. Moreover, we further enable INT8-quantized inference
in LONGLIVE, with only marginal quality loss, as shown in Appendix H.

2 RELATED WORK

We present core related work here and provide extended discussion with details in the appendix D.
A growing number of works (Chen et al., 2024a; Song et al., 2025; Mao et al., 2025; Yuan et al.,
2025; Zhang & Agrawala, 2025; Gao et al., 2025; Henschel et al., 2025) integrate diffusion model-
ing with AR prediction, an intermediate paradigm between purely diffusion-based approaches and
purely AR approaches. SkyReels-V2 (Chen et al., 2025a) couples diffusion forcing with a film-
structure planner and multimodal controls. Recent efforts (Yin et al., 2025; Huang et al., 2025; Gu
et al., 2025; Teng et al., 2025) have advanced causal AR-based models for long video generation.
StreamDiT (Kodaira et al., 2025) trains a diffusion model with window attention, but has potential
drift or detail loss over long streams. AAPT (Lin et al., 2025) transforms a pre-trained latent video
diffusion model into a 1-NFE, real-time streaming generator using adversarial post-training and sup-
ports interactive control via camera and human pose, whereas LongLive instead uses diffusion-based
distribution-matching and train-long-test-long distillation for text-driven, multi-minute generation
without GAN post-training. Most recently, Self-forcing (Huang et al., 2025) addresses the train–test
gap in AR video diffusion by simulating inference conditions during training, rolling out generation
with KV cache, and conditioning on model outputs. MAGI-1 (Teng et al., 2025) scales AR video
generation to large models and datasets through chunk-wise prediction, but its prompt switching
requires manual adjustment of KV-cache windows at different steps.

3 METHOD

3.1 KV RECACHE

Causal AR models naturally support interactive prompt switching, but this ability is limited. Dis-
carding all prior KV cache at the switch improves adherence to the new prompt, yet it introduces
abrupt visual changes and temporal discontinuities, as shown in Figure 3 (a). Conversely, retain-
ing the entire KV cache often prevents the model from following new prompts, or adapting to new
prompts after a delay, because the cache is saturated with information from the previous prompt, as
shown in Figure 3 (b). Based on this observation, we first diagnose why prompt switching is hard
for streaming video generators. In DiT (Peebles & Xie, 2023) architectures, cross-attention and
self-attention layers alternate. During generation, large amounts of information from the previous
prompt are repeatedly injected through cross-attention layers and then propagated forward by self-
attention, so that this prompt signal is written into the running KV cache. Consequently, when the
prompt is switched, the model still carries residual semantics of the old prompt in the cache. And in
certain instances, this results in inconsistent adherence to the new prompt.

To address this issue, we introduce KV recache. At a prompt switch boundary, we recompute
the KV cache using the already generated frames together with the new prompt, effectively
erasing residual information from the previous prompt while keeping the motion and visual cues that
guarantee temporal continuity. Concretely, at the first post-switch frame, we encode the generated
video prefix as the visual context and pair it with the next prompt to rebuild the cache; subsequent
steps then proceed normally using this refreshed cache. In this way, the cache retains the visual
state of the ongoing video, but the prompt semantics now cleanly correspond to the active prompt,
enabling improved semantic alignment without visual discontinuities.
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Figure 3: Prompt switching under different KV-cache strategies. (a) w/o KV cache: New prompt
takes effect, but transitions are abrupt and visuals are inconsistent. (b) w/ KV cache: Smooth
continuity, but the new prompt is not followed (lag or ignore). (c) KV re-cache: Smooth, visually
consistent transitions with full new-prompt compliance.

To ensure train–inference alignment, we integrate the recaching operation into our training loop
(Figure 4). When a training iteration contains a prompt switch, we (i) perform recache once, (ii)
continue rollout with the updated cache, and (iii) in distillation, feed the teacher model with the new
prompt as well, so the student is supervised under the exact post-switch condition it will face at
inference. This training scheme further removes the train-inference mismatch. Models trained with
recache therefore exhibit both strong temporal smoothness and fast semantic convergence to the next
prompt at inference, as illustrated in Figure 3 (c). In terms of efficiency, recaching is invoked only
once per training sample. The added cost is thus minimal; for a 10s video with a single switch,
recaching introduces only about 6% extra time cost compared to no recaching usage.

Moreover, although training includes only one prompt switch per long sequence, this mechanism
generalizes well during inference. The model supports interactive inference with multiple prompt
switches by performing a single recaching step at each boundary. Given n + 1 prompts and n
switch points, the generator rolls out causally, applies KV recaching at each switch, and continues
producing frames semantically aligned with the active prompt while maintaining smooth transitions.
A detailed illustration of this procedure is outlined in Appendix Algorithm 2.

3.2 STREAMING LONG TUNING

LongLive builds upon causal frame-level AR video generators. These models are trained only on
short clips. At inference, they produce long videos via a rolling, fixed-length context window that
repeatedly feeds the model its own outputs. As the rollout continues, small prediction errors accu-
mulate and the context inside the window becomes progressively noisier, so the model conditions on
a more degraded self-generated history. Since such long-range, self-generated contexts were absent
in training, this train-short–test-long regime induces content drift and breaks consistency over long
horizons. To address this mismatch, we propose a train-long–test-long strategy. During training, the
model synthesizes long sequences by conditioning on its own imperfect predictions, with supervi-
sion applied throughout the entire rollout. This exposes the model to extended, self-generated, and
progressively degraded frames already in training, aligning training with inference, mitigating error
accumulation to improve fidelity and consistency.

Self-supervision (Huang et al., 2025) methods are able to avoid collecting a large long-video dataset.
It requires no real video data: a pretrained teacher provides synthetic supervision that guides the
student to match the teacher’s output distribution. However, two practical challenges arise in this
method. First, the teacher itself is typically trained for short clips and thus cannot reliably supervise
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(c) Streaming Long Tuning
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Figure 4: The streaming long tuning pipeline. (a) Short tuning: only 5s clips are supervised, like
Self-Forcing (Huang et al., 2025), leading to quality loss on long videos. (b) Naive long tuning:
naively scaling to long sequences causes incorrect teacher supervision and OOM. (c) Streaming
long tuning: our approach trains on long sequences by reusing the historical KV cache each iteration
to generate the next 5s clip, then supervising it with the teacher.

an entire long sequence end-to-end. Second, naı̈vely unrolling and backpropagating through long
sequences easily triggers out-of-memory (OOM) issues and is computationally wasteful.

To address these two challenges, we introduce a streaming long tuning procedure (Figure 4) that
learns on long videos while keeping memory and supervision local and reliable. In the first itera-
tion, the generator samples a short video clip (e.g., 5s) from scratch, and we apply DMD (Yin et al.,
2024b;a) on this short clip. In subsequent iterations, the generator extends the short clip from the
previous iteration, and produce the next short clip conditioned on the previously stored KV cache,
and we again apply DMD only to this newly generated clip. We repeat this rolling extension until
the video reaches a preset maximum length, then fetch a new batch and restart from scratch. This
schedule mirrors the inference-time rollout and thus reduces train–test inconsistency. At each itera-
tion, the teacher provides reliable supervision for the current short clip (where it is competent), and
the collection of per-clip supervisions provides global guidance for the full sequence. In practice,
we detach the already generated frames so they act as a constant causal context. The gradients are
computed only for the current generated clip. Consequently, memory usage is limited by the clip
duration, avoiding OOM. A detailed illustration of this process appears in Appendix Algorighm 1.

Our study reveals that tuning on long videos is not only critical for the performance of long video
generation, but also a prerequisite for efficient long inference strategies. These strategies include
window attention and frame sink, which significantly improve inference speed.

3.3 EFFICIENT LONG INFERENCE

Short-window Attention In long video generation, the cost of dense causal attention grows
quadratically with the sequence length, making naive inference prohibitive on long videos. Mo-
tivated by evidence of temporal locality in video generation: nearby frames contribute more to
predicting the next one (Gu et al., 2025; Zhang & Agrawala, 2025), we adopt local window atten-
tion during inference and during streaming tuning. Limiting attention to a fixed temporal window
reduces both computation and memory. Attention complexity becomes proportional to the window
size rather than the growing sequence length, and the KV cache needed per layer scales with the
window rather than the total video. However, window size introduces a quality–efficiency trade-off.
We generate 20-second videos using different attention window settings, as shown in the first and
second rows in Figure 5. Larger windows retain more temporal context and yield stronger long-
range consistency, but incur higher latency and memory. Shrinking the window improves efficiency
at the cost of consistency, since distant but critical cues disappear from the receptive field.
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Figure 5: Comparison in a 20-second generated video of long window attention (Window 21 latent
frames), short-window attention (Window 12), and short-window + frame-sink (Window 9 + Sink 3).
Shorter windows boost efficiency but weaken long-range consistency; adding a frame-sink restores
consistency while keeping the efficiency gains.

Frame Sink Prior work reported that attention-sink tokens alone do not prevent long-rollout col-
lapse in video models (Huang et al., 2025). In contrast, we empirically find that attention sinks
become effective once long-rollout collapse is addressed via streaming long tuning. Serving as per-
sistent global anchors, attention sinks markedly improve long-range temporal consistency, thereby
mitigating the quality–efficiency trade-off when using short-window attention. As shown in the third
row of Figure 5, adding a frame-sink greatly boosts long-range consistency under a short window
while maintaining low cost. Concretely, we fix the first frame chunk of the video as global sink
tokens; these tokens are permanently retained in the KV cache and concatenated to every attention
block’s keys and values, making them globally attendable even with local-window attention. The
remainder of the KV cache uses a short rolling window and is evicted normally. In experiments, a
short-window with a frame-sink preserves high long-video quality while reducing end-to-end com-
pute time by 28% and peak memory by 17% on a single H100 GPU.

Consistency between Training and Inference We integrate short-window attention and the frame
sink into streaming tuning to align train-test behavior and improve efficiency. Let the local attention
window be W frames and the supervised clip length (from the teacher) be T frames. At each
training step, we keep (i) the KV cache from the last W frames of the preceding context without
gradients and (ii) the full KV cache of T frames for the current supervised clip with gradients. We
also maintain S sink tokens (the first two frames) that are never evicted and are concatenated to
every layer’s KV so they remain globally attendable. Consequently, the resident KV size per step is
O(W+T+S) and does not grow with total video length, preventing OOM on very long rollouts. The
sinks stabilize identity and scene semantics, allowing us to train with the same shortened window
used at inference. For KV re-caching, we rebuild the cache from only the most recent W generated
frames, which refreshes semantics while preserving local continuity and saves the re-caching cost.

4 EXPERIMENT

Implementation We build LONGLIVE on Wan2.1-T2V-1.3B (Wan et al., 2025), which produces
5s clips at 16 FPS and 832 × 480 resolution. We first adapt the pretrained model into a few-step
causal-attention model using a self-forcing (Huang et al., 2025) improved DMD pipeline (DMD +
DMD2 few-step) on VidProM (Wang & Yang, 2024) data, while enabling our short-window atten-
tion and the frame sink (we keep all tokens from the first frame chunk as sink tokens). We then
perform streaming long tuning on a 60s sequence that contains a single prompt switch. To con-
struct this switch-prompt dataset, we prompt Qwen2-72B-Instruct (Yang et al., 2024a) to generate
follow-up prompts conditioned on each original VidProM prompt. During training, each iteration
continues the model’s own rollout by generating the next 5s video clip until a maximum length of
60s is reached; each batch includes exactly one prompt switch with the switch time sampled uni-
formly from 5s to 55s. When a switch occurs, we apply KV-recache. During streaming long tuning,
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Table 1: Comparison with relevant baselines. We compare LONGLIVE with representative open-
source video generation models of similar parameter sizes and resolutions. Evaluation scores are
calculated on the standard prompt suite of VBench (Huang et al., 2024a). FPS - a single H100 GPU.

Model #Params Resolution Throughput
(FPS) ↑

Evaluation scores ↑
Total Quality Semantic

Diffusion models
LTX-Video (HaCohen et al., 2025) 1.9B 768×512 8.98 80.00 82.30 70.79
Wan2.1 (Wan et al., 2025) 1.3B 832×480 0.78 84.26 85.30 80.09

Autoregressive models
SkyReels-V2 (Chen et al., 2025a) 1.3B 960×540 0.49 82.67 84.70 74.53
MAGI-1 (Teng et al., 2025) 4.5B 832×480 0.19 79.18 82.04 67.74
CausVid (Yin et al., 2025) 1.3B 832×480 17.0 81.20 84.05 69.80
NOVA (Deng et al., 2025) 0.6B 768×480 0.88 80.12 80.39 79.05
Pyramid Flow (Jin et al., 2025) 2B 640×384 6.7 81.72 84.74 69.62
Self Forcing, chunk-wise (Huang et al., 2025) 1.3B 832×480 17.0 84.31 85.07 81.28
Self Forcing, frame-wise (Huang et al., 2025) 1.3B 832×480 8.9 84.26 85.25 80.30

LONGLIVE 1.3B 832×480 20.7 84.34±0.52 85.72±1.07 79.62±2.73

Table 2: Interactive long video evaluation: Quality scores are reported on the whole 60s sequence.
CLIP scores are reported on 10s video segments with the same semantics (↑ higher is better).

Method Quality
Score ↑

CLIP Score ↑
0–10 s 10–20 s 20–30 s 30–40 s 40–50 s 50–60 s

SkyReels-V2 (Chen et al., 2025a) 79.85±0.92 21.34±1.98 23.15±1.85 23.54±2.21 17.95±1.46 20.12±0.97 19.25±0.97
Self-Forcing (Huang et al., 2025) 82.15±1.05 27.92±0.86 25.34±1.75 23.12±1.46 22.45±1.58 23.67±0.82 23.55±1.87
LONGLIVE 85.02±1.12 29.45±1.72 26.15±1.03 25.10±1.34 24.85±0.88 24.90±1.13 24.65±1.38

we also keep the same short-window attention and frame-sink settings. This training procedure
takes about 12 hours on 64 H100 GPUs. Notably, LONGLIVE supports any model capable of au-
toregressive rollout with a KV cache. We implement LONGLIVE on a linear-attention AR model,
SANA-Video (Chen et al., 2025b), achieving further acceleration on long-video generation.

4.1 SHORT VIDEO GENERATION

We first evaluate LONGLIVE’s short-video generation on VBench using their official prompts, and
compared it with relevant open-source video generation models of similar scale, including LTX-
Video (HaCohen et al., 2025), Wan2.1 (Wan et al., 2025), SkyReels-V2 (Chen et al., 2025a), MAGI-
1 (Teng et al., 2025), CausVid (Yin et al., 2025), NOVA (Deng et al., 2025), Pyramid Flow (Jin et al.,
2025), and Self-forcing (Huang et al., 2025). All scores are normalized using the same numerical
system with VBench. On 5-second clips, LONGLIVE matches the strongest baselines in total score,
demonstrating excellent quality and stability, as shown in Table 1. Benefiting from the short window
attention design, LONGLIVE is also the fastest among all the methods, reaching 20.7 FPS for real-
time inference. It shows that LONGLIVE does not degrade the short-clip generation capability.

4.2 LONG VIDEO GENERATION

We evaluate LONGLIVE’s single-prompt long-video generation on VBench-Long (Huang et al.,
2024b) using its official prompt set. For each prompt, we generate a 30-second video and split
it into clips according to the VBench-Long official scripts. We compare against three representative
open-source models: SkyReels-V2 (Chen et al., 2025a), FramePack (Zhang & Agrawala, 2025), and
Self-Forcing (Huang et al., 2025). Because FramePack is an I2V model, we first synthesize an initial
frame from the same text prompt and feed it to FramePack; other T2V models generate directly from
the prompt. We report the standard VBench-Long metrics for long-horizon quality and consistency
in Table 3. LONGLIVE achieve the state-of-the-art performance, while being the fastest.
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LongLive

SkyReels-V2

Self Forcing

0-10s 10-20s 20-30s 30-40s 40-50s 50-60s

0-10s: Medium close-up of the serene model in a white gown amid drifting sakura petals and soft pink smoke.

20-30s: A gentle breeze rises. The petals float softly in the air, creating a dreamy and ethereal atmosphere.

40-50s: Her fingers barely touching the delicate pink smoke, while a small bird flits in. 

10-20s: She slowly lifts her hand, fingertips grazing a petal/soft pink smoke

30-40s: She softly closes her eyes while holding the same poised gesture.

50-60s: the bird now perches on her outstretched finger; pink and cyan-blue smoke thickens and envelops the scene.

Figure 6: Qualitative comparison for interactive long video generation. LONGLIVE exhibits strong
prompt compliance, smooth transitions, and high long-range consistency while sustaining high
throughput. Compared to ours, SkyReels-V2 shows weaker long-range consistency, and Self-
Forcing faces quality degradation on longer videos.

Table 3: Single-prompt 30s long video evaluation
on VBench-Long.

Model Total
Score ↑

Quality
Score ↑

Semantic
Score ↑

Throughput
(FPS) ↑

SkyReels-V2 75.29 80.77 53.37 0.49
FramePack 81.95 83.61 75.32 0.92
Self-Forcing 81.59 83.82 72.70 17.0
LONGLIVE 83.52 85.44 75.82 20.7

Table 4: Ablation study on KV recache. KV
recache achieves the best consistency score and
CLIP score.

Method Background
Consistency ↑

Subject
Consistency ↑

CLIP
Score ↑

FPS
↑

No KV cache 92.75 89.59 28.95 22.8
KV cache 94.77 93.69 25.92 21.9
KV recache 94.81 94.04 27.87 20.7

4.3 INTERACTIVE LONG VIDEO GENERATION

For interactive long-form videos with multiple prompt switches, few existing methods support true
streaming generation. We implemented this setting for two representative baselines: SkyReels-V2
and Self-Forcing. We then compare our approach against them. Because the standard VBench proto-
col is not directly applicable, we curated a custom set of 160 interactive 60-second videos, each com-
prising six successive 10-second prompts as the validation set. For long-horizon quality, we evalu-
ate our 60s interactive videos on VBench-Long dimensions that support customized prompt videos,
including subject consistency, background consistency, motion smoothness, aesthetic quality, and
imaging quality. For semantic adherence, we segment each video at prompt boundaries and com-
pute clip-wise semantic score using CLIP (Radford et al., 2021) scores. Qualitative and quantitative
results are shown in Figure 6 and Table 2, respectively. LONGLIVE exhibits strong prompt com-
pliance, smooth transitions, and high long-range consistency while sustaining high throughput. In
contrast, Self-Forcing degrades on longer horizons and, SkyReels-v2 shows weaker consistency. In
terms of speed, LONGLIVE is more than 41× faster than SkyReels-v2 and slightly faster than Self-
Forcing, even with KV re-cache, thanks to our short-window attention design. Please see our project
page for more qualitative comparisons for interactive long video generation. Finally, a user study in
which participants rated Overall Quality, Motion Quality, Instruction Following, and Visual Quality,
i.e., Figure 1 (right) further supports the effectiveness of our approach.
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94.1

Ours (Window 9 + Sink 3)

Baseline (Window Attn) 576
18.0

Figure 7: Ablation study on short window size and frame sink. Smaller windows reduce consistency,
while enabling frame sink mitigates the drop.

4.4 KV RECACHE

In Table 4, we ablate KV caching strategies at prompt switches in a 10-second video setting with a
single switch at the 5-second. We compare (i) No KV cache: clear the entire cache at the switch;
(ii) KV-cache: retain the full cache unchanged; and (iii) KV-recache (ours): refresh the cache by
recomputing key–value states conditioned on the preceding frames and the new prompt. We assess
visual consistency with VBench Background Consistency and Subject Consistency, and measure
semantic score with the CLIP model. Clearing the cache breaks long-range consistency, causing
abrupt visual changes. Retaining the cache preserves continuity but induces prompt inertia: the
model sticks to the previous prompt, yielding a lower semantic score on the switched prompt. Our
KV recache maintains continuity while restoring compliance to the switched prompt. Please see
Figure 3, Appendix Figure E, and the demo page for more qualitative comparisons on KV recache.

4.5 SHORT-WINDOW ATTENTION AND FRAME SINK

In Figure 7, we ablate short-window attention and the frame-sink under a 10-second generation set-
ting. We vary the local-attention window from 3 to 27 latent frames, and additionally evaluate a con-
figuration with 9 local latent frames plus 3 sink latent frames (effective window size 12). Long-range
consistency is measured using VBench-Long (Huang et al., 2024b) (Background Consistency and
Subject Consistency). Consistency improves as the attention window grows and saturates around a
24-frame window, revealing a clear quality–efficiency trade-off: larger windows retain more tempo-
ral context but increase latency and memory, while smaller windows are cheaper but less consistent.
Our frame-sink mechanism mitigates this trade-off by recovering long-range context without attend-
ing to the full history: the 9-local + 3-sink setting achieves consistency close to a 21-frame window
while preserving the speed and memory footprint of a short window.

5 CONCLUSION

In this work, we introduce LONGLIVE, a frame-level AR framework for real-time and interac-
tive long video generation. To maintain visual smoothness and semantic adherence during prompt
switches in interactive settings, we propose a KV-recache technique. We present a streaming long
tuning strategy that enables direct training on long videos, ensuring high-quality outputs. We further
introduce short window attention and frame sink to accelerate long video generation while preserv-
ing visual consistency. Experimental results demonstrate that LONGLIVE can efficiently fine-tune
a model for long-video AR generation in only 32 GPU-days. Moreover, tuning on long videos is
essential not only for long video generation but also as a prerequisite for efficient inference (e.g.,
window attention with frame attention sink), substantially improving inference speed. During infer-
ence, it achieves 20.7 FPS inference on a single NVIDIA H100 GPU, and supports up to 240-second
video generation while maintaining high fidelity and temporal coherence. Using INT8 quantization,
LONGLIVE compresses from 2.7 GB to 1.4 GB, with minimal performance degradation. LONGLIVE
also supports INT8-quantized inference, incurring only marginal quality loss. We provide further
results, analyses, implementation details, and qualitative showcases in the Appendix.
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APPENDIX

A ETHICS STATEMENT

This study uses a self-supervised, efficient fine-tuning procedure and does not introduce any addi-
tional external video datasets for training. All text prompts leveraged in self-supervised training,
generated from Qwen2-72B-Instruct (Yang et al., 2024a), are clean, safe, and for academic research
purposes only.

B REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we will open-source this project, including both training and inference
code as well as model weights. In addition, we provide the full training procedure and implementa-
tion details in Section 4 and Section F.

C USE OF LARGE LANGUAGE MODELS

During manuscript preparation, we used large language models—GPT-5 (OpenAI, 2025)—strictly
for language polishing of paragraphs and sentences (grammar, flow, and tone). These tools were
not used to generate ideas, design experiments, or determine conclusions. All technical content,
methodology, and interpretations were written, verified, and approved by the authors. To reduce
risks of factual drift or citation errors, we required human review of every model-edited sentence
and cross-checked all references against primary sources. The authors take full responsibility for the
accuracy and integrity of the manuscript.

D GENERAL RELATED WORK

D.1 DIFFUSION-BASED LONG VIDEO GENERATION

Recent advances in diffusion models (Villegas et al., 2023; He et al., 2022; Chen et al., 2024b; Wang
et al., 2025; Guo et al., 2025; Dalal et al., 2025) have explored long video generation. Phenaki (Vil-
legas et al., 2023) compresses video into discrete tokens, enabling variable-length generation from
open-domain text. NUWA-XL (Yin et al., 2023) extends diffusion to extremely long sequences
via a coarse-to-fine “diffusion over diffusion” framework, generating global keyframes and fill-
ing intermediate frames in parallel. LVDM (He et al., 2022) leverages a compact 3D latent space
with hierarchical generation. LaVie (Wang et al., 2025) proposes a cascaded pipeline, with joint
fine-tuning, rotary position encoding, and temporal attention. SEINE (Chen et al., 2024b) em-
ploys smooth shot transitions using a stochastic masking-based diffusion model. LCT (Guo et al.,
2025) expanded pre-trained short-video models to scene-level contexts for multi-shot coherence,
via large-scale fine-tuning. Other approaches (Dalal et al., 2025) use a test-time training technique
to generate minute-long videos. TECO (Yan et al., 2023), MALT Diffusion (Yu et al., 2025), and
Rolling Diffusion Ruhe et al. (2024) all study long-horizon sequence generation or prediction by
designing architectures and training schemes that better preserve temporal coherence over many
frames (e.g., transformer-based predictive models in TECO on navigation-style video benchmarks,
memory-augmented latent transformers in MALT on UCF-101 / Kinetics-600, and sliding-window
diffusion with per-frame time reparameterization in Rolling Diffusion for Kinetics-600 video pre-
diction and other temporal data). However, they are primarily evaluated on relatively small-scale
video prediction or class-conditioned generation datasets such as UCF or Kinetics, are not designed
as large-scale text-to-video systems, and do not target real-time streaming generation, which makes
them conceptually related but orthogonal to the real-time, text-driven long-video setting addressed
by LongLive. Although these models can generate long-duration videos, they often incur heavy
computational costs, motivating more efficient and real-time solutions.

Several recent works extend the generation length of diffusion models in a training-free manner. RI-
FLEx (Zhao et al., 2025) conducts video length extrapolation by adjusting the intrinsic frequency of
position embeddings, mitigating temporal repetition and motion slowdown. FreeNoise (Qiu et al.,
2024) uses a noise rescheduling strategy and window-based temporal attention. FreeLong (Lu et al.,
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2024) blends temporal frequency components at inference. FreeLong++ (Lu & Yang, 2025) intro-
duces multi-band spectral fusion to capture and fuse multi-frequency temporal information. In these
training-free settings, models achieve at most a 4–8× extension in length (up to 40 seconds), which
remains inadequate for long-form scenarios.

D.2 AUTOREGRESSIVE LONG VIDEO GENERATION

A growing number of works (Chen et al., 2024a; Song et al., 2025; Mao et al., 2025; Yuan et al.,
2025; Zhang & Agrawala, 2025; Gao et al., 2025; Henschel et al., 2025; Gao et al., 2025) integrate
diffusion modeling with AR prediction, an intermediate paradigm between purely diffusion-based
approaches and purely AR approaches. Diffusion-forcing (Chen et al., 2024a) formalizes this hybrid
paradigm by injecting noise into future tokens and training the model to denoise them, combining
diffusion quality with AR efficiency. StreamingT2V (Henschel et al., 2025) extends this idea with
short and long-term memory modules for coherent text-to-video generation. Pyramidal-flow (Jin
et al., 2025) proposes a multi-scale flow matching design to reduce computation. History-guided
video diffusion (Song et al., 2025) further incorporates flexible-length historical context to improve
temporal consistency over extended rollouts. SkyReels-V2 (Chen et al., 2025a) couples diffusion
forcing with a film-structure planner and multimodal controls. FramePack (Zhang & Agrawala,
2025) compresses input frames into a fixed-size context to address memory and efficiency bot-
tlenecks. Lumos-1 (Yuan et al., 2025) employs large language models (LLMs) style architec-
tures, integrating spatiotemporal modeling under the diffusion-forcing framework. Most recently,
LongVie (Gao et al., 2025) introduces multimodal-guided control, unified noise initialization, and
degradation-aware training. Recent efforts (Yin et al., 2025; Huang et al., 2025; Gu et al., 2025;
Teng et al., 2025; Zhou et al., 2025; Deng et al., 2025) have advanced causal AR-based models for
long video generation. CausVid (Yin et al., 2025) reformulates bidirectional video diffusion into a
causal AR process, using distribution matching distillation to compress multi-step denoising into a
few steps. FAR (Gu et al., 2025) further enhances AR generation by combining a high-resolution
short-term context with a compressed long-term context via flexible positional encoding. MAGI-
1 (Teng et al., 2025) scales AR video generation to large models and datasets through chunk-wise
prediction. Most recently, Self-forcing (Huang et al., 2025) addresses the train–test gap in AR video
diffusion by simulating inference conditions during training, rolling out generation with KV cache,
and conditioning on model outputs. Despite the promise of purely AR for long text-to-video gener-
ation, achieving real-time efficiency and maintaining high quality simultaneously remains an open
challenge.

Recent works have begun exploring interactive video generation, where users can directly influence
generation in real time through text or keyboard prompts. The Matrix (Feng et al., 2024) demon-
strates infinite-horizon world generation with first- and third-person control, using a shifted window
denoising process. Yume (Mao et al., 2025) builds an interactive world generation pipeline capable
of constructing explorable environments from a single image, video, or text, allowing responsive
user navigation. Matrix-Game (Zhang et al., 2025) employs large-scale pretraining and action-
labeled finetuning to produce controllable, high-fidelity video conditioned on reference frames, mo-
tion context, and user actions. While effective, these methods are specifically tailored for interactive
video generation in video game environments, such as Minecraft and GTA. MAGI-1 (Teng et al.,
2025) supports general interaction, but its prompt switching requires manual adjustment of KV-
cache windows at different steps, which complicates practical use.

E TRAINING PROMPT GENERATION

LONGLIVE does not require video data since we adopt a self-training method. It relies only on
a set of prompts to teach the model with interaction ability (Yang et al., 2024b; 2021; 2023). To
efficiently produce appropriate, reasonable, and safe interactive prompts, we employ the Qwen2-
72B-Instruct (Yang et al., 2024a) LLM. Given a source prompt from VidProM (Wang & Yang,
2024), we instruct Qwen2-72B-Instruct to synthesize the next scene under several constraints. The
instruction template is shown below.

You are a video-prompt generation specialist. Your task
• Receive an ORIGINAL_PROMPT for the first part of a continuous shot.
• Write one stand-alone English paragraph (80{100 words) that shows the
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Algorithm 1 Streaming Long Tuning

Require: Causal video generator Gθ, Prompt set P
Require: Video length lvideo, Per clip length lclip

1: while not converged do
2: Initialize KV cache C ← []
3: Initialize current video length l← 0
4: Sample (p, pnext) ∼ P
5: Sample switch index s

s ∈ {1, 2, . . . , ⌊lvideo/lclip⌋ − 1}
6: s← s · lclip
7: if l ≥ lvideo then
8: C ← []; l← 0
9: Resample (p, pnext) and s

10: end if

11: pactive ←
{
p, if l < s

pnext, otherwise
12: if l = s then
13: C ← recache(Gθ, v, C, pactive)
14: end if
15: x← generate next clip(Gθ, C, pactive)
16: L ← DMD Loss(Gθ, x, pactive)
17: L.backward()
18: update generator parameter θ
19: l← l + lclip
20: end while

Algorithm 2 Interactive Inference
Require: Causal video generator Gθ

Require: Prompt sequence P = [p0, . . . , pn],
switch-index sequence S = [s1, . . . , sn]

Require: Number of video frames N , diffusion
steps per frame T

1: Initialize model output x ← []
2: Initialize KV cache C ← []
3: pactive ← P.pop(0)
4: for i = 1, . . . , N do
5: if i ∈ S then
6: pactive ← P.pop(0)
7: C ← recache(Gθ, x, C, pactive)
8: end if
9: Initialize xi

tT ∼ N (0, I)
10: for j = T, . . . , 1 do
11: Set x̂i

0 ← Gθ(x
i
tj ; tj , C, pactive)

12: if j = 1 then
13: x.append(x̂i

0)
14: C ← GKV

θ (xi
j , 0, C, pactive)

15: else
16: Sample ϵ ∼ N (0, I)
17: Set xi

tj−1
← Ψ(x̂i

0, ϵ, tj−1)
18: end if
19: end for
20: end for
21: return x

next moment of the same shot.
• **Add exactly one new action/object for the existing main subject.**
• Keep setting, subject, mood, style, camera scale, and camera movement
or angle exactly as in the ORIGINAL_PROMPT.
• Elements may vanish only if naturally obscured by the new action.
• Do **not** use phrases like *still, as before, continues* that reveal
you read the prior text.
• Use clear mid-level English; avoid rare or literary words.
• End the paragraph with **the same camera keywords that appear at the
end of the ORIGINAL_PROMPT**, separated by single spaces, no brackets.
• **Output format MUST be exactly one line, wrapped between <OUTPUT> and
</OUTPUT>.**

• Do **NOT** add explanations, greetings, headings, numbering, markdown,
or extra lines.
• Anything written outside the two tags will be ignored.

F TRAINING DETAILS

F.1 IMPLEMENTATION

We first adapt the pretrained Wan2.1-T2V-1.3B into a chunk-wise autoregressive (AR) causal-
attention model. First, we conduct an ODE initialization as the same as self-forcing. Then we train
the model with DMD, but switch to short-window attention with frame-sink tokens: the chunk size is
3 latent frames, the local attention window is 9 frames, and the first chunk (3 latent frames) serves as
the sink. After this initialization, we perform streaming long-tuning strictly following Algorithm 1:
at each iteration, we roll out a 5 s clip and supervise the student using Wan2.1-T2V-14B as the
teacher. Optimization uses AdamW for both actor and critic with learning rates lr = 1.0 × 10−5

(actor) and lrcritic = 2.0 × 10−6; we set β1 = 0.0, β2 = 0.999 for the actor and β1,critic = 0.0,
β2,critic = 0.999 for the critic. Training is conducted on 64 GPUs with one sample per GPU (global
batch size = 64). We apply EMA to the actor with decay 0.99, starting at step 200. The maximum
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Table A: LoRA budget vs. performance on VBench-Long. A moderate budget approaches full-
model quality with far fewer trainable parameters.

LoRA rank 32 64 128 256 512 Full Model

Trainable Parameters 44 M 87 M 175 M 350 M 700 M 1.3 B
Total Score 81.08 82.68 82.98 83.12 83.04 83.52

Table B: INT8-Quantized results on VBench. FPS is measured on a single NVIDIA 5090 GPU.

Precision Model Size Throughput (FPS) Total Quality Semantic

INT8 1.4 GB 16.4 84.31 86.20 76.74
BF16 2.7 GB 12.6 84.87 86.97 76.47

sequence length is set to the target inference horizon; both 60 s and 240 s work well in practice. For
the 60 s setting, we train for 3,000 iterations.

F.2 LORA TUNING

Motivated by LongLora (Chen et al., 2024c), we assume that improving the quality of long context
does not require a full model fine-tuning. We therefore adopt LoRA tuning throughout the streaming
long tuning procedure. Interestingly, we find that effective long-range generation demands relatively
high adapter ranks; in our setup, the resulting adapters require 256 ranks, making roughly 27% of
the model’s parameters trainable. Even so, LoRA substantially reduces the training footprint, cutting
the parameter/optimizer state to about 27% of that required by full fine-tuning (i.e., 73% savings).

We ablate LoRA tuning in Table A. We measure the 30s long-video quality by VBench-long. Scaling
the LoRA budget improves quality until a saturation point, with the rank 256 configuration achieving
the best while still training far fewer parameters than full fine-tuning.

G ABLATION STUDY ON THE NUMBER OF SINK FRAMES

We have compared no sink versus different numbers of initial sink frames. As shown in the Table C
and Figure A below, using a small number of sink frames (S3W9) slightly improves VBench scores,
while increasing the number of sink frames (S6W6, S9W3) makes the sink frame visually dominant
and causes flashback-like, less coherent long-range dynamics. We will report the VBench numbers
as a table and provide qualitative comparisons in the PDF appendix.

We have expanded the ablation on the frame-sink configuration, where we use the notation SxWy
to denote using x sink frames followed by a sliding window of y frames (e.g., S3W9 means 3 sink
frames + a 9-frame window). As shown in Table C, introducing a small number of sink frames
(S3W9) slightly improves VBench scores over the no-sink baseline (S0W12). However, when we
further increase the number of sink frames (S6W6, S9W3), the sink frames become visually dom-
inant and the VBench scores degrade, with the S9W3 setting exhibiting a clear collapse in both
overall and consistency scores. The qualitative comparisons in Figure A corroborate this trend:
for S0W12, temporal consistency is poor and the red boxes highlight noticeable late-stage drifting;
S3W9 yields more stable and coherent dynamics; while S6W6 and S9W3 introduce sudden content
changes and flickering frames, with the red boxes marking these abrupt transitions and artifacts.

H QUANTIZATION

We quantize LONGLIVE to INT8 via post-training quantization (Li* et al., 2025). As shown in
Table B, this reduces LONGLIVE’s model size by 1.9× and improves throughput by 1.3×, with
minimal degradation on VBench (Table B).
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Table C: Ablation on the frame-sink configuration in terms of VBench. We use the notation SxWy
to denote x sink frames followed by a y-frame window. A small number of sink frames (S3W9)
slightly improves the VBench score over the no-sink baseline (S0W12), while increasing the number
of sink frames (S6W6, S9W3) degrades performance, with S9W3 exhibiting a clear collapse in the
consistency score.

Metric S0W12 S3W9 S6W6 S9W3
VBench Score ↑ 83.78 83.98 79.23 74.43
Consistency Score ↑ 93.30 94.10 94.22 54.65

Figure A: Qualitative comparison of different frame-sink configurations using the SxWy notation
(S: number of sink frames; W: number of window frames). For S0W12, temporal consistency is
poor and the red boxes highlight noticeable late-stage drifting; S3W9 yields more stable, coherent
dynamics; while S6W6 and S9W3 produce visually dominant sink frames with sudden content
changes and flickering artifacts, as indicated by the red boxes.

I INTERACTIVE LONG VIDEO SHOWCASES

We present interactive 60s videos generated with six sequential prompts in Figure B and Figure C.
See our demo page in the supplementary materials for more examples.

J LONG VIDEO SHOWCASES

We present single-prompt 60 s videos in Figure D. See our demo page in the supplementary materials
for more examples.

K KV RE-CACHING COMPARISON

We present qualitative results from the ablation study of KV re-caching in Figure E. See our demo
page in the supplementary materials for more examples. No KV cache: New-prompt adherence
but abrupt transitions and visual discontinuity. KV cache: Smooth visuals but new-prompt non-
adherence (delayed or ignored). KV recache: Visual consistency and new-prompt adherence.

L ULTRA-LONG VIDEO ABLITIES

LONGLIVE can train and test on ultra-long sequences. We conduct an experiment on a 240-second
sequence, and it generates this ultra-long video smoothly and consistently. See our demo page in the
supplementary materials for ultra-long examples.
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10s-20s: Same setup: he passes into a patch of low shrubs along the path, pace steady.

0s-10s: Medium shot, static: Apostle Paul walks a dusty Roman-era path, tunic and cloak, staff in 
hand; determined, wise. Rolling hills and farmland in the background.

20s-30s: A threadbare gray-clad boy peeks from a bush; Paul glances over and continues.

30s-40s: Paul stops as the boy steps out, approaching hesitantly. Paul offers a warm smile and nod.

40s-50s: The boy touches the hem of Paul’s robe; Paul rests a gentle hand on his shoulder.

50s-60s: They walk side by side; a few crows sweep across the sky above the quiet countryside.`,

Figure B: Interactive 60s videos with sequential prompts. See our demo page in the supplementary
materials for more examples.

M USER STUDY DETAILS

We conducted a user study to evaluate video quality across 48 questions spanning four dimensions:
Overall (overall preference considering all factors), Motion Quality (smoothness/naturalness of
motion; absence of jitter or discontinuity), Instruction Following (faithfulness to the given instruc-
tion/prompt), and Visual Quality (clarity, level of detail, and overall aesthetic quality). For each
question, participants were shown a pair of videos together with the corresponding prompt and asked
to choose Model A, Model B, or Same (no perceptible difference). The survey was distributed to 30
participants; we received 26 valid responses, yielding 1,248 total judgments (26 × 48). Participants
were instructed to watch both videos carefully and replay if needed before making a choice.

N LIMITATION ANALYSIS

LONGLIVE is an efficient fine-tuning scheme built on top of a pretrained base model, so its ultimate
performance is bounded by the capacity and quality of that base model. In particular, we adopt a
self-supervised fine-tuning strategy without additional curated real-video data. While this improves
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efficiency and scalability, it also limits the method’s ability to correct systematic errors or biases
inherited from the base model. Consequently, the quality of any short segment (e.g., per 10-s clip) is
unlikely to consistently exceed that of the base model, even if long-horizon consistency or instruction
adherence improves. Therefore, our gains are primarily in adaptation and stabilization rather than
absolute ceiling quality. Future work could incorporate supervised data to avoid the quality bound.
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50s-60s: He high-fives a patron; laughter and cheers ripple around the table. Same framing.

0s-10s: Casino Texas Hold'em: late-30s man with short dark hair and light stubble in a navy 
blazer/charcoal tee grips his hole cards, jaw tight. Chips crowd the felt, dealer deals, slot machines 
glow. Wide → medium close-up on his strained focus.

10s-20s: Same setup: he flicks his cards to the felt and leans back, arms spread in triumph. Camera 
locks on the celebration.

20s-30s: He flips the winning hand; a nearby patron claps as applause rises. Camera centers on his 
reaction.

30s-40s: He sits upright and methodically stacks his chips, neat, deliberate movements.

40s-50s: He surveys the stacks and breaks into a proud, self-assured smile.

Figure C: Interactive 60s videos with sequential prompts. See our demo page in the supplementary
materials for more examples.
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Create a Batman and Joker fight scene using the graphics style of Grand Theft Auto V. In the video, Batman is dressed in his iconic black cape and 
utility belt, while Joker sports his signature green hair and purple outfit. They are engaged in a fierce hand-to-hand combat in a gritty urban 
environment, with buildings and vehicles in the background. Both characters display intense expressions and fluid motions as they dodge, punch, and 
kick each other. The scene is captured from a dynamic third-person perspective, with occasional close-ups emphasizing their intense facial 
expressions and body language

A playful, animated panda dancing joyfully under a blanket of snow. The panda moves gracefully, performing lively dance steps that include twirling and 
hopping. The scene is set in a serene winter landscape with gently falling snowflakes and tall pine trees in the background. The panda has soft, fluffy 
fur and expressive, joyful eyes. The camera captures the panda from a medium close-up angle, focusing on the panda’s energetic movements and the 
peaceful snowy environment surrounding it.</div>

A dynamic and chaotic scene in a dense forest during a heavy rainstorm, capturing a real girl frantically running through the foliage. Her wild hair 
flows behind her as she sprints, her arms flailing and her face contorted in fear and desperation. Behind her, various animals—rabbits, deer, and 
birds—are also running, creating a frenzied atmosphere. The girl's clothes are soaked, clinging to her body, and she is screaming and shouting as she 
tries to escape. The background is a blur of greenery and rain-drenched trees, with occasional glimpses of the darkening sky. A wide-angle shot from 
a low angle, emphasizing the urgency and chaos of the moment.

Figure D: Single-prompt 60 s videos. See our demo page in the supplementary materials for more
examples.
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0s–5s: Young and beautiful girls singing…  5s–10s: One girl reaches up to adjust hair…
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0s–5s: a steaming burger—seared patty (crisp edges, pink center), melted cheddar, lettuce, tomato, 
pickles, special sauce—on a lightly charred sesame bun.
5s–10s: fresh pepper sprinkles onto a hot patty under melted cheddar with lettuce, tomato, pickles, 
special sauce on a charred sesame bun.

Figure E: We present qualitative results from the ablation study of KV re-caching. See our demo
page in the supplementary materials for more examples. No KV cache: New-prompt adherence
but abrupt transitions and visual discontinuity. KV cache: Smooth visuals but new-prompt non-
adherence (delayed or ignored). KV recache: Visual consistency and new-prompt adherence.
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