

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LONGLIVE: REAL-TIME INTERACTIVE LONG VIDEO GENERATION

Anonymous authors

Paper under double-blind review

ABSTRACT

We present LONGLIVE, a frame-level autoregressive (AR) framework for real-time and interactive long video generation. Long video generation presents challenges in both efficiency and quality. Diffusion and Diffusion-Forcing models can produce high-quality videos but suffer from low efficiency due to bidirectional attention. Causal attention AR models support KV caching for faster inference, but often degrade in quality on long videos due to memory challenges during long-video training. In addition, beyond static prompt-based generation, interactive capabilities, such as streaming prompt inputs, are critical for dynamic content creation, enabling users to guide narratives in real time. This interactive requirement significantly increases complexity, especially in ensuring visual consistency and semantic coherence during prompt transitions. To address these challenges, LONGLIVE adopts a causal, frame-level AR design that integrates a ***KV-recache*** mechanism that refreshes cached states with new prompts for smooth, adherent switches; ***streaming long tuning*** to enable long video training and to align training and inference (train-long–test-long); and ***short window attention*** paired with a ***frame-level attention sink***, shorten as frame sink, preserving long-range consistency while enabling faster generation. With these key designs, LONGLIVE fine-tunes a 1.3B-parameter short-clip model to minute-long generation in just 32 GPU-days. At inference, LONGLIVE sustains 20.7 FPS on a single NVIDIA H100, achieves strong performance on VBench in both short and long videos. LONGLIVE supports up to 240-second videos on a single H100 GPU. LONGLIVE further supports INT8-quantized inference with only marginal quality loss.

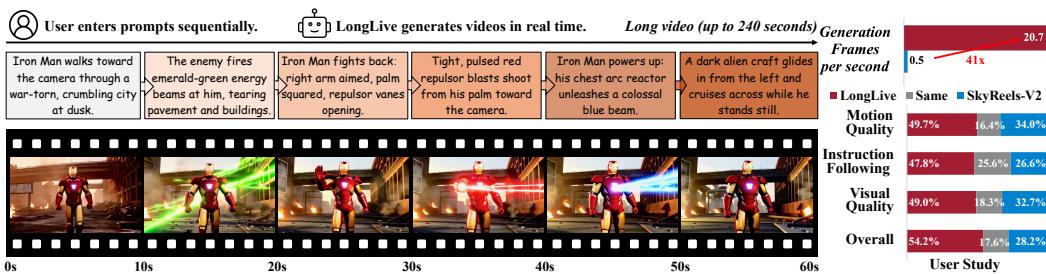


Figure 1: The workflow of LONGLIVE. LONGLIVE accepts sequential user prompts and generates corresponding videos in real time, enabling user-guided long video generation. The 60-second sequence shown is an example, LONGLIVE supports up to 240-second videos in a single H100 GPU.

1 INTRODUCTION

Long video generation is essential for advancing creative, educational, and cinematic applications. It enables coherent storytelling, richer scene development, and more complex temporal dynamics than short clips can provide. However, static prompt-based generation limits adaptability once the process has commenced. It is difficult for users to conceive highly detailed, long-form prompts in a single step. Beyond simply producing long videos, the ability to interact alongside the generation process, such as streaming prompt inputs during runtime, opens new possibilities for adaptive

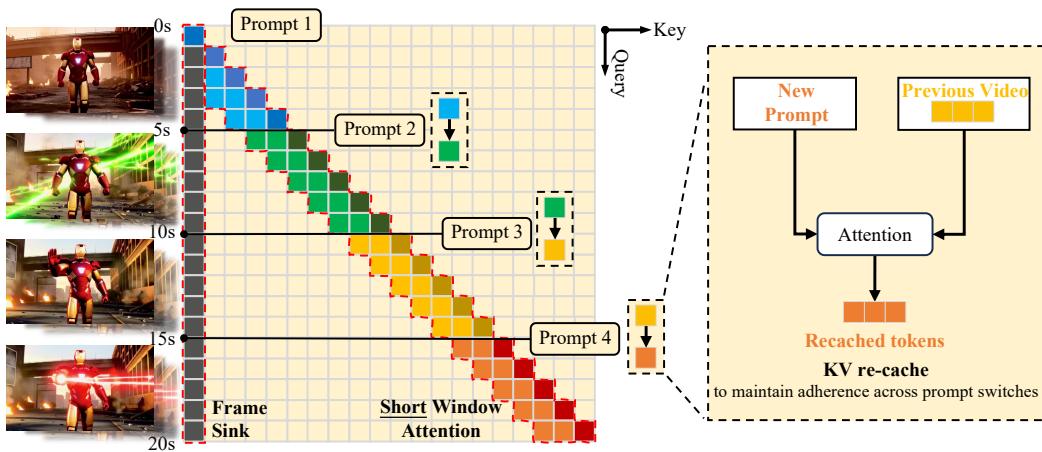


Figure 2: The framework of LONGLIVE. (Left) LONGLIVE processes sequential user prompts and generates a corresponding long video using efficient **short window attention** and **frame sink**. Compared to the normal attention window of 5s, our **short window** only uses half the size, with the help of frame sink, which maintains the long-range consistency. (Right) To maintain consistency when the prompt switches, LONGLIVE employs a **KV-recache** technique that updates cached key–value states by combining previous videos with new prompt embeddings through cross-attention layers.

content creation. This interactive paradigm enables users to guide narratives, adjust visual styles, or introduce new elements on the fly. Therefore, interaction makes long video generation controllable.

Interactive long video generation poses difficulties in both quality and efficiency. For the *quality* perspective, it is difficult to maintain smooth, consistent, and coherent transitions when switching between user prompts during generation. Even subtle mismatches in visual style, motion continuity, or scene layout can disrupt the narrative flow and reduce the overall realism of the video. For the *efficiency* perspective, the computational and memory demands scale rapidly with video length. For example, generating a 180-second video with the Wan-2.1 (Wan et al., 2025) model requires processing over one million tokens, which is computationally prohibitive. In addition, in an interactive setting, prolonged user waiting times severely degrade the overall user experience.

Existing video generation methods have limitations in long video generation. For *diffusion-based* video generation models (Wan et al., 2025; Kong et al., 2024; Yang et al., 2025; Wei et al., 2025; OpenAI, 2024; Kuaishou, 2024) and *diffusion-forcing* models (Chen et al., 2024a; 2025a; Zhang & Agrawala, 2025), although they can produce high-quality short clips, their reliance on bidirectional attention makes inference inefficient. The bidirectional attention prevents KV (key–value) cache technique, leading to redundant computation and prohibitive latency for long videos. For example, SkyReels-V2 (Chen et al., 2025a) requires approximately 50 minutes on an H100 GPU to generate a 60-second video. For *AR* models with causal attention, they can leverage cached KV states for faster inference, but they often exhibit degraded quality when generating long videos. Due to the high cost of directly training on long videos, existing AR models (Huang et al., 2025; Teng et al., 2025) typically adopt a train-short-test-long strategy. Consequently, the quality gradually degrades as the video length increases. In the interactive setting involving prompt switching, error accumulation, and loss of temporal coherence over time further result in visual artifacts and inconsistency.

In this paper, we propose LONGLIVE, a real-time interactive long video generation framework, as illustrated in Figure 1. LONGLIVE is a causal attention, frame-level AR video generation model, enabling it to inherit the KV cache mechanism for efficient inference. Our key design is **KV-recache**, as shown in Figure 2, which updates cached states by incorporating new prompt embeddings. This technique ensures both smoothness and prompt adherence across prompt switches in interactive settings. In addition, for efficient fine-tuning, we present a **streaming long tuning** strategy that preserves consistency between training and inference (train-long-test-long), to address the degradation commonly observed in long-video AR generation. For efficient inference, we introduce **short window attention** combined with a **frame-level attention sink** (abbreviated as frame sink), which significantly accelerates inference while preserving performance.

108 In our experiments, LONGLIVE delivers both high efficiency and strong quality for interactive long-
 109 video generation. In terms of training efficiency, we fine-tune a 1.3B-parameter model to produce
 110 high-quality minute-long videos in only 32 GPU-days. Training on long videos is essential: it
 111 not only improves long-horizon fidelity but also enables efficient inference strategies that markedly
 112 accelerate decoding. In terms of inference efficiency, LONGLIVE sustains 20.7 FPS on a single
 113 NVIDIA H100, supporting real-time interaction and outperforming state-of-the-art approaches in
 114 throughput. In terms of quality, our framework achieves strong VBench scores on both short- and
 115 long-video settings. LONGLIVE scales to produce videos up to 240 seconds, on a single H100
 116 GPU, while maintaining high visual fidelity and temporal coherence, effectively handling long
 117 video generation with little degradation. Moreover, we further enable INT8-quantized inference
 118 in LONGLIVE, with only marginal quality loss, as shown in Appendix H.
 119

120 2 RELATED WORK

121
 122 We present core related work here and provide extended discussion with details in the appendix D.
 123 A growing number of works (Chen et al., 2024a; Song et al., 2025; Mao et al., 2025; Yuan et al.,
 124 2025; Zhang & Agrawala, 2025; Gao et al., 2025; Henschel et al., 2025) integrate diffusion model-
 125 ing with AR prediction, an intermediate paradigm between purely diffusion-based approaches and
 126 purely AR approaches. SkyReels-V2 (Chen et al., 2025a) couples diffusion forcing with a film-
 127 structure planner and multimodal controls. Recent efforts (Yin et al., 2025; Huang et al., 2025; Gu
 128 et al., 2025; Teng et al., 2025) have advanced causal AR-based models for long video generation.
 129 StreamDiT (Kodaira et al., 2025) trains a diffusion model with window attention, but has potential
 130 drift or detail loss over long streams. AAPT (Lin et al., 2025) transforms a pre-trained latent video
 131 diffusion model into a 1-NFE, real-time streaming generator using adversarial post-training and sup-
 132 ports interactive control via camera and human pose, whereas *LongLive* instead uses diffusion-based
 133 distribution-matching and train-long-test-long distillation for text-driven, multi-minute generation
 134 without GAN post-training. Most recently, Self-forcing (Huang et al., 2025) addresses the train–test
 135 gap in AR video diffusion by simulating inference conditions during training, rolling out generation
 136 with KV cache, and conditioning on model outputs. MAGI-1 (Teng et al., 2025) scales AR video
 137 generation to large models and datasets through chunk-wise prediction, but its prompt switching
 138 requires manual adjustment of KV-cache windows at different steps.
 139

140 3 METHOD

141 3.1 KV RECACHE

142 Causal AR models naturally support interactive prompt switching, but this ability is limited. Dis-
 143 carding all prior KV cache at the switch improves adherence to the new prompt, yet it introduces
 144 abrupt visual changes and temporal discontinuities, as shown in Figure 3 (a). Conversely, retaining
 145 the entire KV cache often prevents the model from following new prompts, or adapting to new
 146 prompts after a delay, because the cache is saturated with information from the previous prompt, as
 147 shown in Figure 3 (b). Based on this observation, we first diagnose why prompt switching is hard
 148 for streaming video generators. In DiT (Peebles & Xie, 2023) architectures, cross-attention and
 149 self-attention layers alternate. During generation, large amounts of information from the previous
 150 prompt are repeatedly injected through cross-attention layers and then propagated forward by self-
 151 attention, so that this prompt signal is written into the running KV cache. Consequently, when the
 152 prompt is switched, the model still carries residual semantics of the old prompt in the cache. And in
 153 certain instances, this results in inconsistent adherence to the new prompt.
 154

155 To address this issue, we introduce KV recache. At a prompt switch boundary, we recompute
 156 the KV cache using **the already generated frames** together with **the new prompt**, effectively
 157 erasing residual information from the previous prompt while keeping the motion and visual cues that
 158 guarantee temporal continuity. Concretely, at the first post-switch frame, we encode the generated
 159 video prefix as the visual context and pair it with the next prompt to rebuild the cache; subsequent
 160 steps then proceed normally using this refreshed cache. In this way, the cache retains the visual
 161 state of the ongoing video, but the prompt semantics now cleanly correspond to the active prompt,
 162 enabling improved semantic alignment without visual discontinuities.

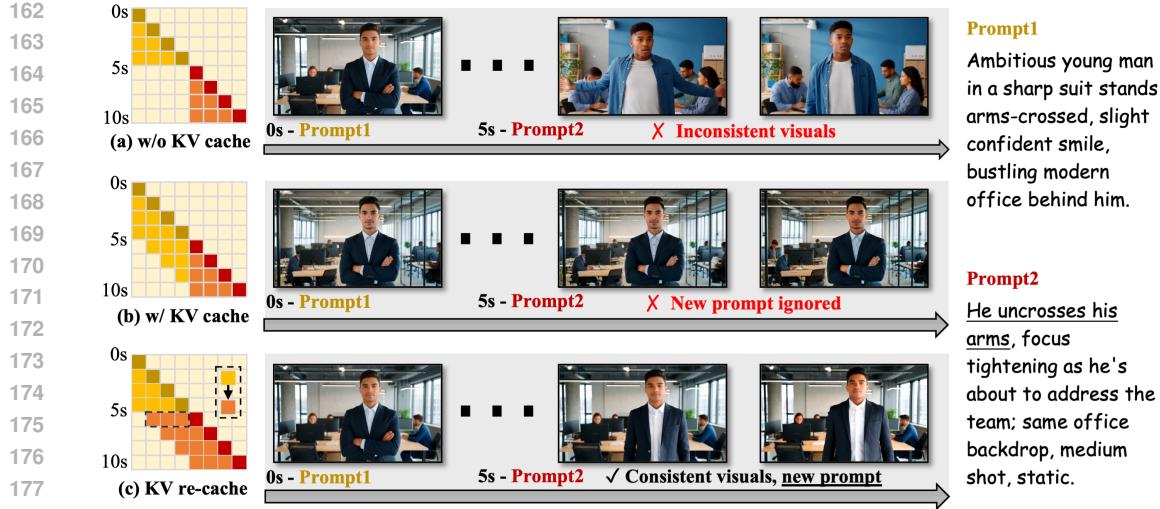


Figure 3: Prompt switching under different KV-cache strategies. **(a) w/o KV cache:** New prompt takes effect, but transitions are abrupt and visuals are inconsistent. **(b) w/ KV cache:** Smooth continuity, but the new prompt is not followed (lag or ignore). **(c) KV re-cache:** Smooth, visually consistent transitions with full new-prompt compliance.

To ensure train–inference alignment, we integrate the recaching operation into our training loop (Figure 4). When a training iteration contains a prompt switch, we (i) perform recache once, (ii) continue rollout with the updated cache, and (iii) in distillation, feed the teacher model with the new prompt as well, so the student is supervised under the exact post-switch condition it will face at inference. This training scheme further removes the train–inference mismatch. Models trained with recache therefore exhibit both strong temporal smoothness and fast semantic convergence to the next prompt at inference, as illustrated in Figure 3 (c). In terms of efficiency, recaching is invoked only once per training sample. The added cost is thus minimal; for a 10s video with a single switch, recaching introduces only about 6% extra time cost compared to no recaching usage.

Moreover, although training includes only one prompt switch per long sequence, this mechanism generalizes well during inference. The model supports interactive inference with multiple prompt switches by performing a single recaching step at each boundary. Given $n + 1$ prompts and n switch points, the generator rolls out causally, applies KV recaching at each switch, and continues producing frames semantically aligned with the active prompt while maintaining smooth transitions. A detailed illustration of this procedure is outlined in Appendix Algorithm 2.

3.2 STREAMING LONG TUNING

LongLive builds upon causal frame-level AR video generators. These models are trained only on short clips. At inference, they produce long videos via a rolling, fixed-length context window that repeatedly feeds the model its own outputs. As the rollout continues, small prediction errors accumulate and the context inside the window becomes progressively noisier, so the model conditions on a more degraded self-generated history. Since such long-range, self-generated contexts were absent in training, this *train-short-test-long* regime induces content drift and breaks consistency over long horizons. To address this mismatch, we propose a *train-long-test-long* strategy. During training, the model synthesizes long sequences by conditioning on its own imperfect predictions, with supervision applied throughout the entire rollout. This exposes the model to extended, self-generated, and progressively degraded frames already in training, aligning training with inference, mitigating error accumulation to improve fidelity and consistency.

Self-supervision (Huang et al., 2025) methods are able to avoid collecting a large long-video dataset. It requires no real video data: a pretrained teacher provides synthetic supervision that guides the student to match the teacher’s output distribution. However, two practical challenges arise in this method. First, the teacher itself is typically trained for short clips and thus cannot reliably supervise

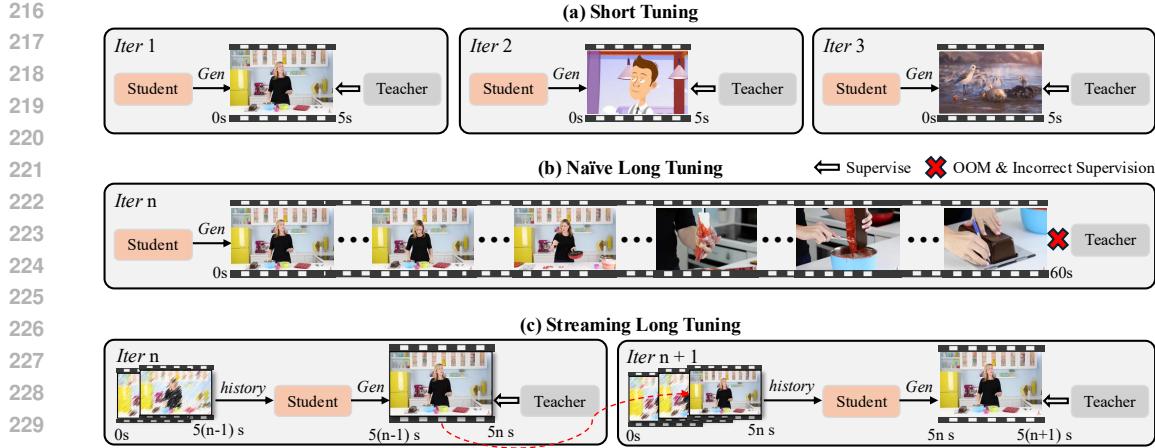


Figure 4: The streaming long tuning pipeline. (a) **Short tuning**: only 5s clips are supervised, like Self-Forcing (Huang et al., 2025), leading to quality loss on long videos. (b) **Naïve long tuning**: naively scaling to long sequences causes incorrect teacher supervision and OOM. (c) **Streaming long tuning**: our approach trains on long sequences by reusing the historical KV cache each iteration to generate the next 5s clip, then supervising it with the teacher.

an entire long sequence end-to-end. Second, naively unrolling and backpropagating through long sequences easily triggers out-of-memory (OOM) issues and is computationally wasteful.

To address these two challenges, we introduce a streaming long tuning procedure (Figure 4) that learns on long videos while keeping memory and supervision local and reliable. In the first iteration, the generator samples a short video clip (e.g., 5s) from scratch, and we apply DMD (Yin et al., 2024b;a) on this short clip. In subsequent iterations, the generator extends the short clip from the previous iteration, and produce the next short clip conditioned on the previously stored KV cache, and we again apply DMD only to this newly generated clip. We repeat this rolling extension until the video reaches a preset maximum length, then fetch a new batch and restart from scratch. This schedule mirrors the inference-time rollout and thus reduces train–test inconsistency. At each iteration, the teacher provides reliable supervision for the current short clip (where it is competent), and the collection of per-clip supervisions provides global guidance for the full sequence. In practice, we detach the already generated frames so they act as a constant causal context. The gradients are computed only for the current generated clip. Consequently, memory usage is limited by the clip duration, avoiding OOM. A detailed illustration of this process appears in Appendix Algorighm 1.

Our study reveals that tuning on long videos is not only critical for the performance of long video generation, but also a prerequisite for efficient long inference strategies. These strategies include window attention and frame sink, which significantly improve inference speed.

3.3 EFFICIENT LONG INFERENCE

Short-window Attention In long video generation, the cost of dense causal attention grows quadratically with the sequence length, making naive inference prohibitive on long videos. Motivated by evidence of temporal locality in video generation: nearby frames contribute more to predicting the next one (Gu et al., 2025; Zhang & Agrawala, 2025), we adopt local window attention during inference and during streaming tuning. Limiting attention to a fixed temporal window reduces both computation and memory. Attention complexity becomes proportional to the window size rather than the growing sequence length, and the KV cache needed per layer scales with the window rather than the total video. However, window size introduces a quality–efficiency trade-off. We generate 20-second videos using different attention window settings, as shown in the first and second rows in Figure 5. Larger windows retain more temporal context and yield stronger long-range consistency, but incur higher latency and memory. Shrinking the window improves efficiency at the cost of consistency, since distant but critical cues disappear from the receptive field.

Figure 5: Comparison in a 20-second generated video of long window attention (Window 21 latent frames), short-window attention (Window 12), and short-window + frame-sink (Window 9 + Sink 3). Shorter windows boost efficiency but weaken long-range consistency; adding a frame-sink restores consistency while keeping the efficiency gains.

Frame Sink Prior work reported that attention-sink tokens alone do not prevent long-rollout collapse in video models (Huang et al., 2025). In contrast, we empirically find that attention sinks become effective once long-rollout collapse is addressed via streaming long tuning. Serving as persistent global anchors, attention sinks markedly improve long-range temporal consistency, thereby mitigating the quality–efficiency trade-off when using short-window attention. As shown in the third row of Figure 5, adding a frame-sink greatly boosts long-range consistency under a short window while maintaining low cost. Concretely, we fix the first frame chunk of the video as global sink tokens; these tokens are permanently retained in the KV cache and concatenated to every attention block’s keys and values, making them globally attendable even with local-window attention. The remainder of the KV cache uses a short rolling window and is evicted normally. In experiments, a short-window with a frame-sink preserves high long-video quality while reducing end-to-end compute time by 28% and peak memory by 17% on a single H100 GPU.

Consistency between Training and Inference We integrate short-window attention and the frame sink into streaming tuning to align train-test behavior and improve efficiency. Let the local attention window be W frames and the supervised clip length (from the teacher) be T frames. At each training step, we keep (i) the KV cache from the last W frames of the preceding context *without gradients* and (ii) the full KV cache of T frames for the current supervised clip *with gradients*. We also maintain S sink tokens (the first two frames) that are never evicted and are concatenated to every layer’s KV so they remain globally attendable. Consequently, the resident KV size per step is $O(W+T+S)$ and does *not* grow with total video length, preventing OOM on very long rollouts. The sinks stabilize identity and scene semantics, allowing us to train with the same shortened window used at inference. For KV re-caching, we rebuild the cache from only the most recent W generated frames, which refreshes semantics while preserving local continuity and saves the re-caching cost.

4 EXPERIMENT

Implementation We build LONGLIVE on Wan2.1-T2V-1.3B (Wan et al., 2025), which produces 5s clips at 16 FPS and 832×480 resolution. We first adapt the pretrained model into a few-step causal-attention model using a self-forcing (Huang et al., 2025) **improved DMD pipeline (DMD + DMD2 few-step)** on VidProM (Wang & Yang, 2024) data, while enabling our short-window attention and the frame sink (we keep all tokens from the first frame chunk as sink tokens). We then perform streaming long tuning on a 60s sequence that contains a single prompt switch. To construct this switch-prompt dataset, we prompt Qwen2-72B-Instruct (Yang et al., 2024a) to generate follow-up prompts conditioned on each original VidProM prompt. During training, each iteration continues the model’s own rollout by generating the next 5s video clip until a maximum length of 60s is reached; each batch includes exactly one prompt switch with the switch time sampled uniformly from 5s to 55s. When a switch occurs, we apply KV-recache. During streaming long tuning,

324
 325 **Table 1: Comparison with relevant baselines.** We compare LONGLIVE with representative open-
 326 source video generation models of similar parameter sizes and resolutions. Evaluation scores are
 327 calculated on the standard prompt suite of VBench (Huang et al., 2024a). FPS - a single H100 GPU.
 328

Model	#Params	Resolution	Throughput (FPS) \uparrow	Evaluation scores \uparrow		
				Total	Quality	Semantic
<i>Diffusion models</i>						
LTX-Video (HaCohen et al., 2025)	1.9B	768×512	8.98	80.00	82.30	70.79
Wan2.1 (Wan et al., 2025)	1.3B	832×480	0.78	84.26	85.30	80.09
<i>Autoregressive models</i>						
SkyReels-V2 (Chen et al., 2025a)	1.3B	960×540	0.49	82.67	84.70	74.53
MAGI-1 (Teng et al., 2025)	4.5B	832×480	0.19	79.18	82.04	67.74
CausVid (Yin et al., 2025)	1.3B	832×480	17.0	81.20	84.05	69.80
NOVA (Deng et al., 2025)	0.6B	768×480	0.88	80.12	80.39	79.05
Pyramid Flow (Jin et al., 2025)	2B	640×384	6.7	81.72	84.74	69.62
Self Forcing, chunk-wise (Huang et al., 2025)	1.3B	832×480	17.0	84.31	85.07	81.28
Self Forcing, frame-wise (Huang et al., 2025)	1.3B	832×480	8.9	84.26	85.25	80.30
LONGLIVE	1.3B	832×480	20.7	84.34±0.52	85.72±1.07	79.62±2.73

340
 341 **Table 2: Interactive long video evaluation: Quality scores are reported on the whole 60s sequence.**
 342 CLIP scores are reported on 10s video segments with the same semantics (\uparrow higher is better).
 343

Method	Quality Score \uparrow	CLIP Score \uparrow					
		0–10 s	10–20 s	20–30 s	30–40 s	40–50 s	50–60 s
SkyReels-V2 (Chen et al., 2025a)	79.85 ± 0.92	21.34 ± 1.98	23.15 ± 1.85	23.54 ± 2.21	17.95 ± 1.46	20.12 ± 0.97	19.25 ± 0.97
Self-Forcing (Huang et al., 2025)	82.15 ± 1.05	27.92 ± 0.86	25.34 ± 1.75	23.12 ± 1.46	22.45 ± 1.58	23.67 ± 0.82	23.55 ± 1.87
LONGLIVE	85.02 ± 1.12	29.45 ± 1.72	26.15 ± 1.03	25.10 ± 1.34	24.85 ± 0.88	24.90 ± 1.13	24.65 ± 1.38

351 we also keep the same short-window attention and frame-sink settings. This training procedure
 352 takes about 12 hours on 64 H100 GPUs. Notably, LONGLIVE supports any model capable of
 353 autoregressive rollout with a KV cache. We implement LONGLIVE on a linear-attention AR model,
 354 SANA-Video (Chen et al., 2025b), achieving further acceleration on long-video generation.
 355

356 4.1 SHORT VIDEO GENERATION

357 We first evaluate LONGLIVE’s short-video generation on VBench using their official prompts, and
 358 compared it with relevant open-source video generation models of similar scale, including LTX-
 359 Video (HaCohen et al., 2025), Wan2.1 (Wan et al., 2025), SkyReels-V2 (Chen et al., 2025a), MAGI-
 360 1 (Teng et al., 2025), CausVid (Yin et al., 2025), NOVA (Deng et al., 2025), Pyramid Flow (Jin et al.,
 361 2025), and Self-forcing (Huang et al., 2025). All scores are normalized using the same numerical
 362 system with VBench. On 5-second clips, LONGLIVE matches the strongest baselines in total score,
 363 demonstrating excellent quality and stability, as shown in Table 1. Benefiting from the short window
 364 attention design, LONGLIVE is also the fastest among all the methods, reaching 20.7 FPS for real-
 365 time inference. It shows that LONGLIVE does not degrade the short-clip generation capability.
 366

367 4.2 LONG VIDEO GENERATION

368 We evaluate LONGLIVE’s single-prompt long-video generation on VBench-Long (Huang et al.,
 369 2024b) using its official prompt set. For each prompt, we generate a 30-second video and split
 370 it into clips according to the VBench-Long official scripts. We compare against three representative
 371 open-source models: SkyReels-V2 (Chen et al., 2025a), FramePack (Zhang & Agrawala, 2025), and
 372 Self-Forcing (Huang et al., 2025). Because FramePack is an I2V model, we first synthesize an initial
 373 frame from the same text prompt and feed it to FramePack; other T2V models generate directly from
 374 the prompt. We report the standard VBench-Long metrics for long-horizon quality and consistency
 375 in Table 3. LONGLIVE achieve the state-of-the-art performance, while being the fastest.
 376

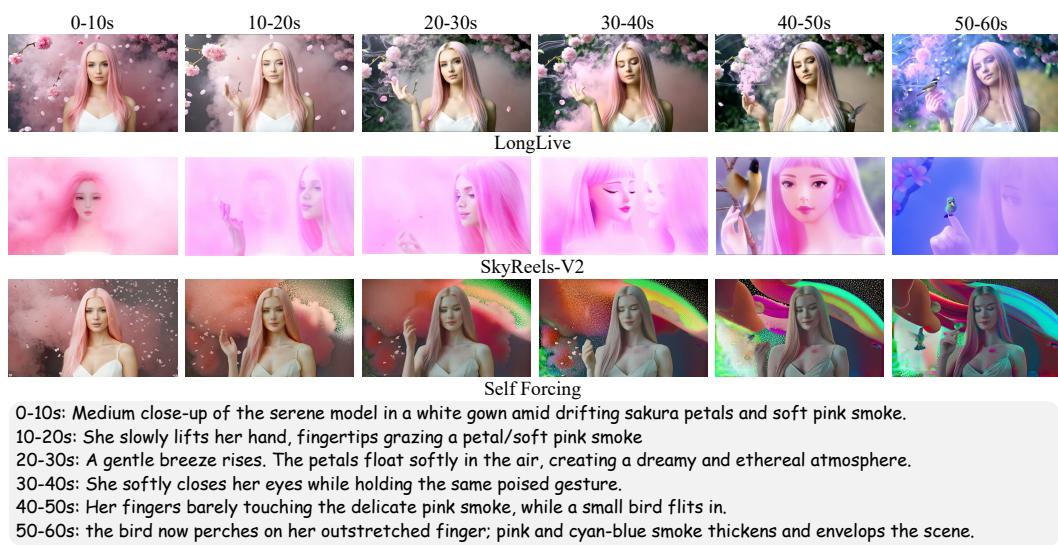


Figure 6: Qualitative comparison for interactive long video generation. **LONGLIVE** exhibits strong prompt compliance, smooth transitions, and high long-range consistency while sustaining high throughput. Compared to ours, **SkyReels-V2** shows weaker long-range consistency, and **Self-Forcing** faces quality degradation on longer videos.

Table 3: Single-prompt 30s long video evaluation on VBench-Long.

Model	Total Score \uparrow	Quality Score \uparrow	Semantic Score \uparrow	Throughput (FPS) \uparrow
SkyReels-V2	75.29	80.77	53.37	0.49
FramePack	81.95	83.61	75.32	0.92
Self-Forcing	81.59	83.82	72.70	17.0
LONGLIVE	83.52	85.44	75.82	20.7

Table 4: Ablation study on KV recache. KV recache achieves the best consistency score and CLIP score.

Method	Background Consistency \uparrow	Subject Consistency \uparrow	CLIP Score \uparrow	FPS \uparrow
No KV cache	92.75	89.59	28.95	22.8
KV cache	94.77	93.69	25.92	21.9
KV recache	94.81	94.04	27.87	20.7

4.3 INTERACTIVE LONG VIDEO GENERATION

For interactive long-form videos with multiple prompt switches, few existing methods support true streaming generation. We implemented this setting for two representative baselines: SkyReels-V2 and Self-Forcing. We then compare our approach against them. Because the standard VBench protocol is not directly applicable, we curated a custom set of 160 interactive 60-second videos, each comprising six successive 10-second prompts as the validation set. For long-horizon quality, we evaluate our 60s interactive videos on VBench-Long dimensions that support customized prompt videos, including subject_consistency, background_consistency, motion_smoothness, aesthetic_quality, and imaging_quality. For semantic adherence, we segment each video at prompt boundaries and compute clip-wise semantic score using CLIP (Radford et al., 2021) scores. Qualitative and quantitative results are shown in Figure 6 and Table 2, respectively. **LONGLIVE** exhibits strong prompt compliance, smooth transitions, and high long-range consistency while sustaining high throughput. In contrast, Self-Forcing degrades on longer horizons and, SkyReels-v2 shows weaker consistency. In terms of speed, **LONGLIVE** is more than $41\times$ faster than SkyReels-v2 and slightly faster than Self-Forcing, even with KV re-cache, thanks to our short-window attention design. Please see our project page for more qualitative comparisons for interactive long video generation. Finally, a user study in which participants rated Overall Quality, Motion Quality, Instruction Following, and Visual Quality, *i.e.*, Figure 1 (right) further supports the effectiveness of our approach.

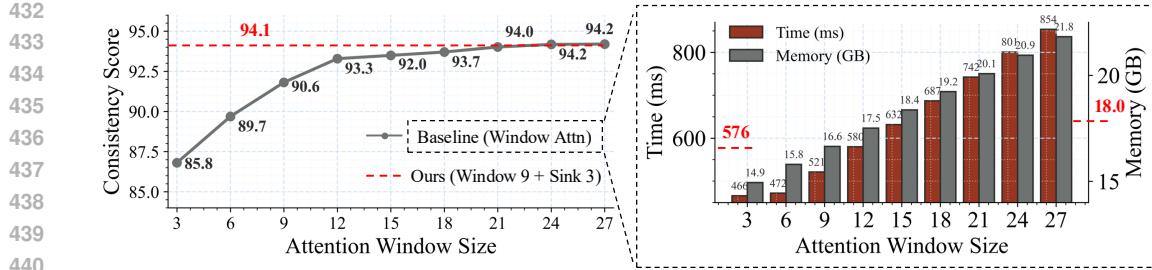


Figure 7: Ablation study on short window size and frame sink. Smaller windows reduce consistency, while enabling frame sink mitigates the drop.

4.4 KV RECACHE

In Table 4, we ablate KV caching strategies at prompt switches in a 10-second video setting with a single switch at the 5-second. We compare (i) No KV cache: clear the entire cache at the switch; (ii) KV-cache: retain the full cache unchanged; and (iii) KV-recache (ours): refresh the cache by recomputing key–value states conditioned on the preceding frames and the new prompt. We assess visual consistency with VBench Background Consistency and Subject Consistency, and measure semantic score with the CLIP model. Clearing the cache breaks long-range consistency, causing abrupt visual changes. Retaining the cache preserves continuity but induces prompt inertia: the model sticks to the previous prompt, yielding a lower semantic score on the switched prompt. Our KV recache maintains continuity while restoring compliance to the switched prompt. Please see Figure 3, Appendix Figure E, and the demo page for more qualitative comparisons on KV recache.

4.5 SHORT-WINDOW ATTENTION AND FRAME SINK

In Figure 7, we ablate short-window attention and the frame-sink under a 10-second generation setting. We vary the local-attention window from 3 to 27 latent frames, and additionally evaluate a configuration with 9 local latent frames plus 3 sink latent frames (effective window size 12). Long-range consistency is measured using VBench-Long (Huang et al., 2024b) (Background Consistency and Subject Consistency). Consistency improves as the attention window grows and saturates around a 24-frame window, revealing a clear quality–efficiency trade-off: larger windows retain more temporal context but increase latency and memory, while smaller windows are cheaper but less consistent. Our frame-sink mechanism mitigates this trade-off by recovering long-range context without attending to the full history: the 9-local + 3-sink setting achieves consistency close to a 21-frame window while preserving the speed and memory footprint of a short window.

5 CONCLUSION

In this work, we introduce **LONGLIVE**, a frame-level AR framework for real-time and interactive long video generation. To maintain visual smoothness and semantic adherence during prompt switches in interactive settings, we propose a KV-recache technique. We present a streaming long tuning strategy that enables direct training on long videos, ensuring high-quality outputs. We further introduce short window attention and frame sink to accelerate long video generation while preserving visual consistency. Experimental results demonstrate that **LONGLIVE** can efficiently fine-tune a model for long-video AR generation in only 32 GPU-days. Moreover, tuning on long videos is essential not only for long video generation but also as a prerequisite for efficient inference (e.g., window attention with frame attention sink), substantially improving inference speed. During inference, it achieves 20.7 FPS inference on a single NVIDIA H100 GPU, and supports up to 240-second video generation while maintaining high fidelity and temporal coherence. Using INT8 quantization, **LONGLIVE** compresses from 2.7 GB to 1.4 GB, with minimal performance degradation. **LONGLIVE** also supports INT8-quantized inference, incurring only marginal quality loss. We provide further results, analyses, implementation details, and qualitative showcases in the Appendix.

486 REFERENCES
487

488 Boyuan Chen, Diego Marti Monso, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitz-
489 mann. Diffusion forcing: Next-token prediction meets full-sequence diffusion. In *NeurIPS*,
490 2024a.

491 Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang,
492 Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang,
493 Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang
494 Li, Zhengcong Fei, Yang Li, and Yahui Zhou. Skyreels-v2: Infinite-length film generative model.
495 *CoRR*, abs/2504.13074, 2025a.

496 Junsong Chen, Yuyang Zhao, Jincheng Yu, Ruihang Chu, Junyu Chen, Shuai Yang, Xianbang Wang,
497 Yicheng Pan, Daquan Zhou, Huan Ling, Haozhe Liu, Hongwei Yi, Hao Zhang, Muyang Li,
498 Yukang Chen, Han Cai, Sanja Fidler, Ping Luo, Song Han, and Enze Xie. Sana-video: Efficient
499 video generation with block linear diffusion transformer, 2025b. URL <https://arxiv.org/abs/2509.24695>.

500

501 Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
502 Dahua Lin, Yu Qiao, and Ziwei Liu. SEINE: short-to-long video diffusion model for generative
503 transition and prediction. In *ICLR*, 2024b.

504

505 Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
506 Efficient fine-tuning of long-context large language models. In *ICLR*, 2024c.

507

508 Karan Dalal, Daniel Koceja, Jiarui Xu, Yue Zhao, Shihao Han, Ka Chun Cheung, Jan Kautz, Yejin
509 Choi, Yu Sun, and Xiaolong Wang. One-minute video generation with test-time training. In
510 *CVPR*, pp. 17702–17711, 2025.

511

512 Haoge Deng, Ting Pan, Haiwen Diao, Zhengxiong Luo, Yufeng Cui, Huchuan Lu, Shiguang Shan,
513 Yonggang Qi, and Xinlong Wang. Autoregressive video generation without vector quantization.
514 In *ICLR*, 2025.

515

516 Ruili Feng, Han Zhang, Zhantao Yang, Jie Xiao, Zhilei Shu, Zhiheng Liu, Andy Zheng, Yukun
517 Huang, Yu Liu, and Hongyang Zhang. The matrix: Infinite-horizon world generation with real-
518 time moving control. *CoRR*, abs/2412.03568, 2024.

519

520 Jianxiong Gao, Zhaoxi Chen, Xian Liu, Jianfeng Feng, Chenyang Si, Yanwei Fu, Yu Qiao, and
521 Ziwei Liu. Longvie: Multimodal-guided controllable ultra-long video generation. *CoRR*,
522 abs/2508.03694, 2025.

523

524 Yuchao Gu, Weijia Mao, and Mike Zheng Shou. Long-context autoregressive video modeling with
525 next-frame prediction. *CoRR*, abs/2503.19325, 2025.

526

527 Yuwei Guo, Ceyuan Yang, Ziyan Yang, Zhibei Ma, Zhijie Lin, Zhenheng Yang, Dahua Lin, and
528 Lu Jiang. Long context tuning for video generation. *CoRR*, abs/2503.10589, 2025.

529

530 Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
531 Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov,
532 Yaki Bitterman, Zeev Melumian, and Ofir Bibi. Ltx-video: Realtime video latent diffusion. *CoRR*,
533 abs/2501.00103, 2025.

534

535 Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
536 models for high-fidelity long video generation. *CoRR*, abs/2211.13221, 2022.

537

538 Roberto Henschel, Levon Khachatryan, Hayk Poghosyan, Daniil Hayrapetyan, Vahram Tadevosyan,
539 Zhangyang Wang, Shant Navasardyan, and Humphrey Shi. Streamingt2v: Consistent, dynamic,
540 and extendable long video generation from text. In *CVPR*, pp. 2568–2577, 2025.

541

542 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
543 the train-test gap in autoregressive video diffusion. *CoRR*, abs/2506.08009, 2025.

540 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
 541 ing Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua
 542 Lin, Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative
 543 models. In *CVPR*, 2024a.

544 Ziqi Huang, Fan Zhang, Xiaojie Xu, Yinan He, Jiashuo Yu, Ziyue Dong, Qianli Ma, Nattapol Chan-
 545 paisit, Chenyang Si, Yuming Jiang, Yaohui Wang, Xinyuan Chen, Ying-Cong Chen, Limin Wang,
 546 Dahua Lin, Yu Qiao, and Ziwei Liu. Vbench++: Comprehensive and versatile benchmark suite
 547 for video generative models. *CoRR*, abs/2411.13503, 2024b.

548 Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang, Yang Song,
 549 Yadong Mu, and Zhouchen Lin. Pyramidal flow matching for efficient video generative modeling.
 550 In *ICLR*, 2025.

552 Akio Kodaira, Tingbo Hou, Ji Hou, Masayoshi Tomizuka, and Yue Zhao. Streamdit: Real-time
 553 streaming text-to-video generation. *CoRR*, abs/2507.03745, 2025.

555 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 556 Bo Wu, Jianwei Zhang, Katrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, An-
 557 dong Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song,
 558 Jiawang Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai
 559 Li, Weiyan Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhen-
 560 tao Yu, Zhiyu He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao
 561 Liu, Daquan Zhou, Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar
 562 Zhong. Hunyuvideo: A systematic framework for large video generative models. *CoRR*,
 563 abs/2412.03603, 2024.

564 Kuaishou. Kling ai: Next-generation ai creative studio, 2024.

565 Muyang Li*, Yujun Lin*, Zhekai Zhang*, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin
 566 Meng, Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for
 567 4-bit diffusion models. In *The Thirteenth International Conference on Learning Representations*,
 568 2025.

570 Shanchuan Lin, Ceyuan Yang, Hao He, Jianwen Jiang, Yuxi Ren, Xin Xia, Yang Zhao, Xuefeng
 571 Xiao, and Lu Jiang. Autoregressive adversarial post-training for real-time interactive video gen-
 572 eration, 2025. URL <https://arxiv.org/abs/2506.09350>.

573 Yu Lu and Yi Yang. Freelong++: Training-free long video generation via multi-band spectralfusion.
 574 *CoRR*, abs/2507.00162, 2025.

576 Yu Lu, Yuanzhi Liang, Linchao Zhu, and Yi Yang. Freelong: Training-free long video generation
 577 with spectralblend temporal attention. In *NeurIPS*, 2024.

579 Xiaofeng Mao, Shaoheng Lin, Zhen Li, Chuanhao Li, Wenshuo Peng, Tong He, Jiangmiao Pang,
 580 Mingmin Chi, Yu Qiao, and Kaipeng Zhang. Yume: An interactive world generation model.
 581 *CoRR*, abs/2507.17744, 2025.

582 OpenAI. Sora: Creating video from text, 2024.

583 OpenAI. Introducing GPT-5, aug 2025. Accessed: 2025-09-21.

585 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *ICCV*, pp. 4172–
 586 4182, 2023.

588 Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and Ziwei Liu.
 589 Freenoise: Tuning-free longer video diffusion via noise rescheduling. In *ICLR*, 2024.

590 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
 591 wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 592 Sutskever. Learning transferable visual models from natural language supervision. In *ICML*,
 593 volume 139, pp. 8748–8763, 2021.

594 David Ruhe, Jonathan Heek, Tim Salimans, and Emiel Hoogeboom. Rolling diffusion models. In
 595 Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
 596 lett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine*
 597 *Learning*, volume 235 of *Proceedings of Machine Learning Research*, pp. 42818–42835. PMLR,
 598 21–27 Jul 2024. URL <https://proceedings.mlr.press/v235/ruhe24a.html>.

599 Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
 600 History-guided video diffusion. *CoRR*, abs/2502.06764, 2025.

602 Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
 603 Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang,
 604 Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli
 605 Su, Hanwen Sun, Hong Pan, Jie Wang, Jie Xin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng
 606 Yin, Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang,
 607 and Yuqiao Li. MAGI-1: autoregressive video generation at scale. *CoRR*, abs/2505.13211, 2025.

608 Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
 609 Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
 610 length video generation from open domain textual descriptions. In *ICLR*, 2023.

612 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 613 Haiming Zhao, Jianxiao Yang, et al. Wan: Open and advanced large-scale video generative
 614 models. *arXiv preprint arXiv:2503.20314*, 2025.

615 Wenhao Wang and Yi Yang. Vidprom: A million-scale real prompt-gallery dataset for text-to-video
 616 diffusion models. 2024.

618 Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
 619 He, Jiashuo Yu, Peiqing Yang, Yuwei Guo, Tianxing Wu, Chenyang Si, Yuming Jiang, Cunjian
 620 Chen, Chen Change Loy, Bo Dai, Dahua Lin, Yu Qiao, and Ziwei Liu. Lavie: High-quality video
 621 generation with cascaded latent diffusion models. *Int. J. Comput. Vis.*, 133(5):3059–3078, 2025.

622 Cong Wei, Bo Sun, Haoyu Ma, Ji Hou, Felix Juefei-Xu, Zecheng He, Xiaoliang Dai, Luxin Zhang,
 623 Kunpeng Li, Tingbo Hou, Animesh Sinha, Peter Vajda, and Wenhui Chen. Mocha: Towards
 624 movie-grade talking character synthesis. *CoRR*, abs/2503.23307, 2025.

626 Wilson Yan, Danijar Hafner, Stephen James, and Pieter Abbeel. Temporally consistent transformers
 627 for video generation, 2023. URL <https://arxiv.org/abs/2210.02396>.

628 An Yang, Jinze Bai, et al. Qwen2 technical report. *arXiv*, 2024a.

630 Shuai Yang, Yukang Chen, Luozhou Wang, Shu Liu, and Yingcong Chen. Denoising diffusion
 631 step-aware models. *arXiv preprint arXiv:2310.03337*, 2023.

632 Shuai Yang, Yuying Ge, Yang Li, Yukang Chen, Yixiao Ge, Ying Shan, and Yingcong Chen.
 633 Seed-story: Multimodal long story generation with large language model. *arXiv preprint*
 634 *arXiv:2407.08683*, 2024b.

636 Yi Yang, Yuetong Zhuang, and Yunhe Pan. Multiple knowledge representation for big data artificial
 637 intelligence: framework, applications, and case studies. *Frontiers of Information Technology &*
 638 *Electronic Engineering*, 22(12):1551–1558, 2021.

640 Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
 641 Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
 642 Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. Cogvideox: Text-to-video diffusion models
 643 with an expert transformer. In *ICLR*, 2025.

644 Shengming Yin, Chenfei Wu, Huan Yang, Jianfeng Wang, Xiaodong Wang, Minheng Ni, Zhengyuan
 645 Yang, Linjie Li, Shuguang Liu, Fan Yang, Jianlong Fu, Ming Gong, Lijuan Wang, Zicheng Liu,
 646 Houqiang Li, and Nan Duan. NUWA-XL: diffusion over diffusion for extremely long video
 647 generation. In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *ACL*, pp. 1309–
 1320, 2023.

648 Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Frédo Durand, and
 649 William T. Freeman. Improved distribution matching distillation for fast image synthesis. In
 650 *NeurIPS*, volume 37, 2024a.

651 Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Frédo Durand, William T. Freeman,
 652 and Taesung Park. One-step diffusion with distribution matching distillation. In *CVPR*, pp. 6613–
 653 6623, 2024b.

654 Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman, and
 655 Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In *CVPR*,
 656 2025.

657 Sihyun Yu, Meera Hahn, Dan Kondratyuk, Jinwoo Shin, Agrim Gupta, José Lezama, Irfan Essa,
 658 David Ross, and Jonathan Huang. Malt diffusion: Memory-augmented latent transformers for
 659 any-length video generation, 2025. URL <https://arxiv.org/abs/2502.12632>.

660 Hangjie Yuan, Weihua Chen, Jun Cen, Hu Yu, Jingyun Liang, Shuning Chang, Zhihui Lin, Tao
 661 Feng, Pengwei Liu, Jiazheng Xing, Hao Luo, Jiasheng Tang, Fan Wang, and Yi Yang. Lumos-1:
 662 On autoregressive video generation from a unified model perspective. *CoRR*, abs/2507.08801,
 663 2025.

664 Lvmin Zhang and Maneesh Agrawala. Packing input frame context in next-frame prediction models
 665 for video generation. *CoRR*, abs/2504.12626, 2025.

666 Yifan Zhang, Chunli Peng, Boyang Wang, Puyi Wang, Qingcheng Zhu, Fei Kang, Biao Jiang, Ze-
 667 dong Gao, Eric Li, Yang Liu, and Yahui Zhou. Matrix-game: Interactive world foundation model.
 668 *CoRR*, abs/2506.18701, 2025.

669 Min Zhao, Guande He, Yixiao Chen, Hongzhou Zhu, Chongxuan Li, and Jun Zhu. Reflex: A free
 670 lunch for length extrapolation in video diffusion transformers. *CoRR*, abs/2502.15894, 2025.

671 Deyu Zhou, Quan Sun, Yuang Peng, Kun Yan, Runpei Dong, Duomin Wang, Zheng Ge, Nan Duan,
 672 Xiangyu Zhang, Lionel M. Ni, and Heung-Yeung Shum. Taming teacher forcing for masked
 673 autoregressive video generation, 2025. URL <https://arxiv.org/abs/2501.12389>.

674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 APPENDIX
703704 A ETHICS STATEMENT
705706 This study uses a self-supervised, efficient fine-tuning procedure and does not introduce any additional
707 external video datasets for training. All text prompts leveraged in self-supervised training,
708 generated from Qwen2-72B-Instruct (Yang et al., 2024a), are clean, safe, and for academic research
709 purposes only.
710711 B REPRODUCIBILITY STATEMENT
712713 To facilitate reproducibility, we will open-source this project, including both training and inference
714 code as well as model weights. In addition, we provide the full training procedure and implementa-
715 tion details in Section 4 and Section F.
716717 C USE OF LARGE LANGUAGE MODELS
718719 During manuscript preparation, we used large language models—GPT-5 (OpenAI, 2025)—strictly
720 for language polishing of paragraphs and sentences (grammar, flow, and tone). These tools were
721 not used to generate ideas, design experiments, or determine conclusions. All technical content,
722 methodology, and interpretations were written, verified, and approved by the authors. To reduce
723 risks of factual drift or citation errors, we required human review of every model-edited sentence
724 and cross-checked all references against primary sources. The authors take full responsibility for the
725 accuracy and integrity of the manuscript.
726727 D GENERAL RELATED WORK
728729 D.1 DIFFUSION-BASED LONG VIDEO GENERATION
730731 Recent advances in diffusion models (Villegas et al., 2023; He et al., 2022; Chen et al., 2024b; Wang
732 et al., 2025; Guo et al., 2025; Dalal et al., 2025) have explored long video generation. Phenaki (Vil-
733 legas et al., 2023) compresses video into discrete tokens, enabling variable-length generation from
734 open-domain text. NUWA-XL (Yin et al., 2023) extends diffusion to extremely long sequences
735 via a coarse-to-fine “diffusion over diffusion” framework, generating global keyframes and filling
736 intermediate frames in parallel. LVDM (He et al., 2022) leverages a compact 3D latent space
737 with hierarchical generation. LaVie (Wang et al., 2025) proposes a cascaded pipeline, with joint
738 fine-tuning, rotary position encoding, and temporal attention. SEINE (Chen et al., 2024b) em-
739 ploys smooth shot transitions using a stochastic masking-based diffusion model. LCT (Guo et al.,
740 2025) expanded pre-trained short-video models to scene-level contexts for multi-shot coherence,
741 via large-scale fine-tuning. Other approaches (Dalal et al., 2025) use a test-time training technique
742 to generate minute-long videos. TECO (Yan et al., 2023), MALT Diffusion (Yu et al., 2025), and
743 Rolling Diffusion Ruhe et al. (2024) all study long-horizon sequence generation or prediction by
744 designing architectures and training schemes that better preserve temporal coherence over many
745 frames (e.g., transformer-based predictive models in TECO on navigation-style video benchmarks,
746 memory-augmented latent transformers in MALT on UCF-101 / Kinetics-600, and sliding-window
747 diffusion with per-frame time reparameterization in Rolling Diffusion for Kinetics-600 video pre-
748 diction and other temporal data). However, they are primarily evaluated on relatively small-scale
749 video prediction or class-conditioned generation datasets such as UCF or Kinetics, are not designed
750 as large-scale text-to-video systems, and do not target real-time streaming generation, which makes
751 them conceptually related but orthogonal to the real-time, text-driven long-video setting addressed
752 by LongLive. Although these models can generate long-duration videos, they often incur heavy
753 computational costs, motivating more efficient and real-time solutions.
754755 Several recent works extend the generation length of diffusion models in a training-free manner. RI-
756 FLEEx (Zhao et al., 2025) conducts video length extrapolation by adjusting the intrinsic frequency of
757 position embeddings, mitigating temporal repetition and motion slowdown. FreeNoise (Qiu et al.,
758 2024) uses a noise rescheduling strategy and window-based temporal attention. FreeLong (Lu et al.,
759

2024) blends temporal frequency components at inference. FreeLong++ (Lu & Yang, 2025) introduces multi-band spectral fusion to capture and fuse multi-frequency temporal information. In these training-free settings, models achieve at most a 4–8 \times extension in length (up to 40 seconds), which remains inadequate for long-form scenarios.

D.2 AUTOREGRESSIVE LONG VIDEO GENERATION

A growing number of works (Chen et al., 2024a; Song et al., 2025; Mao et al., 2025; Yuan et al., 2025; Zhang & Agrawala, 2025; Gao et al., 2025; Henschel et al., 2025; Gao et al., 2025) integrate diffusion modeling with AR prediction, an intermediate paradigm between purely diffusion-based approaches and purely AR approaches. Diffusion-forcing (Chen et al., 2024a) formalizes this hybrid paradigm by injecting noise into future tokens and training the model to denoise them, combining diffusion quality with AR efficiency. StreamingT2V (Henschel et al., 2025) extends this idea with short and long-term memory modules for coherent text-to-video generation. Pyramidal-flow (Jin et al., 2025) proposes a multi-scale flow matching design to reduce computation. History-guided video diffusion (Song et al., 2025) further incorporates flexible-length historical context to improve temporal consistency over extended rollouts. SkyReels-V2 (Chen et al., 2025a) couples diffusion forcing with a film-structure planner and multimodal controls. FramePack (Zhang & Agrawala, 2025) compresses input frames into a fixed-size context to address memory and efficiency bottlenecks. Lumos-1 (Yuan et al., 2025) employs large language models (LLMs) style architectures, integrating spatiotemporal modeling under the diffusion-forcing framework. Most recently, LongVie (Gao et al., 2025) introduces multimodal-guided control, unified noise initialization, and degradation-aware training. Recent efforts (Yin et al., 2025; Huang et al., 2025; Gu et al., 2025; Teng et al., 2025; Zhou et al., 2025; Deng et al., 2025) have advanced causal AR-based models for long video generation. CausVid (Yin et al., 2025) reformulates bidirectional video diffusion into a causal AR process, using distribution matching distillation to compress multi-step denoising into a few steps. FAR (Gu et al., 2025) further enhances AR generation by combining a high-resolution short-term context with a compressed long-term context via flexible positional encoding. MAGI-1 (Teng et al., 2025) scales AR video generation to large models and datasets through chunk-wise prediction. Most recently, Self-forcing (Huang et al., 2025) addresses the train–test gap in AR video diffusion by simulating inference conditions during training, rolling out generation with KV cache, and conditioning on model outputs. Despite the promise of purely AR for long text-to-video generation, achieving real-time efficiency and maintaining high quality simultaneously remains an open challenge.

Recent works have begun exploring interactive video generation, where users can directly influence generation in real time through text or keyboard prompts. The Matrix (Feng et al., 2024) demonstrates infinite-horizon world generation with first- and third-person control, using a shifted window denoising process. Yume (Mao et al., 2025) builds an interactive world generation pipeline capable of constructing explorable environments from a single image, video, or text, allowing responsive user navigation. Matrix-Game (Zhang et al., 2025) employs large-scale pretraining and action-labeled finetuning to produce controllable, high-fidelity video conditioned on reference frames, motion context, and user actions. While effective, these methods are specifically tailored for interactive video generation in video game environments, such as Minecraft and GTA. MAGI-1 (Teng et al., 2025) supports general interaction, but its prompt switching requires manual adjustment of KV-cache windows at different steps, which complicates practical use.

E TRAINING PROMPT GENERATION

LONGLIVE does not require video data since we adopt a self-training method. It relies only on a set of prompts to teach the model with interaction ability (Yang et al., 2024b; 2021; 2023). To efficiently produce appropriate, reasonable, and safe interactive prompts, we employ the Qwen2-72B-Instruct (Yang et al., 2024a) LLM. Given a source prompt from VidProM (Wang & Yang, 2024), we instruct Qwen2-72B-Instruct to synthesize the next scene under several constraints. The instruction template is shown below.

You are a video-prompt generation specialist. Your task

- Receive an ORIGINAL_PROMPT for the first part of a continuous shot.
- Write one stand-alone English paragraph (80{100 words) that shows the

810

811 **Algorithm 1** Streaming Long Tuning

Require: Causal video generator G_θ , Prompt set \mathcal{P}
Require: Video length l_{video} , Per clip length l_{clip}

```

1: while not converged do
2:   Initialize KV cache  $C \leftarrow []$ 
3:   Initialize current video length  $l \leftarrow 0$ 
4:   Sample  $(p, p_{\text{next}}) \sim \mathcal{P}$ 
5:   Sample switch index  $s$ 
6:    $s \in \{1, 2, \dots, \lfloor l_{\text{video}}/l_{\text{clip}} \rfloor - 1\}$ 
7:    $s \leftarrow s \cdot l_{\text{clip}}$ 
8:   if  $l \geq l_{\text{video}}$  then
9:      $C \leftarrow []$ ;  $l \leftarrow 0$ 
10:    Resample  $(p, p_{\text{next}})$  and  $s$ 
11:   end if
12:    $p_{\text{active}} \leftarrow \begin{cases} p, & \text{if } l < s \\ p_{\text{next}}, & \text{otherwise} \end{cases}$ 
13:   if  $l = s$  then
14:      $C \leftarrow \text{recache}(G_\theta, \mathbf{v}, C, p_{\text{active}})$ 
15:   end if
16:    $\mathbf{x} \leftarrow \text{generate\_next\_clip}(G_\theta, C, p_{\text{active}})$ 
17:    $\mathcal{L} \leftarrow \text{DMD\_Loss}(G_\theta, \mathbf{x}, p_{\text{active}})$ 
18:    $\mathcal{L}.\text{backward}()$ 
19:   update generator parameter  $\theta$ 
20:    $l \leftarrow l + l_{\text{clip}}$ 
21: end while

```

835

836

837 next moment of the same shot.

- **Add exactly one new action/object for the existing main subject.**
- Keep setting, subject, mood, style, camera scale, and camera movement or angle exactly as in the ORIGINAL_PROMPT.
- Elements may vanish only if naturally obscured by the new action.
- Do **not** use phrases like *still, as before, continues* that reveal you read the prior text.
- Use clear mid-level English; avoid rare or literary words.
- End the paragraph with **the same camera keywords that appear at the end of the ORIGINAL_PROMPT**, separated by single spaces, no brackets.
- **Output format MUST be exactly one line, wrapped between <OUTPUT> and </OUTPUT>.**
- Do **NOT** add explanations, greetings, headings, numbering, markdown, or extra lines.
- Anything written outside the two tags will be ignored.

849

850

851

F TRAINING DETAILS

852

853

F.1 IMPLEMENTATION

855

856

857

858

859

860

861

862

863

We first adapt the pretrained Wan2.1-T2V-1.3B into a chunk-wise autoregressive (AR) causal-attention model. First, we conduct an ODE initialization as the same as self-forcing. Then we train the model with DMD, but switch to short-window attention with frame-sink tokens: the chunk size is 3 latent frames, the local attention window is 9 frames, and the first chunk (3 latent frames) serves as the sink. After this initialization, we perform streaming long-tuning strictly following Algorithm 1: at each iteration, we roll out a 5 s clip and supervise the student using Wan2.1-T2V-14B as the teacher. Optimization uses AdamW for both actor and critic with learning rates $\text{lr} = 1.0 \times 10^{-5}$ (actor) and $\text{lr}_{\text{critic}} = 2.0 \times 10^{-6}$; we set $\beta_1 = 0.0$, $\beta_2 = 0.999$ for the actor and $\beta_{1,\text{critic}} = 0.0$, $\beta_{2,\text{critic}} = 0.999$ for the critic. Training is conducted on 64 GPUs with one sample per GPU (global batch size = 64). We apply EMA to the actor with decay 0.99, starting at step 200. The maximum

864

Algorithm 2 Interactive Inference

Require: Causal video generator G_θ
Require: Prompt sequence $\mathcal{P} = [p_0, \dots, p_n]$, switch-index sequence $\mathcal{S} = [s_1, \dots, s_n]$
Require: Number of video frames N , diffusion steps per frame T

```

1: Initialize model output  $\mathbf{x} \leftarrow []$ 
2: Initialize KV cache  $C \leftarrow []$ 
3:  $p_{\text{active}} \leftarrow \mathcal{P}.\text{pop}(0)$ 
4: for  $i = 1, \dots, N$  do
5:   if  $i \in \mathcal{S}$  then
6:      $p_{\text{active}} \leftarrow \mathcal{P}.\text{pop}(0)$ 
7:      $C \leftarrow \text{recache}(G_\theta, \mathbf{x}, C, p_{\text{active}})$ 
8:   end if
9:   Initialize  $x_{t_T}^i \sim \mathcal{N}(0, I)$ 
10:  for  $j = T, \dots, 1$  do
11:    Set  $\hat{x}_0^i \leftarrow G_\theta(x_{t_j}^i; t_j, C, p_{\text{active}})$ 
12:    if  $j = 1$  then
13:       $\mathbf{x}.\text{append}(\hat{x}_0^i)$ 
14:       $C \leftarrow G_\theta^{KV}(x_j^i, 0, C, p_{\text{active}})$ 
15:    else
16:      Sample  $\epsilon \sim \mathcal{N}(0, I)$ 
17:      Set  $x_{t_{j-1}}^i \leftarrow \Psi(\hat{x}_0^i, \epsilon, t_{j-1})$ 
18:    end if
19:  end for
20: end for
21: return  $\mathbf{x}$ 

```

864 Table A: LoRA budget vs. performance on VBench-Long. A moderate budget approaches full-
 865 model quality with far fewer trainable parameters.

LoRA rank	32	64	128	256	512	Full Model
Trainable Parameters	44 M	87 M	175 M	350 M	700 M	1.3 B
Total Score	81.08	82.68	82.98	83.12	83.04	83.52

871 Table B: INT8-Quantized results on VBench. FPS is measured on a single NVIDIA 5090 GPU.

Precision	Model Size	Throughput (FPS)	Total	Quality	Semantic
INT8	1.4 GB	16.4	84.31	86.20	76.74
BF16	2.7 GB	12.6	84.87	86.97	76.47

879 sequence length is set to the target inference horizon; both 60 s and 240 s work well in practice. For
 880 the 60 s setting, we train for 3,000 iterations.

882 F.2 LORA TUNING

885 Motivated by LongLora (Chen et al., 2024c), we assume that improving the quality of long context
 886 does not require a full model fine-tuning. We therefore adopt LoRA tuning throughout the streaming
 887 long tuning procedure. Interestingly, we find that effective long-range generation demands relatively
 888 high adapter ranks; in our setup, the resulting adapters require 256 ranks, making roughly 27% of
 889 the model’s parameters trainable. Even so, LoRA substantially reduces the training footprint, cutting
 890 the parameter/optimizer state to about 27% of that required by full fine-tuning (i.e., 73% savings).

891 We ablate LoRA tuning in Table A. We measure the 30s long-video quality by VBench-long. Scaling
 892 the LoRA budget improves quality until a saturation point, with the rank 256 configuration achieving
 893 the best while still training far fewer parameters than full fine-tuning.

895 G ABLATION STUDY ON THE NUMBER OF SINK FRAMES

898 We have compared no sink versus different numbers of initial sink frames. As shown in the Table C
 899 and Figure A below, using a small number of sink frames (S3W9) slightly improves VBench scores,
 900 while increasing the number of sink frames (S6W6, S9W3) makes the sink frame visually dominant
 901 and causes flashback-like, less coherent long-range dynamics. We will report the VBench numbers
 902 as a table and provide qualitative comparisons in the PDF appendix.

903 We have expanded the ablation on the frame-sink configuration, where we use the notation $SxWy$
 904 to denote using x sink frames followed by a sliding window of y frames (e.g., S3W9 means 3 sink
 905 frames + a 9-frame window). As shown in Table C, introducing a small number of sink frames
 906 (S3W9) slightly improves VBench scores over the no-sink baseline (S0W12). However, when we
 907 further increase the number of sink frames (S6W6, S9W3), the sink frames become visually dom-
 908 inant and the VBench scores degrade, with the S9W3 setting exhibiting a clear collapse in both
 909 overall and consistency scores. The qualitative comparisons in Figure A corroborate this trend:
 910 for S0W12, temporal consistency is poor and the red boxes highlight noticeable late-stage drifting;
 911 S3W9 yields more stable and coherent dynamics; while S6W6 and S9W3 introduce sudden content
 912 changes and flickering frames, with the red boxes marking these abrupt transitions and artifacts.

913 H QUANTIZATION

916 We quantize LONGLIVE to INT8 via post-training quantization (Li* et al., 2025). As shown in
 917 Table B, this reduces LONGLIVE’s model size by $1.9\times$ and improves throughput by $1.3\times$, with
 minimal degradation on VBench (Table B).

918
 919 Table C: **Ablation** on the frame-sink configuration in terms of VBench. We use the notation $SxWy$
 920 to denote x sink frames followed by a y -frame window. A small number of sink frames (S3W9)
 921 slightly improves the VBench score over the no-sink baseline (S0W12), while increasing the number
 922 of sink frames (S6W6, S9W3) degrades performance, with S9W3 exhibiting a clear collapse in the
 923 consistency score.

Metric	S0W12	S3W9	S6W6	S9W3
VBench Score \uparrow	83.78	83.98	79.23	74.43
Consistency Score \uparrow	93.30	94.10	94.22	54.65

944
 945 Figure A: Qualitative comparison of different frame-sink configurations using the $SxWy$ notation
 946 (S : number of sink frames; W : number of window frames). For S0W12, temporal consistency is
 947 poor and the red boxes highlight noticeable late-stage drifting; S3W9 yields more stable, coherent
 948 dynamics; while S6W6 and S9W3 produce visually dominant sink frames with sudden content
 949 changes and flickering artifacts, as indicated by the red boxes.

I INTERACTIVE LONG VIDEO SHOWCASES

950 We present interactive 60s videos generated with six sequential prompts in Figure B and Figure C.
 951 See our demo page in the supplementary materials for more examples.

J LONG VIDEO SHOWCASES

952 We present single-prompt 60s videos in Figure D. See our demo page in the supplementary materials
 953 for more examples.

K KV RE-CACHING COMPARISON

954 We present qualitative results from the ablation study of KV re-caching in Figure E. See our demo
 955 page in the supplementary materials for more examples. No KV cache: New-prompt adherence
 956 but abrupt transitions and visual discontinuity. KV cache: Smooth visuals but new-prompt non-
 957 adherence (delayed or ignored). KV recache: Visual consistency and new-prompt adherence.

L ULTRA-LONG VIDEO ABILITIES

958 LONGLIVE can train and test on ultra-long sequences. We conduct an experiment on a 240-second
 959 sequence, and it generates this ultra-long video smoothly and consistently. See our demo page in the
 960 supplementary materials for ultra-long examples.

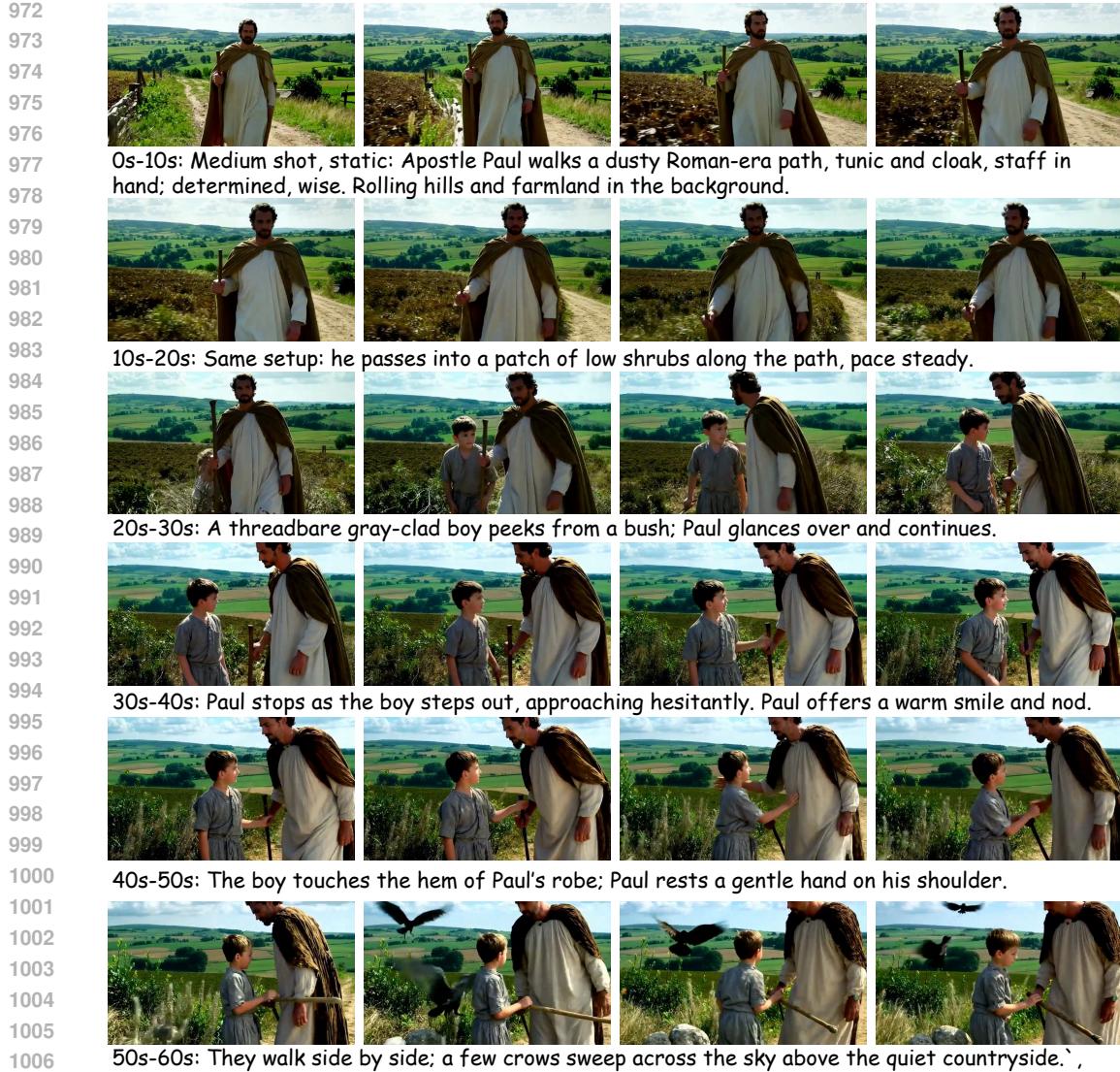


Figure B: Interactive 60s videos with sequential prompts. See our demo page in the supplementary materials for more examples.

M USER STUDY DETAILS

We conducted a user study to evaluate video quality across 48 questions spanning four dimensions: **Overall** (overall preference considering all factors), **Motion Quality** (smoothness/naturalness of motion; absence of jitter or discontinuity), **Instruction Following** (faithfulness to the given instruction/prompt), and **Visual Quality** (clarity, level of detail, and overall aesthetic quality). For each question, participants were shown a pair of videos together with the corresponding prompt and asked to choose **Model A**, **Model B**, or **Same** (no perceptible difference). The survey was distributed to 30 participants; we received 26 valid responses, yielding 1,248 total judgments (26×48). Participants were instructed to watch both videos carefully and replay if needed before making a choice.

N LIMITATION ANALYSIS

LONGLIVE is an efficient fine-tuning scheme built on top of a pretrained base model, so its ultimate performance is bounded by the capacity and quality of that base model. In particular, we adopt a self-supervised fine-tuning strategy without additional curated real-video data. While this improves

1026 efficiency and scalability, it also limits the method’s ability to correct systematic errors or biases
1027 inherited from the base model. Consequently, the quality of any short segment (e.g., per 10-s clip) is
1028 unlikely to consistently exceed that of the base model, even if long-horizon consistency or instruction
1029 adherence improves. Therefore, our gains are primarily in adaptation and stabilization rather than
1030 absolute ceiling quality. Future work could incorporate supervised data to avoid the quality bound.
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

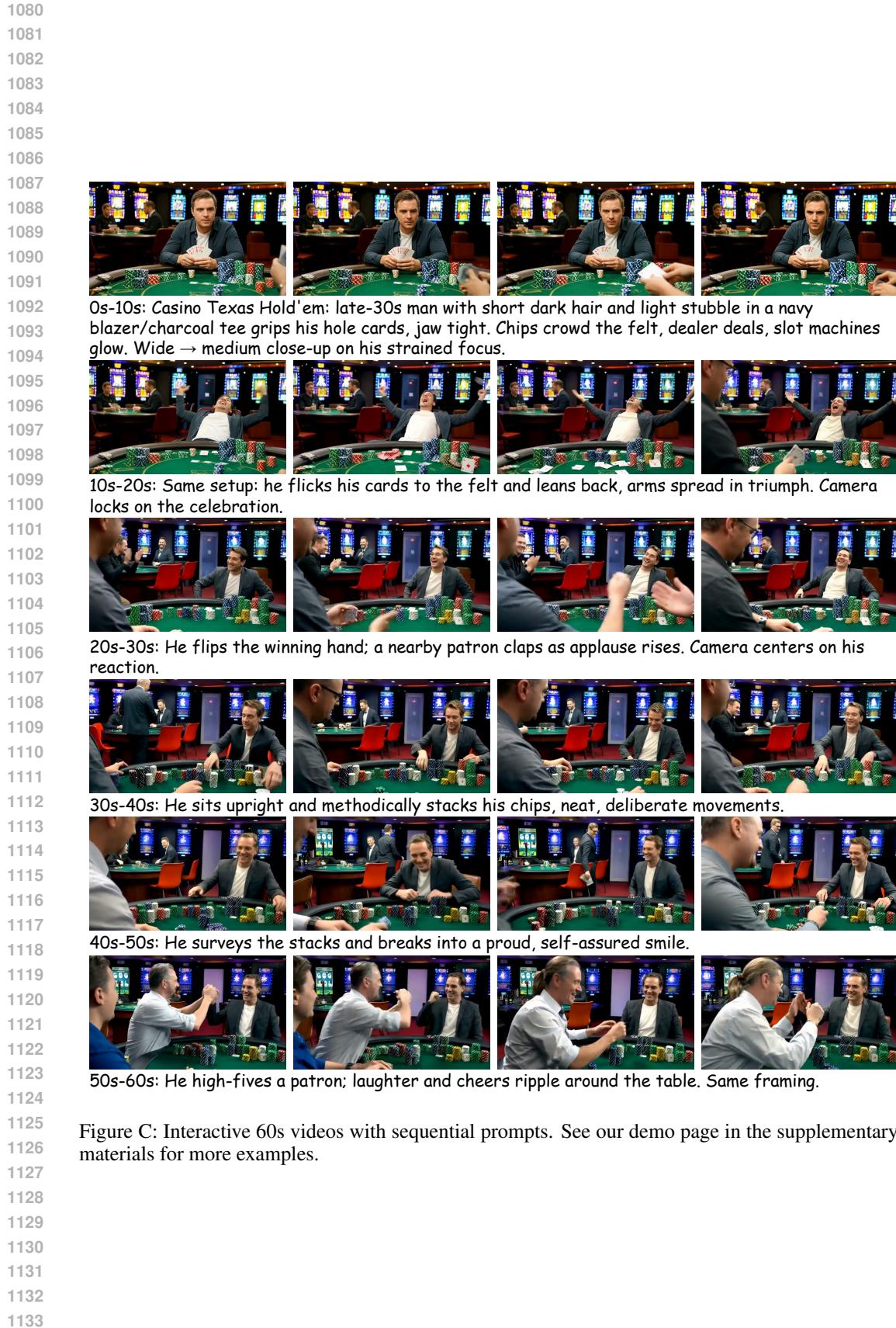


Figure D: Single-prompt 60 s videos. See our demo page in the supplementary materials for more examples.

1188
1189
1190
1191
1192
1193
1194

1210 0s-5s: a steaming burger—seared patty (crisp edges, pink center), melted cheddar, lettuce, tomato, pickles, special sauce—on a lightly charred sesame bun.

1211 5s-10s: **fresh pepper** sprinkles onto a hot patty under melted cheddar with lettuce, tomato, pickles, special sauce on a charred sesame bun.

1212
1213

1230 0s-5s: Young and beautiful girls singing...

5s-10s: **One girl reaches up to adjust hair...**

1231

1232 Figure E: We present qualitative results from the ablation study of KV re-caching. See our demo
1233 page in the supplementary materials for more examples. No KV cache: New-prompt adherence
1234 but abrupt transitions and visual discontinuity. KV cache: Smooth visuals but new-prompt non-
1235 adherence (delayed or ignored). KV recache: Visual consistency and new-prompt adherence.

1236
1237
1238
1239
1240
1241