

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WHY HIGH-RANK NEURAL NETWORKS GENERALIZE?: AN ALGEBRAIC FRAMEWORK WITH RKHSS

Anonymous authors

Paper under double-blind review

ABSTRACT

We derive a new Rademacher complexity bound for deep neural networks using Koopman operators, group representations, and reproducing kernel Hilbert spaces (RKHSs). The proposed bound describes why the models with high-rank weight matrices generalize well. Although there are existing bounds that attempt to describe this phenomenon, these existing bounds can be applied to limited types of models. We introduce an algebraic representation of neural networks and a kernel function to construct an RKHS to derive a bound for a wider range of realistic models. This work paves the way for the Koopman-based theory for Rademacher complexity bounds to be valid for more practical situations.

1 INTRODUCTION

Understanding the generalization property of deep neural networks has been one of the biggest challenges in the machine learning community. The generalization property describes how the model can fit unseen data. Classically, the generalization error is bounded using the VC-dimension theory (Harvey et al., 2017; Anthony & Bartlett, 2009). Norm-based (Neyshabur et al., 2015; Bartlett et al., 2017; Golowich et al., 2018; Neyshabur et al., 2018; Wei & Ma, 2019; Li et al., 2021; Ju et al., 2022; Weinan E et al., 2022) and compression-based (Arora et al., 2018; Suzuki et al., 2020) bounds have also been investigated. The norm-based bounds depend on the matrix (p, q) norm of the weight matrices, and the compression-based bounds are derived by investigating how much the networks can be compressed. These bounds imply that low-rank weight matrices and weight matrices with small singular values, i.e., nearly low-rank matrices, have good effects for generalization. See Appendix C for more details about the existing bounds.

On the other hand, phenomena in which models with weight matrices that are high-rank and have large singular values generalize well have been empirically observed (Goldblum et al., 2020). Since the norm-based and compression-based bounds focus only on the low-rank and nearly low-rank cases, they cannot describe these phenomena. To theoretically describe these phenomena, the Koopman-based bound was proposed (Hashimoto et al., 2024). Koopman operators are linear operators that describe the compositions of functions, which are essential structures of neural networks. This existing bound is described by the ratio of the norm to the determinant of each weight matrix as

$$O\left(\prod_{l=1}^L \frac{G_l \|K_{\sigma_l}\|_{H_l} W_l\|^{s_{l-1}}}{\sqrt{S} \det(W_l^* W_l)^{1/4}}\right), \quad (1)$$

where S is the sample size, s_l represents the smoothness of the l th layer, G_l is a factor determined by the $l \sim L$ th layers, K_{σ_l} is the Koopman operator with respect to the activation function σ_l , and $\|\cdot\|_{H_l}$ represents the operator norm in a Sobolev space H_l . Since the determinant factor appears in the denominator of the bound, even if the weight matrices are high rank and have large singular values, this bound can be small. The Koopman-based bound theoretically sheds light on why neural networks with high-rank weight matrices generalize well.

However, the existing analysis for the Koopman-based bound strongly depends on the smoothness of models and the unboundedness of the data space, which excludes realistic models with bounded data space and with activation functions such as the hyperbolic tangent, sigmoid, and ReLU-type nonsmooth functions. In addition, the dependency of the bound on the activation function is not clear. In fact, the factors $\|K_{\sigma_l}\|_{H_l}$ and G_l in the bound (1) is hard to evaluate in many cases.

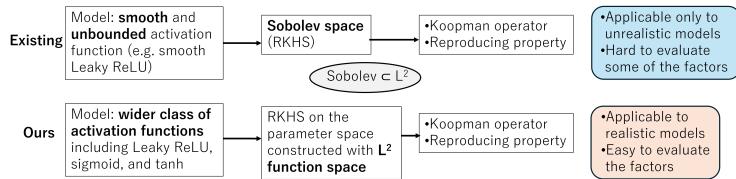


Figure 1: Summary of the framework of the existing and proposed Koopman-based bounds

In this paper, we propose a new Koopman-based bound that resolves the issues of the existing Koopman-based bounds. **The proposed bound is described as**

$$O\left(\prod_{l=1}^L \frac{G_l \|K_{\sigma_l}\|_{\mathcal{L}_l}}{\sqrt{S} \det(W_l^* W_l)^{1/4}}\right),$$

where $\|\cdot\|_{\mathcal{L}_l}$ is the operator norm in a L^2 function space. Similar to the existing Koopman-based bounds, the proposed bound describes why high-rank neural networks generalize well. On the other hand, the difference of the function space \mathcal{L}_l from H_l gives a significant benefit to the proposed bound. We note that \mathcal{L}_l is larger than H_l , and \mathcal{L}_l enables us to analyze nonsmooth deep models and bounded data space. In addition, it enables us to evaluate the factors $\|K_{\sigma_l}\|_{\mathcal{L}_l}$ and G_l easily (see Lemmas 2.3–2.5) and understand the effect of the activation functions on the deep model. As a result, the proposed bound significantly improves the existing bound in the sense that it can be applied to a wider range of models and enables us to understand the models well.

To achieve the above improvement, we introduce a kernel function defined on the parameter space using linear operators on a Hilbert space to which models belong. This kernel function allows us to construct a reproducing kernel Hilbert space (RKHS) that describes realistic deep models with nonsmooth activation function and bounded data space. We use the Rademacher complexity to derive generalization bounds. **The Rademacher complexity measures the complexity of the model, which also describe the generalization property.** Using the reproducing property of the RKHS, we can bound the Rademacher complexity with the operator norms of the linear operators. For linear operators, we use group representations and Koopman operators. We first focus on algebraic representations of models using group representations. A typical example is the representation of the affine group, which describes invertible neural networks. We then focus on representations using Koopman operators with respect to the weight matrices, which describe neural networks with non-constant width. **We schematically show the summary of the framework of the existing and proposed Koopman-based bounds in Figure 1.**

The main contributions of this paper are as follows:

- We introduce an algebraic representation of models that can represent deep neural networks as typical examples. To describe the action of parameters on models, we focus on group representations, which enables us to represent invertible neural networks, and Koopman operators, which enables us to represent more general neural networks (Subsections 3.1 and 5.1).
- We define a kernel function to construct an RKHS that describes the model. We derive a new Rademacher complexity bound using this kernel (Subsection 3.2). The proposed bound describes why the models with high-rank weight matrices generalize well for a wider range of models than the existing bounds (Section 4 and Subsections 5.2–5.4).

Notations and remarks For $d \in \mathbb{N}$ and a Lebesgue measure space $\mathcal{X} \subseteq \mathbb{R}^d$, let $L^2(\mathcal{X})$ be the space of complex-valued squared Lebesgue-integrable functions on \mathcal{X} . We denote by $\mu_{\mathcal{X}}$ the Lebesgue measure on \mathcal{X} . For a Hilbert space \mathcal{H} , let $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ be the inner product in \mathcal{H} . We omit the subscript \mathcal{H} when it is obvious. We denote by $B(\mathcal{H}_1, \mathcal{H}_2)$ the space of bounded linear operators from \mathcal{H}_1 to \mathcal{H}_2 . In particular, we denote $B(\mathcal{H}, \mathcal{H}) = B(\mathcal{H})$. All the technical proofs are in Appendix A.

2 PRELIMINARIES

2.1 KOOPMAN OPERATOR

Koopman operator is a linear operator that represents the composition of nonlinear functions. Since neural networks are constructed using compositions, Koopman operators play an essential role in

108 analyzing neural networks. Let $\mathcal{X} \subseteq \mathbb{R}^d$ be a Lebesgue measure space. Koopman operators are
 109 defined as follows. We also introduce weighted Koopman operator, which is a generalization of
 110 Koopman operator.

111 **Definition 2.1** (Koopman operator and weighted Koopman operator). Let $\tilde{\mathcal{X}} \subseteq \mathbb{R}^{d_1}$ and $\mathcal{X} \subseteq \mathbb{R}^{d_2}$.
 112 The *Koopman operator* K_σ with respect to a map $\sigma : \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ is a linear operator from $L^2(\mathcal{X})$ to
 113 $L^2(\tilde{\mathcal{X}})$ that is defined as $K_\sigma h(x) = h(\sigma(x))$ for $h \in L^2(\tilde{\mathcal{X}})$. In addition, the *weighted Koopman*
 114 *operator* $\tilde{K}_{\psi, \sigma}$ with respect to maps $\psi : \tilde{\mathcal{X}} \rightarrow \mathbb{C}$ and $\sigma : \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ is a linear operator from $L^2(\tilde{\mathcal{X}})$ to
 115 $L^2(\mathcal{X})$ that is defined as $\tilde{K}_{\psi, \sigma} h(x) = \psi(x)h(\sigma(x))$ for $h \in L^2(\tilde{\mathcal{X}})$.

116 We will consider the Koopman operators with respect to activation functions. Throughout this paper,
 117 we assume these Koopman operators are bounded.

118 **Assumption 2.2** (Boundedness of Koopman operators). *The Koopman operator K_σ with respect to*
 119 *a map σ is bounded, i.e., the operator norm defined as $\|K_\sigma\| = \sup_{\|h\|=1} \|K_\sigma h\|$ is finite.*

120 Indeed, we have the following lemma regarding the sufficient condition of the boundedness of
 121 Koopman operators.

122 **Lemma 2.3.** *Assume $\sigma : \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ is bijective, σ^{-1} is differentiable, and the Jacobian of σ^{-1} is*
 123 *bounded in \mathcal{X} . Then, we have $\|K_\sigma\| \leq \sup_{x \in \mathcal{X}} |J\sigma^{-1}(x)|^{1/2}$, where $J\sigma^{-1}$ is the Jacobian of σ^{-1} .*
 124 *In particular, the Koopman operator K_σ is bounded.*

125 The following lemma is regarding the boundedness of well-known elementwise activation functions
 126 defined as $\sigma([x_1, \dots, x_d]) = [\tilde{\sigma}(x_1), \dots, \tilde{\sigma}(x_d)]$ for a map $\tilde{\sigma} : \mathbb{R} \rightarrow \mathbb{R}$.

127 **Lemma 2.4.** *Let $\tilde{\mathcal{X}} = [a_1, b_1] \times \dots \times [a_d, b_d] \subseteq \mathbb{R}^d$ be a bounded rectangular domain, and let*
 128 *$\mathcal{X} = \sigma(\tilde{\mathcal{X}})$. If σ is the elementwise hyperbolic tangent defined as $\tilde{\sigma}(x) = \tanh(x)$, then we have $\mathcal{X} \subset$
 129 $[-1, 1]^d$ and $\|K_\sigma\| \leq (\prod_{i=1}^d \sup_{x \in \tilde{\sigma}([a_i, b_i])} 1/(1-x^2))^{1/2}$. If σ is the elementwise sigmoid defined*
 130 *as $\tilde{\sigma}(x) = 1/(1 + e^{-x})$, then we have $\mathcal{X} \subset [-1, 1]^d$ and $\|K_\sigma\| \leq (\prod_{i=1}^d \sup_{x \in \tilde{\sigma}([a_i, b_i])} 1/(x -$*
 131 *x^2))^{1/2}.*

132 Even if σ is not differentiable, the Koopman operator is bounded, and we can evaluate the upper
 133 bound in some cases.

134 **Lemma 2.5.** *Let $\tilde{\mathcal{X}} = \mathcal{X} = \mathbb{R}^d$. Let σ be the elementwise Leaky ReLU defined as $\tilde{\sigma}(x) = ax$ for*
 135 *$x \leq 0$ and $\tilde{\sigma}(x) = x$ for $x > 0$, where $a > 0$. Then, we have $\|K_\sigma\| \leq \max\{1, 1/a^d\}^{1/2}$.*

143 2.2 REPRODUCING KERNEL HILBERT SPACE (RKHS)

144 In addition to the L^2 function space, we also consider reproducing kernel Hilbert spaces. Let Θ be a
 145 non-empty set for parameters. We first introduce positive definite kernel.

146 **Definition 2.6** (Positive definite kernel). A map $k : \Theta \times \Theta \rightarrow \mathbb{C}$ is called a *positive definite kernel* if
 147 it satisfies the following conditions:

- 148 • $k(\theta_1, \theta_2) = \overline{k(\theta_2, \theta_1)}$ for $\theta_1, \theta_2 \in \Theta$,
- 149 • $\sum_{i,j=1}^n \overline{c_i} c_j k(\theta_i, \theta_j) \geq 0$ for $n \in \mathbb{N}$, $c_i \in \mathbb{C}$, and $\theta_i \in \Theta$.

150 Let $\phi : \Theta \rightarrow \mathbb{C}^\Theta$ be the *feature map* associated with k , defined as $\phi(\theta) = k(\cdot, \theta)$ for $\theta \in \Theta$
 151 and let $\mathcal{R}_{k,0} = \{\sum_{i=1}^n \phi(\theta_i)c_i \mid n \in \mathbb{N}, c_i \in \mathbb{C}, \theta_i \in \Theta \ (i = 1, \dots, n)\}$. We can define a map
 152 $\langle \cdot, \cdot \rangle_{\mathcal{R}_k} : \mathcal{R}_{k,0} \times \mathcal{R}_{k,0} \rightarrow \mathbb{C}$ as

$$153 \left\langle \sum_{i=1}^n \phi(\theta_i)c_i, \sum_{j=1}^m \phi(\xi_j)d_j \right\rangle_{\mathcal{R}_k} = \sum_{i=1}^n \sum_{j=1}^m \overline{c_i} d_j k(\theta_i, \xi_j).$$

154 The *reproducing kernel Hilbert space (RKHS)* \mathcal{R}_k associated with k is defined as the completion
 155 of $\mathcal{R}_{k,0}$. One important property of RKHSs is the reproducing property $\langle \phi(\theta), f \rangle_{\mathcal{R}_k} = f(\theta)$ for
 156 $f \in \mathcal{R}_k$ and $\theta \in \Theta$, which is also useful for deriving a Rademacher complexity bound.

162 2.3 GROUP REPRESENTATION
163

164 Group representation is also a useful tool to analyze the deep structure of neural networks (Sonoda
165 et al., 2025). Let G be a locally compact group. A *unitary representation* $\rho : G \rightarrow B(\mathcal{H})$ for
166 a Hilbert space \mathcal{H} is a map whose image is in the space of unitary operators on \mathcal{H} , that satisfies
167 $\rho(g_1g_2) = \rho(g_1)\rho(g_2)$ and $\rho(g_1^{-1}) = \rho(g_1)^*$ for $g_1, g_2 \in G$, and for which $g \mapsto \rho(g)h$ is continuous
168 for any $h \in \mathcal{H}$. Here, $*$ means the adjoint. If there exists no nontrivial subspace \mathcal{M} of \mathcal{H} such that
169 $\rho(g)\mathcal{M} \subseteq \mathcal{M}$ for any $g \in G$, then the representation ρ is called *irreducible*.

170 For irreducible unitary representations, we have the following fundamental result (see, e.g. Folland
171 (1995, Lemma 3.5)), which we will apply to show the universality of the model. Here, the commutant
172 of a subset $\mathcal{A} \subseteq B(\mathcal{H})$ is defined as the set $\{A \in B(\mathcal{H}) \mid AB = BA \text{ for } B \in \mathcal{A}\}$.

173 **Lemma 2.7** (Schur’s lemma). *A unitary representation ρ of G is irreducible if and only if the
174 commutant of $\rho(G)$ contains only scalar multiples of the identity.*

175 We also apply the following fundamental result (see, e.g., Davidson (1996, Theorem I.7.1)).

176 **Lemma 2.8** (von Neumann double commutant theorem). *Let \mathcal{A} be a subalgebra of $B(\mathcal{H})$ that
177 satisfies “ $A \in \mathcal{A} \Rightarrow A^* \in \mathcal{A}$ ” and is closed with respect to the operator norm. Then, the double
178 commutant (i.e., the commutant of the commutant) of \mathcal{A} is equal to the closure of \mathcal{A} with respect to
179 the strong operator topology.*

182 3 PROBLEM SETTING
183

184 We formulate deep models, which include the neural network model as a special example, using
185 operators. Then, we define an RKHS to analyze the deep model.

187 3.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH GROUP REPRESENTATIONS
188

189 Let G be a locally compact group and $\rho : G \rightarrow B(\mathcal{H})$ be a unitary representation on a Hilbert space
190 \mathcal{H} . We consider an algebraic representation of L -layered deep model in \mathcal{H}

$$192 f(g_1, \dots, g_L) = \rho(g_1)A_1\rho(g_2)A_2 \cdots A_{L-1}\rho(g_L)v, \quad (2)$$

193 where $g_1, \dots, g_L \in G$ are learnable parameters, $A_1, \dots, A_L \in B(\mathcal{H})$ and $v \in \mathcal{H}$ are fixed.

194 **Example 3.1** (Scaled neural network with invertible weights). Let $G = GL(d) \ltimes \mathbb{R}^d$ be the affine
195 group and $\mathcal{H} = L^2(\mathbb{R}^d)$. **Here, $GL(d)$ is the group of d by d invertible matrices.** Let $\rho : G \rightarrow B(\mathcal{H})$
196 be the representation of G on \mathcal{H} defined as $\rho(g)h(x) = |\det W|^{1/2}h(W(x-b))$ for $g = (W, b) \in G$,
197 $h \in L^2(\mathbb{R}^d)$, and $x \in \mathbb{R}^d$. Note that ρ is an irreducible unitary representation. In addition, let
198 $v \in L^2(\mathbb{R}^d)$ be the final nonlinear transformation, $\sigma_l : \mathbb{R}^d \rightarrow \mathbb{R}^d$ be an activation function satisfying
199 Assumption 2.2, and $A_l = K_{\sigma_l}$ be the Koopman operator with respect to σ_l for $l = 1, \dots, L-1$.
200 For example, σ_l is the elementwise Leaky ReLU. Then, the deep model (2) is
201

$$202 f(g_1, \dots, g_L)(x) = v(W_L\sigma_{L-1}(W_{L-1} \cdots \sigma_1(W_1x - W_1b_1) \cdots - W_{L-1}b_{L-1}) - W_Lb_L) \\ 203 \times |\det W_1|^{1/2} \cdots |\det W_{L-1}|^{1/2}.$$

204 **Example 3.2** (Deep model with new structures). In addition to describing existing neural networks,
205 we can develop a new model using the abstract model (2). Let $G = \{(a, b, c) \mid a, b \in \mathbb{R}^d, c \in \mathbb{R}\}$ be
206 the Heisenberg group (Thangavelu, 1998). The product in G is defined as $(a_1, b_1, c_1) \cdot (a_2, b_2, c_2) =$
207 $(a_1 + a_2, b_1 + b_2, 1/2 \langle a_1, b_2 \rangle)$, where $\langle a_1, b_2 \rangle$ is the Euclidean inner product of a_1 and b_2 . Let
208 $\mathcal{H} = L^2(\mathbb{R}^d)$ and $\rho : G \rightarrow B(\mathcal{H})$ be the representation of G on \mathcal{H} defined as $\rho(g)h(x) =$
209 $e^{i(c-1/2\langle a, b \rangle)}e^{i\langle a, x \rangle}h(x-b)$ for $g = (a, b, c)$, where i is the imaginary unit. Note that ρ is an
210 irreducible unitary representation. Let v and A_l be the same as in Example 3.1. Then, the deep
211 model (2) is
212

$$213 f(g_1, \dots, g_L)(x) = e^{i(c_1 - \langle a_1, b_1 \rangle / 2)} \cdots e^{i(c_L - \langle a_L, b_L \rangle / 2)} \\ 214 \cdot e^{i\langle a_1, x \rangle} e^{i\langle a_2, \sigma_1(x-b_1) \rangle} \cdots e^{i\langle a_L, \sigma_{L-1}(\sigma_{L-2}(\cdots \sigma_1(x-b_1) \cdots - b_{L-2}) - b_{L-1}) \rangle} \\ 215 \cdot v(\sigma_{L-1}(\cdots \sigma_1(x-b_1) - b_{L-1}) - b_L).$$

Instead of directly considering the model (2), we focus on the following regularized model with a parameter $c > 0$ on a data space \mathcal{X}_0 :

$$F_c(g_1, \dots, g_L, x) = \langle \rho(g_1) A_1 \rho(g_2) A_2 \cdots A_{L-1} \rho(g_L) v, p_{c,x} \rangle, \quad (3)$$

where $p_{c,x} \in \mathcal{H}$ for $c > 0$ and $x \in \mathcal{X}_0$. We assume for any $c > 0$, there exists $E(c) > 0$ such that $\|p_{c,x}\|^2 \leq E(c)$. This regularization is required to technically derive the Rademacher complexity bound using the framework of RKHSs. However, as the following example indicates, the regularized model (3) sufficiently approximates the original model (2).

Example 3.3. Consider the same setting in Example 3.1. Let $p_{c,x}(y) = (c/\pi)^{d/2} e^{-c\|y-x\|^2}$ for $c > 0$ and $x \in \mathcal{X}_0$. Then, $p_{c,x} \in L^2(\mathbb{R}^d)$ and $\|p_{c,x}\|^2 = (2c/\pi)^{d/2}$. Since $p_{c,x}$ goes to the Dirac delta function centered at x as $c \rightarrow \infty$, we have

$$F_c(g_1, \dots, g_L, x) = \int_{\mathbb{R}^d} \rho(g_1) A_1 \rho(g_2) A_2 \cdots A_{L-1} \rho(g_L) v(y) p_{c,x}(y) dy.$$

Note that for any $x \in \mathbb{R}^d$ and any $g_1, \dots, g_L \in G$, $\lim_{c \rightarrow \infty} F_c(g_1, \dots, g_L, x) = f(g_1, \dots, g_L)(x)$. Thus, if c is sufficiently large, $F_c(g_1, \dots, g_L, x)$ approximates $f(g_1, \dots, g_L)(x)$ well.

3.2 RKHS FOR ANALYZING DEEP MODELS

We use the Rademacher complexity to derive a generalization bound. According to Theorem 3.5 in Mohri et al. (2018), the generalization error is bounded by the Rademacher complexity. Thus, if we obtain a Rademacher complexity bound, then we can also bound the generalization error. To derive a Rademacher complexity bound, we apply the framework of RKHSs. The Hilbert space \mathcal{H} to which the models belong does not always have the reproducing property. Indeed, a typical example of \mathcal{H} is $L^2(\mathbb{R}^d)$ as we discussed in Example 3.1. Thus, we consider an RKHS that is a function space on the parameter space G and isomorphic to a subspace of \mathcal{H} . We can regard the deep model on the data space \mathcal{X}_0 as a function on G through this isomorphism and make use of the reproducing property on G . Here, the isomorphism ensures that the mathematical structure of the RKHS is the same as the subspace of \mathcal{H} . We define the following positive definite kernel $k : (G \times \cdots \times G) \times (G \times \cdots \times G) \rightarrow \mathbb{C}$ to construct an RKHS to analyze the deep model (2):

$$k((g_1, \dots, g_L), (\tilde{g}_1, \dots, \tilde{g}_L)) = \langle \rho(g_1) A_1 \cdots A_{L-1} \rho(g_L) v, \rho(\tilde{g}_1) A_1 \cdots A_{L-1} \rho(\tilde{g}_L) v \rangle_{\mathcal{H}}.$$

We denote the RKHS associated with k as \mathcal{R}_k .

Let $\mathbf{g} = (g_1, \dots, g_L)$, $\phi(\mathbf{g}) = k(\cdot, \mathbf{g})$, and $\tilde{\phi}(\mathbf{g}) = \rho(g_1) A_1 \cdots A_{L-1} \rho(g_L) v$. Let $\mathcal{K}_0 = \{\sum_{i=1}^n c_i \tilde{\phi}(\mathbf{g}_i) \mid n \in \mathbb{N}, \mathbf{g}_i \in G^L, c_i \in \mathbb{C}\}$ and $\mathcal{K} = \overline{\mathcal{K}_0}$. Note that \mathcal{K} is a sub-Hilbert space of \mathcal{H} . Let $\iota : \mathcal{K} \rightarrow \mathcal{R}_k$ defined as $\iota(h) = (\mathbf{g} \mapsto \langle \tilde{\phi}(\mathbf{g}), h \rangle_{\mathcal{H}})$. The map ι enables us to regard the Hilbert space \mathcal{K} , where the deep model is defined, as the RKHS \mathcal{R}_k .

Proposition 3.4. The map ι is isometrically isomorphic.

If ρ is irreducible and A_1, \dots, A_L are invertible, then we have $\mathcal{K} = \mathcal{H}$, which means that the deep model (2) has universality. The following lemmas are derived using Lemmas 2.7 and 2.8.

Lemma 3.5. Assume ρ is irreducible. Let $\mathcal{A} = \{\sum_{i=1}^n c_i \rho(g_i) \mid n \in \mathbb{N}, g_i \in G, c_i \in \mathbb{C}\}$. Then, \mathcal{A} is dense in $B(\mathcal{H})$ with respect to the strong operator topology.

Lemma 3.6. Assume ρ is irreducible and A_1, \dots, A_{L-1} are invertible. Then, $\mathcal{K} = \overline{\mathcal{K}_0} = \mathcal{H}$.

4 RADEMACHER COMPLEXITY BOUND

We apply the isomorphism in Proposition 3.4 to derive a Rademacher complexity bound with the aid of the reproducing property in the RKHS \mathcal{R}_k . If $p_{c,x} \in \mathcal{K}$, Eq. (3) implies $F_c(\cdot, x) = \iota(p_{c,x}) \in \mathcal{R}_k$ for $x \in \mathcal{X}_0$ and $c > 0$. Thus, we can apply the reproducing property with respect to the model $F_c(\cdot, x)$. Let Ω be a probability space equipped with a probability measure P . Let $S \in \mathbb{N}$ be the sample size, $x_1, \dots, x_S \in \mathcal{X}_0$, and $\epsilon_1, \dots, \epsilon_S : \Omega \rightarrow \mathbb{C}$ be i.i.d. Rademacher variables (random variables following the uniform distribution on $\{-1, 1\}$). For a measurable function $\epsilon : \Omega \rightarrow \mathbb{C}$, we denote by $E[\epsilon]$ the integral $\int_{\Omega} \epsilon(\omega) dP(\omega)$. The empirical Rademacher complexity $\hat{R}(\mathcal{F}, x_1, \dots, x_S)$ of a function class \mathcal{F} is defined as $\hat{R}(\mathcal{F}, x_1, \dots, x_S) = E[\sup_{F \in \mathcal{F}} \sum_{s=1}^S F(x_s) \epsilon_s]/S$. We denote by \mathcal{F}_c the function class $\{F_c(g_1, \dots, g_L, \cdot) \mid g_1, \dots, g_L \in G\}$. The Rademacher complexity of \mathcal{F}_c is upper bounded as follows.

270 **Theorem 4.1.** Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Then, the Rademacher complexity of the function class
 271 \mathcal{F}_c is bounded as

$$273 \quad \hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \frac{\|A_1\| \cdots \|A_{L-1}\| \|v\| E(c)}{\sqrt{S}}.$$

275 **Remark 4.2.** If ρ is irreducible and A_1, \dots, A_{L-1} are invertible, then by Lemma 3.6, the assumption
 276 of Theorem 4.1 is satisfied automatically.

277 **Remark 4.3.** If $p_{c,x}(y) = (c/\pi)^{d/2} e^{-c\|y-x\|^2}$, then we have $E(c) = (2c/\pi)^{d/2}$. Combining with
 278 the discussion in Example 3.3, we can see that there is a tradeoff between F_c being close to the
 279 original model f and the constant $E(c)$ becoming large.

281 An important example of models that can be analyzed using this framework is invertible neural
 282 networks.

283 4.1 INVERTIBLE NEURAL NETWORKS

286 Consider the same setting in Example 3.1. Note that since ρ is irreducible, the as-
 287 sumption of Theorem 4.1 is satisfied in this case (see Remark 4.2). Let $nn(\mathbf{g}, x) =$
 288 $v(W_L \sigma_{L-1}(W_{L-1} \cdots \sigma_1(W_1 x - W_1 b_1) \cdots - W_{L-1} b_{L-1}) - W_L b_L)$ be a neural network model.
 289 Then, we have $f(\mathbf{g}) = nn(\mathbf{g}, \cdot) |\det W_1|^{1/2} \cdots |\det W_L|^{1/2}$. Thus, we have $F_c(\mathbf{g}, \cdot) =$
 290 $NN_c(\mathbf{g}, \cdot) |\det W_1|^{1/2} \cdots |\det W_L|^{1/2}$, where $NN_c(\mathbf{g}, x) = \int_{\mathbb{R}^d} nn(y) p_{c,x}(y) dy$. Let $D > 0$
 291 and $\mathcal{NN}_c = \{NN_c(\mathbf{g}, \cdot) \mid \mathbf{g} \in G^L, |\det W_1|^{-1/2}, \dots, |\det W_L|^{-1/2} \leq D\}$. We assume A_l is
 292 invertible for $l = 1, \dots, L-1$.

293 **Theorem 4.4.** The Rademacher complexity bound of \mathcal{NN}_c is

$$294 \quad \hat{R}(\mathcal{NN}_c, x_1, \dots, x_S) \leq \frac{E(c) \|v\| \prod_{l=1}^{L-1} \|A_l\|}{\sqrt{S}} \sup_{|\det W_l|^{-1/2} \leq D} \prod_{l=1}^L |\det W_l|^{-1/2}.$$

297 For example, if σ_l is the elementwise Leaky ReLU, then $\|A_l\|$ is bounded as Lemma 2.5. Since $\det W_l$
 298 is the product of the singular values of W_l , and it is in the denominator of the bound, Theorem 4.1
 299 implies that the model can generalize well even if W_l has large singular values.

301 5 GENERALIZATION TO NON-CONSTANT WIDTH NEURAL NETWORKS

303 5.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH KOOPMAN OPERATORS

305 In previous sections, we focused on a single Hilbert space \mathcal{H} and consider operators on \mathcal{H} . This
 306 corresponds to considering a neural network with a constant width. In addition, \mathcal{H} is determined
 307 by the group representation, which forces us to consider a certain data space such as \mathbb{R}^d . However,
 308 in general, the width is not always constant. In addition, the data space is bounded in many cases.
 309 To meet this situation, we consider multiple Hilbert spaces $\mathcal{H}_0, \dots, \mathcal{H}_{L-1}, \tilde{\mathcal{H}}_1, \dots, \tilde{\mathcal{H}}_L$. Let Θ_l be
 310 a set of parameters and let $\eta_l : \Theta_l \rightarrow B(\tilde{\mathcal{H}}_l, \mathcal{H}_{l-1})$ for $l = 1, \dots, L$. In addition, let $v \in \tilde{\mathcal{H}}_L$ and
 311 $A_l \in B(\mathcal{H}_l, \tilde{\mathcal{H}}_l)$ be fixed. Consider the model

$$312 \quad f(\theta_1, \dots, \theta_L) = \eta_1(\theta_1) A_1 \eta_2(\theta_2) \cdots A_{L-1} \eta_L(\theta_L) v,$$

314 where $\theta_l \in \Theta_l$ for $l = 1, \dots, L$.

315 In the same manner as Subsection 3.1, we consider a regularized model

$$317 \quad F_c(\theta_1, \dots, \theta_L, x) = \langle \eta_1(\theta_1) A_1 \eta_2(\theta_2) \cdots A_{L-1} \eta_L(\theta_L) v, p_{c,x} \rangle_{\mathcal{H}_0},$$

318 where $p_{c,x} \in \mathcal{H}_0$ for $x \in \mathcal{X}_0$ and $c > 0$ with $\|p_{c,x}\| \leq E(c)$ for $E(c) > 0$. We also define a positive
 319 definite kernel $k : (\Theta_1 \times \cdots \times \Theta_L) \times (\Theta_1 \times \cdots \times \Theta_L) \rightarrow \mathbb{C}$ to construct an RKHS to analyze the
 320 deep model (2):

$$321 \quad k((\theta_1, \dots, \theta_L), (\tilde{\theta}_1, \dots, \tilde{\theta}_L)) = \langle \eta_1(\theta_1) A_1 \cdots A_{L-1} \eta_L(\theta_L) v, \eta_1(\tilde{\theta}_1) A_1 \cdots A_{L-1} \eta_L(\tilde{\theta}_L) v \rangle_{\mathcal{H}_0}.$$

323 We set \mathcal{R}_k and \mathcal{K} in the same manner as in Subsection 3.2. This generalization allows us to derive
 Rademacher complexity bounds for a wide range of models.

324
325

5.2 NEURAL NETWORK WITH INJECTIVE WEIGHT MATRICES
 Let $d_l \in \mathbb{N}$ and $\Theta_l = \{W \in \mathbb{C}^{d_l \times d_{l-1}} \mid W \text{ is injective}\}$. Let $\mathcal{X}_0 \subset \mathbb{R}^{d_0}$, $W_l \sigma_{l-1}(W_{l-1} \cdots W_2 \sigma_1(W_1 \mathcal{X}_0)) \subseteq \tilde{\mathcal{X}}_l \subseteq \mathbb{R}^{d_l}$, and $\sigma_l(W_l \cdots W_2 \sigma_1(W_1 \mathcal{X}_0)) \subseteq \mathcal{X}_l \subseteq \mathbb{R}^{d_l}$ that satisfy $\mu_{\mathbb{R}^{d_l}}(\mathcal{X}_l) > 0$ and $\mu_{\mathbb{R}^{d_l}}(\tilde{\mathcal{X}}_l) > 0$.

Starting from \mathcal{X}_0 , we repeatedly construct $\tilde{\mathcal{X}}_l$ and \mathcal{X}_l for $l = 1, \dots, L$. Since W_l is injective, the space $W_l \mathcal{X}_{l-1}$ is d_{l-1} -dimensional. If $d_l > d_{l-1}$, then the measure $\mu_{\mathbb{R}^{d_l}}(W_l \mathcal{X}_{l-1})$ becomes 0, and setting $\tilde{\mathcal{X}}_l = W_l \mathcal{X}_{l-1}$ makes the analysis meaningless. Thus, we set a

space \mathcal{X}_l that includes $W_l \mathcal{X}_{l-1}$ and $\mu_{\mathbb{R}^{d_l}}(W_l \mathcal{X}_{l-1}) > 0$. Figure 2 schematically shows the construction of \mathcal{X}_l and $\tilde{\mathcal{X}}_l$. Let $\tilde{\mathcal{H}}_l = L^2(\tilde{\mathcal{X}}_l)$, $\mathcal{H}_l = L^2(\mathcal{X}_l)$, and $\eta_l(W_l) = K_{W_l}$ be the Koopman operator from $\tilde{\mathcal{H}}_l$ to \mathcal{H}_{l-1} with respect to W_l . In addition, let $A_l = K_{\sigma_l}$ be the Koopman operator from \mathcal{H}_l to $\tilde{\mathcal{H}}_l$ with respect to an activation function $\sigma_l : \tilde{\mathcal{X}}_l \rightarrow \mathcal{X}_l$ that satisfies Assumption 2.2. Then, we have

$$345 \quad f(W_1, \dots, W_L)(x) = v(W_L \sigma_{L-1}(W_{L-1} \sigma_{L-2}(\cdots \sigma_1(W_1 x)))).$$

346

347 Let $D > 0$ and $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\det W_1^* W_1|^{-1/4}, \dots, |\det W_L^* W_L|^{-1/4} \leq D\}$. Let
 348 $\alpha(h) = (\int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 d\mu_{\mathcal{R}(W_l)}(x) / \int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x))^{1/2}$ for $h \in \tilde{\mathcal{H}}_l$. This value depends on
 349 how large we set $\tilde{\mathcal{X}}_l$ compared with $W_l \mathcal{X}_{l-1}$, and by setting $\tilde{\mathcal{X}}_l$ sufficiently large, we can bound it by
 350 1 with a reasonable assumption (see Remark 5.3 for more details). In the same way as in Theorem 4.1,
 351 we obtain the following bound.

352
353
354

Theorem 5.1. Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Let $f_l = v \circ W_L \circ \sigma_{L-1} \circ \cdots \circ W_{l+1} \circ \sigma_l$. Then, we have

$$355 \quad \hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\det W_l^* W_l|^{-1/4} \leq D} \frac{\mathbf{E}(c) \|v\| \prod_{l=1}^{L-1} \|A_l\| \alpha(f_l)}{\sqrt{S} \prod_{l=1}^L |\det W_l^* W_l|^{1/4}}, \quad (4)$$

357

358 As for $\|A_l\|$, since $A_l = K_{\sigma_l}$, we can evaluate the upper bound of $\|A_l\|$ by Lemma 2.3. For example,
 359 if \mathcal{X}_0 is bounded, we can apply Lemma 2.4 to the sigmoid and hyperbolic tangent.

360

Remark 5.2. For simplicity, we consider models without bias terms. We obtain the same result for
 361 models with bias terms since the norm of the Koopman operator with respect to the shift function is 1.

362

Remark 5.3. Assume there exist $a, b > 0$ such that $a \leq |f_l(x)|^2 \leq b$. We set $\tilde{\mathcal{X}}_l$ sufficiently large so
 363 that $b \cdot \mu_{\mathcal{R}(W_l)}(W_l \mathcal{X}_{l-1}) \leq a \cdot \mu_{\mathbb{R}^{d_l}}(\tilde{\mathcal{X}}_l)$. Then, we have

364
365
366
367

$$\alpha(f_l)^2 = \frac{\int_{W_l \mathcal{X}_{l-1}} |f_l(x)|^2 d\mu_{\mathcal{R}(W_l)}(x)}{\int_{\tilde{\mathcal{X}}_l} |f_l(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x)} \leq \frac{b \cdot \mu_{\mathcal{R}(W_l)}(W_l \mathcal{X}_{l-1})}{a \cdot \mu_{\mathbb{R}^{d_l}}(\tilde{\mathcal{X}}_l)} \leq 1.$$

368

Remark 5.4. There is a tradeoff between the magnitudes of the denominator and the numerator
 369 of the bound (4). When $\sigma_l(x)$ tends to be constant as $\|x\| \rightarrow \infty$, such as the hyperbolic tangent
 370 and sigmoid, the derivative of $\sigma_l^{-1}(x)$ tends to be large as the magnitude of $\|x\|$ becomes large.
 371 In this case, according to Lemma 2.3, if $\det W_l$ is large, then $\|A_l\|$ is also large since the volume
 372 of \mathcal{X}_l becomes large. The activation function plays a significant role in increasing the complexity
 373 in this case. When $\sigma_1, \dots, \sigma_{L-1}$ are unbounded, such as the Leaky ReLU, $\tilde{\mathcal{X}}_L$ becomes large if
 374 $\det W_1, \dots, \det W_L$ are large, which makes $\|v\|$ large. The final nonlinear transformation v plays a
 375 significant role in increasing the complexity in this case.

376

377

Advantage over existing Koopman-based bounds Hashimoto et al. (2024) proposed Rademacher
 complexity bounds using Koopman operator norms. Since the norm is defined by the Sobolev space,

378 the framework accepts only smooth and unbounded activation functions. In addition, although they
 379 include factors of the norms of Koopman operators with respect to the activation functions, their
 380 evaluation is extremely challenging, making the effect of the activation function unclear. On the
 381 other hand, our bound can be applied to various types of activation functions, such as the hyperbolic
 382 tangent, sigmoid, and Leaky ReLU, we can evaluate the Koopman operator norms using Lemmas 2.3
 383 – 2.5, and we can understand the effect of the activation function as discussed in Remark 5.4.

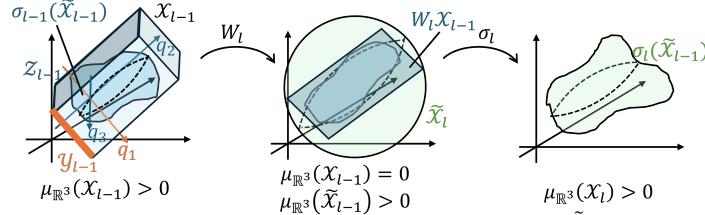
384

385

5.3 GENERAL NEURAL NETWORK

386

387 If W is not injective, the Koopman operator K_W is unbounded. Thus, instead of the
 388 standard Koopman operators, we consider weighted Koopman operators. Let $d_l \in \mathbb{N}$
 389 and $\Theta_l = \{W \in \mathbb{C}^{d_l \times d_{l-1}}\}$. For $l = 0, \dots, L-1$, let $\tilde{d}_l = \dim(\ker(W_{l+1}))$,
 390 $q_1, \dots, q_{\tilde{d}_l}$ be an orthonormal basis of $\ker(W_{l+1})$, $q_{\tilde{d}_l+1}, \dots, q_{d_l}$ be an orthonormal ba-
 391 sis of $\ker(W_{l+1})^\perp$, $\mathcal{X}_l = \{\sum_{i=1}^{d_l} c_i q_i \mid c_i \in [a_i, b_i]\}$ for some $a_i < b_i$ such that
 392 $\sigma_l(W_l \cdots W_2 \sigma_1(W_1 \mathcal{X}_0)) \subseteq \mathcal{X}_l$, $\mathcal{Y}_l = \{\sum_{i=1}^{\tilde{d}_l} c_i q_i \mid c_i \in [a_i, b_i]\}$, and $\mathcal{Z}_l = \{\sum_{i=\tilde{d}_l+1}^{d_l} c_i q_i \mid$
 393 $c_i \in [a_i, b_i]\}$. Let $W_l \sigma_{l-1}(W_{l-1} \cdots W_2 \sigma_1(W_1 \mathcal{X}_0)) \subseteq \tilde{\mathcal{X}}_l \subseteq \mathbb{R}^{d_l}$ satisfying $\mu_{\mathbb{R}^{d_l}}(\tilde{\mathcal{X}}_l) > 0$.
 394 **In this case, to decompose**
 395 **the integral on $\ker(W_{l+1})$**
 396 **and that on $\ker(W_{l+1})^\perp$,**
 397 **we set the orthonormal ba-**
 398 **basis along $\ker(W_{l+1})$ and**
 399 **define \mathcal{Y}_l and \mathcal{Z}_l .** Figure
 400 **3 schematically shows**
 401 **the construction of \mathcal{X}_l , \mathcal{Y}_l ,**
 402 **\mathcal{Z}_l , and $\tilde{\mathcal{X}}_l$.** Let $\tilde{\mathcal{H}}_l$ and
 403 \mathcal{H}_l be the same space as
 404 in Subsection 5.2, and Let
 405 $\eta_l(W) = \tilde{K}_{\psi_l, W}$ be the weighted Koopman operator from $\tilde{\mathcal{H}}_l$ to \mathcal{H}_{l-1} with respect to W and ψ_l ,
 406 where ψ_l is defined as $\psi_l(x) = \psi_l(x_1) = 1$ for $x \in \mathcal{X}_{l-1}$, where $x = x_1 + x_2$ with $x_1 \in \mathcal{Y}_{l-1}$ and
 407 $x_2 \in \mathcal{Z}_{l-1}$, and $\psi_l(x) = 0$ for $x \notin \mathcal{X}_{l-1}$. In addition, let A_l be the same operator as in Subsection 5.2.
 408 Then, we have

Figure 3: Construction of \mathcal{X}_l , \mathcal{Y}_l , \mathcal{Z}_l , and $\tilde{\mathcal{X}}_l$

409

410 $f(W_1, \dots, W_L)(x) = \psi_1(x) \psi_2(\sigma_1(W_1 x)) \cdots \psi_L(\sigma_{L-1}(W_{L-1} \sigma_{L-2}(\cdots \sigma_1(W_1 x))))$
 411 The factor $\psi_1(x) \cdots \psi_L(\sigma_{L-1}(W_{L-1} \sigma_{L-2}(\cdots \sigma_1(W_1 x))))$ is an auxiliary factor. Since $\psi_l(x) = 1$
 412 for $x \in \mathcal{X}_{l-1}$, we have $f(W_1, \dots, W_L)(x) = v(W_L \sigma_{L-1}(W_{L-1} \sigma_{L-2}(\cdots \sigma_1(W_1 x))))$ for $x \in \mathcal{X}_0$
 413 in the data space, exactly the same structure as that of neural networks. Thus, we can regard f as the
 414 original neural network $v(W_L \sigma_{L-1}(W_{L-1} \sigma_{L-2}(\cdots \sigma_1(W_1 x))))$.

415

416 Let $D > 0$ and $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\det W_1|_{\ker(W_1)^\perp}^{-1/2}, \dots, |\det W_L|_{\ker(W_L)^\perp}^{-1/2} \leq$
 417 $D\}$. In the same way as in Theorem 5.1, we obtain the following bound.

418

Theorem 5.5. Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Then, we have

$$419 \hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\det W_l|_{\ker(W_l)^\perp}^{-1/2} \leq D} \frac{E(c) \|v\| \prod_{l=1}^{L-1} \|A_l\| \alpha(f_l) \prod_{l=1}^L \mu_{\ker(W_l)}(\mathcal{Y}_{l-1})}{\sqrt{S} \prod_{l=1}^L |\det W_l|_{\ker(W_l)^\perp}^{1/2}}.$$

420

421

Remark 5.6. If the output of the l th layer has small values in the direction of $\ker(W_{l+1})$, then the
 422 factor $\mu_{\ker(W_{l+1})}(\mathcal{Y}_l)$ is small. We expect that the magnitude of the noise is smaller than that of the
 423 essential signals. This implies that if the weight W_{l+1} is learned so that $\ker(W_{l+1})$ becomes the
 424 direction of noise, i.e., so that the noise is removed by W_{l+1} , the model generalizes well. Arora et al.
 425 (2018) insist that the noise stability property implies that the model generalizes well. The result of
 426 Theorem 5.5 does not contradict the results of Arora et al. (2018).

427

428

429

5.4 CONVOLUTIONAL NEURAL NETWORK

430

431

Let $I_l = J_{l,1} \times \cdots \times J_{l,d_l} \subseteq \mathbb{Z}^{d_l}$ be a finite index set and $\Theta_l = \{\theta \in \mathbb{R}^{I_l} \mid x \mapsto \theta * x \text{ is invertible}\}$.
 Let $\theta_l \in \Theta_l$, P_l be the matrix representing the average pooling with pool size m_l , which is defined

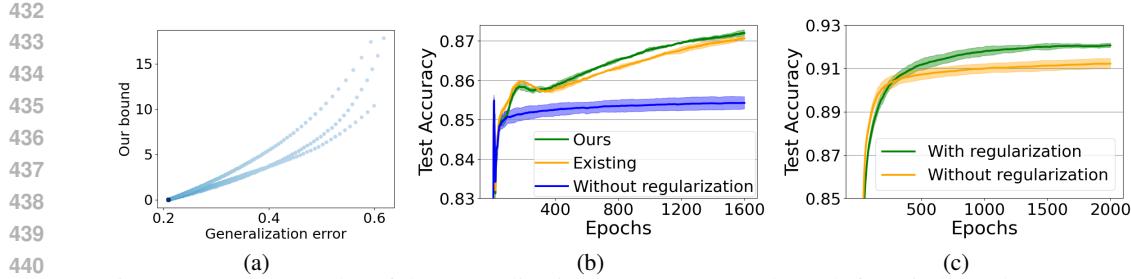


Figure 4: (a) Scatter plot of the generalization error versus our bound (for 3 independent runs). The color is set to get dark as the epoch proceeds. (b) Test accuracy with the regularization based on our bound and that based on the existing bound (deep neural net with dense layers). (c) Test accuracy with and without the regularization based on our bound (LeNet).

as $(P_l)_{i,j} = 1/m_l$ for $i, j \in I_l$ if the j th element of the input is pooled in the i th element of the output, and σ_l be the same as in Subsection 5.2. Let $\mathcal{X}_0 \subseteq \mathbb{R}^{I_1}$, $\theta_l * P_{l-1} \sigma_{l-1}(\theta_{l-1} * \dots * \theta_2 * P_1 \sigma_1(\theta_1 * \mathcal{X}_0)) \subseteq \tilde{\mathcal{X}}_l \subseteq \mathbb{R}^{I_l}$ and $P_l \sigma_l(\theta_l * \dots * \theta_2 * P_1 \sigma_1(\theta_1 * \mathcal{X}_0)) \subseteq \mathcal{X}_l \subseteq \mathbb{R}^{I_{l+1}}$ satisfying $\mu_{\mathbb{R}^{I_l}}(\tilde{\mathcal{X}}_l) > 0$ and $\mu_{\mathbb{R}^{I_{l+1}}}(\mathcal{X}_l) > 0$. Let $\tilde{d}_l = \dim(\ker(P_l))$, $q_1, \dots, q_{\tilde{d}_l}$ be an orthonormal basis of $\ker(P_l)$, $q_{\tilde{d}_l+1}, \dots, q_{d_l}$ be an orthonormal basis of $\ker(P_l)^\perp$, $\hat{\mathcal{X}}_l = \{\sum_{i=1}^{\tilde{d}_l} c_i q_i \mid c_i \in [a_i, b_i]\}$ for some $a_i < b_i$ such that $\sigma_l(\theta_l * \dots * \theta_2 * P_1 \sigma_1(\theta_1 * \mathcal{X}_0)) \subseteq \hat{\mathcal{X}}_l \subseteq \mathbb{R}^{I_l}$, $\hat{\mathcal{Y}}_l = \{\sum_{i=1}^{\tilde{d}_l} c_i q_i \mid c_i \in [a_i, b_i]\}$, and $\tilde{\mathcal{Z}}_l = \{\sum_{i=\tilde{d}_l+1}^{d_l} c_i q_i \mid c_i \in [a_i, b_i]\}$. Let $\mathcal{H}_l = L^2(\mathcal{X}_l)$, $\hat{\mathcal{H}}_l = L^2(\hat{\mathcal{X}}_l)$, $\tilde{\mathcal{H}}_l = L^2(\tilde{\mathcal{X}}_l)$, and $\eta_l : \Theta_l \rightarrow B(\hat{\mathcal{H}}_l, \mathcal{H}_{l-1})$ be defined as $\eta_l(\theta)h(x) = h(\theta * x)$, where $*$ is the convolution. Note that the convolution is a linear operator whose eigenvalues are Fourier components $\gamma_m(\theta_l) := \sum_{j \in I_l} \theta_j e^{i(S_l j) \cdot m}$ for $m \in I_l$, where S_l is the diagonal matrix whose diagonal is the scaling factor $[1/(2\pi|J_{l,1}|), \dots, 1/(2\pi|J_{l,d_l}|)]$. Let $A_l = K_{\sigma_l} \tilde{K}_{\psi_l, P_l}$, where \tilde{K}_{ψ_l, P_l} and K_{σ_l} are weighted Koopman and Koopman operators from \mathcal{H}_l to $\hat{\mathcal{H}}_l$ and from $\hat{\mathcal{H}}_l$ to $\tilde{\mathcal{H}}_l$, respectively. Here, ψ_l is defined as $\psi_l(x) = \psi_l(x_1) = 1$ for $x \in \hat{\mathcal{X}}_l$, where $x = x_1 + x_2$ with $x_1 \in \hat{\mathcal{Y}}_l$ and $x_2 \in \tilde{\mathcal{Z}}_l$, and $\psi_l(x) = 0$ for $x \notin \hat{\mathcal{X}}_l$. Then, we have

$$f(\theta_1, \dots, \theta_L)(x) = \psi_1(\sigma_1(\theta_1 * x)) \dots \psi_{L-1}(\sigma_{L-1}(\theta_{L-1} * P_{L-2} \sigma_{L-2}(\dots * P_1 \sigma_1(\theta_1 * x)))) \cdot v(\theta_L * P_{L-1} \sigma_{L-1}(\theta_{L-1} * \dots * P_1 \sigma_1(\theta_1 * x) \dots)).$$

Let $\beta_l(\theta) = \prod_{m \in I_l} \gamma_m(\theta)$ and $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\beta(\theta_1)|^{-1/2}, \dots, |\beta(\theta_L)|^{-1/2} \leq D\}$.

Proposition 5.7. Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Then, we have

$$\hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\beta(\theta_l)|^{-1/2} \leq D} \frac{\textcolor{red}{E(c)} \|v\| \prod_{l=1}^{L-1} \|A_l\| \mu_{\ker(P_l)}(\hat{\mathcal{Y}}_l)}{\sqrt{S} \prod_{l=1}^L |\beta_l(\theta_l)|^{1/2}}.$$

Remark 5.8. If σ_l is bounded, then we can set $\hat{\mathcal{X}}_l$ independent of $\theta_1, \dots, \theta_l$ so that it covers the range of σ_l . Since P_l is a fixed operator, the factor $\mu_{\ker(P_l)}(\hat{\mathcal{Y}}_l)$ is a constant in this case.

6 NUMERICAL RESULTS

We numerically confirm the validity of the proposed bound. Experimental details are in Appendix B.

Validity of the bound To show the relationship between the generalization error and the proposed bound, we consider a regression problem with synthetic data on $\mathcal{X}_0 = [-1, 1]^3$. The target function t is $t(x) = e^{-\|2x-1\|^2}$. We constructed a network $f(x) = v(W_2 \sigma(W_1 x + b_1) + b_2)$, where $W_1 \in \mathbb{R}^{3 \times 3}$, $W_2 \in \mathbb{R}^{6 \times 3}$, $b_1 \in \mathbb{R}^3$, $b_2 \in \mathbb{R}^6$, $v(x) = w_3 e^{-\|x\|^2}$, $w_3 \in \mathbb{R}$, and σ is the elementwise hyperbolic tangent. We created a training dataset from randomly drawn samples from the uniform distribution on $[-1, 1]^3$. The training sample size S is 1000. Our bound is proportional to the value $r := |w_3| \sup_{[x_1, x_2, x_3] \in \sigma(W_1 \mathcal{X}_0 + b_1)} 1/(1 - x_1^2)/(1 - x_2^2)/(1 - x_3^2) | \det W_1^* W_1 |^{-1/4} \cdot | \det W_2^* W_2 |^{-1/4}$ since $\|v\| \leq |w_3| \int_{\mathbb{R}^6} e^{-\|x\|^2} dx$ and according to Lemma 2.4. We added $0.1r$ as a regularization term. Figure 4 (a) illustrates the relationship between the generalization error and our bound throughout the learning process. We can see that the generalization bound gets small in proportion to our bound.

Comparison with existing bounds To compare our bound with existing bounds, we considered the same classification task with MNIST as in Hashimoto et al. (2024). We constructed the same model $f(x) = \sigma_4(W_4\sigma(W_3\sigma(W_2\sigma(W_1x + b_1) + b_2) + b_3) + b_4)$ as Hashimoto et al. (2024) with dense layers. Based on the bound, we tried to make the factors $\|A_l\|$, $1/\det W_l^*W_l^{1/2}$, and $\|v\|$ small, where $v(x) = \sigma_4(W_4\sigma(W_3x + b_3) + b_4)$, $\sigma(x_1, \dots, x_d) = [\tilde{\sigma}(x_1), \dots, \tilde{\sigma}(x_d)]$ is the elementwise smooth Leaky ReLU proposed by Biswas et al. (2022), and σ_4 is the softmax. This setting is for meeting the setting in (Hashimoto et al., 2024). We set $\mathcal{X}_0 = [0, 1]^{784}$, $\tilde{\mathcal{X}}_1 = (\|W_1\| + \|b_1\|_\infty)[-1, 1]^{1024} \supseteq W_1\mathcal{X}_0 + b_1$, $\mathcal{X}_1 = \sigma(\tilde{\mathcal{X}}_1) \supseteq \sigma(W_1\mathcal{X}_0 + b_1)$, $\tilde{\mathcal{X}}_2 = (\|W_2\|(\|W_1\| + \|b_1\|_\infty) + \|b_2\|_\infty)[-1, 1]^{2048}$, and $\mathcal{X}_2 = \sigma(\tilde{\mathcal{X}}_2) \supseteq \sigma(W_2\sigma(W_1\mathcal{X}_0 + b_1) + b_2)$. To make the factor $\|A_l\|$ small, we applied Lemma 2.3 and set a regularization term $r_1 = \sup_{x \in (\mathcal{X}_1)_1} |(\tilde{\sigma}^{-1})'(x)| + \sup_{x \in (\mathcal{X}_2)_1} |(\tilde{\sigma}^{-1})'(x)|$. Here, $(\mathcal{X}_1)_1$ is the set of the first elements of the vectors in \mathcal{X}_1 . In addition, we set $r_2 = 1/(1 + \det W_1^*W_1^{1/4}) + 1/(1 + \det W_2^*W_2^{1/4})$. Regarding $\|v\|$, we set $r_3 = \|W_1\| + \|W_2\|$ since we have $\|v\|^2 = \int_{\mathcal{X}_2} |v(x)|^2 dx \leq \mu(\mathcal{X}_2) \leq \mu(\tilde{\mathcal{X}}_2)$. We added the regularization term $0.01(r_1 + r_2 + r_3)$ to the loss function. The training sample size is $S = 1000$. We compared the regularization based on our bound with that based on the bound proposed by Hashimoto et al. (2024). The result is shown in Figure 4 (b). Note that since the training sample size S is small, obtaining a high test accuracy is challenging. We can see that with the regularization based on our bound, we obtain a better performance than that based on the existing bound.

Validity for existing CNN models (LeNet) To show that our bound is valid for practical models, we applied the regularization based on our bound to LeNet on MNIST (Lecun et al., 1998). We set the activation function σ of each layer as the elementwise hyperbolic tangent function and the final nonlinear transformation v as the softmax. We used the same training and test datasets as the previous experiment. In addition, we set $\mathcal{X}_0 = [0, 1]^{784}$, $\tilde{\mathcal{X}}_l = (\|W_l\| + \|b_l\|_\infty)[-1, 1]^{1024} \supseteq W_l\sigma(\dots\sigma(W_1\mathcal{X}_0 + b_1) + \dots) + b_l$, $\mathcal{X}_l = \sigma(\tilde{\mathcal{X}}_l) \supseteq \sigma(W_l\sigma(\dots\sigma(W_1\mathcal{X}_0 + b_1) + \dots) + b_l)$. Here, W_l is the matrix that represents the l th convolution layer. We note that the bound by Hashimoto et al. (2024) is not valid for the models with hyperbolic tangent and softmax functions. To make the factor $\|A_l\|$ small, we applied Lemmas 2.3 and 2.4 and tried to make $\inf_{x \in \mathcal{X}_l} (1 - x^2)$ large. Thus, we set a regularization term $r_1 = \sum_{l=1}^4 \sup_{x \in (\mathcal{X}_l)_1} 1/(1 + 1 - x^2)$. Regarding the factor $\det W_l|_{\ker(W_l)^\perp}^{-1/2}$, we set $r_2 = \|(0.01I + W_lW_l^*)^{-1}\| = 1/(0.01 + s_{\min}(W_l))$, to make $s_{\min}(W_l)$ large, where $s_{\min}(W_l)$ is the smallest singular value of W_l since the determinant is described as the product of the singular values. For $\|v\|$, we set $r_3 = \|W_L\|$ in the same way as in the previous experiment according to the definition of $\tilde{\mathcal{X}}_L$. We added the regularization term $0.1(r_1 + r_2 + r_3)$ to the loss function and compared it with the case without regularization. The result is shown in Figure 4 (c). We can see that with the regularization, the model performs better than in the case without the regularization, which shows the validity of our bound for LeNet.

7 CONCLUSION AND LIMITATION

In this paper, we derived a new Koopman-based Rademacher complexity bound. Analogous to the existing Koopman-based bounds, our bound describes that neural networks with high-rank weight matrices can generalize well. Existing Koopman-based bounds rely on the smoothness of the function space and the unboundedness of the data space, which makes the result valid for limited neural network models with smooth and unbounded activation functions. We resolved this issue by introducing an algebraic representation of neural network models and constructing an RKHS associated with a kernel defined with this representation. Our bound is valid for a wide range of models, such as those with the hyperbolic tangent, sigmoid, and Leaky ReLU activation functions. Our framework is the first step to filling the gap between the Koopman-based analysis of generalization bounds and practical situations.

Although our bound can be applied to models more realistic than the existing Koopman-based bounds, it is not valid for activation functions whose derivative is zero in some domain, such as the exact ReLU. Introducing a variant of the Koopman operator such as the weighted Koopman operator may help us deal with this situation, but more detailed investigation is left for future work.

540 REFERENCES

541

542 Martin Anthony and Peter L. Bartlett. *Neural network learning: Theoretical foundations*. Cambridge
543 University Press, 2009.

544 Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
545 deep nets via a compression approach. In *Proceedings of the 35th International Conference on
546 Machine Learning (ICML)*, 2018.

547

548 Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
549 neural networks. In *Proceedings of the 31st Conference on Neural Information Processing Systems
550 (NIPS)*, 2017.

551 Koushik Biswas, Sandeep Kumar, Shilpak Banerjee, and Ashish Kumar Pandey. Smooth maximum
552 unit: Smooth activation function for deep networks using smoothing maximum technique. In
553 *Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
554 2022.

555

556 Kenneth R. Davidson. *C*-Algebras by Example*. American Mathematical Society, 1996.

557 Gerald B. Folland. *A Course in Abstract Harmonic Analysis*. CRC Press, 1995.

558

559 Micah Goldblum, Jonas Geiping, Avi Schwarzschild, Michael Moeller, and Tom Goldstein. Truth or
560 backpropaganda? an empirical investigation of deep learning theory. In *Proceedings of the 8th
561 International Conference on Learning Representations (ICLR)*, 2020.

562 Noah Golowich, Alexander Rakhlin, and Ohad Shamir. Size-independent sample complexity of
563 neural networks. In *Proceedings of the 2018 Conference On Learning Theory (COLT)*, 2018.

564

565 Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight VC-dimension bounds for
566 piecewise linear neural networks. In *Proceedings of the 2017 Conference on Learning Theory
567 (COLT)*, pp. 1064–1068, 2017.

568

569 Yuka Hashimoto, Sho Sonoda, Isao Ishikawa, Atsushi Nitanda, and Taiji Suzuki. Koopman-based
570 generalization bound: New aspect for full-rank weights. In *The 12th International Conference on
571 Learning Representations (ICLR)*, 2024.

572

573 Haotian Ju, Dongyue Li, and Hongyang R Zhang. Robust fine-tuning of deep neural networks with
574 Hessian-based generalization guarantees. In *Proceedings of the 39th International Conference on
575 Machine Learning (ICML)*, 2022.

576

577 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Proceedings of
578 the 3rd International Conference on Learning Representations (ICLR)*, 2015.

579

580 Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
581 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

582

583 Shuai Li, Kui Jia, Yuxin Wen, Tongliang Liu, and Dacheng Tao. Orthogonal deep neural networks.
584 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43(04):1352–1368, 2021.

585

586 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*.
587 MIT press, 2nd edition, 2018.

588

589 Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-based capacity control in neural
590 networks. In *Proceedings of the 2015 Conference on Learning Theory (COLT)*, 2015.

591

592 Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
593 spectrally-normalized margin bounds for neural networks. In *Proceedings of the 6th Interna-
594 tional Conference on Learning Representations (ICLR)*, 2018.

595

596 Sho Sonoda, Yuka Hashimoto, Isao Ishikawa, and Masahiro Ikeda. Deep ridgelet transform and
597 unified universality theorem for deep and shallow joint-group-equivariant machines. In *The 42nd
598 International Conference on Machine Learning (ICML)*, 2025.

594 Taiji Suzuki, Hiroshi Abe, and Tomoaki Nishimura. Compression based bound for non-compressed
595 network: unified generalization error analysis of large compressible deep neural network. In
596 *Proceedings of the 8th International Conference on Learning Representations (ICLR)*, 2020.

597

598 Sundaram Thangavelu. *Harmonic Analysis on the Heisenberg Group*. Birkhäuser Boston, 1998.

599

600 Colin Wei and Tengyu Ma. Data-dependent sample complexity of deep neural networks via Lipschitz
601 augmentation. In *Proceedings of the 33rd Conference on Neural Information Processing Systems*
(*NeurIPS*), 2019.

602

603 Colin Wei and Tengyu Ma. Improved sample complexities for deep neural networks and robust
604 classification via an all-layer margin. In *Proceedings of the 8th International Conference on*
605 *Learning Representations (ICLR)*, 2020.

606

607 Weinan E, Chao Ma, and Lei Wu. The Barron space and the flow-induced function spaces for neural
608 network models. *Constructive Approximation*, 55:369–406, 2022.

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX

649

650 A PROOFS

651

652 We show the proofs of the theorems, propositions, and lemmas in the main text.

653

654 **Lemma 2.3** Assume $\sigma : \tilde{\mathcal{X}} \rightarrow \mathcal{X}$ is bijective, σ^{-1} is differentiable, and the Jacobian of σ^{-1} is655 bounded in \mathcal{X} . Then, we have $\|K_\sigma\| \leq \sup_{x \in \mathcal{X}} |J\sigma^{-1}(x)|^{1/2}$, where $J\sigma^{-1}$ is the Jacobian of σ^{-1} .656 In particular, the Koopman operator K_σ is bounded.

657

658 *Proof.* For $h \in L^2(\mathcal{X})$, we have

659

660
$$\begin{aligned} \|K_\sigma h\|^2 &= \int_{\tilde{\mathcal{X}}} |h(\sigma(x))|^2 dx = \int_{\mathcal{X}} |h(x)|^2 |J\sigma^{-1}(x)| dx \\ 661 &\leq \sup_{x \in \mathcal{X}} |J\sigma^{-1}(x)| \int_{\mathcal{X}} |h(x)|^2 dx = \sup_{x \in \mathcal{X}} |J\sigma^{-1}(x)| \|h\|^2. \end{aligned}$$

662

663

664

665

666 **Lemma 2.5** Let $\tilde{\mathcal{X}} = \mathcal{X} = \mathbb{R}^d$. Let σ be the elementwise Leaky ReLU defined as $\tilde{\sigma}(x) = ax$ for667 $x \leq 0$ and $\tilde{\sigma}(x) = x$ for $x > 0$, where $a > 0$. Then, we have $\|K_\sigma\| \leq \max\{1, 1/a^d\}^{1/2}$.

668

669

670 *Proof.* For $h \in L^2(\mathcal{X})$, we have

671

672
$$\begin{aligned} \|K_\sigma h\|^2 &= \int_{\mathbb{R}^d} |h(\sigma(x))|^2 dx \\ 673 &= \int_{(-\infty, 0]^d} |h(ax)|^2 dx + \int_{(0, \infty) \times (-\infty, 0]^{d-1}} |h(\text{diag}\{1, a, \dots, a\}x)|^2 dx + \dots + \int_{(0, \infty)^d} |h(x)|^2 dx \\ 674 &\leq \max\{1, 1/a^d\} \int_{\mathbb{R}^d} |h(x)|^2 dx = \max\{1, 1/a^d\} \|h\|^2. \end{aligned}$$

675

676

677

678

679

680 **Proposition 3.4** The map ι is isometrically isomorphic.

681

682 Proposition 3.4 is derived using the following lemmas.

683

684 **Lemma A.1.** The map ι is injective.

685

686 *Proof.* Assume $\iota(h) = 0$. Then, for any $\mathbf{g} \in G$, $\langle \tilde{\phi}(\mathbf{g}), h \rangle = 0$. Thus, for any $n \in \mathbb{N}$, $\mathbf{g}_1, \dots, \mathbf{g}_n$,687 and $c_1, \dots, c_n \in \mathbb{C}$, we have $\langle \sum_{i=1}^n c_i \tilde{\phi}(\mathbf{g}_i), h \rangle = 0$, which means for any $\tilde{h} \in \mathcal{K}_0$, $\langle \tilde{h}, h \rangle = 0$.688 Thus, we obtain $h = 0$. \square

689

690 **Lemma A.2.** The map ι preserves the norm and is surjective.

691

692 *Proof.* By definition, ι is a linear map that maps $\tilde{\phi}(\mathbf{g}) \in \mathcal{K}_0$ to $\phi(\mathbf{g}) \in \mathcal{R}_{k,0}$. Thus, we have693 $\iota(\mathcal{K}_0) = \mathcal{R}_{k,0}$.

694

695 For $h \in \mathcal{K}_0$, there exist $n \in \mathbb{N}$, $\mathbf{g}_1, \dots, \mathbf{g}_n \in G^L$, and $c_1, \dots, c_n \in \mathbb{C}$ such that $h = \sum_{i=1}^n c_i \tilde{\phi}(\mathbf{g}_i)$.

696 We have

697

698
$$\|\iota(h)\|_{\mathcal{R}_k}^2 = \left\| \sum_{i=1}^n c_i \phi(\mathbf{g}_i) \right\|_{\mathcal{R}_k}^2 = \sum_{i,j=1}^n \overline{c_i} c_j k(\mathbf{g}_i, \mathbf{g}_j) = \sum_{i,j=1}^n \overline{c_i} c_j \langle \tilde{\phi}(\mathbf{g}_i), \tilde{\phi}(\mathbf{g}_j) \rangle_{\mathcal{H}} = \|h\|_{\mathcal{H}}^2.$$

699

700 Thus, ι preserves the norm, and in particular, it is bounded.

701

702 For any $r \in \mathcal{R}_k$, there exists a sequence $r_1, r_2, \dots \in \mathcal{R}_{k,0}$ such that $\lim_{i \rightarrow \infty} r_i = r$. Since703 $\iota(\mathcal{K}_0) = \mathcal{R}_{k,0}$, there exists $h_i \in \mathcal{K}_0$ such that $\iota(h_i) = r_i$ for $i = 1, 2, \dots$. Thus, we have704 $r = \lim_{i \rightarrow \infty} r_i = \lim_{i \rightarrow \infty} \iota(h_i) = \iota(\lim_{i \rightarrow \infty} h_i) = \iota(h)$. \square

702 **Lemma 3.5** Assume ρ is irreducible. Let $\mathcal{A} = \{\sum_{i=1}^n c_i \rho(g_i) \mid n \in \mathbb{N}, g_i \in G, c_i \in \mathbb{C}\}$. Then, \mathcal{A}
 703 is dense in $B(\mathcal{H})$ with respect to the strong operator topology.
 704

705 *Proof.* By the Schur's lemma (Lemma 2.7), the commutant of $\overline{\mathcal{A}}^{\text{SOT}}$, the closure of \mathcal{A} with respect
 706 to the strong operator topology, is $\mathbb{C}I$. Thus, the double commutant of $\overline{\mathcal{A}}^{\text{SOT}}$ is $B(\mathcal{H})$. By the von
 707 Neumann double commutant theorem (Lemma 2.8), the double commutant of $\overline{\mathcal{A}}^{\text{SOT}}$ is $\overline{\mathcal{A}}^{\text{SOT}}$ itself.
 708 Therefore, we have $\overline{\mathcal{A}}^{\text{SOT}} = B(\mathcal{H})$. \square
 709

710 **Lemma 3.6** Assume ρ is irreducible and A_1, \dots, A_{L-1} are invertible. Then, $\mathcal{K} = \overline{\mathcal{K}_0} = \mathcal{H}$.
 711

712 *Proof.* Let $h \in \mathcal{H}$. Then, there exists $B \in B(\mathcal{H})$ such that $h = Bv$. Let $\varepsilon > 0$. By
 713 Lemma 3.5, there exist $n_L \in \mathbb{N}$, $g_{L,1}, \dots, g_{L,n_L} \in G$, and $c_{L,1}, \dots, c_{L,n_L} \in \mathbb{C}$ such that
 714 $\|\tilde{A}_L v - A_{L-1}^{-1} v\| \leq \varepsilon$, where $\tilde{A}_L = \sum_{\alpha_L=1}^{n_L} c_{L,\alpha_L} \rho(g_{L,\alpha_L})$. In addition, there exist $n_{L-1} \in \mathbb{N}$,
 715 $g_{L-1,1}, \dots, g_{L-1,n_{L-1}} \in G$, and $c_{L-1,1}, \dots, c_{L-1,n_{L-1}} \in \mathbb{C}$ such that $\|\tilde{A}_{L-1}(A_{L-1} \tilde{A}_L v) -$
 716 $A_{L-2}^{-1}(A_{L-1} \tilde{A}_L v)\| \leq \varepsilon$, where $\tilde{A}_{L-1} = \sum_{\alpha_{L-1}=1}^{n_{L-1}} c_{L-1,\alpha_{L-1}} \rho(g_{L-1,\alpha_{L-1}})$. We continue this
 717 process, and for $l = L-2, \dots, 2$, we obtain $n_l \in \mathbb{N}$, $g_{l,1}, \dots, g_{l,n_l} \in G$, and $c_{l,1}, \dots, c_{l,n_l} \in \mathbb{C}$ such
 718 that $\|\tilde{A}_l(A_l \tilde{A}_{l+1} A_{l+1} \cdots \tilde{A}_{L-1} A_{L-1} \tilde{A}_L v) - A_{l-1}^{-1}(A_l \tilde{A}_{l+1} A_{l+1} \cdots \tilde{A}_{L-1} A_{L-1} \tilde{A}_L v)\| \leq \varepsilon$, where
 719 $\tilde{A}_l = \sum_{\alpha_l=1}^{n_l} c_{l,\alpha_l} \rho(g_{l,\alpha_l})$. Finally, we get $n_1 \in \mathbb{N}$, $g_{1,1}, \dots, g_{1,n_1} \in G$, and $c_{1,1}, \dots, c_{1,n_1} \in \mathbb{C}$
 720 such that $\|\tilde{A}_1(A_1 \tilde{A}_2 A_2 \cdots \tilde{A}_{L-1} A_{L-1} \tilde{A}_L v) - B(A_1 \tilde{A}_2 A_2 \cdots \tilde{A}_{L-1} A_{L-1} \tilde{A}_L v)\| \leq \varepsilon$, where
 721 $\tilde{A}_1 = \sum_{\alpha_1=1}^{n_1} c_{1,\alpha_1} \rho(g_{1,\alpha_1})$. Let $C = \tilde{A}_1 A_1 \cdots \tilde{A}_{L-1} A_{L-1} \tilde{A}_L$. Then, we have
 722

$$\begin{aligned} \|Cv - h\| &\leq \|Cv - BA_1 \tilde{A}_2 \cdots A_{L-1} \tilde{A}_L v\| + \|BA_1 \tilde{A}_2 \cdots A_{L-1} \tilde{A}_L v - BA_2 \tilde{A}_3 \cdots A_{L-1} \tilde{A}_L v\| \\ &\quad + \cdots + \|BA_{L-2} \tilde{A}_{L-1} A_{L-1} \tilde{A}_L v - BA_{L-1} \tilde{A}_L v\| + \|BA_{L-1} \tilde{A}_L v - B \tilde{A}_L v\| \\ &\leq \varepsilon + \|BA_1\| \varepsilon + \cdots + \|BA_{L-2}\| \varepsilon + \|BA_{L-1}\| \varepsilon. \end{aligned}$$

\square

723 **Theorem 4.1** Let \mathcal{F}_c the function class $\{F_c(g_1, \dots, g_L, \cdot) \mid g_1, \dots, g_L \in G\}$. Assume $p_{c,x} \in \mathcal{K}$
 724 for $x \in \mathcal{X}_0$. Then, the Rademacher complexity of the function class \mathcal{F}_c is bounded as
 725

$$\hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \frac{\|A_1\| \cdots \|A_{L-1}\| \|v\| \mathbf{E}(\mathbf{c})}{\sqrt{S}}.$$

730 *Proof.* Since $F_c(\cdot, x) = \iota(p_{c,x}) \in \mathcal{R}_k$, by the reproducing property, we have
 731

$$\begin{aligned} 732 \frac{1}{S} \mathbb{E} \left[\sup_{\mathbf{g} \in G^L} \sum_{s=1}^S F_c(\mathbf{g}, x_s) \epsilon_s \right] &= \frac{1}{S} \mathbb{E} \left[\sup_{\mathbf{g} \in G^L} \left\langle \phi(\mathbf{g}), \sum_{s=1}^S F_c(\cdot, x_s) \epsilon_s \right\rangle_{\mathcal{R}_k} \right] \\ 733 &\leq \frac{1}{S} \sup_{\mathbf{g} \in G^L} \|\phi(\mathbf{g})\|_{\mathcal{R}_k} \mathbb{E} \left[\left\| \sum_{s=1}^S F_c(\cdot, x_s) \epsilon_s \right\|_{\mathcal{R}_k} \right] \\ 734 &= \frac{1}{S} \sup_{\mathbf{g} \in G^L} \|\tilde{\phi}(\mathbf{g})\|_{\mathcal{H}} \mathbb{E} \left[\left(\sum_{s,t=1}^S \langle F_c(\cdot, x_s) \epsilon_s, F_c(\cdot, x_t) \epsilon_t \rangle_{\mathcal{R}_k} \right)^{1/2} \right] \\ 735 &\leq \frac{1}{S} \sup_{\mathbf{g} \in G^L} \|\rho(g_1) A_1 \cdots A_{L-1} \rho(g_L) v\|_{\mathcal{H}} \left(\mathbb{E} \left[\sum_{s,t=1}^S \langle F_c(\cdot, x_s) \epsilon_s, F_c(\cdot, x_t) \epsilon_t \rangle_{\mathcal{R}_k} \right] \right)^{1/2} \\ 736 &\leq \frac{1}{S} \|A_1\| \cdots \|A_{L-1}\| \|v\| \left(\sum_{s=1}^S \|F_c(\cdot, x_s)\|_{\mathcal{R}_k}^2 \right)^{1/2}, \end{aligned} \tag{5}$$

756 where the third equality is by Lemma A.2, the fourth inequality is by the Jensen's inequality, and the
 757 final inequality is derived since $\rho(g_1), \dots, \rho(g_L)$ are unitary.
 758

759 Since $F_c(\cdot, x) = \iota(p_{c,x})$, we apply Lemma A.2 again and obtain
 760

$$\begin{aligned} \frac{1}{S} \|A_1\| \cdots \|A_{L-1}\| \|v\| \left(\sum_{s=1}^S \|F_c(\cdot, x_s)\|_{\mathcal{R}_k}^2 \right)^{1/2} &= \frac{1}{S} \|A_1\| \cdots \|A_{L-1}\| \|v\| \left(\sum_{s=1}^S \|p_{c,x_s}\|_{\mathcal{H}}^2 \right)^{1/2} \\ &\leq \frac{\|A_1\| \cdots \|A_{L-1}\| \|v\| \text{E}(c)}{\sqrt{S}}, \end{aligned}$$

765 where the last equality is derived since $p_{c,x}$ is the regularizer that satisfies $\|p_{c,x}\|_{\mathcal{H}} = 1$ for any
 766 $x \in \mathcal{X}_0$. \square
 767

768 **Theorem 4.4** *Let $\mathcal{NN}_c = \{NN_c(\mathbf{g}, \cdot) \mid \mathbf{g} \in G^L, |\det W_1|^{-1/2}, \dots, |\det W_L|^{-1/2} \leq D\}$. The
 769 Rademacher complexity bound of \mathcal{NN}_c is*
 770

$$\hat{R}(\mathcal{NN}_c, x_1, \dots, x_S) \leq \frac{\text{E}(c) \|v\| \prod_{l=1}^{L-1} \|A_l\|}{\sqrt{S}} \sup_{|\det W_l|^{-1/2} \leq D} \prod_{l=1}^L |\det W_l|^{-1/2}.$$

775 *Proof.* By Theorem 4.1, we have
 776

$$\begin{aligned} \hat{R}(\mathcal{NN}_c, x_1, \dots, x_S) &= \frac{1}{S} \mathbb{E} \left[\sup_{\mathbf{g} \in G^L, |\det W_l|^{-1/2} \leq D} \sum_{s=1}^S NN_c(\mathbf{g}, x_s) \sigma_s \right] \\ &= \frac{1}{S} \mathbb{E} \left[\sup_{\mathbf{g} \in G^L, |\det W_l|^{-1/2} \leq D} \sum_{s=1}^S F_c(\mathbf{g}, x_s) |\det W_1|^{-1/2} \cdots |\det W_L|^{-1/2} \sigma_s \right] \\ &\leq \frac{\text{E}(c) \|A_1\| \cdots \|A_{L-1}\| \|v\|}{\sqrt{S}} \sup_{|\det W_l|^{-1/2} \leq D} |\det W_1|^{-1/2} \cdots |\det W_L|^{-1/2}. \end{aligned}$$

785 \square
 786

787 **Theorem 5.1** *Let $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\det W_1^* W_1|^{-1/4}, \dots, |\det W_L^* W_L|^{-1/4} \leq D\}$.
 788 Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Let $f_l = v \circ W_L \circ \sigma_{L-1} \circ \cdots \circ W_{l+1} \circ \sigma_l$. Let $\alpha(h) =$
 789 $(\int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 d\mu_{\mathcal{R}(W_l)}(x) / \int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x))^{1/2}$ for $h \in \tilde{\mathcal{H}}_l$. Then, we have*
 790

$$\hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\det W_l^* W_l|^{-1/4} \leq D} \frac{\text{E}(c) \|v\| \prod_{l=1}^{L-1} \|A_l\| \alpha(f_l)}{\sqrt{S} \prod_{l=1}^L |\det W_l^* W_l|^{1/4}},$$

794
 795 *Proof.* In the same way as Theorem 4.1, we have the same inequality (5) but $\rho(g_l)$ is replaced by
 796 $\eta_l(\theta_l) = K_{W_l}$. For $h \in \tilde{\mathcal{H}}_l$, we have
 797

$$\begin{aligned} \|K_{W_l} h\|^2 &= \int_{\mathcal{X}_{l-1}} |h(W_l x)|^2 d\mu_{\mathbb{R}^{d_{l-1}}}(x) = \int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 \frac{1}{|\det W_l^* W_l|^{1/2}} d\mu_{\mathcal{R}(W_l)}(x) \\ &= \frac{1}{|\det W_l^* W_l|^{1/2}} \frac{\int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 d\mu_{\mathcal{R}(W_l)}(x)}{\int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x)} \int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x) = \frac{\alpha(h)^2 \|h\|^2}{|\det W_l^* W_l|^{1/2}} \quad (6) \end{aligned}$$

802 Applying the inequality (6) to the inequality (5) for this case, we obtain the result. \square
 803

804 **Theorem 5.5** *Let $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\det W_1|_{\ker(W_1)^\perp}^{-1/2}, \dots, |\det W_L|_{\ker(W_L)^\perp}^{-1/2} \leq$
 805 $D\}$. Assume $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Then, we have*
 806

$$\hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\det W_l|_{\ker(W_l)^\perp}^{-1/2} \leq D} \frac{\text{E}(c) \|v\| \prod_{l=1}^{L-1} \|A_l\| \alpha(f_l) \prod_{l=1}^L \mu_{\ker(W_l)}(\mathcal{Y}_{l-1})}{\sqrt{S} \prod_{l=1}^L |\det W_l|_{\ker(W_l)^\perp}^{1/2}}.$$

810 *Proof.* For $h \in \tilde{\mathcal{H}}_l$, we have

$$\begin{aligned}
 812 \quad \|\tilde{K}_{\psi_l, W_l} h\|^2 &= \int_{\mathcal{X}_{l-1}} |h(W_l x) \psi_l(x)|^2 dx = \int_{\mathcal{Z}_{l-1}} |h(W_l x)|^2 dx \int_{\mathcal{Y}_{l-1}} |\psi_l(x)|^2 dx \\
 813 \quad &= \int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 \frac{1}{|\det W_l|_{\ker(W_l)^\perp}} d\mu_{\mathcal{R}(W_l)}(x) \cdot \mu_{\ker(W_l)}(\mathcal{Y}_{l-1}) \\
 814 \quad &\leq \frac{\int_{W_l \mathcal{X}_{l-1}} |h(x)|^2 d\mu_{\mathcal{R}(W_l)}(x)}{|\det W_l|_{\ker(W_l)^\perp} \int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x)} \int_{\tilde{\mathcal{X}}_l} |h(x)|^2 d\mu_{\mathbb{R}^{d_l}}(x) \cdot \mu_{\ker(W_l)}(\mathcal{Y}_{l-1}) \\
 815 \quad &= \frac{\|h\|^2 \alpha(h)^2 \mu_{\ker(W_l)}(\mathcal{Y}_{l-1})}{|\det W_l|_{\ker(W_l)^\perp}}. \tag{7}
 \end{aligned}$$

822 Applying the inequality (7) to the inequality (5) for this case, we obtain the result. \square

824 **Proposition 5.7** Let $\mathcal{F}_c = \{F_c(\theta_1, \dots, \theta_L, \cdot) \mid |\beta(\theta_1)|^{-1/2}, \dots, |\beta(\theta_L)|^{-1/2} \leq D\}$. Assume
 825 $p_{c,x} \in \mathcal{K}$ for $x \in \mathcal{X}_0$. Then, we have

$$\hat{R}(\mathcal{F}_c, x_1, \dots, x_S) \leq \sup_{|\beta(\theta_l)|^{-1/2} \leq D} \frac{\textcolor{red}{E}(\mathbf{c}) \|v\| \prod_{l=1}^{L-1} \|A_l\| \mu_{\ker(P_l)}(\hat{\mathcal{Y}}_l)}{\sqrt{S} \prod_{l=1}^L |\beta_l(\theta_l)|^{1/2}}.$$

832 *Proof.* Since the convolution is a linear operator whose eigenvalues are Fourier components, we have
 833 $\|\eta_l(\theta_l)\| \leq |\beta_l(\theta_l)|^{-1/2}$. In the same way as the proof of Theorem 5.5, we have

$$\|\tilde{K}_{\psi_l, P_l}\| \leq \frac{\mu_{\ker(P_l)}(\hat{\mathcal{Y}}_l)}{|\det P_l|_{\ker(P_l)^\perp}^{1/2}} = \mu_{\ker(P_l)}(\hat{\mathcal{Y}}_l),$$

838 which proves the result. \square

B EXPERIMENTAL DETAILS

842 All the experiments were executed with Python 3.10 and TensorFlow 2.15.

B.1 VALIDITY OF BOUNDS

846 We set W_1, W_2 , and w_3 as learnable parameters. We set the loss function as the mean squared error
 847 and the optimizer as the SGD with a learning rate 0.001. The learnable parameters are initialized
 848 with the orthogonal initialization.

B.2 COMPARISON TO EXISTING BOUNDS

851 We constructed a network $f(x) = \sigma_4(W_4 \sigma(W_3 \sigma(W_2 \sigma(W_1 x + b_1) + b_2) + b_3) + b_4)$ with dense
 852 layers, where $W_1 \in \mathbb{R}^{1024 \times 784}$, $W_2 \in \mathbb{R}^{2048 \times 1024}$, $W_3 \in \mathbb{R}^{2048 \times 2048}$, $W_4 \in \mathbb{R}^{10 \times 2048}$, $b_1 \in \mathbb{R}^{1024}$,
 853 $b_2 \in \mathbb{R}^{2048}$, $b_3 \in \mathbb{R}^{2048}$, $b_4 \in \mathbb{R}^{10}$, σ is the elementwise smooth Leaky ReLU (Biswas et al.,
 854 2022) with $\alpha = 0.1$ and $\mu = 0.5$, and σ_4 is the softmax. The learnable parameters W_1, \dots, W_4 are
 855 initialized by the orthogonal initialization for $l = 1, 2$ and by samples from the truncated normal
 856 distribution for $l = 3, 4$, and we used the Adam optimizer (Kingma & Ba, 2015) for the optimizer
 857 with a learning rate of 0.001. We set the loss function as the categorical cross-entropy loss. The result
 858 in Figure 4 (b) is the averaged value \pm the standard deviation in 3 independent runs.

B.3 VALIDITY FOR EXISTING CNN MODELS (LENET)

862 We constructed a 5-layered LeNet with the hyperbolic tangent activation functions and the averaged
 863 pooling layers. We set the optimizer as the Adam optimizer with a learning rate of 0.001. The result
 864 in Figure 4 (c) is the averaged value \pm the standard deviation in 3 independent runs.

864

865

Table 1: Comparison of our bound to existing bounds.

866

Authors	Rate	Type
Neyshabur et al. (2015)	$\frac{2^L \prod_{l=1}^L \ W_l\ _{2,2}}{\sqrt{S}}$	
Neyshabur et al. (2018)	$\frac{L \max_l d_l \prod_{l=1}^L \ W_l\ }{\sqrt{S}} \left(\sum_{l=1}^L \frac{\ W_l\ _{2,2}^2}{\ W_l\ ^2} \right)^{1/2}$	
Golowich et al. (2018)	$\left(\prod_{l=1}^L \ W_l\ _{2,2} \right) \min \left\{ \frac{1}{S^{1/4}}, \sqrt{\frac{L}{S}} \right\}$	Norm-based
Bartlett et al. (2017)	$\frac{\prod_{l=1}^L \ W_l\ }{\sqrt{S}} \left(\sum_{l=1}^L \frac{\ W_l^T - A_l^T\ _{2,1}^{2/3}}{\ W_l\ ^{2/3}} \right)^{3/2}$	
Wei & Ma (2020)	$\frac{(\sum_{l=1}^L \kappa_l^{2/3} \min\{L^{1/2} \ W_l - A_l\ _{2,2}, \ W_l - B_l\ _{1,1}\}^{2/3})^{3/2}}{\sqrt{S}}$	
Ju et al. (2022)	$\frac{\sum_{l=1}^L \theta_l \ W_l - A_l\ _{2,2}}{\sqrt{S}}$	
Li et al. (2021)	$\ \mathbf{x}\ \prod_{l=1}^L \ W_l\ - 1 + \gamma_{\mathbf{x}} + \sqrt{\frac{c_{\mathbf{x}}}{S}}$	
Arora et al. (2018)	$\hat{r} + \frac{L \max_i \ f(x_i)\ }{\hat{r} \sqrt{S}} \left(\sum_{l=1}^L \frac{1}{\mu_l^2 \mu_{l-1}^2} \right)^{1/2}$	Compression
Suzuki et al. (2020)	$\frac{\hat{r}}{\sqrt{S}} + \sqrt{\frac{L}{S}} \left(\sum_{l=1}^L \tilde{r}_l (\tilde{d}_{l-1} + \tilde{d}_l) \right)^{1/2}$	
Hashimoto et al. (2024)	$\frac{\ v\ _{H_L}}{\sqrt{S}} \prod_{l=1}^L \frac{G_l \ K_{\sigma_l}\ _{H_l} \ W_l\ ^{s_{l-1}}}{\det(W_l^* W_l)^{1/4}}$	Koopman-based
Ours	$\frac{\ v\ _{\mathcal{L}_L}}{\sqrt{S}} \prod_{l=1}^L \frac{G_l \ K_{\sigma_l}\ _{\mathcal{L}_l}}{\det(W_l^* W_l)^{1/4}}$	

879

880

C COMPARISON OF THE KOOPMAN-BASED BOUNDS TO EXISTING BOUNDS

881

We show the summary of the existing bounds and the proposed bound in Table 1. Here, κ_l and θ_l are determined by the Jacobian and Hessian of the network f with respect to the j th layer and W_l , respectively. In addition, \tilde{r}_l and \tilde{d}_l are the rank and dimension of the j th weight matrices for the compressed network and $\|\cdot\|_{p,q}$ is the matrix (p,q) -norm. We note that although the form of the existing Koopman-based bound and the proposed bound is similar, our bound is applicable to a wider range of deep models, and the factors G_l and $\|K_{\sigma_l}\|$ are more easily evaluated.

882

883

D NOTATION TABLE

884

We provide a notation table 2 that summarizes important notation in the main text.

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935

Table 2: Notation table

936	G	Locally compact group for parameters
937	Θ_l	Set of parameters for the l th layer
938	L	Number of layers
939	d_l	Width of the l th layer
940	\mathcal{H}	Hilbert space for models
941	ρ	Unitary representation of G on \mathcal{H}
942	K_σ	Koopman operator with respect to a function σ
943	W_l	Weight matrix for the l th layer
944	σ_l	Activation function for the l th layer
945	A_l	Linear operator corresponding to the activation function for the l th layer
946	f	Original deep model
947	F_c	Regularized model with a parameter c
948	\mathcal{F}_c	Function class for models
949	k	Positive definite kernel defined as $k((g_1, \dots, g_L), (\tilde{g}_1, \dots, \tilde{g}_L)) = \langle f(g_1, \dots, g_L), f(\tilde{g}_1, \dots, \tilde{g}_L) \rangle_{\mathcal{H}}$
950	ϕ	Feature map defined as $\phi(\mathbf{g}) = k(\cdot, \mathbf{g})$
951	$\tilde{\phi}$	Feature map representing models defined as $\tilde{\phi}(\mathbf{g}) = f(g_1, \dots, g_L)$, where $\mathbf{g} = (g_1, \dots, g_L)$
952	\mathcal{K}	Hilbert space defined as the closure of $\{\sum_{i=1}^n c_i \tilde{\phi}(\mathbf{g}_i) \mid n \in \mathbb{N}, \mathbf{g}_i \in G^L, c_i \in \mathbb{C}\}$
953	ι	Isomorphism that maps $\tilde{\phi}(\mathbf{g})$ to $\phi(\mathbf{g})$
954		
955		
956		
957		
958		
959		
960		
961		
962		
963		
964		
965		
966		
967		
968		
969		
970		
971		