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ABSTRACT

We derive a new Rademacher complexity bound for deep neural networks using
Koopman operators, group representations, and reproducing kernel Hilbert spaces
(RKHSs). The proposed bound describes why the models with high-rank weight
matrices generalize well. Although there are existing bounds that attempt to
describe this phenomenon, these existing bounds can be applied to limited types of
models. We introduce an algebraic representation of neural networks and a kernel
function to construct an RKHS to derive a bound for a wider range of realistic
models. This work paves the way for the Koopman-based theory for Rademacher
complexity bounds to be valid for more practical situations.

1 INTRODUCTION

Understanding the generalization property of deep neural networks has been one of the biggest
challenges in the machine learning community. The generalization property describes how the
model can fit unseen data. Classically, the generalization error is bounded using the VC-dimension
theory (Harvey et al.l[2017;|Anthony & Bartlett,|2009). Norm-based (Neyshabur et al., 2015} Bartlett
et al.} 2017; |Golowich et al.,2018; Neyshabur et al.,[2018; Wei & Ma, [2019; |Li et al., [2021; Ju et al.}
2022; Weinan E et al.||2022) and compression-based (Arora et al., 2018} [Suzuki et al., |2020) bounds
have also been investigated. The norm-based bounds depend on the matrix (p, ¢) norm of the weight
matrices, and the compression-based bounds are derived by investigating how much the networks can
be compressed. These bounds imply that low-rank weight matrices and weight matrices with small
singular values, i.e., nearly low-rank matrices, have good effects for generalization. See Appendix [C]
for more details about the existing bounds.

On the other hand, phenomena in which models with weight matrices that are high-rank and have
large singular values generalize well have been empirically observed (Goldblum et al.l 2020). Since
the norm-based and compression-based bounds focus only on the low-rank and nearly low-rank cases,
they cannot describe these phenomena. To theoretically describe these phenomena, the Koopman-
based bound was proposed (Hashimoto et al.,[2024). Koopman operators are linear operators that
describe the compositions of functions, which are essential structures of neural networks. This
existing bound is described by the ratio of the norm to the determinant of each weight matrix as

(HGZ |K<TIHHIUZHSZ 1) (1)
VS det (W Wy)1/4

where S is the sample size, s; represents the smoothness of the Ith layer, GG, is a factor determined

by the [ ~ Lth layers, K, is the Koopman operator with respect to the activation function o, and

|| - ||z, represents the operator norm in a Sobolev space H;. Since the determinant factor appears

in the denominator of the bound, even if the weight matrices are high rank and have large singular

values, this bound can be small. The Koopman-based bound theoretically sheds light on why neural
networks with high-rank weight matrices generalize well.

However, the existing analysis for the Koopman-based bound strongly depends on the smoothness
of models and the unboundedness of the data space, which excludes realistic models with bounded
data space and with activation functions such as the hyperbolic tangent, sigmoid, and ReLU-type
nonsmooth functions. In addition, the dependency of the bound on the activation function is not clear.
In fact, the factors || K, || 7, and G in the bound (1)) is hard to evaluate in many cases.
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Figure 1: Summary of the framework of the existing and proposed Koopman-based bounds

In this paper, we propose a new Koopman-based bound that resolves the issues of the existing
Koopman-based bounds. The proposed bound is described as

O(ﬁ GZHKUL||£1 >

VS det(Wrwy) v )

where || - ||, is the operator norm in a L? function space. Similar to the existing Koopman-based
bounds, the proposed bound describes why high-rank neural networks generalize well. On the other
hand, the difference of the function space £; from H; gives a significant benefit to the proposed
bound. We note that £; is larger than H;, and £; enables us to analyze nonsmooth deep models and
bounded data space. In addition, it enables us to evaluate the factors | K, ||z, and G| easily (see
Lemmas [2.3H2.3) and understand the effect of the activation functions on the deep model. As a result,

the proposed bound significantly improves the existing bound in the sense that it can be applied to a
wider range of models and enables us to understand the models well.

To achieve the above improvement, we introduce a kernel function defined on the parameter space
using linear operators on a Hilbert space to which models belong. This kernel function allows us
to construct a reproducing kernel Hilbert space (RKHS) that describes realistic deep models with
nonsmooth activation function and bounded data space. We use the Rademacher complexity to derive
generalization bounds. The Rademacher complexity measures the complexity of the model, which
also describe the generalization property. Using the reproducing property of the RKHS, we can bound
the Rademacher complexity with the operator norms of the linear operators. For linear operators, we
use group representations and Koopman operators. We first focus on algebraic representations of
models using group representations. A typical example is the representation of the affine group, which
describes invertible neural networks. We then focus on representations using Koopman operators
with respect to the weight matrices, which describe neural networks with non-constant width. We
schematically show the summary of the framework of the existing and proposed Koopman-based
bounds in Figure[T]

The main contributions of this paper are as follows:

* We introduce an algebraic representation of models that can represent deep neural networks as typi-
cal examples. To describe the action of parameters on models, we focus on group representations,
which enables us to represent invertible neural networks, and Koopman operators, which enables
us to represent more general neural networks (Subsections [3.1]and [5.1).

* We define a kernel function to construct an RKHS that describes the model. We derive a new
Rademacher complexity bound using this kernel (Subsection[3.2)). The proposed bound describes
why the models with high-rank weight matrices generalize well for a wider range of models than
the existing bounds (Section 4 and Subsections [5.2H5.4).

Notations and remarks For d € N and a Lebesgue measure space X C R?, let L?(X) be the space
of complex-valued squared Lebesgue-integrable functions on X'. We denote by px the Lebesgue
measure on X'. For a Hilbert space #, let (-, -),, be the inner product in 7. We omit the subscript H
when it is obvious. We denote by B(H1, H2) be the space of bounded linear operators from H; to
Hs. In particular, we denote B(7, %) = B(*H). All the technical proofs are in Appendix [A]

2 PRELIMINARIES

2.1 KOOPMAN OPERATOR

Koopman operator is a linear operator that represents the composition of nonlinear functions. Since
neural networks are constructed using compositions, Koopman operators play an essential role in
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analyzing neural networks. Let X C R? be a Lebesgue measure space. Koopman operators are
defined as follows. We also introduce weighted Koopman operator, which is a generalization of
Koopman operator.

Definition 2.1 (Koopman operator and weighted Koopman operator). Let X CR% and X C R,
The Koopman operator K, with respect to a map o : X — X is a linear operator from L?(X) to
L?(X) that is defined as K h(z) = h(o (x)) for h € L2(X ). In addition, the weighted Koopman
operator Kw - With respect to maps P X 5 Cando : X — X is alinear operator from LQ(X ) to
L2(X) that is defined as K, ,h(x) = ¢(x)h(o(x)) for h € L2(X).

We will consider the Koopman operators with respect to activation functions. Throughout this paper,
we assume these Koopman operators are bounded.

Assumption 2.2 (Boundedness of Koopman operators). The Koopman operator K, with respect to
amap o is bounded, i.e., the operator norm defined as || Ko || = sup =1 || K5 | is finite.

Indeed, we have the following lemma regarding the sufficient condition of the boundedness of
Koopman operators.

Lemma 2.3. Assume o : X — X is bijective, o~V is differentiable, and the Jacobian of o' is
bounded in X. Then, we have | K, || < sup,c |Jo~(x)[}/2 where Jo =1 is the Jacobian of 0!
In particular, the Koopman operator K, is bounded.

The following lemma is regarding the boundedness of well-known elementwise activation functions
defined as o ([z1,...,z4]) = [6(x1), -+ ,0(xq)] foramaps : R — R.

Lemma 24. Let X = [a1,b1] X -+ X [aq,bq] € R? be a bounded rectanglar domain, and let
X = o(X). If o is the elementwise hyperbolic tangent defined as &(x) = tanh(x), then we have X C
[~1,1]? and || K, || < (Hl 18UPges ([asbi]) L/(1 — T )2 If o is the elementwise sigmoid defined

as a( ) = 1/(1 + e™%), then we have X C [~1,1]¢ and | K,| < (l_[Z 1SUPges((asbi]) 1/ (T —
22))V/2,

Even if o is not differentiable, the Koopman operator is bounded, and we can evaluate the upper
bound in some cases.

Lemma 2.5. Let X = X = R% Let o be the elementwise Leaky ReLU defined as &(x) = ax for
x < 0and &(x) = x for x > 0, where a > 0. Then, we have || K| < max{1,1/a%}/2,

2.2 REPRODUCING KERNEL HILBERT SPACE (RKHS)

In addition to the L? function space, we also consider reproducing kernel Hilbert spaces. Let © be a
non-empty set for parameters. We first introduce positive definite kernel.

Definition 2.6 (Positive definite kernel). A map k : © x © — C is called a positive definite kernel if
it satisfies the following conditions:

) /4}(91,02) = ]41(02,91) for 91,02 € @,
. szzlcﬁ-cjk(é)i,ﬂj) >0forneN,c; € C,and 0; € O.

Let ¢ : © — C® be the feature map associated with k, defined as ¢(6) = k(-,0) for § € ©
and let R0 = {1 #(0;)cil n €N, ¢; € C, 6; € © (i =1,...,n)}. We can define a map
<', >Rk : Rk_’() X Rk’(] — Cas

<Z¢(ei>ci,2¢<sj>dj> =SS k0.
i=1 j=1

kzljl

The reproducing kernel Hilbert space (RKHS) R}, associated with k is defined as the completion
of Ry,0. One important property of RKHSs is the reproducing property (¢(0), )z, = f(0) for
f € Ry and 6 € ©, which is also useful for deriving a Rademacher complexity bound.
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2.3  GROUP REPRESENTATION

Group representation is also a useful tool to analyze the deep structure of neural networks (Sonoda
et al., 2025). Let G be a locally compact group. A unitary representation p : G — B(H) for
a Hilbert space H is a map whose image is in the space of unitary operators on H, that satisfies
p(g192) = p(g1)p(g2) and p(g97 ') = p(g1)* for g1, g2 € G, and for which g +— p(g)h is continuous
for any h € H. Here, * means the adjoint. If there exists no nontrivial subspace M of ‘H such that
p(g)M C M for any g € G, then the representation p is called irreducible.

For irreducible unitary representations, we have the following fundamental result (see, e.g. |[Folland
(1995, Lemma 3.5)), which we will apply to show the universality of the model. Here, the commutant
of a subset A C B(H) is defined as the set {A € B(H) | AB = BAfor B € A}.

Lemma 2.7 (Schur’s lemma). A unitary representation p of G is irreducible if and only if the
commutant of p(G) contains only scalar multiples of the identity.

We also apply the following fundamental result (see, e.g., Davidson| (1996} Theorem 1.7.1)).

Lemma 2.8 (von Neumann double commutant theorem). Let A be a subalgebra of B(H) that
satisfies “A € A = A* € A” and is closed with respect to the operator norm. Then, the double
commutant (i.e., the commutant of the commutant) of A is equal to the closure of A with respect to
the strong operator topology.

3 PROBLEM SETTING

We formulate deep models, which include the neural network model as a special example, using
operators. Then, we define an RKHS to analyze the deep model.

3.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH GROUP REPRESENTATIONS

Let G be a locally compact group and p : G — B() be a unitary representation on a Hilbert space
‘H. We consider an algebraic representation of L-layered deep model in H

flg1,---,91) = p(g1)A1p(g2) Az - - AL—1p(gL)v, )
where g1, ...,9r, € G are learnable parameters, A1, ..., A, € B(H) and v € H are fixed.

Example 3.1 (Scaled neural network with invertible weights). Let G = G L(d) x R be the affine
group and H = L?(R?). Here, G'L(d) is the group of d by d invertible matrices. Let p : G — B(H)
be the representation of G on H defined as p(g)h(x) = | det W|'/2h(W (xz —b)) for g = (W, b) € G,
h € L?(R%), and » € R?. Note that p is an irreducible unitary representation. In addition, let
v € L?(IR?) be the final nonlinear transformation, o; : R? — R< be an activation function satisfying
Assumption [2.2] and A; = K, be the Koopman operator with respect to o; forl = 1,...,L — 1.
For example, o is the elementwise Leaky ReLU. Then, the deep model (@) is

flo1,. ., 90)(@) =v(Wrop1(Wr—1---o1(Wix — Wiby) - — Wr_1bp—1) — Wrbr)
x | det W |Y2 ... | det Wp_y|V/2.

Example 3.2 (Deep model with new structures). In addition to describing existing neural networks,
we can develop a new model using the abstract model . LetG = {(a,b,c) | a,b € R4 c € R}be
the Heisenberg group (Thangavelu, |1998)). The product in G is defined as (a1,b1,¢1) - (az, b, c2) =
(a1 + a2,b1 + ba,1/2 (a1, b2)), where (ay,bs) is the Euclidean inner product of a; and by. Let
H = L*(R?) and p : G — B(H) be the representation of G on H defined as p(g)h(z) =
elle=1/2(ab) eila2) (g — b) for g = (a,b,c), where i is the imaginary unit. Note that p is an
irreducible unitary representation. Let v and A; be the same as in Example Then, the deep
model (2)) is
f(g1,-..,90)(x) —el(cr—=(a1,01)/2) | Giler—(ar,br)/2)

. eifan,z) gilas,o1(z=b1)) | | oar,on—1(or—2(--01(z=b1)-—br_2)=br-1))

"U(O'L_l(- . ~O’1(l‘ — bl) — bL—l) — bL).
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Instead of directly considering the model (Z)), we focus on the following regularized model with a
parameter ¢ > 0 on a data space Xjp:

Felgr, .-, 90,2) = (p(91)A1p(g2) Az - Ap—1p(9L)v, Pe,z) » ©)
where p. , € H for ¢ > 0 and x € Xy. We assume for any ¢ > 0, there exists £(c) > 0 such that
[pe.||* < E(c). This regularization is required to technically derive the Rademacher complexity
bound using the framework of RKHSs. However, as the following example indicates, the regularized
model (3) sufficiently approximates the original model (2).

Example 3.3. Consider the same setting in Example Let p. . (y) = (c/w)d/Qe’C“yﬂ”HQ for
¢ >0and x € Xy. Then, p., € L*(R?) and ||p...|*> = (2¢/7)%/?. Since p. . goes to the Dirac
delta function centered at x as ¢ — oo, we have

Fulgre- o sg,3) = | plon) Avpla) Ao+ As1plon)o(0)pe ().

Note that for any = € R? and any g, ...,9r € G, lime_so0 Fo(g1,...,90,2) = f(g1,...,90)(2).
Thus, if ¢ is sufficiently large, F..(g1, ..., gL, x) approximates f(g1,...,gr)(z) well.

3.2 RKHS FOR ANALYZING DEEP MODELS

We use the Rademacher complexity to derive a generalization bound. According to Theorem 3.5
in Mohri et al.| (2018]), the generalization error is bounded by the Rademacher complexity. Thus,
if we obtain a Rademacher complexity bound, then we can also bound the generalization error. To
derive a Rademacher complexity bound, we apply the framework of RKHSs. The Hilbert space
‘H to which the models belong does not always have the reproducing property. Indeed, a typical
example of H is L?(R?) as we discussed in Example Thus, we consider an RKHS that is a
function space on the parameter space GG and isomorphic to a subspace of H. We can regard the
deep model on the data space Xj as a function on G through this isomorphism and make use of
the reproducing property on GG. Here, the isomorphism ensures that the mathematical structure
of the RKHS is the same as the subspace of 7. We define the following positive definite kernel
k:(Gx-xG)x(Gx-xG)— C to construct an RKHS to analyze the deep model (2):

k((g15---90): (G1, -+, G1)) = (p(g1) A1~ Ar—1p(gr)v, p(§1) A1 - -+ AL—1p(gL)v) -
We denote the RKHS associated with k as R .

Letg = (g1,---,91), 6(g) = k(.g), and ¢(g) = p(g1)A1---Ar_1p(gr)v. Let Ky =

{30 cio(gi) | n € Nyg; € GF,¢; € C} and K = Ko. Note that K is a sub-Hilbert space

of H. Lett : K — Ry, defined as ¢(h) = (g — (¢(g), h)% ). The map ¢ enables us to regard the
Hilbert space IC, where the deep model is defined, as the RKHS Ry.

Proposition 3.4. The map ¢ is isometrically isomorphic.

If p is irreducible and A4, ..., Ay are invertible, then we have K = H, which means that the deep
model (2) has universality. The following lemmas are derived using Lemmas[2.7]and 2.8]

Lemma 3.5. Assume p is irreducible. Let A = {>"""_, ¢;p(¢;) | n € N, g; € G,¢; € C}. Then, A
is dense in B(H) with respect to the strong operator topology.

Lemma 3.6. Assume p is irreducible and Ay, . .., Ay _, are invertible. Then, K = Koy = H.

4 RADEMACHER COMPLEXITY BOUND

We apply the isomorphism in Proposition [3.4]to derive a Rademacher complexity bound with the aid
of the reproducing property in the RKHS Ry. If p. , € K, Eq. (3) implies F,(-, ) = t(pc,z) € Rk
for x € Ay and ¢ > 0. Thus, we can apply the reproducing property with respect to the model
F.(-,x). Let Q be a probability space equipped with a probability measure P. Let S € N be the
sample size, x1,...,x5 € Xp, and €1,...,€eg : @ — C be i.i.d. Rademacher variables (random
variables following the uniform distribution on {—1, 1}). For a measurable function ¢ : Q — C, we
denote by E[e] the integral [, €(w)dP(w). The empirical Rademacher complexity R(F,z1,...,xg)

of a function class F is defined as R(F, x1,...,25) = E[suppc » Zle F(zs)es])/S. We denote
by F. the function class {F.(g1,--.,95,°) | ¢1,--.,9r € G}. The Rademacher complexity of F,
is upper bounded as follows.
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Theorem 4.1. Assume p. , € K for v € Xy. Then, the Rademacher complexity of the function class
Fe is bounded as

: Al 1lAs Ble

R(Foar,... ws) < WAl IAralllvl E(e)
V'S

Remark 4.2. If p is irreducible and A1, . . ., Ay _1 are invertible, then by Lemma@ the assumption
of Theorem is satisfied automatically.

Remark 4.3. If p. . (y) = (¢/m)¥2e=<lv==1" then we have E(c) = (2¢/7)4/2. Combining with
the discussion in Example [3.3] we can see that there is a tradeoff between F. being close to the
original model f and the constant E(c) becoming large.

An important example of models that can be analyzed using this framework is invertible neural
networks.

4.1 INVERTIBLE NEURAL NETWORKS

Consider the same setting in Example [3.I]  Note that since p is irreducible, the as-
sumption of Theorem is satisfied in this case (see Remark {.2). Let nn(g,z) =
’U(WLO'Lfl(WLfl 01 Wl.fL‘ — Wlbl) e — WLflbLfl) — WLbL) be a neural network model.
Then, we have f(g) = nn(g, )| detWy|'/2--|det Wy|'/2. Thus, we have F.(g,") =
NN.(g, )| det W [*/2---| det W, |'/2, where NN.(g, %) = [gann(y)pe(y)dy. Let D > 0
and NNV, = {NN.(g,) | g € GF, |det W;|~*/2, ... |det W |~/2 < D}. We assume A4, is
invertible forl =1,...,L — 1.

Theorem 4.4. The Rademacher complexity bound of NN . is

: (o)l TS 14l - 12
RNNcx1,...,28) < =1 sup | det W;|~1/2.
VS \deth|—1/2§DlI;[1

For example, if o is the elementwise Leaky ReLU, then || 4, || is bounded as Lemma[2.5] Since det IV,
is the product of the singular values of W;, and it is in the denominator of the bound, Theorem@
implies that the model can generalize well even if W; has large singular values.

5 GENERALIZATION TO NON-CONSTANT WIDTH NEURAL NETWORKS

5.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH KOOPMAN OPERATORS

In pervious sections, we focused on a single Hilbert space H and consider operators on H. This
corresponds to considering a neural network with a constant width. In addition, H is determined
by the group representation, which forces us to consider a certain data space such as R%. However,
in general, the width is not always constant. In addition, the data space is bounded in many cases.
To meet this situation, we consider multiple Hilbert spaces Ho, ..., Hr—1, 7%1, ey H L. Let ©; be
a set of parameters and let 1, : ©; — B(’}:ll, H;—1) forl =1,..., L. In addition, let v € H, and
A; € B(H,, 7:11) be fixed. Consider the model

f(01,-,00) = m1(61)Ainz(62) - - - Ap—1no(0L)v,
where §; € ©; forl =1,..., L.
In the same manner as Subsection [3.I] we consider a regularized model
Fe(b,...,00,2) = (m(01)Ain2(02) -~ AL—1nr(00)v, pe,w)yy, »

where p. , € Ho for x € Xy and ¢ > 0 with ||p. .|| < E(c) for E(c) > 0. We also define a positive
definite kernel k : (©1 x --- X ©1) X (01 x -+ x ©1) — C to construct an RKHS to analyze the
deep model (2)):

k((01,...,00), (01,...,00)) = (n(01) Ay -~ Ap_anr(01)v,m(01)Ar -+ Ap_1nz(OL)v)a,-

We set Ry, and K in the same manner as in Subsection [3.2] This generalization allows us to derive
Rademacher complexity bounds for a wide range of models.
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5.2 NEURAL NETWORK WITH INJECTIVE WEIGHT MATRICES

let ¢ € N and ©, = {W € C%*d-r | W isinjective}. Let
Xo C  Rh Wio (Wi Weori(Widy) € &4 € R% and
O’l(Wl---Wgal(WlXo)) C A C R% that satisfy Hrd; ()C‘l) > 0 and Hrd; (/?l) > 0.
Starting from A, we re-

currently construct X, and WX_4
X, for [ = 1,...,L.

yoees Wi g X
Since W, is injective, the Xl—l/_\ TN i
space WA is dj_1- ~
dimensional.  If d; > %

d;—1, then the measure

Lgd; (W/IXZ,L) becomes 0, X 1> 0 Hgs(Xi-1) =0
and setting X; = WX e (Xi-1) ' pgs (Xi-1) >0 ~“““3(xl) >0
makes the analysis mean- Figure 2: Construction of X; and X

ingless. Thus, we set a

space A that includes W;X;_1 and pga, (W;X—1) > 0. Figure schematically shows the con-
struction of Ay and X;. Let H; = L2(X)), Hy = L?(X}), and m(W;) = Ky, be the Koopman
operator from 7—2; to H;—1 with respect to W;. In addition, let A; = K, be the Koopman operator
from H; to ’}:Ll with respect to an activation function oy : /ﬁ — A that satisfies Assumption
Then, we have

f(Wh ey WL)(I') = U(WLO'Lfl(WLflaL,QQ N Ul(Wlx))))

Let D > 0and F. = {F.(04,...,01,") | |detW1*I/V1|’1/4,...,\det}/VzI/VLFl/4 < D}. Let
a(h) = (Jy,x,_, 1@ Pdurwy @)/ [ 3 ()P duga (z))'/? for h € H,. This value depends on

how large we set A7 compared with W;&;_;, and by setting X sufficiently large, we can bound it by
1 with a reasonable assumption (see Remark [5.3]for more details). In the same way as in Theorem[&.1]
we obtain the following bound.

Theorem 5.1. Assume p., € K forxz € Xy. Let fy =voWpoop_y0---0Wi 00y Then, we
have
~ Ele L—1 A
BFoon...a0 < s OIITIE Mdath) “
| det W;W;|=1/4<D \/§Hl=1 | det W/ [1/4

As for ||A;||, since A; = K,,, we can evaluate the upper bound of || 4;|| by Lemma[2.3] For example,
if X, is bounded, we can apply Lemma [24]to the sigmoid and hyperbolic tangent.

Remark 5.2. For simplicity, we consider models without bias terms. We obtain the same result for
models with bias terms since the norm of the Koopman operator with respect to the shift function is 1.

Remark 5.3. Assume there exist a,b > 0 such that a < | f;(z)|* < b. We set X, sufficiently large so
that b - pgw,)(WiXi—1) < a - pga, (7). Then, we have

2 _ IWLXH \fl($)|2d#7z(wl)(x) < b prw,)(Wiki—1)
f;%l | fi(2)Pdpga (x) N a- pga, (X))

Remark 5.4. There is a tradeoff between the magnitudes of the denominator and the numerator
of the bound ({). When o,(z) tends to be constant as ||z|| — oo, such as the hyperbolic tangent
and sigmoid, the derivative of o, Ev) tends to be large as the magnitude of ||z|| becomes large.
In this case, according to Lemma if det W, is large, then ||A;|| is also large since the volume
of X; becomes large. The activation function plays a significant role in increasing the complexity
in this case. When o1, ...,0r_1 are unbounded, such as the Leaky ReLU, X1, becomes large if
det W1, ... ,det Wy, are large, which makes ||v|| large. The final nonlinear transformation v plays a
significant role in increasing the complexity in this case.

a(f1) <1.

Advantage over existing Koopman-based bounds [Hashimoto et al.[(2024) proposed Rademacher
complexity bounds using Koopman operator norms. Since the norm is defined by the Sobolev space,
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the framework accepts only smooth and unbounded activation functions. In addition, although they
include factors of the norms of Koopman operators with respect to the activation functions, their
evaluation is extremely challenging, making the effect of the activation function unclear. On the
other hand, our bound can be applied to various types of activation functions, such as the hyperbolic
tangent, sigmoid, and Leaky ReLU, we can evaluate the Koopman operator norms using Lemmas [2.3]
—[R23] and we can understand the effect of the activation function as discussed in Remark [5.4]

5.3 GENERAL NEURAL NETWORK

If W is not injective, the Koopman operator Ky, is unbounded. Thus, instead of the
standard Koopman operators, we consider weighted Koopman operators. Let d; € N

and ©, = {W € C%*d-1} Forl = 0,...,L — 1, let d; = dim(ker(W;11)),
q1,--.,q be an orthonormal basis of ker(Wi41), 44, 4+1---+94, be an orthonormal ba-
sis of ker(W;.1)t, & = {Z?’Zl Cii ~| ¢i € la;, b)) for some a; < b; such that
ol(Wi-+ - Waor (WiXp)) € X0, Vi = {X{ ciai | o € [ai,bi]}, and 2, = {0 cigi |

ci € lai,b;]}. Let Wio_1(Wi_q -+ - Wao1 (W1 X)) € &y C R4 satisfying pge, (A7) > 0.
In this case, to decompose
the integral on ker(W; 1) =
and that on ker(W;yq)t, () AN w,
we set the orthonormal ba-

sis along ker(W;;1) and
define ), and Z;. Fig-

Wi X4 o
/N 1(Xi-1)

ure [3] schematically shows N g
the construction of Aj, V) I pgs (Xi—1) = 0
= ~7 ’ Xi-1) >0 =
2, and X;. Let H; and Hao (i) g (X1a) > 0 Hpe (X0) > 0
H; be the same space as Figure 3: Construction of X}, V;, Z;, and X

in Subsection [5.2] and Let R

m (W) = Ky, w be the weighted Koopman operator from #; to H;_; with respect to W and v,
where 1 is defined as ¢;(x) = ¢;(x1) = 1 for x € X;_1, where © = 21 + x2 with z; € };_; and
x9 € Z;_1,and ¢y (x) = 0 forz ¢ X;_1. In addition, let A; be the same operator as in Subsection
Then, we have

fWh, . W) (@) =i (@)he (o1 (Wha)) -+ Yr(op—1(Wr—1op—2(- - - 01(Wix))))
. U(WLO'L_l(WL_lo'L_Q(' c 01 (W1JC))))
The factor ¢y () - - (01 (Wr_10L—2(- - - 01(W1z)))) is an auxiliary factor. Since ¢;(z) = 1
for x € X;_1, we have f(VVl7 ey WL)(.%‘) = ’U(WLO'Lfl(WLfldL,Q(' . ol(Wlm)))) for x € &)
in the data space, exactly the same structure as that of neural networks. Thus, we can regard f as the
original neural network v(Wrop_1(Wy_105—o(- - - 01 (W1x)))).

Let D > 0and F, = {F(61,...,0L,) | |det Wilxerqwr)2 |2, [ det W iepqwy )2 |72 <
D}. In the same way as in Theorem we obtain the following bound.
Theorem 5.5. Assume p. ., € K for x € Xy. Then, we have

X E(c L=104 L e _
R(Forr. .. xs) < sup (O[I TLS Adla(f) TTZ tkerwy) (Vi-1)

— L
| det Wi,y |~1/2<D VST, | det Wilierwyy < |1/2

Remark 5.6. If the output of the lth layer has small values in the direction of ker(W, 1), then the
factor perw,,) (V1) is small. We expect that the magnitude of the noise is smaller than that of the
essential signals. This implies that if the weight Wi is learned so that ker(W, 1) becomes the
direction of noise, i.e., so that the noise is removed by W, the model generalizes well. |Arora et al.
(2018) insist that the noise stability property implies that the model generalizes well. The result of
Theorem [5.3|does not contradict the results of Arora et al| (2018).

5.4 CONVOLUTIONAL NEURAL NETWORK

LetI; = Jj1 X -+ x Ji.q, C Z% be a finite index set and ©; = {6 € R’ | x> 0%z is invertible}.
Let §; € ©,, P, be the matrix representing the average pooling with pool size m;, which is defined
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Figure 4: (a) Scatter plot of the generalization error versus our bound (for 3 independent runs). The
color is set to get dark as the epoch proceeds. (b) Test accuracy with the regularization based on our
bound and that based on the existing bound (deep neural net with dense layers). (c) Test accuracy
with and without the regularization based on our bound (LeNet).

o
Nle

0.4 0.6
Generalization error

as (Py);; = 1/my for i, j € I, if the jth element of the input is pooled in the ith element of the
output, and o; be the same as in Subsection Let X, C R, 9, % P_qoi-1(01—1 % -+ 03 %
P101(91 x Xp)) C X, C R and Plal(ﬂl ¥ -0y % Ploy (01 * Xp)) C & C Rl satistying
HRE (Xl) > 0 and pgr ., (A7) > 0. Let d; = dim(ker(P)), ¢1, .- - ,qg, be an orthonormal basis
of ker(P;), ¢z 1 - - - 44, be an orthonormal basis of ker(P;)*, X = {Zf’zl ciqi | ¢ € [ai,bi]}
for some a; < b; such that al(él * -0 % Proy(01 % Ap)) C X, C R Y = {Z?lzl cigi |
¢ € [ai,bi]}, and Z; = {Zz dl-‘rl Ci(q; | c; € [az,bz]} Let H; = L2(Xl), H; = LQ(.)(I),
H = L2()?l), andrm; : ©; — B(’Hl,Hl_l) be defined as n;(0)h(xz) = h(6 * x), where * is the
convolution. Note that the convolution is a linear operator whose eigenvalues are Fourier components
Y (0;) = Zjell gjei(s,, 7)™ for m € I, where S; is the diagonal matrix whose diagonal is the

scaling factor [1/(27]Ji1]), ..., 1/(27|J1.q,])]. Let A; = Ko, Ky, P> Where Ky, p, and K, are
weighted Koopman and Koopman operators from H; to H; and from H; to H;, respectively. Here,
1y is defined as ¢ (x ) Yi(x1) = 1forx € X, where x = 21 + x5 with 71 € ), and 7 € Z;, and
Yy(z) = 0 for - ¢ X;. Then, we have

f(Or,....00)(x) =tp1(01(01 % x)) -+ Yr_1(0L-1(00—1 % PL—20r—2( - Pro1(bh x 7))))

’U(@L * PL—lo'L—l(GL—l koo ok P10'1(91 * Jj) tee ))
Let ﬁl(a) = HmEI; Fym(a) and ‘FC = {Fc(eh .. 79La ) | |ﬁ(01)|71/2a ey |ﬂ(0L)‘71/2 S D}
Proposition 5.7. Assume p. , € K for x € Xy. Then, we have
E(e)|v] H HAl”/j'ker(Pl)(yl)

sup
18(0)]-1/2<D VST, 18602
Remark 5.8. If o; is bounded, then we can set Xl indepen{lent of 01, ...,0; so that it covers the
range of 0. Since P, is a fixed operator, the factor pixe,(p,)(d) is a constant in this case.

R(F.yw1y...,x5) <

6 NUMERICAL RESULTS
We numerically confirm the validity of the proposed bound. Experimental details are in Appendix [B]

Validity of the bound To show the relationship between the generalization error and the proposed
bound, we consider a regression problem with synthetic data on X = [—1, 1]3. The target function ¢
is t(z) = e~ 122=1I"_ We constructed a network f(z) = v(Wao (Wiz+by)+bs), where Wy € R3%3,
Wy € R6*3, b € R3, by € RS, 0(x) = wge*‘“”z, ws € R, and o is the elementwise hyperbolic
tangent. We created a training dataset from randomly drawn samples from the uniform distribution
n [—1,1]3. The training sample size S is 1000. Our bound is proportional to the value r :=
W3] SUPL, 4, ag)eow, ) L/ (L= 21)/(1 = 23)/(1 — )| det Wy W [~H/% - [ det W3 W[ =1/
since [|[v]| < |ws]| [ € ~lIzlldg: and according to Lemma We added 0.1r as a regularization term.
Figure 4] (a) 1llustrates the relationship between the general 1zat10n error and our bound throughout the
learning process. We can see that the generalization bound gets small in proportion to our bound.
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Comparison with existing bounds To compare our bound with existing bounds, we considered the
same classification task with MNIST as in|Hashimoto et al.|(2024). We constructed the same model
f(z) = oa(Wyo(Wso(Wao (Wiz + b1) + ba) + bs) + bs) as Hashimoto et al.|(2024) with dense
layers. Based on the bound, we tried to make the factors || 4;||, 1/ det W}* Wll/ ?, and ||v|| small, where
v(x) = o4(Wyo(Wsz + b3) + by), o(x1,...,24) = [6(21),...,5(x4)] is the elementwise smooth
Leaky ReL.U proposed by [Biswas et al.| (2022)), and o4 is the softmax. This setting is for meeting
the setting in (Hashimoto et al., 2024). We set Xy = [0, 1]784, X1 = (||[W | + [|b1]|eo)[—1,1]1024 D
Wiy + b1, X1 = o(&X1) 2 o(Wiko + b1), & = ([[Wall (Wil + [1b1lloc) + lIb2]lee) [1, 1]20%%,
and Xo = o(X3) 2 o(Wao (W1 Ay + b1) + b2). To make the factor ||4;| small, we applied
Lemma and set a regularization term r1 = SUpP,¢(x,), (=1 (2)| + SUPge(x,), (571 (x)].
Here, (X)), is the set of the first elements of the vectors in X;. In addition, we set 7o = 1/(1 +
det Wl*Wll/4) +1/(1 + det W2*W21/4). Regarding ||v||, we set r3 = |W1]| + ||W2]| since we have
|v]|? = L\fg lv(z)2dz < u(Xz) < u(Xz). We added the regularization term 0.01(ry + ro + 73)
to the loss function. The training sample size is S = 1000. We compared the regularization based
on our bound with that based on the bound proposed by Hashimoto et al.| (2024). The result is
shown in Figure [4] (b). Note that since the training sample size .S is small, obtaining a high test
accuracy is challenging. We can see that with the regularization based on our bound, we obtain a
better performance than that based on the existing bound.

Validity for existing CNN models (LeNet) To show that our bound is valid for practical models,
we applied the regularization based on our bound to LeNet on MNIST (Lecun et al., |1998). We
set the activation function o of each layer as the elementwise hyperbolic tangent function and the
final nonlinear transformation v as the softmax. We used the same training and test datasets as
the previous experiment. In addition, we set Xy = [0,1]7%, & = (|[Wil| + [|b1]loe)[—1, 1]10%* D
Wio(--- oW1 Xg+b1)+ )+ b, Xy =0(X) Do(Wio(---oc(W1 Xo +b1) +--+) + b;). Here,
W, is the matrix that represents the /th convolution layer. We note that the bound by Hashimoto
et al.| (2024) is not valid for the models with hyperbolic tangent and softmax functions. To make
the factor || 4| small, we applied Lemmas and and tried to make inf,¢y, (1 — 2?) large.

Thus, we set a regularization term 71 = >_,_, SUD,e(ay), 1/(1 + 1 — 2?). Regarding the factor

det Wi Jier(wy) - 2 wesetry = [(0.01T+W,W;) Y| = 1/(0.0148min(W})), to make Syin(W;)
large, where sp,i, (W;) is the smallest singular value of W since the determinant is described as
the product of the singular values. For ||v||, we set r3 = ||W,|| in the same way as in the previous
experiment according to the definition of X7,. We added the regularization term 0.1(ry 4 72 + 73) to
the loss function and compared it with the case without regularization. The result is shown in Figure[d]
(c). We can see that with the regularization, the model performs better than in the case without the
regularization, which shows the validity of our bound for LeNet.

7 CONCLUSION AND LIMITATION

In this paper, we derived a new Koopman-based Rademacher complexity bound. Analogous to the
existing Koopman-based bounds, our bound describes that neural networks with high-rank weight
matrices can generalize well. Existing Koopman-based bounds rely on the smoothness of the function
space and the unboundedness of the data space, which makes the result valid for limited neural network
models with smooth and unbounded activation functions. We resolved this issue by introducing
an algebraic representation of neural network models and constructing an RKHS associated with
a kernel defined with this representation. Our bound is valid for a wide range of models, such as
those with the hyperbolic tangent, sigmoid, and Leaky ReLLU activation functions. Our framework is
the first step to filling the gap between the Koopman-based analysis of generalization bounds and
practical situations.

Although our bound can be applied to models more realistic than the existing Koopman-based bounds,
it is not valid for activation functions whose derivative is zero in some domain, such as the exact
ReLU. Introducing a variant of the Koopman operator such as the weighted Koopman operator may
help us deal with this situation, but more detailed investigation is left for future work.

10
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APPENDIX

A PROOFS
We show the proofs of the theorems, propositions, and lemmas in the main text.
Lemma. Assume o : X — X is bijective, 0~ lS differentiable, and the Jacobian of o~ ! is

bounded in X. Then, we have || K| < SUD, e |Jo = (z)|Y/2, where Jo~ is the Jacobian of o~ "
In particular, the Koopman operator K, is bounded.

Proof. For h € L*(X), we have
| Kb = j Ih(o(x))Pdz = j Ih(@) | T (z)dz
X X

< sup \Jfl(fv)lj |h(2)|*dz = sup [Jo~ (z)|[| 2]
zeX X reX

O

Lemma Let X = X = R% Let o be the elementwise Leaky ReLU defined as &(x) = ax for
r < 0and G(x) = x for v > 0, where a > 0. Then, we have || K| < max{1,1/a%}/2,

Proof. For h € L?(X), we have
Kol = J Ih(o(2))|2dz
Rd

:J'|h(ax)|2dm+J |h(diag{1,a,...,a}w)|2dx+~ J|h( )\de
( (

—00,0]* 0,00) X (—00,0]4~1 0,00)¢

<max{1,1/a%} JRd |h(z)]*dz = max {1,1/a®} ||h|*.

Proposition[3.4] The map . is isometrically isomorphic.

Proposition [3.4]is derived using the following lemmas.
Lemma A.1. The map ¢ is injective.

Proof. Assume ¢(h) = 0. Then, for any g € G, (¢(g),h) = 0. Thus, for anyn € N, g1,...,8n,
and c1,...,¢, € C, we have (3", ¢;¢(g;i), h) = 0, which means for any h € Ko, (h,h) = 0.
Thus, we obtain h = 0. O

Lemma A.2. The map . preserves the norm and is surjective.

Proof. By definition, ¢ is a linear map that maps é(g) € Ko to ¢(g) € Ryo. Thus, we have
t(Ko) = Rr.0-

For h € Ky, there existn € N, g1,...,8, € G¥,and ¢1,...,c, € Csuchthath =", czqg(gl)

‘We have
Z cid(g:)

Thus, ¢ preserves the norm, and in partlcular, it is bounded.

n

Z Gcik(gingg) = Y cici(d(i) d(gs))n = Ikl

i,j=1 i,j=1

||Rk -

For any r € Ry, there exists a sequence 71,72,... € Ry such that lim; ,.,r; = r. Since
t(Ko) = Ry, there exists h; € Koy such that ¢(h;) = r; fori = 1,2,.... Thus, we have
r=lim; oo = limy o0 t(hy) = t(lim; 00 hy) = ¢(h). O

13
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Lemma Assume p is irreducible. Let A = {3"""_, ¢;p(g9;) | n €N, g; € G,¢; € C}. Then, A
is dense in B(H) with respect to the strong operator topology.

Proof. By the Schur’s lemma (Lemma , the commutant of ﬂSOT, the closure of A with respect
to the strong operator topology, is CI. Thus, the double commutant of XSOT is B(H). By the von
Neumann double commutant theorem (Lemma , the double commutant of A" is A itself.

Therefore, we have A = B (H). O

Lemma Assume p is irreducible and A, . .., Ap_q are invertible. Then, K = Ko = H.

Proof. Let h € M. Then, there exists B € B(#) such that h = Bv. Let e > 0. By
Lemma@ there exist n;, € N, gr1,...,90.n, € G, and cp1,...,¢0,, € C such that

|Apv — A7Y || < &, where A, = ar 1 ¢L.app(gr.ay ) In addition, there exist n 1 € N,
9L—11:-- 901y € G, and~cL,1’1,.. ,CL—1n,_, € C such that ||/~1L,1(AL,1ALU) —
AT (A1 Apv)|| < e, where Ap_ = Yo er-ta,1P(9L—1,0,_,). We continue this
process,andforl = L—2,...,2, weobtainn; € N, g;1,...,91.n, € G,and ¢ 1,..., ¢, € Csuch
that ||Al(AlAl+1Al+1 s AL_lAL_lAL’U) — Al__ll (AlAl+1Al+1 s AL_lAL_lx‘ILv)” < ¢, where
A, = ai 1Cla P(91,00)- Finally, we get ny € N, Gi1se s Gl € G, and~cl)1, NGRI <
such that HAI(A A2A2 .- 'ALflALflALU) — B(A1A2A2 .- 'ALflALflALU)H < &, where

A1 Zai 1€ alp(gl al) Let C = 141141 s AL—lAL—IAL- Then, we have
HCU — h” S HCU — BA1A2 L AL—lgLUH + ||BA1142 ce AL_lzzlLU — BAQAS s AL_lzzlLUH
+---+ HBAszfiLflAL,lALU — BAL,1A~L’U|| + HBAL,1A~LU - BALUH
<e+||BAille +-- -+ || BAL_2|le + | BAL_1]le.
O

Theorem Let F. the function class {F.(g1,...,95,") | 91,...,9L € G}. Assume p., € K
for x € Xy. Then, the Rademacher complexity of the function class F. is bounded as

| Al - | Arallllv]| E(c) .
VS

R(]:C,$1,...,:Zis) <

Proof. Since F,(-,x) = t(pc,») € Rk, by the reproducing property, we have

1 5 1 5
EE Lseucg)L ;Fc(g,xs)es] = EE Lseué)L <<;5(g)7 z:l Fc(.,xs)65>RJ

s
I
s=1

1 S 1/2
= 5 sup Ib(g |7—LE{< Z L Tg)es, ol It)€t>m> }

1
< 5 5w ol |
geGrt

geqr s,t=1
1 s 1/2
< 5 sup [lp(gr)Ar -~ Ap—1p(gr)v 7—[( { > (Fu(ymo)es, Fol: ,wt)6t>Rk]>
geGr s,t=1
1 1/2
< L) Az 1|||v||(2||F . ||Rk) , B

14
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where the third equality is by Lemma[A2] the fourth inequality is by the Jensen’s inequality, and the
final inequality is derived since p(g1) ..., p(gr) are unitary.

Since F,(-,x) = t(pc,z), we apply Lemma again and obtain

1/2 s
1 1
LA AL 1|||v||(2||F el = gl Laoalio (X e )
s=1

A ALl E(e)

= ﬁ )
where the last equality is derived since p. , is the regularizer that satisfies ||p.,||% = 1 for any
T € Xp. O]

1/2

Theorem[{d.d| Let NN, = {NN.(g,”) | g € GL, [det Wy|~/2,...,|det Wp|~1/2 < D}. The
Rademacher complexity bound of NN . is

L
. A
R(NNC,$1,-.-,-TS) < ( )HUHH | l” sup Hldeth|_1/2-
V'S | det W;|=1/2<D 7
Proof. By Theorem[4.1] we have
S
. 1
R(NNC,QH,...,J?S) = E|: Sup ZNNc(gaxs)Us:|
geGL, |det Wy|~1/2<D s
1 s
:E{ sup ZF (g, )| det Wy |71/2. |detWL|_1/2as]
S g€GL, |det W;|~1/2<D (3

E@IAD - MAealll | o w12 det 1
o VS | det Wy|-1/2<D

O

Theorem Let F. = {F.(01,...,0L,")
Assume p., € K for x € Xy. Let fi =

w,x,_, 1P P dpg ow) (2 )/ % |h(z )2 dpga,

| |det WyWy|~V4, ... |det W;W|~Y/* < D}.
voWp oop_ 10---OVVH_1O(T[. Let a(h) =
(x ))1/2f0rh € H,. Then, we have

RFrna s s Il TIE Ao )
(&) A
| det W Wy|=1/4<D \Fl_[l 1\detW*VVl\l/4

Proof. In the same way as Theorem [4.1] we have the same inequality (5 but p(g;) is replaced by
m(0;) = Kyw,. For h € H;, we have

1
Kw,h|?* = h(Wyz)|2d L :J h(z)]? ———sd
bl = | OV P (0= | ) e (@)
1 leXl_l ‘h(m)|2dﬂR(Wz)(x) J | ( )|2d ( ) a(h)2||hH2 ©
= ; o) |*dpga, (7)) = s
(et Wy W2 T [h(@)Pduga () s, = Tder w172
Applying the inequality (6) to the inequality (3)) for this case, we obtain the result. O

Theorem(5.5| Let F, = {F.(01,...,01,") | |det Wilerwye |72, [ det Wi lerqw, ) |7/ <
D}. Assume p. ,, € K for v € Xy. Then, we have

BFmn... 5g) < . B ol T A0 () T pey )
(] P —
| det Wiy, )2 |=1/2<D le 1 | det Wi lier () /2

15
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Proof. For h € 7:11, we have

1Rl = | Ib(Wiainto) Pz = |

|h(Wl$)|2d$J () Pde
Xi—1 21

Vi—1
1
= h(z)|? —————dpu T)  fhier Vi
JWH| O [ R () ey (1)

IWle,l |h($)‘2dﬂR(W,)($) J
= et Wiler(wyy 2| [ 5, Ih(2) [P dpiga ()

_ )12 a(h)? er(wy (Vi-1)
| det VVl|ker(Wl)L |

|h(@)|*dprgan () - prier(wy (Vi-1)

X

N

Applying the inequality (7) to the inequality (5) for this case, we obtain the result. O

Proposition [5.7] Let F. = {F.(61,...,01,) | |B(61)7V/2,...,18(6r)|"Y/> < D}. Assume
De,z € K for x € Xy. Then, we have

. E(c =4 or %
e n <y PO Al (30

86| ~1/2<D VSTIL, 1Bi(6)|V/2

Proof. Since the convolution is a linear operator whose eigenvalues are Fourier components, we have
llm:(8)|| < |81(6;)| /2. In the same way as the proof of Theorem we have

Mker(Pl)(j}l) -

K < =
|| wL,PL” = ‘detPllker(Pl)J-‘l/Q /f"ker(Pl)(yl)a

which proves the result. O

B EXPERIMENTAL DETAILS
All the experiments were executed with Python 3.10 and TensorFlow 2.15.

B.1 VALIDITY OF BOUNDS

We set W1, W5, and ws as learnable parameters. We set the loss function as the mean squared error
and the optimizer as the SGD with a learning rate 0.001. The learnable parameters are initialized
with the orthogonal initialization.

B.2 COMPARISON TO EXISTING BOUNDS

We constructed a network f(z) = o4(Wao(Wso(Wao(Wix + by) 4+ ba) + bs) + by) with dense
layers, where W; € R1024X784 17, ¢ R2048X1024 [/, ¢ R2048x2048 7" R10x2048 7y ¢ R1024,
by € R2948 ps € R?948 p, ¢ R0 5 is the elementwise smooth Leaky ReL.U (Biswas et al.,
2022) with a = 0.1 and = 0.5, and o4 is the softmax. The learnable parameters W7, ..., Wy are
initialized by the orthogonal initialization for [ = 1,2 and by samples from the truncated normal
distribution for [ = 3,4, and we used the Adam optimizer (Kingma & Ba, |2015)) for the optimizer
with a learning rate of 0.001. We set the loss function as the categorical cross-entropy loss. The result
in Figure 4] (b) is the averaged value + the standard deviation in 3 independent runs.

B.3 VALIDITY FOR EXISTING CNN MODELS (LENET)
We constructed a 5-layered LeNet with the hyperbolic tangent activation functions and the averaged

pooling layers. We set the optimizer as the Adam optimizer with a learning rate of 0.001. The result
in Figure 4| (c) is the averaged value = the standard deviation in 3 independent runs.
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Table 1: Comparison of our bound to existing bounds.

Authors Rate Type
L L
Neyshabur et al.| (2015 211 :\%lWZHZ’Q
max L 3 1/2
Neyshabur et al.{(2018 L ’dl\%’ﬂ 1| (ZlL 1 H‘mjlﬁf)
Norm-based
Golowich et al. (2018 (Hle ||Wl||2,2) min{#, \/g}
rrassy 372
Bartlett et al.| (2017 [y vl ”Wl” (Ez 1 %)
Wei & Ma 2020}) (i s min{L”ZnWl?/%Luz,z,nWL—Blu1,1}2/3>3/2
Ju et al.| (2022 Zica OlWi il
Li et al. (2021 x| TTE Wil = 1] + 7 + /&
1/2
Lmaxr ||f Dl
Arora et al.| (2018 7+ (Zz 1 5T Mz ) Compression

Suzuki et al. 2020‘)

f+[ (i Al + )

Hashimoto et al.| (2024

Ours

IIUHHL HL Gil| Koy || [[Wi |71
det(W;W,)1/%
IIvIILL H Gl Ko g,
I1=1 det(W,; W;)1/*

Koopman-based

C COMPARISON OF THE KOOPMAN-BASED BOUNDS TO EXISTING BOUNDS

We show the summary of the existing bounds and the proposed bound in Table[T] Here, r; and 6,
are determined by the Jacobian and Hessian of the network f with respect to the jth layer and W,
respectively. In addition, 7; and d; are the rank and dimension of the jth weight matrices for the
compressed network and || - || 4 is the matrix (p, ¢)-norm. We note that although the form of the
existing Koopman-based bound and the proposed bound is similar, our bound is applicable to a wider

range of deep models, and the factors G; and || K, || are more easily evaluated.

D NOTATION TABLE

We provide a notation table 2] that summarizes important notation in the main text.
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Table 2: Notation table

NI EY SR 22500

- a8 &

Locally compact group for parameters

Set of parameters for the /th layer

Number of layers

Width of the Ith layer

Hilbert space for models

Unitary representation of G on H

Koopman operator with respect to a function o

Weight matrix for the Ith layer

Activation function for the Ith layer

Linear operator corresponding to the activation function for the /th layer
Original deep model

Regularized model with a parameter ¢

Function class for models

Positive  definite  kernel  defined as  k((g1,.-.,91),(d1,---,91))
<f(glv s agL)vf(gla s agL)>’H

Feature map defined as ¢(g) = k(-, g)

Feature map representing models defined as (;;(g) = f(g1,...,91), where g
(g 15+, 9 L) ~

Hilbert space defined as the closure of {3 | ¢;¢(g;) | n € N,g; € GL',¢; € C}
Isomorphism that maps ¢(g) to ¢(g)
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