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ABSTRACT

We derive a new Rademacher complexity bound for deep neural networks using
Koopman operators, group representations, and reproducing kernel Hilbert spaces
(RKHSs). The proposed bound describes why the models with high-rank weight
matrices generalize well. Although there are existing bounds that attempt to
describe this phenomenon, these existing bounds can be applied to limited types of
models. We introduce an algebraic representation of neural networks and a kernel
function to construct an RKHS to derive a bound for a wider range of realistic
models. This work paves the way for the Koopman-based theory for Rademacher
complexity bounds to be valid for more practical situations.

1 INTRODUCTION

Understanding the generalization property of deep neural networks has been one of the biggest
challenges in the machine learning community. The generalization property describes how the
model can fit unseen data. Classically, the generalization error is bounded using the VC-dimension
theory (Harvey et al., 2017; Anthony & Bartlett, 2009). Norm-based (Neyshabur et al., 2015; Bartlett
et al., 2017; Golowich et al., 2018; Neyshabur et al., 2018; Wei & Ma, 2019; Li et al., 2021; Ju et al.,
2022; Weinan E et al., 2022) and compression-based (Arora et al., 2018; Suzuki et al., 2020) bounds
have also been investigated. The norm-based bounds depend on the matrix (p, q) norm of the weight
matrices, and the compression-based bounds are derived by investigating how much the networks can
be compressed. These bounds imply that low-rank weight matrices and weight matrices with small
singular values, i.e., nearly low-rank matrices, have good effects for generalization. See Appendix C
for more details about the existing bounds.

On the other hand, phenomena in which models with weight matrices that are high-rank and have
large singular values generalize well have been empirically observed (Goldblum et al., 2020). Since
the norm-based and compression-based bounds focus only on the low-rank and nearly low-rank cases,
they cannot describe these phenomena. To theoretically describe these phenomena, the Koopman-
based bound was proposed (Hashimoto et al., 2024). Koopman operators are linear operators that
describe the compositions of functions, which are essential structures of neural networks. This
existing bound is described by the ratio of the norm to the determinant of each weight matrix as

O

( L∏
l=1

Gl∥Kσl
∥Hl

Wl∥sl−1

√
S det(W ∗

l Wl)1/4

)
, (1)

where S is the sample size, sl represents the smoothness of the lth layer, Gl is a factor determined
by the l ∼ Lth layers, Kσl

is the Koopman operator with respect to the activation function σl, and
∥ · ∥Hl

represents the operator norm in a Sobolev space Hl. Since the determinant factor appears
in the denominator of the bound, even if the weight matrices are high rank and have large singular
values, this bound can be small. The Koopman-based bound theoretically sheds light on why neural
networks with high-rank weight matrices generalize well.

However, the existing analysis for the Koopman-based bound strongly depends on the smoothness
of models and the unboundedness of the data space, which excludes realistic models with bounded
data space and with activation functions such as the hyperbolic tangent, sigmoid, and ReLU-type
nonsmooth functions. In addition, the dependency of the bound on the activation function is not clear.
In fact, the factors ∥Kσl

∥Hl
and Gl in the bound (1) is hard to evaluate in many cases.
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Figure 1: Summary of the framework of the existing and proposed Koopman-based bounds

In this paper, we propose a new Koopman-based bound that resolves the issues of the existing
Koopman-based bounds. The proposed bound is described as

O

( L∏
l=1

Gl∥Kσl
∥Ll√

S det(W ∗
l Wl)1/4

)
,

where ∥ · ∥Ll
is the operator norm in a L2 function space. Similar to the existing Koopman-based

bounds, the proposed bound describes why high-rank neural networks generalize well. On the other
hand, the difference of the function space Ll from Hl gives a significant benefit to the proposed
bound. We note that Ll is larger than Hl, and Ll enables us to analyze nonsmooth deep models and
bounded data space. In addition, it enables us to evaluate the factors ∥Kσl

∥Ll
and Gl easily (see

Lemmas 2.3–2.5) and understand the effect of the activation functions on the deep model. As a result,
the proposed bound significantly improves the existing bound in the sense that it can be applied to a
wider range of models and enables us to understand the models well.

To achieve the above improvement, we introduce a kernel function defined on the parameter space
using linear operators on a Hilbert space to which models belong. This kernel function allows us
to construct a reproducing kernel Hilbert space (RKHS) that describes realistic deep models with
nonsmooth activation function and bounded data space. We use the Rademacher complexity to derive
generalization bounds. The Rademacher complexity measures the complexity of the model, which
also describe the generalization property. Using the reproducing property of the RKHS, we can bound
the Rademacher complexity with the operator norms of the linear operators. For linear operators, we
use group representations and Koopman operators. We first focus on algebraic representations of
models using group representations. A typical example is the representation of the affine group, which
describes invertible neural networks. We then focus on representations using Koopman operators
with respect to the weight matrices, which describe neural networks with non-constant width. We
schematically show the summary of the framework of the existing and proposed Koopman-based
bounds in Figure 1.

The main contributions of this paper are as follows:
• We introduce an algebraic representation of models that can represent deep neural networks as typi-

cal examples. To describe the action of parameters on models, we focus on group representations,
which enables us to represent invertible neural networks, and Koopman operators, which enables
us to represent more general neural networks (Subsections 3.1 and 5.1).

• We define a kernel function to construct an RKHS that describes the model. We derive a new
Rademacher complexity bound using this kernel (Subsection 3.2). The proposed bound describes
why the models with high-rank weight matrices generalize well for a wider range of models than
the existing bounds (Section 4 and Subsections 5.2–5.4).

Notations and remarks For d ∈ N and a Lebesgue measure space X ⊆ Rd, let L2(X ) be the space
of complex-valued squared Lebesgue-integrable functions on X . We denote by µX the Lebesgue
measure on X . For a Hilbert space H, let ⟨·, ·⟩H be the inner product in H. We omit the subscript H
when it is obvious. We denote by B(H1,H2) be the space of bounded linear operators from H1 to
H2. In particular, we denote B(H,H) = B(H). All the technical proofs are in Appendix A.

2 PRELIMINARIES

2.1 KOOPMAN OPERATOR

Koopman operator is a linear operator that represents the composition of nonlinear functions. Since
neural networks are constructed using compositions, Koopman operators play an essential role in

2
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analyzing neural networks. Let X ⊆ Rd be a Lebesgue measure space. Koopman operators are
defined as follows. We also introduce weighted Koopman operator, which is a generalization of
Koopman operator.

Definition 2.1 (Koopman operator and weighted Koopman operator). Let X̃ ⊆ Rd1 and X ⊆ Rd2 .
The Koopman operator Kσ with respect to a map σ : X̃ → X is a linear operator from L2(X ) to
L2(X̃ ) that is defined as Kσh(x) = h(σ(x)) for h ∈ L2(X̃ ). In addition, the weighted Koopman
operator K̃ψ,σ with respect to maps ψ : X̃ → C and σ : X̃ → X is a linear operator from L2(X̃ ) to
L2(X ) that is defined as K̃ψ,σh(x) = ψ(x)h(σ(x)) for h ∈ L2(X ).

We will consider the Koopman operators with respect to activation functions. Throughout this paper,
we assume these Koopman operators are bounded.

Assumption 2.2 (Boundedness of Koopman operators). The Koopman operator Kσ with respect to
a map σ is bounded, i.e., the operator norm defined as ∥Kσ∥ = sup∥h∥=1 ∥Kσh∥ is finite.

Indeed, we have the following lemma regarding the sufficient condition of the boundedness of
Koopman operators.

Lemma 2.3. Assume σ : X̃ → X is bijective, σ−1 is differentiable, and the Jacobian of σ−1 is
bounded in X . Then, we have ∥Kσ∥ ≤ supx∈X |Jσ−1(x)|1/2, where Jσ−1 is the Jacobian of σ−1.
In particular, the Koopman operator Kσ is bounded.

The following lemma is regarding the boundedness of well-known elementwise activation functions
defined as σ([x1, . . . , xd]) = [σ̃(x1), · · · , σ̃(xd)] for a map σ̃ : R → R.

Lemma 2.4. Let X̃ = [a1, b1] × · · · × [ad, bd] ⊆ Rd be a bounded rectanglar domain, and let
X = σ(X̃ ). If σ is the elementwise hyperbolic tangent defined as σ̃(x) = tanh(x), then we have X ⊂
[−1, 1]d and ∥Kσ∥ ≤ (

∏d
i=1 supx∈σ̃([ai,bi]) 1/(1− x2))1/2. If σ is the elementwise sigmoid defined

as σ̃(x) = 1/(1 + e−x), then we have X ⊂ [−1, 1]d and ∥Kσ∥ ≤ (
∏d
i=1 supx∈σ̃([ai,bi]) 1/(x −

x2))1/2.

Even if σ is not differentiable, the Koopman operator is bounded, and we can evaluate the upper
bound in some cases.

Lemma 2.5. Let X̃ = X = Rd. Let σ be the elementwise Leaky ReLU defined as σ̃(x) = ax for
x ≤ 0 and σ̃(x) = x for x > 0, where a > 0. Then, we have ∥Kσ∥ ≤ max{1, 1/ad}1/2.

2.2 REPRODUCING KERNEL HILBERT SPACE (RKHS)

In addition to the L2 function space, we also consider reproducing kernel Hilbert spaces. Let Θ be a
non-empty set for parameters. We first introduce positive definite kernel.

Definition 2.6 (Positive definite kernel). A map k : Θ×Θ → C is called a positive definite kernel if
it satisfies the following conditions:

• k(θ1, θ2) = k(θ2, θ1) for θ1, θ2 ∈ Θ,
•
∑n
i,j=1 cicjk(θi, θj) ≥ 0 for n ∈ N, ci ∈ C, and θi ∈ Θ.

Let ϕ : Θ → CΘ be the feature map associated with k, defined as ϕ(θ) = k(·, θ) for θ ∈ Θ
and let Rk,0 = {

∑n
i=1 ϕ(θi)ci| n ∈ N, ci ∈ C, θi ∈ Θ (i = 1, . . . , n)}. We can define a map〈

·, ·
〉
Rk

: Rk,0 ×Rk,0 → C as〈 n∑
i=1

ϕ(θi)ci,

m∑
j=1

ϕ(ξj)dj

〉
Rk

=

n∑
i=1

m∑
j=1

cidjk(θi, ξj).

The reproducing kernel Hilbert space (RKHS) Rk associated with k is defined as the completion
of Rk,0. One important property of RKHSs is the reproducing property ⟨ϕ(θ), f⟩Rk

= f(θ) for
f ∈ Rk and θ ∈ Θ, which is also useful for deriving a Rademacher complexity bound.
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2.3 GROUP REPRESENTATION

Group representation is also a useful tool to analyze the deep structure of neural networks (Sonoda
et al., 2025). Let G be a locally compact group. A unitary representation ρ : G → B(H) for
a Hilbert space H is a map whose image is in the space of unitary operators on H, that satisfies
ρ(g1g2) = ρ(g1)ρ(g2) and ρ(g−1

1 ) = ρ(g1)
∗ for g1, g2 ∈ G, and for which g 7→ ρ(g)h is continuous

for any h ∈ H. Here, ∗ means the adjoint. If there exists no nontrivial subspace M of H such that
ρ(g)M ⊆ M for any g ∈ G, then the representation ρ is called irreducible.

For irreducible unitary representations, we have the following fundamental result (see, e.g. Folland
(1995, Lemma 3.5)), which we will apply to show the universality of the model. Here, the commutant
of a subset A ⊆ B(H) is defined as the set {A ∈ B(H) | AB = BA for B ∈ A}.

Lemma 2.7 (Schur’s lemma). A unitary representation ρ of G is irreducible if and only if the
commutant of ρ(G) contains only scalar multiples of the identity.

We also apply the following fundamental result (see, e.g., Davidson (1996, Theorem I.7.1)).

Lemma 2.8 (von Neumann double commutant theorem). Let A be a subalgebra of B(H) that
satisfies “A ∈ A ⇒ A∗ ∈ A” and is closed with respect to the operator norm. Then, the double
commutant (i.e., the commutant of the commutant) of A is equal to the closure of A with respect to
the strong operator topology.

3 PROBLEM SETTING

We formulate deep models, which include the neural network model as a special example, using
operators. Then, we define an RKHS to analyze the deep model.

3.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH GROUP REPRESENTATIONS

Let G be a locally compact group and ρ : G→ B(H) be a unitary representation on a Hilbert space
H. We consider an algebraic representation of L-layered deep model in H

f(g1, . . . , gL) = ρ(g1)A1ρ(g2)A2 · · ·AL−1ρ(gL)v, (2)

where g1, . . . , gL ∈ G are learnable parameters, A1, . . . , AL ∈ B(H) and v ∈ H are fixed.

Example 3.1 (Scaled neural network with invertible weights). Let G = GL(d)⋉Rd be the affine
group and H = L2(Rd). Here, GL(d) is the group of d by d invertible matrices. Let ρ : G→ B(H)
be the representation ofG on H defined as ρ(g)h(x) = | detW |1/2h(W (x−b)) for g = (W, b) ∈ G,
h ∈ L2(Rd), and x ∈ Rd. Note that ρ is an irreducible unitary representation. In addition, let
v ∈ L2(Rd) be the final nonlinear transformation, σl : Rd → Rd be an activation function satisfying
Assumption 2.2, and Al = Kσl

be the Koopman operator with respect to σl for l = 1, . . . , L − 1.
For example, σl is the elementwise Leaky ReLU. Then, the deep model (2) is

f(g1, . . . , gL)(x) = v(WLσL−1(WL−1 · · ·σ1(W1x−W1b1) · · · −WL−1bL−1)−WLbL)

× | detW1|1/2 · · · | detWL−1|1/2.

Example 3.2 (Deep model with new structures). In addition to describing existing neural networks,
we can develop a new model using the abstract model (2). Let G = {(a, b, c) | a, b ∈ Rd, c ∈ R} be
the Heisenberg group (Thangavelu, 1998). The product in G is defined as (a1, b1, c1) · (a2, b2, c2) =
(a1 + a2, b1 + b2, 1/2 ⟨a1, b2⟩), where ⟨a1, b2⟩ is the Euclidean inner product of a1 and b2. Let
H = L2(Rd) and ρ : G → B(H) be the representation of G on H defined as ρ(g)h(x) =
ei(c−1/2⟨a,b⟩)ei⟨a,x⟩h(x − b) for g = (a, b, c), where i is the imaginary unit. Note that ρ is an
irreducible unitary representation. Let v and Al be the same as in Example 3.1. Then, the deep
model (2) is

f(g1, . . . , gL)(x) =ei(c1−⟨a1,b1⟩/2) · · · ei(cL−⟨aL,bL⟩/2)

· ei⟨a1,x⟩ei⟨a2,σ1(x−b1)⟩ · · · ei⟨aL,σL−1(σL−2(···σ1(x−b1)···−bL−2)−bL−1)⟩

· v(σL−1(· · ·σ1(x− b1)− bL−1)− bL).

4
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Instead of directly considering the model (2), we focus on the following regularized model with a
parameter c > 0 on a data space X0:

Fc(g1, . . . , gL, x) = ⟨ρ(g1)A1ρ(g2)A2 · · ·AL−1ρ(gL)v, pc,x⟩ , (3)
where pc,x ∈ H for c > 0 and x ∈ X0. We assume for any c > 0, there exists E(c) > 0 such that
∥pc,x∥2 ≤ E(c). This regularization is required to technically derive the Rademacher complexity
bound using the framework of RKHSs. However, as the following example indicates, the regularized
model (3) sufficiently approximates the original model (2).

Example 3.3. Consider the same setting in Example 3.1. Let pc,x(y) = (c/π)d/2e−c∥y−x∥
2

for
c > 0 and x ∈ X0. Then, pc,x ∈ L2(Rd) and ∥pc,x∥2 = (2c/π)d/2. Since pc,x goes to the Dirac
delta function centered at x as c→ ∞, we have

Fc(g1, . . . , gL, x) =

∫
Rd

ρ(g1)A1ρ(g2)A2 · · ·AL−1ρ(gL)v(y)pc,x(y)dy.

Note that for any x ∈ Rd and any g1, . . . , gL ∈ G, limc→∞ Fc(g1, . . . , gL, x) = f(g1, . . . , gL)(x).
Thus, if c is sufficiently large, Fc(g1, . . . , gL, x) approximates f(g1, . . . , gL)(x) well.

3.2 RKHS FOR ANALYZING DEEP MODELS

We use the Rademacher complexity to derive a generalization bound. According to Theorem 3.5
in Mohri et al. (2018), the generalization error is bounded by the Rademacher complexity. Thus,
if we obtain a Rademacher complexity bound, then we can also bound the generalization error. To
derive a Rademacher complexity bound, we apply the framework of RKHSs. The Hilbert space
H to which the models belong does not always have the reproducing property. Indeed, a typical
example of H is L2(Rd) as we discussed in Example 3.1. Thus, we consider an RKHS that is a
function space on the parameter space G and isomorphic to a subspace of H. We can regard the
deep model on the data space X0 as a function on G through this isomorphism and make use of
the reproducing property on G. Here, the isomorphism ensures that the mathematical structure
of the RKHS is the same as the subspace of H. We define the following positive definite kernel
k : (G× · · · ×G)× (G× · · · ×G) → C to construct an RKHS to analyze the deep model (2):

k((g1, . . . , gL), (g̃1, . . . , g̃L)) = ⟨ρ(g1)A1 · · ·AL−1ρ(gL)v, ρ(g̃1)A1 · · ·AL−1ρ(g̃L)v⟩H.
We denote the RKHS associated with k as Rk.

Let g = (g1, . . . , gL), ϕ(g) = k(·,g), and ϕ̃(g) = ρ(g1)A1 · · ·AL−1ρ(gL)v. Let K0 =

{
∑n
i=1 ciϕ̃(gi) | n ∈ N,gi ∈ GL, ci ∈ C} and K = K0. Note that K is a sub-Hilbert space

of H. Let ι : K → Rk defined as ι(h) = (g 7→ ⟨ϕ̃(g), h⟩H). The map ι enables us to regard the
Hilbert space K, where the deep model is defined, as the RKHS Rk.
Proposition 3.4. The map ι is isometrically isomorphic.

If ρ is irreducible and A1, . . . , AL are invertible, then we have K = H, which means that the deep
model (2) has universality. The following lemmas are derived using Lemmas 2.7 and 2.8.
Lemma 3.5. Assume ρ is irreducible. Let A = {

∑n
i=1 ciρ(gi) | n ∈ N, gi ∈ G, ci ∈ C}. Then, A

is dense in B(H) with respect to the strong operator topology.
Lemma 3.6. Assume ρ is irreducible and A1, . . . , AL−1 are invertible. Then, K = K0 = H.

4 RADEMACHER COMPLEXITY BOUND

We apply the isomorphism in Proposition 3.4 to derive a Rademacher complexity bound with the aid
of the reproducing property in the RKHS Rk. If pc,x ∈ K, Eq. (3) implies Fc(·, x) = ι(pc,x) ∈ Rk

for x ∈ X0 and c > 0. Thus, we can apply the reproducing property with respect to the model
Fc(·, x). Let Ω be a probability space equipped with a probability measure P . Let S ∈ N be the
sample size, x1, . . . , xS ∈ X0, and ϵ1, . . . , ϵS : Ω → C be i.i.d. Rademacher variables (random
variables following the uniform distribution on {−1, 1}). For a measurable function ϵ : Ω → C, we
denote by E[ϵ] the integral

∫
Ω
ϵ(ω)dP (ω). The empirical Rademacher complexity R̂(F , x1, . . . , xS)

of a function class F is defined as R̂(F , x1, . . . , xS) = E[supF∈F
∑S
s=1 F (xs)ϵs]/S. We denote

by Fc the function class {Fc(g1, . . . , gL, ·) | g1, . . . , gL ∈ G}. The Rademacher complexity of Fc
is upper bounded as follows.
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Theorem 4.1. Assume pc,x ∈ K for x ∈ X0. Then, the Rademacher complexity of the function class
Fc is bounded as

R̂(Fc, x1, . . . , xS) ≤
∥A1∥ · · · ∥AL−1∥∥v∥E(c)√

S
.

Remark 4.2. If ρ is irreducible and A1, . . . , AL−1 are invertible, then by Lemma 3.6, the assumption
of Theorem 4.1 is satisfied automatically.

Remark 4.3. If pc,x(y) = (c/π)d/2e−c∥y−x∥
2

, then we have E(c) = (2c/π)d/2. Combining with
the discussion in Example 3.3, we can see that there is a tradeoff between Fc being close to the
original model f and the constant E(c) becoming large.

An important example of models that can be analyzed using this framework is invertible neural
networks.

4.1 INVERTIBLE NEURAL NETWORKS

Consider the same setting in Example 3.1. Note that since ρ is irreducible, the as-
sumption of Theorem 4.1 is satisfied in this case (see Remark 4.2). Let nn(g, x) =
v(WLσL−1(WL−1 · · ·σ1(W1x −W1b1) · · · −WL−1bL−1) −WLbL) be a neural network model.
Then, we have f(g) = nn(g, ·)| detW1|1/2 · · · | detWL|1/2. Thus, we have Fc(g, ·) =
NNc(g, ·)|detW1|1/2 · · · | detWL|1/2, where NNc(g, x) =

∫
Rd nn(y)pc,x(y)dy. Let D > 0

and NN c = {NNc(g, ·) | g ∈ GL, | detW1|−1/2, . . . , | detWL|−1/2 ≤ D}. We assume Al is
invertible for l = 1, . . . , L− 1.
Theorem 4.4. The Rademacher complexity bound of NN c is

R̂(NN c, x1, . . . , xS) ≤
E(c)∥v∥

∏L−1
l=1 ∥Al∥√
S

sup
| detWl|−1/2≤D

L∏
l=1

| detWl|−1/2.

For example, if σl is the elementwise Leaky ReLU, then ∥Al∥ is bounded as Lemma 2.5. Since detWl

is the product of the singular values of Wl, and it is in the denominator of the bound, Theorem 4.1
implies that the model can generalize well even if Wl has large singular values.

5 GENERALIZATION TO NON-CONSTANT WIDTH NEURAL NETWORKS

5.1 ALGEBRAIC REPRESENTATION OF DEEP MODELS WITH KOOPMAN OPERATORS

In pervious sections, we focused on a single Hilbert space H and consider operators on H. This
corresponds to considering a neural network with a constant width. In addition, H is determined
by the group representation, which forces us to consider a certain data space such as Rd. However,
in general, the width is not always constant. In addition, the data space is bounded in many cases.
To meet this situation, we consider multiple Hilbert spaces H0, . . . ,HL−1, H̃1, . . . , H̃L. Let Θl be
a set of parameters and let ηl : Θl → B(H̃l,Hl−1) for l = 1, . . . , L. In addition, let v ∈ H̃L and
Al ∈ B(Hl, H̃l) be fixed. Consider the model

f(θ1, . . . , θL) = η1(θ1)A1η2(θ2) · · ·AL−1ηL(θL)v,

where θl ∈ Θl for l = 1, . . . , L.

In the same manner as Subsection 3.1, we consider a regularized model

Fc(θ1, . . . , θL, x) = ⟨η1(θ1)A1η2(θ2) · · ·AL−1ηL(θL)v, pc,x⟩H0
,

where pc,x ∈ H0 for x ∈ X0 and c > 0 with ∥pc,x∥ ≤ E(c) for E(c) > 0. We also define a positive
definite kernel k : (Θ1 × · · · ×ΘL)× (Θ1 × · · · ×ΘL) → C to construct an RKHS to analyze the
deep model (2):

k((θ1, . . . , θL), (θ̃1, . . . , θ̃L)) = ⟨η1(θ1)A1 · · ·AL−1ηL(θL)v, η1(θ̃1)A1 · · ·AL−1ηL(θ̃L)v⟩H0 .

We set Rk and K in the same manner as in Subsection 3.2. This generalization allows us to derive
Rademacher complexity bounds for a wide range of models.

6
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5.2 NEURAL NETWORK WITH INJECTIVE WEIGHT MATRICES

Let dl ∈ N and Θl = {W ∈ Cdl×dl−1 | W is injective}. Let
X0 ⊂ Rd0 , Wlσl−1(Wl−1 · · ·W2σ1(W1X0)) ⊆ X̃l ⊆ Rdl , and
σl(Wl · · ·W2σ1(W1X0)) ⊆ Xl ⊆ Rdl that satisfy µRdl (Xl) > 0 and µRdl (X̃l) > 0.

Figure 2: Construction of Xl and X̃l

Starting from X0, we re-
currently construct X̃l and
Xl for l = 1, . . . , L.
Since Wl is injective, the
space WlXl−1 is dl−1-
dimensional. If dl >
dl−1, then the measure
µRdl (WlXl−1) becomes 0,
and setting X̃l = WlXl−1

makes the analysis mean-
ingless. Thus, we set a
space Xl that includes WlXl−1 and µRdl (WlXl−1) > 0. Figure 2 schematically shows the con-
struction of Xl and X̃l. Let H̃l = L2(X̃l), Hl = L2(Xl), and ηl(Wl) = KWl

be the Koopman
operator from H̃l to Hl−1 with respect to Wl. In addition, let Al = Kσl

be the Koopman operator
from Hl to H̃l with respect to an activation function σl : X̃l → Xl that satisfies Assumption 2.2.
Then, we have

f(W1, . . . ,WL)(x) = v(WLσL−1(WL−1σL−2(· · ·σ1(W1x)))).

Let D > 0 and Fc = {Fc(θ1, . . . , θL, ·) | | detW ∗
1W1|−1/4, . . . , | detW ∗

LWL|−1/4 ≤ D}. Let
α(h) = (

∫
WlXl−1

|h(x)|2dµR(Wl)(x)/
∫
X̃l

|h(x)|2dµRdl (x))
1/2 for h ∈ H̃l. This value depends on

how large we set X̃l compared with WlXl−1, and by setting X̃l sufficiently large, we can bound it by
1 with a reasonable assumption (see Remark 5.3 for more details). In the same way as in Theorem 4.1,
we obtain the following bound.
Theorem 5.1. Assume pc,x ∈ K for x ∈ X0. Let fl = v ◦WL ◦ σL−1 ◦ · · · ◦Wl+1 ◦ σl. Then, we
have

R̂(Fc, x1, . . . , xS) ≤ sup
| detW∗

l Wl|−1/4≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥α(fl)√

S
∏L
l=1 | detW ∗

l Wl|1/4
, (4)

As for ∥Al∥, since Al = Kσl
, we can evaluate the upper bound of ∥Al∥ by Lemma 2.3. For example,

if X0 is bounded, we can apply Lemma 2.4 to the sigmoid and hyperbolic tangent.
Remark 5.2. For simplicity, we consider models without bias terms. We obtain the same result for
models with bias terms since the norm of the Koopman operator with respect to the shift function is 1.

Remark 5.3. Assume there exist a, b > 0 such that a ≤ |fl(x)|2 ≤ b. We set X̃l sufficiently large so
that b · µR(Wl)(WlXl−1) ≤ a · µRdl (X̃l). Then, we have

α(fl)
2 =

∫
WlXl−1

|fl(x)|2dµR(Wl)(x)∫
X̃l

|fl(x)|2dµRdl (x)
≤
b · µR(Wl)(WlXl−1)

a · µRdl (X̃l)
≤ 1.

Remark 5.4. There is a tradeoff between the magnitudes of the denominator and the numerator
of the bound (4). When σl(x) tends to be constant as ∥x∥ → ∞, such as the hyperbolic tangent
and sigmoid, the derivative of σ−1

l (x) tends to be large as the magnitude of ∥x∥ becomes large.
In this case, according to Lemma 2.3, if detWl is large, then ∥Al∥ is also large since the volume
of Xl becomes large. The activation function plays a significant role in increasing the complexity
in this case. When σ1, . . . , σL−1 are unbounded, such as the Leaky ReLU, X̃L becomes large if
detW1, . . . ,detWL are large, which makes ∥v∥ large. The final nonlinear transformation v plays a
significant role in increasing the complexity in this case.

Advantage over existing Koopman-based bounds Hashimoto et al. (2024) proposed Rademacher
complexity bounds using Koopman operator norms. Since the norm is defined by the Sobolev space,
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the framework accepts only smooth and unbounded activation functions. In addition, although they
include factors of the norms of Koopman operators with respect to the activation functions, their
evaluation is extremely challenging, making the effect of the activation function unclear. On the
other hand, our bound can be applied to various types of activation functions, such as the hyperbolic
tangent, sigmoid, and Leaky ReLU, we can evaluate the Koopman operator norms using Lemmas 2.3
– 2.5, and we can understand the effect of the activation function as discussed in Remark 5.4.

5.3 GENERAL NEURAL NETWORK

If W is not injective, the Koopman operator KW is unbounded. Thus, instead of the
standard Koopman operators, we consider weighted Koopman operators. Let dl ∈ N
and Θl = {W ∈ Cdl×dl−1}. For l = 0, . . . , L − 1, let d̃l = dim(ker(Wl+1)),
q1, . . . , qd̃l be an orthonormal basis of ker(Wl+1), qd̃l+1, . . . , qdl be an orthonormal ba-
sis of ker(Wl+1)

⊥, Xl = {
∑dl
i=1 ciqi | ci ∈ [ai, bi]} for some ai < bi such that

σl(Wl · · ·W2σ1(W1X0)) ⊆ Xl, Yl = {
∑d̃l
i=1 ciqi | ci ∈ [ai, bi]}, and Zl = {

∑dl
i=d̃l+1

ciqi |
ci ∈ [ai, bi]}. Let Wlσl−1(Wl−1 · · ·W2σ1(W1X0)) ⊆ X̃l ⊆ Rdl satisfying µRdl (X̃l) > 0.

Figure 3: Construction of Xl, Yl, Zl, and X̃l

In this case, to decompose
the integral on ker(Wl+1)
and that on ker(Wl+1)

⊥,
we set the orthonormal ba-
sis along ker(Wl+1) and
define Yl and Zl. Fig-
ure 3 schematically shows
the construction of Xl, Yl,
Zl, and X̃l. Let H̃l and
Hl be the same space as
in Subsection 5.2, and Let
ηl(W ) = K̃ψl,W be the weighted Koopman operator from H̃l to Hl−1 with respect to W and ψl,
where ψl is defined as ψl(x) = ψl(x1) = 1 for x ∈ Xl−1, where x = x1 + x2 with x1 ∈ Yl−1 and
x2 ∈ Zl−1, and ψl(x) = 0 for x /∈ Xl−1. In addition, letAl be the same operator as in Subsection 5.2.
Then, we have

f(W1, . . . ,WL)(x) =ψ1(x)ψ2(σ1(W1x)) · · ·ψL(σL−1(WL−1σL−2(· · ·σ1(W1x))))

· v(WLσL−1(WL−1σL−2(· · ·σ1(W1x)))).

The factor ψ1(x) · · ·ψL(σL−1(WL−1σL−2(· · ·σ1(W1x)))) is an auxiliary factor. Since ψl(x) = 1
for x ∈ Xl−1, we have f(W1, . . . ,WL)(x) = v(WLσL−1(WL−1σL−2(· · ·σ1(W1x)))) for x ∈ X0

in the data space, exactly the same structure as that of neural networks. Thus, we can regard f as the
original neural network v(WLσL−1(WL−1σL−2(· · ·σ1(W1x)))).

Let D > 0 and Fc = {Fc(θ1, . . . , θL, ·) | |detW1|ker(W1)⊥ |−1/2, . . . , | detWL|ker(WL)⊥ |−1/2 ≤
D}. In the same way as in Theorem 5.1, we obtain the following bound.
Theorem 5.5. Assume pc,x ∈ K for x ∈ X0. Then, we have

R̂(Fc, x1, . . . , xS) ≤ sup
| detWl|ker(Wl)

⊥ |−1/2≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥α(fl)

∏L
l=1 µker(Wl)(Yl−1)√

S
∏L
l=1 | detWl|ker(Wl)⊥ |1/2

.

Remark 5.6. If the output of the lth layer has small values in the direction of ker(Wl+1), then the
factor µker(Wl+1)(Yl) is small. We expect that the magnitude of the noise is smaller than that of the
essential signals. This implies that if the weight Wl+1 is learned so that ker(Wl+1) becomes the
direction of noise, i.e., so that the noise is removed by Wl+1, the model generalizes well. Arora et al.
(2018) insist that the noise stability property implies that the model generalizes well. The result of
Theorem 5.5 does not contradict the results of Arora et al. (2018).

5.4 CONVOLUTIONAL NEURAL NETWORK

Let Il = Jl,1 × · · · × Jl,dl ⊆ Zdl be a finite index set and Θl = {θ ∈ RIl | x 7→ θ ∗ x is invertible}.
Let θl ∈ Θl, Pl be the matrix representing the average pooling with pool size ml, which is defined

8
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(a) (b) (c)
Figure 4: (a) Scatter plot of the generalization error versus our bound (for 3 independent runs). The
color is set to get dark as the epoch proceeds. (b) Test accuracy with the regularization based on our
bound and that based on the existing bound (deep neural net with dense layers). (c) Test accuracy
with and without the regularization based on our bound (LeNet).

as (Pl)i,j = 1/ml for i, j ∈ Il if the jth element of the input is pooled in the ith element of the
output, and σl be the same as in Subsection 5.2. Let X0 ⊆ RI1 , θl ∗ Pl−1σl−1(θl−1 ∗ · · · θ2 ∗
P1σ1(θ1 ∗ X0)) ⊆ X̃l ⊆ RIl and Plσl(θl ∗ · · · θ2 ∗ P1σ1(θ1 ∗ X0)) ⊆ Xl ⊆ RIl+1 satisfying
µRIl (X̃l) > 0 and µRIl+1 (Xl) > 0. Let d̃l = dim(ker(Pl)), q1, . . . , qd̃l be an orthonormal basis
of ker(Pl), qd̃l+1, . . . , qdl be an orthonormal basis of ker(Pl)⊥, X̂l = {

∑dl
i=1 ciqi | ci ∈ [ai, bi]}

for some ai < bi such that σl(θl ∗ · · · θ2 ∗ P1σ1(θ1 ∗ X0)) ⊆ X̂l ⊆ RIl , Ŷl = {
∑d̃l
i=1 ciqi |

ci ∈ [ai, bi]}, and Ẑl = {
∑dl
i=d̃l+1

ciqi | ci ∈ [ai, bi]}. Let Hl = L2(Xl), H̃l = L2(X̃l),
Ĥl = L2(X̂l), and ηl : Θl → B(H̃l,Hl−1) be defined as ηl(θ)h(x) = h(θ ∗ x), where ∗ is the
convolution. Note that the convolution is a linear operator whose eigenvalues are Fourier components
γm(θl) :=

∑
j∈Il θje

i(Sl j)·m for m ∈ Il, where Sl is the diagonal matrix whose diagonal is the
scaling factor [1/(2π|Jl,1|), . . . , 1/(2π|Jl,dl |)]. Let Al = Kσl

K̃ψl,Pl
, where K̃ψl,Pl

and Kσl
are

weighted Koopman and Koopman operators from Hl to Ĥl and from Ĥl to H̃l, respectively. Here,
ψl is defined as ψl(x) = ψl(x1) = 1 for x ∈ X̂l, where x = x1 + x2 with x1 ∈ Ŷl and x2 ∈ Ẑl, and
ψl(x) = 0 for x /∈ X̂l. Then, we have

f(θ1, . . . , θL)(x) =ψ1(σ1(θ1 ∗ x)) · · ·ψL−1(σL−1(θL−1 ∗ PL−2σL−2(· · ·P1σ1(θ1 ∗ x))))
· v(θL ∗ PL−1σL−1(θL−1 ∗ · · · ∗ P1σ1(θ1 ∗ x) · · · )).

Let βl(θ) =
∏
m∈Il γm(θ) and Fc = {Fc(θ1, . . . , θL, ·) | |β(θ1)|−1/2, . . . , |β(θL)|−1/2 ≤ D}.

Proposition 5.7. Assume pc,x ∈ K for x ∈ X0. Then, we have

R̂(Fc, x1, . . . , xS) ≤ sup
|β(θl)|−1/2≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥µker(Pl)(Ŷl)√

S
∏L
l=1 |βl(θl)|1/2

.

Remark 5.8. If σl is bounded, then we can set X̂l independent of θ1, . . . , θl so that it covers the
range of σl. Since Pl is a fixed operator, the factor µker(P1)(Ŷl) is a constant in this case.

6 NUMERICAL RESULTS

We numerically confirm the validity of the proposed bound. Experimental details are in Appendix B.

Validity of the bound To show the relationship between the generalization error and the proposed
bound, we consider a regression problem with synthetic data on X0 = [−1, 1]3. The target function t
is t(x) = e−∥2x−1∥2

. We constructed a network f(x) = v(W2σ(W1x+b1)+b2), whereW1 ∈ R3×3,
W2 ∈ R6×3, b1 ∈ R3, b2 ∈ R6, v(x) = w3e

−∥x∥2

, w3 ∈ R, and σ is the elementwise hyperbolic
tangent. We created a training dataset from randomly drawn samples from the uniform distribution
on [−1, 1]3. The training sample size S is 1000. Our bound is proportional to the value r :=
|w3| sup[x1,x2,x3]∈σ(W1X0+b1) 1/(1 − x21)/(1 − x22)/(1 − x33)| detW ∗

1W1|−1/4 · | detW ∗
2W2|−1/4

since ∥v∥ ≤ |w3|
∫
R6 e

−∥x∥dx and according to Lemma 2.4. We added 0.1r as a regularization term.
Figure 4 (a) illustrates the relationship between the generalization error and our bound throughout the
learning process. We can see that the generalization bound gets small in proportion to our bound.
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Comparison with existing bounds To compare our bound with existing bounds, we considered the
same classification task with MNIST as in Hashimoto et al. (2024). We constructed the same model
f(x) = σ4(W4σ(W3σ(W2σ(W1x + b1) + b2) + b3) + b4) as Hashimoto et al. (2024) with dense
layers. Based on the bound, we tried to make the factors ∥Al∥, 1/ detW ∗

l W
1/2
l , and ∥v∥ small, where

v(x) = σ4(W4σ(W3x+ b3) + b4), σ(x1, . . . , xd) = [σ̃(x1), . . . , σ̃(xd)] is the elementwise smooth
Leaky ReLU proposed by Biswas et al. (2022), and σ4 is the softmax. This setting is for meeting
the setting in (Hashimoto et al., 2024). We set X0 = [0, 1]784, X̃1 = (∥W1∥+ ∥b1∥∞)[−1, 1]1024 ⊇
W1X0 + b1, X1 = σ(X̃1) ⊇ σ(W1X0 + b1), X̃2 = (∥W2∥(∥W1∥ + ∥b1∥∞) + ∥b2∥∞)[−1, 1]2048,
and X2 = σ(X̃2) ⊇ σ(W2σ(W1X0 + b1) + b2). To make the factor ∥Al∥ small, we applied
Lemma 2.3 and set a regularization term r1 = supx∈(X1)1 |(σ̃

−1)′(x)| + supx∈(X2)1 |(σ̃
−1)′(x)|.

Here, (X1)1 is the set of the first elements of the vectors in X1. In addition, we set r2 = 1/(1 +

detW ∗
1W

1/4
1 ) + 1/(1 + detW ∗

2W
1/4
2 ). Regarding ∥v∥, we set r3 = ∥W1∥+ ∥W2∥ since we have

∥v∥2 =
∫
X2

|v(x)|2dx ≤ µ(X2) ≤ µ(X̃2). We added the regularization term 0.01(r1 + r2 + r3)
to the loss function. The training sample size is S = 1000. We compared the regularization based
on our bound with that based on the bound proposed by Hashimoto et al. (2024). The result is
shown in Figure 4 (b). Note that since the training sample size S is small, obtaining a high test
accuracy is challenging. We can see that with the regularization based on our bound, we obtain a
better performance than that based on the existing bound.

Validity for existing CNN models (LeNet) To show that our bound is valid for practical models,
we applied the regularization based on our bound to LeNet on MNIST (Lecun et al., 1998). We
set the activation function σ of each layer as the elementwise hyperbolic tangent function and the
final nonlinear transformation v as the softmax. We used the same training and test datasets as
the previous experiment. In addition, we set X0 = [0, 1]784, X̃l = (∥Wl∥ + ∥bl∥∞)[−1, 1]1024 ⊇
Wlσ(· · ·σ(W1X0 + b1) + · · · ) + bl, Xl = σ(X̃l) ⊇ σ(Wlσ(· · ·σ(W1X0 + b1) + · · · ) + bl). Here,
Wl is the matrix that represents the lth convolution layer. We note that the bound by Hashimoto
et al. (2024) is not valid for the models with hyperbolic tangent and softmax functions. To make
the factor ∥Al∥ small, we applied Lemmas 2.3 and 2.4 and tried to make infx∈Xl

(1 − x2) large.
Thus, we set a regularization term r1 =

∑4
l=1 supx∈(Xl)1

1/(1 + 1 − x2). Regarding the factor

detWl |ker(Wl)⊥
−1/2, we set r2 = ∥(0.01I+WlW

∗
l )

−1∥ = 1/(0.01+smin(Wl)), to make smin(Wl)
large, where smin(Wl) is the smallest singular value of Wl since the determinant is described as
the product of the singular values. For ∥v∥, we set r3 = ∥WL∥ in the same way as in the previous
experiment according to the definition of X̃L. We added the regularization term 0.1(r1 + r2 + r3) to
the loss function and compared it with the case without regularization. The result is shown in Figure 4
(c). We can see that with the regularization, the model performs better than in the case without the
regularization, which shows the validity of our bound for LeNet.

7 CONCLUSION AND LIMITATION

In this paper, we derived a new Koopman-based Rademacher complexity bound. Analogous to the
existing Koopman-based bounds, our bound describes that neural networks with high-rank weight
matrices can generalize well. Existing Koopman-based bounds rely on the smoothness of the function
space and the unboundedness of the data space, which makes the result valid for limited neural network
models with smooth and unbounded activation functions. We resolved this issue by introducing
an algebraic representation of neural network models and constructing an RKHS associated with
a kernel defined with this representation. Our bound is valid for a wide range of models, such as
those with the hyperbolic tangent, sigmoid, and Leaky ReLU activation functions. Our framework is
the first step to filling the gap between the Koopman-based analysis of generalization bounds and
practical situations.

Although our bound can be applied to models more realistic than the existing Koopman-based bounds,
it is not valid for activation functions whose derivative is zero in some domain, such as the exact
ReLU. Introducing a variant of the Koopman operator such as the weighted Koopman operator may
help us deal with this situation, but more detailed investigation is left for future work.
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APPENDIX

A PROOFS

We show the proofs of the theorems, propositions, and lemmas in the main text.

Lemma 2.3 Assume σ : X̃ → X is bijective, σ−1 is differentiable, and the Jacobian of σ−1 is
bounded in X . Then, we have ∥Kσ∥ ≤ supx∈X |Jσ−1(x)|1/2, where Jσ−1 is the Jacobian of σ−1.
In particular, the Koopman operator Kσ is bounded.

Proof. For h ∈ L2(X ), we have

∥Kσh∥2 =

∫
X̃
|h(σ(x))|2dx =

∫
X
|h(x)|2|Jσ−1(x)|dx

≤ sup
x∈X

|Jσ−1(x)|
∫
X
|h(x)|2dx = sup

x∈X
|Jσ−1(x)|∥h∥2.

Lemma 2.5 Let X̃ = X = Rd. Let σ be the elementwise Leaky ReLU defined as σ̃(x) = ax for
x ≤ 0 and σ̃(x) = x for x > 0, where a > 0. Then, we have ∥Kσ∥ ≤ max{1, 1/ad}1/2.

Proof. For h ∈ L2(X ), we have

∥Kσh∥2 =

∫
Rd

|h(σ(x))|2dx

=

∫
(−∞,0]d
|h(ax)|2dx+

∫
(0,∞)×(−∞,0]d−1

|h(diag{1, a, . . . , a}x)|2dx+ · · ·+
∫
(0,∞)d
|h(x)|2dx

≤ max
{
1, 1/ad

} ∫
Rd

|h(x)|2dx = max
{
1, 1/ad

}
∥h∥2.

Proposition 3.4 The map ι is isometrically isomorphic.

Proposition 3.4 is derived using the following lemmas.
Lemma A.1. The map ι is injective.

Proof. Assume ι(h) = 0. Then, for any g ∈ G, ⟨ϕ̃(g), h⟩ = 0. Thus, for any n ∈ N, g1, . . . ,gn,
and c1, . . . , cn ∈ C, we have ⟨

∑n
i=1 ciϕ̃(gi), h⟩ = 0, which means for any h̃ ∈ K0, ⟨h̃, h⟩ = 0.

Thus, we obtain h = 0.

Lemma A.2. The map ι preserves the norm and is surjective.

Proof. By definition, ι is a linear map that maps ϕ̃(g) ∈ K0 to ϕ(g) ∈ Rk,0. Thus, we have
ι(K0) = Rk,0.

For h ∈ K0, there exist n ∈ N, g1, . . . ,gn ∈ GL, and c1, . . . , cn ∈ C such that h =
∑n
i=1 ciϕ̃(gi).

We have

∥ι(h)∥2Rk
=

∥∥∥∥ n∑
i=1

ciϕ(gi)

∥∥∥∥2
Rk

=

n∑
i,j=1

cicjk(gi,gj) =

n∑
i,j=1

cicj⟨ϕ̃(gi), ϕ̃(gj)⟩H = ∥h∥2H.

Thus, ι preserves the norm, and in particular, it is bounded.

For any r ∈ Rk, there exists a sequence r1, r2, . . . ∈ Rk,0 such that limi→∞ ri = r. Since
ι(K0) = Rk,0, there exists hi ∈ K0 such that ι(hi) = ri for i = 1, 2, . . .. Thus, we have
r = limi→∞ ri = limi→∞ ι(hi) = ι(limi→∞ hi) = ι(h).
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Lemma 3.5 Assume ρ is irreducible. Let A = {
∑n
i=1 ciρ(gi) | n ∈ N, gi ∈ G, ci ∈ C}. Then, A

is dense in B(H) with respect to the strong operator topology.

Proof. By the Schur’s lemma (Lemma 2.7), the commutant of ASOT
, the closure of A with respect

to the strong operator topology, is CI . Thus, the double commutant of ASOT
is B(H). By the von

Neumann double commutant theorem (Lemma 2.8), the double commutant of ASOT
is ASOT

itself.
Therefore, we have ASOT

= B(H).

Lemma 3.6 Assume ρ is irreducible and A1, . . . , AL−1 are invertible. Then, K = K0 = H.

Proof. Let h ∈ H. Then, there exists B ∈ B(H) such that h = Bv. Let ε > 0. By
Lemma 3.5, there exist nL ∈ N, gL,1, . . . , gL,nL

∈ G, and cL,1, . . . , cL,nL
∈ C such that

∥ÃLv − A−1
L−1v∥ ≤ ε, where ÃL =

∑nL

αL=1 cL,αL
ρ(gL,αL

). In addition, there exist nL−1 ∈ N,
gL−1,1, . . . , gL−1,nL−1

∈ G, and cL−1,1, . . . , cL−1,nL−1
∈ C such that ∥ÃL−1(AL−1ÃLv) −

A−1
L−2(AL−1ÃLv)∥ ≤ ε, where ÃL−1 =

∑nL−1

αL−1=1 cL−1,αL−1
ρ(gL−1,αL−1

). We continue this
process, and for l = L−2, . . . , 2, we obtain nl ∈ N, gl,1, . . . , gl,nl

∈ G, and cl,1, . . . , cl,nl
∈ C such

that ∥Ãl(AlÃl+1Al+1 · · · ÃL−1AL−1ÃLv)−A−1
l−1(AlÃl+1Al+1 · · · ÃL−1AL−1ÃLv)∥ ≤ ε, where

Ãl =
∑nl

αl=1 cl,αl
ρ(gl,αl

). Finally, we get n1 ∈ N, g1,1, . . . , g1,n1
∈ G, and c1,1, . . . , c1,n1

∈ C
such that ∥Ã1(A1Ã2A2 · · · ÃL−1AL−1ÃLv) − B(A1Ã2A2 · · · ÃL−1AL−1ÃLv)∥ ≤ ε, where
Ã1 =

∑n1

α1=1 c1,α1ρ(g1,α1). Let C = Ã1A1 · · · ÃL−1AL−1ÃL. Then, we have

∥Cv − h∥ ≤ ∥Cv −BA1Ã2 · · ·AL−1ÃLv∥+ ∥BA1Ã2 · · ·AL−1ÃLv −BA2Ã3 · · ·AL−1ÃLv∥
+ · · ·+ ∥BAL−2ÃL−1AL−1ÃLv −BAL−1ÃLv∥+ ∥BAL−1ÃLv −BÃLv∥

≤ ε+ ∥BA1∥ε+ · · ·+ ∥BAL−2∥ε+ ∥BAL−1∥ε.

Theorem 4.1 Let Fc the function class {Fc(g1, . . . , gL, ·) | g1, . . . , gL ∈ G}. Assume pc,x ∈ K
for x ∈ X0. Then, the Rademacher complexity of the function class Fc is bounded as

R̂(Fc, x1, . . . , xS) ≤
∥A1∥ · · · ∥AL−1∥∥v∥E(c)√

S
.

Proof. Since Fc(·, x) = ι(pc,x) ∈ Rk, by the reproducing property, we have

1

S
E

[
sup
g∈GL

S∑
s=1

Fc(g, xs)ϵs

]
=

1

S
E

[
sup
g∈GL

〈
ϕ(g),

S∑
s=1

Fc(·, xs)ϵs
〉

Rk

]

≤ 1

S
sup
g∈GL

∥ϕ(g)∥Rk
E

[∥∥∥∥ S∑
s=1

Fc(·, xs)ϵs
∥∥∥∥
Rk

]

=
1

S
sup
g∈GL

∥ϕ̃(g)∥HE

[( S∑
s,t=1

⟨Fc(·, xs)ϵs, Fc(·, xt)ϵt⟩Rk

)1/2]

≤ 1

S
sup
g∈GL

∥ρ(g1)A1 · · ·AL−1ρ(gL)v∥H
(
E

[ S∑
s,t=1

⟨Fc(·, xs)ϵs, Fc(·, xt)ϵt⟩Rk

])1/2

≤ 1

S
∥A1∥ · · · ∥AL−1∥∥v∥

( S∑
s=1

∥Fc(·, xs)∥2Rk

)1/2

, (5)
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where the third equality is by Lemma A.2, the fourth inequality is by the Jensen’s inequality, and the
final inequality is derived since ρ(g1) . . . , ρ(gL) are unitary.

Since Fc(·, x) = ι(pc,x), we apply Lemma A.2 again and obtain

1

S
∥A1∥ · · · ∥AL−1∥∥v∥

( S∑
s=1

∥Fc(·, xs)∥2Rk

)1/2

=
1

S
∥A1∥ · · · ∥AL−1∥∥v∥

( S∑
s=1

∥pc,xs∥2H
)1/2

≤∥A1∥ · · · ∥AL−1∥∥v∥E(c)√
S

,

where the last equality is derived since pc,x is the regularizer that satisfies ∥pc,x∥H = 1 for any
x ∈ X0.

Theorem 4.4 Let NN c = {NNc(g, ·) | g ∈ GL, |detW1|−1/2, . . . , | detWL|−1/2 ≤ D}. The
Rademacher complexity bound of NN c is

R̂(NN c, x1, . . . , xS) ≤
E(c)∥v∥

∏L−1
l=1 ∥Al∥√
S

sup
| detWl|−1/2≤D

L∏
l=1

| detWl|−1/2.

Proof. By Theorem 4.1, we have

R̂(NN c, x1, . . . , xS) =
1

S
E

[
sup

g∈GL, | detWl|−1/2≤D

S∑
s=1

NNc(g, xs)σs

]

=
1

S
E

[
sup

g∈GL, | detWl|−1/2≤D

S∑
s=1

Fc(g, xs)| detW1|−1/2 · · · | detWL|−1/2σs

]
≤ E(c)∥A1∥ · · · ∥AL−1∥∥v∥√

S
sup

| detWl|−1/2≤D
| detW1|−1/2 · · · | detWL|−1/2.

Theorem 5.1 Let Fc = {Fc(θ1, . . . , θL, ·) | | detW ∗
1W1|−1/4, . . . , | detW ∗

LWL|−1/4 ≤ D}.
Assume pc,x ∈ K for x ∈ X0. Let fl = v ◦ WL ◦ σL−1 ◦ · · · ◦ Wl+1 ◦ σl. Let α(h) =

(
∫
WlXl−1

|h(x)|2dµR(Wl)(x)/
∫
X̃l

|h(x)|2dµRdl (x))
1/2 for h ∈ H̃l. Then, we have

R̂(Fc, x1, . . . , xS) ≤ sup
| detW∗

l Wl|−1/4≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥α(fl)√

S
∏L
l=1 | detW ∗

l Wl|1/4
,

Proof. In the same way as Theorem 4.1, we have the same inequality (5) but ρ(gl) is replaced by
ηl(θl) = KWl

. For h ∈ H̃l, we have

∥KWl
h∥2 =

∫
Xl−1

|h(Wlx)|2dµRdl−1 (x) =

∫
WlXl−1

|h(x)|2 1

| detW ∗
l Wl|1/2

dµR(Wl)(x)

=
1

| detW ∗
l Wl|1/2

∫
WlXl−1

|h(x)|2dµR(Wl)(x)∫
X̃l

|h(x)|2dµRdl (x)

∫
X̃l

|h(x)|2dµRdl (x) =
α(h)2∥h∥2

| detW ∗
l Wl|1/2

(6)

Applying the inequality (6) to the inequality (5) for this case, we obtain the result.

Theorem 5.5 Let Fc = {Fc(θ1, . . . , θL, ·) | | detW1|ker(W1)⊥ |−1/2, . . . , | detWL|ker(WL)⊥ |−1/2 ≤
D}. Assume pc,x ∈ K for x ∈ X0. Then, we have

R̂(Fc, x1, . . . , xS) ≤ sup
| detWl|ker(Wl)

⊥ |−1/2≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥α(fl)

∏L
l=1 µker(Wl)(Yl−1)√

S
∏L
l=1 | detWl|ker(Wl)⊥ |1/2

.
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Proof. For h ∈ H̃l, we have

∥K̃ψl,Wl
h∥2 =

∫
Xl−1

|h(Wlx)ψl(x)|2dx =

∫
Zl−1

|h(Wlx)|2dx
∫
Yl−1

|ψl(x)|2dx

=

∫
WlXl−1

|h(x)|2 1

| detWl|ker(Wl)⊥ |
dµR(Wl)(x) · µker(Wl)(Yl−1)

≤

∫
WlXl−1

|h(x)|2dµR(Wl)(x)

| detWl|ker(Wl)⊥ |
∫
X̃l

|h(x)|2dµRdl (x)

∫
X̃l

|h(x)|2dµRdl (x) · µker(Wl)(Yl−1)

=
∥h∥2α(h)2µker(Wl)(Yl−1)

| detWl|ker(Wl)⊥ |
. (7)

Applying the inequality (7) to the inequality (5) for this case, we obtain the result.

Proposition 5.7 Let Fc = {Fc(θ1, . . . , θL, ·) | |β(θ1)|−1/2, . . . , |β(θL)|−1/2 ≤ D}. Assume
pc,x ∈ K for x ∈ X0. Then, we have

R̂(Fc, x1, . . . , xS) ≤ sup
|β(θl)|−1/2≤D

E(c)∥v∥
∏L−1
l=1 ∥Al∥µker(Pl)(Ŷl)√

S
∏L
l=1 |βl(θl)|1/2

.

Proof. Since the convolution is a linear operator whose eigenvalues are Fourier components, we have
∥ηl(θl)∥ ≤ |βl(θl)|−1/2. In the same way as the proof of Theorem 5.5, we have

∥K̃ψl,Pl
∥ ≤

µker(Pl)(Ŷl)
| detPl|ker(Pl)⊥ |1/2

= µker(Pl)(Ŷl),

which proves the result.

B EXPERIMENTAL DETAILS

All the experiments were executed with Python 3.10 and TensorFlow 2.15.

B.1 VALIDITY OF BOUNDS

We set W1, W2, and w3 as learnable parameters. We set the loss function as the mean squared error
and the optimizer as the SGD with a learning rate 0.001. The learnable parameters are initialized
with the orthogonal initialization.

B.2 COMPARISON TO EXISTING BOUNDS

We constructed a network f(x) = σ4(W4σ(W3σ(W2σ(W1x + b1) + b2) + b3) + b4) with dense
layers, where W1 ∈ R1024×784, W2 ∈ R2048×1024, W3 ∈ R2048×2048, W4 ∈ R10×2048, b1 ∈ R1024,
b2 ∈ R2048, b3 ∈ R2048, b4 ∈ R10, σ is the elementwise smooth Leaky ReLU (Biswas et al.,
2022) with α = 0.1 and µ = 0.5, and σ4 is the softmax. The learnable parameters W1, . . . ,W4 are
initialized by the orthogonal initialization for l = 1, 2 and by samples from the truncated normal
distribution for l = 3, 4, and we used the Adam optimizer (Kingma & Ba, 2015) for the optimizer
with a learning rate of 0.001. We set the loss function as the categorical cross-entropy loss. The result
in Figure 4 (b) is the averaged value ± the standard deviation in 3 independent runs.

B.3 VALIDITY FOR EXISTING CNN MODELS (LENET)

We constructed a 5-layered LeNet with the hyperbolic tangent activation functions and the averaged
pooling layers. We set the optimizer as the Adam optimizer with a learning rate of 0.001. The result
in Figure 4 (c) is the averaged value ± the standard deviation in 3 independent runs.
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Table 1: Comparison of our bound to existing bounds.
Authors Rate Type

Neyshabur et al. (2015) 2L
∏L

l=1 ∥Wl∥2,2√
S

Norm-based
Neyshabur et al. (2018) Lmaxl dl

∏L
l=1 ∥Wl∥√
S

(∑L
l=1

∥Wl∥2
2,2

∥Wl∥2

)1/2

Golowich et al. (2018)
(∏L

l=1 ∥Wl∥2,2
)
min

{
1

S1/4 ,
√

L
S

}
Bartlett et al. (2017)

∏L
l=1 ∥Wl∥√

S

(∑L
l=1

∥WT
l −AT

l ∥2/3
2,1

∥Wl∥2/3

)3/2

Wei & Ma (2020) (
∑L

l=1 κ
2/3
l min{L1/2∥Wl−Al∥2,2,∥Wl−Bl∥1,1}2/3)3/2√

S

Ju et al. (2022)
∑L

l=1 θl∥Wl−Al∥2,2√
S

Li et al. (2021) ∥x∥|
∏L
l=1 ∥Wl∥ − 1|+ γx +

√
cX
S

Arora et al. (2018) r̂ + Lmaxi ∥f(xi)∥
r̂
√
S

(∑L
l=1

1
µ2
l µ

2
l→

)1/2

Compression

Suzuki et al. (2020) r̂√
S
+

√
L
S

(∑L
l=1 r̃l(d̃l−1 + d̃l)

)1/2
Hashimoto et al. (2024) ∥v∥HL√

S

∏L
l=1

Gl∥Kσl
∥Hl

∥Wl∥sl−1

det(W∗
l Wl)1/4 Koopman-based

Ours ∥v∥LL√
S

∏L
l=1

Gl∥Kσl
∥Ll

det(W∗
l Wl)1/4

C COMPARISON OF THE KOOPMAN-BASED BOUNDS TO EXISTING BOUNDS

We show the summary of the existing bounds and the proposed bound in Table 1. Here, κl and θl
are determined by the Jacobian and Hessian of the network f with respect to the jth layer and Wl,
respectively. In addition, r̃l and d̃l are the rank and dimension of the jth weight matrices for the
compressed network and ∥ · ∥p,q is the matrix (p, q)-norm. We note that although the form of the
existing Koopman-based bound and the proposed bound is similar, our bound is applicable to a wider
range of deep models, and the factors Gl and ∥Kσl

∥ are more easily evaluated.

D NOTATION TABLE

We provide a notation table 2 that summarizes important notation in the main text.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 2: Notation table

G Locally compact group for parameters
Θl Set of parameters for the lth layer
L Number of layers
dl Width of the lth layer
H Hilbert space for models
ρ Unitary representation of G on H
Kσ Koopman operator with respect to a function σ
Wl Weight matrix for the lth layer
σl Activation function for the lth layer
Al Linear operator corresponding to the activation function for the lth layer
f Original deep model
Fc Regularized model with a parameter c
Fc Function class for models
k Positive definite kernel defined as k((g1, . . . , gL), (g̃1, . . . , g̃L)) =

⟨f(g1, . . . , gL), f(g̃1, . . . , g̃L)⟩H
ϕ Feature map defined as ϕ(g) = k(·,g)
ϕ̃ Feature map representing models defined as ϕ̃(g) = f(g1, . . . , gL), where g =

(g1, . . . , gL)

K Hilbert space defined as the closure of {
∑n
i=1 ciϕ̃(gi) | n ∈ N,gi ∈ GL, ci ∈ C}

ι Isomorphism that maps ϕ̃(g) to ϕ(g)
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