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ABSTRACT

Group Relative Policy Optimization (GRPO) has significantly enhanced the rea-
soning capability of large language models by optimizing the arithmetic mean
of token-level rewards. Unfortunately, GRPO is observed to suffer from unsta-
ble policy updates when facing tokens with outlier importance-weighted rewards,
which manifest as extreme importance sampling ratios during training. In this
study, we propose Geometric-Mean Policy Optimization (GMPO), with the aim to
improve the stability of GRPO through suppressing token reward outliers. GMPO
is plug-and-play—simply replacing GRPO’s arithmetic mean with the geometric
mean of token-level rewards, as the latter is inherently less sensitive to outliers.
GMPO is theoretically plausible—analysis reveals that both GMPO and GRPO are
weighted forms of the policy gradient while the former enjoys more stable weights,
which consequently benefits policy optimization and performance. Experiments
on multiple mathematical reasoning benchmarks show that GMPO-7B improves
the average Pass@1 of GRPO by up to 4.1%, outperforming many state-of-the-art
approaches. The code is enclosed in the supplementary material.

Figure 1: Comparison between GRPO and our GMPO. GRPO optimizes the arithmetic mean of token-
level rewards while GMPO the geometric mean (left). When training with GRPO, the importance
sample ratio

(
ρt(θ) =

πθ(ot|q,o<t)
πθold

(ot|q,o<t)

)
frequently reaches extreme values, leading to unstable policy

updates. In contrast, GMPO enjoys more stable importance sample ratio with fewer outliers (right).

1 INTRODUCTION

As test-time scaling becomes a key research focus in the large language model community, recent post-
training methods have increasingly sought to extend chain-of-thought (CoT) generation to enhance
reasoning capabilities. Recent advances, such as Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), leverage multiple sampled responses per input prompt to compute relative rewards
and advantages (Â in Figure1, left), leading to notable improvements in reasoning performance.
By maximizing the arithmetic mean of token-level rewards, GRPO has achieved strong results on
complex tasks such as mathematics, code generation, and multimodal reasoning.

During GRPO training, the importance-weighted reward for each token is given by ρt(θ)Â, where
the importance sampling ratio ρt(θ) is defined as ρt(θ) =

πθ(ot|q,o<t)
πθold

(ot|q,o<t)
. This ratio plays a key role

in PPO (Schulman et al., 2017) and GRPO, ensuring that policy updates are grounded in data from
the current policy πθ. Large deviations of ρt(θ) from 1 indicate excessive policy shifts, leading to
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Figure 2: Compared to the arithmetic mean, the geometric mean is more robust to outliers and yields
importance sampling ratio distributions with lower variance.

overly aggressive updates and instability. Constraining the ratio within a reasonable range is therefore
critical for stable and reliable training.

As shown in Figure 1 (top left), objective of GRPO involves the arithmetic mean of token-level
rewards, which is sensitive to outliers (Figure 2). As training progresses (Figure 1, right), the range
of ρt(θ) under GRPO expands, leading to unstable policy updates and degraded model performance.
To mitigate this, GRPO applies a clipping range (ϵlow, ϵhigh) to restrict large deviations of ρt(θ).
However, this constraint causes limited exploration and early deterministic policy, which can hinder
the scaling process (Yu et al., 2025).

To alleviate the instability while enhancing exploration capabilities of GRPO, we propose Geometric-
Mean Policy Optimization (GMPO), Figure 1 (bottom left). GMPO takes full advantages of the
geometric mean, which is inherently less sensitive to outliers and yields importance sampling ratio
distributions with lower variance (Figure 2). During training (Figure 1, right), the range of GMPO ’s
ρt(θ) remains stable, exhibiting fewer extreme values than GRPO. With GMPO, we can maintain
stable policy optimization while allowing a larger clipping range to promote greater exploration.

To further emphasize the advantages of GMPO, we provide detailed theoretical and experimental
analyses to justify its training objective. First, we show that GMPO ’s objective produces a narrower
value range than GRPO’s, indicating reduced training variance and more stable policy updates.
Second, from a gradient perspective, GMPO provides a more balanced update signal and is more
robust to outlier values of the importance sampling ratio ρt(θ). Third, as training progresses, GMPO
maintains a smaller KL divergence from the pre-trained model and higher token entropy than GRPO,
indicating enhanced stability (via smaller KL) and greater policy exploration (via higher entropy).

Extensive experiments on language, multimodal, and agentic reasoning tasks demonstrate the advan-
tages of GMPO over GRPO. Specifically, on five mathematical reasoning benchmarks of varying
difficulty (AIME24 (Li et al., 2024), AMC (Li et al., 2024), MATH500 (Hendrycks et al., 2021),
Minerva (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024)), GMPO improves the
average Pass@1 accuracy by 4.1% (63.4% vs. 59.3%) with Qwen2.5-7B model compared to GRPO.
Besides, GMPO improves the Pass@1 accuracy by 2.1% (96.7% vs. 94.6%) on MATH500 with a
Qwen-32B (Yang et al., 2025) Mixture-of-Experts model. On Geometry3K multimodal reasoning
benchmark (Lu et al., 2021), GMPO increases the average Pass@1 accuracy by 1.4% (54.7% vs.
53.3%) with Qwen2.5-VL-7B model. On ALFWorld agentic reasoning benchmark (Shridhar et al.,
2020), GMPO increases the overall accuracy by 13.1% (85.9% vs. 72.8%) with Qwen2.5-1.5B
model.

The contributions of this study are summarized as follows:

• We propose Geometric-Mean Policy Optimization (GMPO), which stabilizes the GRPO algorithm
by maximizing the geometric mean of token-level rewards.

• We conduct thorough theoretical and empirical analyses, showing that GMPO improves stability
while enhancing exploration relative to GRPO.

• GMPO-7B consistently outperforms GRPO-7B across diverse reasoning scenarios, delivering
notable improvements in accuracy: 4.1% higher on five mathematical reasoning benchmarks, 1.4%
higher on the Geometry3K multimodal reasoning benchmark, and a remarkable 13.1% higher on
the ALFWorld agentic reasoning benchmark.
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2 BACKGROUND

2.1 RELATED WORKS

Reinforcement learning (RL) has become a key approach for post-training large language models
(LLMs), with verifiable rewards enabling significant reasoning improvements, as demonstrated by
DeepSeek-R1 (Guo et al., 2025a). Building on Proximal Policy Optimization (PPO) (Schulman et al.,
2017), numerous variants have been developed to enhance efficiency and performance.

GRPO (Shao et al., 2024; Guo et al., 2025a) eliminates the need for computationally expensive value
models while maintaining strong results across mathematics, coding, and QA benchmarks. GPG
(Chu et al., 2025) further simplifies optimization by eliminating surrogate losses, critics, and KL
constraints. Several extensions address rollout selection or bias correction: SRPO (Zhang et al.,
2025c) uses history resampling, DAPO (Yu et al., 2025) employs dynamic sampling, Dr.GRPO
(Liu et al., 2025) mitigates length bias, and OPO (Hao et al., 2025) provides an optimal baseline
to reduce gradient variance. Reward shaping and advantage estimation are also actively explored.
EMPO (Zhang et al., 2025b) incorporates semantic entropy, AAPO (Xiong et al., 2025a) introduces
advantage momentum, and BNPO (Xiao et al., 2025) adaptively normalizes rewards via a Beta
distribution. Seed-GRPO (Chen et al., 2025) scales policy updates by question uncertainty, while
GRPO-lead (Zhang & Zuo, 2025) addresses reward sparsity through length-dependent accuracy,
explicit penalties, and difficulty-aware reweighting. Efficiency-driven methods include CPPO (Lin
et al., 2025) (pruning low-advantage completions), S-GRPO (Dai et al., 2025b) (early exit to cut
redundancy), Ada-GRPO (Wu et al., 2025) (adaptive reasoning formats), and GVPO (Zhang et al.,
2025a) (analytical KL-constrained weighting). GRPO-λ (Dai et al., 2025a) dynamically switches
between length-penalized and length-agnostic rewards to avoid collapse. Further methods improve
rollout usage. PODS (Xu et al., 2025) trains only on informative subsets of parallel rollouts, while
RePO (Li et al., 2025) retrieves diverse off-policy samples via replay. RAFT (Xiong et al., 2025b)
trains solely on positive samples yet rivals GRPO. INTUITOR (Zhao et al., 2025) eliminates external
rewards by using model self-certainty, and PRIME (Cui et al., 2025a) provides a scalable RL
framework for reasoning. Exploration-focused techniques include the 80/20 rule (Wang et al., 2025),
which emphasizes high-entropy minority tokens, and entropy-based advantage augmentation (Cheng
et al., 2025). Complementary to algorithmic advances, data-centric approaches have also proven
crucial. Open-Reasoner-Zero (Hu et al., 2025) curates 129k diverse, high-quality samples with
curriculum learning. Eurus (Yuan et al., 2024) contributes a large-scale alignment dataset and novel
reward modeling.

Despite rapid progress, the stability of RL for LLMs remains rarely explored, even though it is
essential for developing reliable and scalable post-training systems. While several GRPO variants
enhance stability through better baseline estimation (OPO (Hao et al., 2025)), reward shaping (GRPO-
lead(Zhang & Zuo, 2025)) or reward normalization (BNPO (Xiao et al., 2025)), the underlying
stability of the RL process remains a persistent challenge. Our work offers a complementary
perspective on these methods by introducing a robust aggregation operator for token-level rewards,
providing an orthogonal approach to achieving more reliable and scalable post-training systems.

2.2 PRELIMINARY

The Group Relative Policy Optimization algorithm is initially proposed in DeepSeek-math (Shao
et al., 2024). The core idea is to estimate the baseline through a relative reward within a group
of rollouts, which reduces the computational cost of the critic model and improves the training
stability. Specifically, for each question q from the training set Q, GRPO samples a group of rollouts
{o1, o2, · · · , oG} from the old policy πθold and calculates the corresponding rewards {r1, r2, · · · , rG}.
Then the policy model πθ is optimized by maximizing the following objective:

JGRPO(πθ) = Eq∼Q,{oi}G
i=1∼πθold

(·|q)

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{
min

[
ρi,t(θ)Âi, clip(ρi,t(θ), ϵlow, ϵhigh)Âi

]
− βDKL(πθ ∥ πref)

}
, (1)

where ρi,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

and Âi =
ri−mean({r1,r2,···rG})

std({r1,r2,···rG}) . ρi,t(θ) represents the importance
sampling ratio of the t-th token in the i-th rollout based on the current policy πθ and old policy πθold .

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Âi is the advantage of the i-th rollout and is calculated by normailizing the rewards that belong to
the same group according to GRPO. (ϵlow, ϵhigh) are the clipping thresholds and DKL(πθ ∥ πref)
is the KL regularization term. Following Dr. GRPO (Liu et al., 2025), we ignore DKL(πθ ∥ πref)
for simplicity and memory saving. The objective of GRPO is equivalent to the arithmetic mean of
token-level rewards (We ignore the clipping range term for clarity), which can be formatted as:

J ∗
GRPO(πθ) = Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

ρi,t(θ)Âi

 . (2)

In practice, the rollouts are sampled from the old policy πθold . To approximate policy updates as if
they were based on rollouts sampled from the current policy πθ, the normalized advantage Âi of each
rollout is weighted by the importance sampling ratio ρi,t(θ).

3 GEOMETRIC-MEAN POLICY OPTIMIZATION

As shown in Figure 1(right), we observe tokens with extreme importance sampling ratios during
GRPO training, indicating unreliable model updates. This instability arises because GRPO’s objective
is sensitive to outlier values of importance-weighted rewards, which drive aggressive policy updates
and further amplify the variance of importance sampling ratios.

To solve that, we propose Geometric-Mean Policy Optimization (GMPO), a stabilized variant of
GRPO. Instead of optimizing the arithmetic mean of token-level rewards as shown in Equation 2,
GMPO maximizes the geometric mean of them:

J ∗
GMPO(πθ) = Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

( |oi|∏
t=1

∣∣ρi,t(θ)Âi

∣∣) 1
|oi| · sgn(Âi)

 , (3)

where sgn(Âi) ensures the correct optimization direction, returning 1 when Âi > 0 and -1 otherwise.
J ∗
GMPO(πθ) has a narrower value range than J ∗

GRPO(πθ), which can be derived as:

|J ∗
GMPO(πθ)| = Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

( |oi|∏
t=1

∣∣ρi,t(θ)Âi

∣∣) 1
|oi|


≤ Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

∣∣ρi,t(θ)Âi

∣∣ = |J ∗
GRPO(πθ)|. (4)

This narrower range suggests that the training process of GMPO experiences lower variance in the
optimization objective, which can be viewed as evidence of more stable policy updates. Compared to
JGRPO(πθ), JGMPO(πθ) is less sensitive to outliers because the geometric mean is inherently more
robust to outliers than the arithmetic mean. As a result, JGMPO(πθ) provides more reliable policy
updates and maintains a more stable range of importance sampling ratios as shown in Figure 1(right).
By expanding Equation 3 and incorporating the clipping range term from PPO (Schulman et al.,
2017) at the token-level, we can derive the complete objective function of GMPO as follows:

JGMPO(πθ) = Eq∼Q,{oi}G
i=1∼πθold

(·|q)

1

G

G∑
i=1


|oi|∏
t=1

∣∣∣min
[
ρi,t(θ)Âi, clip(ρi,t(θ), ϵlow, ϵhigh)Âi

]∣∣∣


1
|oi|

· sgn(Âi). (5)

GMPO is straightforward to implement, and its pseudo-code is given in Algorithm 1. For numerical
stability, both the product and clipping operations in Equation 5 are carried out in log space.

To better understand why GMPO is more stable than GRPO, we show that GMPO is more robust
to tokens with extreme importance sampling ratios from a gradient perspective. Specifically, given
question q and rollout oi, the gradients of J ∗

GRPO(πθ) (Equation 2) and J ∗
GMPO(πθ) (Equation 3)

4
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Algorithm 1 GMPO Training objective

def gmpo_loss(new_probs, old_probs, mask, advantage, epsilon=0.4):
"""
new_probs [L, 1]: Token probabilities from the current model
old_probs [L, 1]: Token probabilities from the old model
mask [L, 1]: Indicates valid (non-padded) tokens
advantage [1]: Advantage or normalized reward for the sequence
epsilon [1]: Controls the clipping range
"""
# Clipping at token-level & Clipping wider
new_log_probs, old_log_probs = torch.log(new_probs), torch.log(old_probs)
sgn_A = 1 if advantage > 0 else -1
sgn_A_log_probs_diff = sgn_A * (new_log_probs - old_log_probs)
sgn_A_log_probs_diff2 = torch.clamp(sgn_A_log_probs_diff, -epsilon, epsilon)
sgn_A_log_probs_diff_min = torch.min(sgn_A_log_probs_diff, sgn_A_log_probs_diff2)
log_probs_diff_min = sgn_A * sgn_A_log_probs_diff_min
# Geometric-Mean Policy Optimization
importance_sampling_ratio = torch.exp(log_probs_diff_min[mask].sum()/mask.sum())
loss = -advantage * importance_sampling_ratio
return loss

Figure 3: The range of importance sampling ratio ρt(θ) with respect to different clipping range
and training steps. A wider range indicates less stable policy updates. Compared to GRPO with a
clipping range of (0.8, 1.2), GMPO demonstrates greater stability, even with a larger clipping range
of (e−0.4, e0.4). All curves are smoothed for clarity.

with respect to the model parameter θ are as follows1:

∇θJ ∗
GRPO(πmθ)

∣∣∣
q,oi

=
1

G · |oi|

|oi|∑
t=1

ρi,t(θ) · Âi · ∇θlog(πθ(oi,t|q, oi,<t)), (6)

∇θJ ∗
GMPO(πθ)

∣∣∣
q,oi

=
1

G · |oi|

|oi|∑
t=1

( |oi|∏
k=1

ρi,k(θ)
) 1

|oi| · Âi · ∇θlog(πθ(oi,t|q, oi,<t)), (7)

The term Âi · ∇θlog(πθ(oi,t|q, oi,<t)) quantifies the influence of the generated token oi,t on the
parameters θ, which corresponds to the standard policy gradient (Sutton et al., 1999). The gradients of
both objectives are weighted sums of the policy gradients of the generated tokens, but with different
weights. For J ∗

GRPO(πθ), the weight of the token oi,t includes its individual importance sampling
ratio ρi,t(θ). An extreme ρi,t(θ) will cause the token gradient to be too large or small, resulting in
aggressive policy updates. For J ∗

GMPO(πθ), the weight of the token oi,t includes the geometric mean

of all the ratios
(∏|oi|

k=1 ρi,k(θ)
) 1

|oi| in the same sequence, provides a more balanced update signal
and is more robust to outlier values.

Beyond the proposed training objective, we demonstrate the effectiveness of the following key designs
in GMPO:

1Clipping range term is omitted for clarity. Detailed derivations are provided in Appendix A

5
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(i) Clipping at token-level. Unlike vanilla GRPO in DeepSeek-math (Shao et al., 2024), DeepSeek-
R1 (Guo et al., 2025a) maximizes the sequence-level reward (

∏|oi|
t=1 ρi,t(θ))Âi and clips outliers at

the sequence-level, i.e., clip
(∏|oi|

t=1 ρi,t(θ), ϵlow, ϵhigh
)
. The term

∏|oi|
t=1 ρi,t(θ) also appears in the

objective of GMPO (Equation 3 and 5). However, instead of applying clipping at the sequence-level
as in DeepSeek-R1, we find it more effective to perform clipping at the token-level, as shown in
Equation 5. The rationale is as follows: (1) Clipping at the token-level is more stable than at the
sequence-level. As shown in Figure 3, the sequence-level clip (GMPO-seq-clip-(e−0.4, e0.4)) has
a larger importance sampling range than the token-level clip (GMPO (e−0.4, e0.4)), which makes
it more prone to create extreme gradients during optimization. (2) Sequence-level clipping is too
aggressive compared to token-level clipping. Once triggered, it sets the gradients of all tokens in the
sequence to zero, potentially discarding valuable update signals from informative parts of rollouts.

(ii) Clipping wider. As illustrated in DAPO (Yu et al., 2025), the clipping operation can limit
exploration and cause early deterministic policy, which hinders the scaling process. To encourage
exploration without sacrificing stability, DAPO uses a clip-higher strategy, which slightly expands
the clipping range (ϵlow, ϵhigh) from (0.8, 1.2) to (0.8, 1.28). As shown in Figure 1, we visualize
the maximum and minimum importance sampling ratios at each training step for both GRPO and
GMPO. The key observations are: (1) As training proceeds, the importance sampling ratio spans
a wider range, indicating more aggressive policy updates and increased instability. (2) Compared
to GRPO, GMPO preserves a narrower range of importance sampling ratio, suggesting more stable
updates. (3) For GMPO, expanding the clipping range from (e−0.2, e0.2) to (−∞,+∞) increases
instability in policy updates. Based on these findings, we balance training stability with exploration
by setting clipping thresholds (ϵlow, ϵhigh) in Equation 5 to (e−0.4, e0.4). This range is significantly
larger than both GRPO and DAPO, encouraging greater exploration and improving performance.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAIL

Model. We evaluate the algorithm’s performance on both language-only, agentic, and multimodal
reasoning tasks. For language-only tasks, following Dr.GRPO (Liu et al., 2025), we use Qwen2.5-
Math-1.5B (Yang et al., 2024), Qwen2.5-Math-7B, DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025b)
and Qwen3-32B (Yang et al., 2025) as our base models to assess performance on mathematical tasks.
For agentic tasks, we use Qwen2.5-Instruct-1.5B (Yang et al., 2024) as the base model following
GiGPO (Feng et al., 2025). For multimodal tasks, we use Qwen2.5-VL-Instruct-7B (Bai et al., 2025)
as the base model to train GRPO and GMPO, and evaluate their performance on geometry reasoning
tasks.

Training. For language-only tasks, following the setup of Dr.GRPO (Liu et al., 2025), we use
MATH (Hendrycks et al., 2021) Levels 3–5 as the training dataset for models under 7B, which
contains 8,523 mathematical problems. For each question, we generate 8 rollouts and cap the model’s
maximum response length at 3,000 tokens. During each RL training round, the old policy πθold
produces 1,024 rollouts, and the current policy πθ is updated 8 times with a batch size of 128. For
Mixture-of-Experts models, we use DeepScaleR (Luo et al., 2025) and CountDown (Pan, 2024) as
the training dataset, with further details provided in Appendix E. For multimodal tasks, we follow the
setup of EasyR1 (Zheng et al., 2025) and use Geometry3K (Lu et al., 2021) as the training dataset.
For agentic tasks, we follow the setup of GiGPO (Feng et al., 2025) for training and inference, with
further details provided in Appendix D. For mathematical problems, rewards are verifiable: “1” for
correct responses and “0” for incorrect ones. Our method is mainly compared with Dr.GRPO and
GRPO, under the same experimental setup as in Tables 1, and 2.

Evaluation. We evaluate our method on five mathematical reasoning benchmarks of varying dif-
ficulty following Dr.GRPO (Liu et al., 2025), one multimodal reasoning benchmark following
EasyR1 (Zheng et al., 2025), and one agentic reasoning benchmark: AIME24, which consists of
30 high-school level olympiad problems from the American Invitational Mathematics Examination
2024; AMC, containing 83 intermediate-difficulty multiple-choice problems; MATH500, a subset
of 500 problems from the original MATH dataset covering algebra, geometry, and number theory;
Minerva (Lewkowycz et al., 2022), featuring 272 graduate-level problems requiring multi-step rea-
soning; and OlympiadBench (Oly.) (He et al., 2024), a collection of 675 high-difficulty olympiad
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Table 1: Comparison of GRPO and GMPO for language models (a), multimodal models (b), Mixture-
of-Experts models (c), and agentic models (d).

Language Model AIME24 AMC MATH500 Minerva Oly. Avg.

GRPO-1.5B Shao et al. (2024) 23.3 49.4 75.2 25.7 39.0 42.5
GMPO-1.5B (Ours) 20.0 53.0 77.6 30.1 38.7 43.9

GRPO-7B Shao et al. (2024) 40.0 59.0 83.4 32.4 41.3 51.2
GMPO-7B (Ours) 43.3 61.4 82.0 33.5 43.6 52.7

GRPO-7B Shao et al. (2024) (R1-Distill) 43.3 67.5 89.0 39.7 56.7 59.3
GMPO-7B (R1-Distill, Ours) 46.6 78.3 91.4 37.9 62.5 63.4

(a) Five mathematical reasoning benchmark.

Multimodal Model Geometry3K

GRPO-7B (Shao et al., 2024) 53.3
GMPO-7B (Ours) 54.7

(b) Geometry3K benchmark.

MoE Model MATH500

GRPO-32B (Shao et al., 2024) 94.6
GMPO-32B (Ours) 96.7

(c) MATH500 benchmark.

Agentic Model Pick Look Clean Heat Cool Pick2 ALL
GRPO-1.5B Shao et al. (2024) 85.3 53.7 84.5 78.2 59.7 53.5 72.8
GMPO-1.5B (Ours) 93.1 78.6 81.0 88.2 82.1 89.5 85.9

(d) ALFWorld benchmark.

Table 2: Comparison of GMPO and state-of-the-art methods on mathematical reasoning benchmarks.

Model AIME24 AMC MATH500 Minerva Oly. Avg.

Qwen2.5-Math-1.5B Qwen et al. (2025) 16.7 43.4 61.8 15.1 28.4 33.1
Qwen2.5-Math-1.5B-Instruct Qwen et al. (2025) 10.0 48.2 74.2 26.5 40.2 39.8
Oat-Zero-1.5B Liu et al. (2025) 20.0 53.0 74.2 25.7 37.6 42.1
GMPO-1.5B (Ours) 20.0 53.0 77.6 30.1 38.7 43.9

Qwen2.5-Math-7B Qwen et al. (2025) 16.7 38.6 50.6 9.9 16.6 26.5
SimpleRL-Zero-7B Zeng et al. (2025) 26.7 60.2 78.2 27.6 40.3 46.6
PRIME-Zero-7B Cui et al. (2025a) 16.7 62.7 83.8 36.0 40.9 48.0
OpenReasoner-Zero-7B @ 3k Hu et al. (2025) 13.3 47.0 79.2 31.6 44.0 43.0
OpenReasoner-Zero-7B @ 8k Hu et al. (2025) 13.3 54.2 82.4 31.6 47.9 45.9
Eurus-7B Yuan et al. (2024) 16.7 62.7 83.8 36.0 40.9 48.0
GPG-7B Chu et al. (2025) 33.3 65.0 80.0 34.2 42.4 51.0
Oat-Zero-7B Liu et al. (2025) 43.3 62.7 80.0 30.1 41.0 51.4
GMPO-7B (Ours) 43.3 61.4 82.0 33.5 43.6 52.7

Oat-Zero-7B Liu et al. (2025) (R1-Distill) 50.0 74.7 89.6 37.5 55.7 61.5
GMPO-7B (R1-Distill, Ours) 46.6 78.3 91.4 37.9 62.5 63.4

problems. These benchmarks collectively cover a broad spectrum of problem types and difficulty
levels. Geometry3K (Lu et al., 2021) is a visual question answering dataset that consists of a set of 601
questions focused on geometric problem-solving. ALFWorld (Shridhar et al., 2020) is an embodied
environment designed to assess the ability of LLM agents to perform multi-step decision-making.
We primarily use the Pass@1 metric for comparative analysis. This metric evaluates whether a
single generated response to a problem meets the required criteria. For language tasks, we set the
temperature to 0.0 and generate one answer per question, following Dr.GRPO (Liu et al., 2025). For
the multimodal task, we set the temperature to 0.5 and generate 16 answers for each question.
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Table 3: Comparison of objectives and their performance under same training settings.

1 : 1
|o|
∑|o|

t=1

(
min

[
ρt(θ)Â, clip(ρt(θ), ϵlow, ϵhigh)Â

])
2 :
{∏|o|

t=1

∣∣ρt(θ)Â∣∣} 1
|o| · sgn(Â)

3 :
{∣∣min

[
(
∏|o|

t=1 ρt(θ))Â, clip(
∏|o|

t=1 ρt(θ), ϵlow, ϵhigh)Â
]∣∣} 1

|o| · sgn(Â)

4 :
{∏|o|

t=1

∣∣min
[
ρt(θ)Â, clip(ρt(θ), ϵlow, ϵhigh)Â

]∣∣} · sgn(Â)

5 :
{∏|o|

t=1

∣∣min
[
ρt(θ)Â, clip(ρt(θ), ϵlow, ϵhigh)Â

]∣∣} 1
|o| · sgn(Â)

Training objectives AIME24 AMC MATH500 Minerva Oly. Avg.
0 (Pre-RL model) 16.7 38.6 50.6 9.9 16.6 26.5
1 (GRPO) 40.0 59.0 83.4 32.4 41.3 51.2
2 (without clip) 40.0 63.9 80.6 33.5 43.7 52.3
3 (with seq-clip) 46.6 57.8 80.2 34.2 44.3 52.6
4 (without norm) 36.6 67.4 82.0 29.8 44.1 52.0
5 (GMPO) 43.3 61.4 82.0 33.5 43.6 52.7

4.2 PERFORMANCE

Table 1 2 present comprehensive evaluation of our GMPO approach against established reason-
ing methods across multiple benchmarks. Our method demonstrates consistent and substantial
improvements over strong baseline systems.

Language-only tasks. GMPO demonstrates consistent improvements across different base models.
With Qwen2.5-Math-1.5B, it achieves 43.9% average performance, outperforming GRPO by 1.4%
and Dr.GRPO by 1.8%. Similar gains are observed with Qwen2.5-Math-7B (+1.5% vs. GRPO,
+1.3% vs. Dr.GRPO) and DeepSeek-R1-Distill-Qwen-7B (+4.1% vs. GRPO, +1.9% vs. Dr.GRPO).
In the stability-sensitive Mixture-of-Experts (MoE) setting with Qwen3-32B, GMPO achieves 96.7%
accuracy on MATH500, outperforming GRPO by 2.1%. Additional results for MoE models are
provided in Appendix E.

Multimodal tasks. Using Qwen2.5-VL-Instruct-7B as the base model, GMPO surpasses GRPO by
1.4% on Geometry3K, highlighting its potential for broader application in multimodal tasks.

Agentic tasks. Using Qwen2.5-Instruct-1.5B as the base model, GMPO achieves a 13.1% per-
formance gain over GRPO on ALFWorld, demonstrating its potential in open-world agentic tasks.

4.3 ABLATION STUDIES

Table 3 presents an ablation study of the key modifications in GMPO relative to GRPO. The effect of
the clipping thresholds is presented in Table 4, and training statistics are shown in Figure 4.

Geometric mean vs. Arithmetic mean. The performance of GRPO and GMPO is reported in lines
1 and 5 of Table 3, respectively. GRPO achieves an average performance of 51.2% by optimizing the
arithmetic mean of token-level rewards. In contrast, GMPO improves this to 52.7%, outperforming
GRPO by 1.5%, by optimizing the geometric mean instead. In row 4 of Table 3, we test removing the
normalization term “ 1

|o|” from the training objective, similar to Dr. GRPO (Liu et al., 2025). This
results in a 0.7% drop in average performance (52.0% vs. 52.7%), suggesting that the normalization
term is crucial for maintaining optimal performance.

Clipping strategy. The performance of GMPO without clip, with token-level clip, and with sequence-
level clip are shown in lines 2, 3, and 5, respectively. The corresponding ranges of importance
sampling ratios are shown in Figure 3, labeled as GMPO (e−0.4, e0.4), GMPO-seq-clip-(e−0.4, e0.4),
and GRPO(0.8, 1.2). Clipping at the sequence-level achieves similar performance to token-level clip-
ping but has a larger range of importance sampling ratios. Therefore, we use the token-level clipping

8
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Table 4: Influence of the clipping thresholds on model performance.

Clipping thresholds (ϵlow, ϵhigh) AIME24 AMC MATH500 Minerva Oly. Avg.

1 (e−0.2, e0.2) 36.6 60.2 84.2 35.7 45.0 52.4
2 (e−0.4, e0.4) 43.3 61.4 82.0 33.5 43.6 52.7
3 (e−0.8, e0.8) 40.0 60.2 82.2 33.5 44.7 52.1
4 (−∞,+∞) 40.0 63.9 80.6 33.5 43.7 52.3

Figure 4: Analysis of entropy, KL divergence, gradient norm, validation score over training steps.
(a–b) GMPO maintains higher entropy than GRPO, whether trained on MATH Level 3–Level 5
or DeepScaleR dataset. (c-d) GMPO maintains more stable gradient and a smaller KL divergence
from the pre-RL model than GRPO. (e–h) GMPO outperforms GRPO in validation scores across
language-only and multimodal tasks, for both dense and Mixture-of-Experts models.

strategy. Removing the clipping range term (GMPO (−∞,+∞)) leads to excessive fluctuations in
the importance sampling ratio during training, which affects stability and results in a 0.4% decrease
in average performance (52.3% vs. 52.7%).

Influence of the clipping thresholds. To find the optimal clipping thresholds for GMPO, we train
the model under different clipping thresholds, as shown in Table 4 and Figure 3. A larger clipping
range encourages exploration but introduces instability to optimization, which ultimately affects
performance. To balance stability and performance, we set (ϵlow, ϵhigh) in Equation 5 to (e−0.4, e0.4),
which has a stable range of importance sampling ratio and achieves the best performance.

Exploration capability. As noted in (Cui et al., 2025b), language models in reinforcement learning
often trade off entropy for short-term performance. Premature entropy collapse can cause performance
to plateau. As shown in Figure 4 (a-b), we visualize the mean token entropy of GMPO and GRPO
when training the policy model at MATH Level 3-Level 5 and the more challenging mathematical
dataset DeepScaleR. GRPO’s entropy drops rapidly during training, limiting exploration and causing

9
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performance to plateau (Figure 4 (e–g)). As shown in Figure 4 (a), applying a wider clipping range for
GRPO temporarily encourages exploration, but entropy still declines quickly over time. This behavior
arises because GRPO optimizes the arithmetic mean of token-level rewards, which is sensitive to
outliers. Consequently, it can generate aggressive updates that sharply reduce entropy while offering
only marginal performance gains, hindering both exploration and scalability.

In contrast, GMPO employs the geometric mean, which is robust to outliers. This allows it to maintain
stable, moderate entropy, enabling consistent exploration throughout training and resulting in higher
rewards and better overall performance than GRPO, as shown in Figure 4 (e–g).

Training stability. As shown in Figure 4 (c-d), we visualize the gradient norm during training, and
the KL divergence between the current model πθ and the reference model πref . πref is initialized as
the base model before RL training. As training progresses, GMPO maintains stable gradient and a
low KL divergence from the reference model, indicating greater training stability and a lower risk
of overfitting. In contrast, GRPO exhibits unstable gradient and large KL divergence, suggesting
unstable learning and a greater tendency to drift away from the reference model.

Validation scores. Figure 4 (e–h) shows validation scores under different training settings. Figures
(e) and (f, g) correspond to Tables 1, while results on CountDown are detailed in Appendix E. GMPO
consistently outperforms GRPO in validation scores across language-only (e, f, h) and multimodal
(g) tasks, for both dense (e, g) and Mixture-of-Experts models (f, h).

5 CONCLUSION

We propose GMPO, a stabilized variant of GRPO. By optimizing the geometric mean of token-level
rewards and enlarging the clipping range of importance sampling ratio, GMPO not only alleviates the
instability in policy updates but also enhances exploration capabilities, as evidenced by a narrower
objective value range, more stable gradients, and consistently lower KL divergence with higher token
entropy throughout training. Extensive experiments on language-only and multimodal reasoning
benchmarks demonstrate that GMPO outperforms GRPO in terms of both stability and reasoning
capacity. This work sets the stage for future research on developing more reliable and scalable RL
systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learning
from human feedback in llms. In ACL, pp. 12248–12267, 2024.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 48(3):
334–334, 1997.

Minghan Chen, Guikun Chen, Wenguan Wang, and Yi Yang. Seed-grpo: Semantic entropy enhanced
grpo for uncertainty-aware policy optimization. arXiv preprint arXiv:2505.12346, 2025.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and Furu
Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758, 2025.

Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
reinforcement learning baseline for model reasoning. arXiv preprint arXiv:2504.02546, 2025.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, et al. Process reinforcement through implicit rewards. arXiv preprint
arXiv:2502.01456, 2025a.

Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
reasoning language models. arXiv preprint arXiv:2505.22617, 2025b.

Muzhi Dai, Shixuan Liu, and Qingyi Si. Stable reinforcement learning for efficient reasoning. arXiv
preprint arXiv:2505.18086, 2025a.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models. arXiv preprint arXiv:2505.07686, 2025b.

Lang Feng, Zhenghai Xue, Tingcong Liu, and Bo An. Group-in-group policy optimization for llm
agent training. arXiv preprint arXiv:2505.10978, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025a.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025b.

Yaru Hao, Li Dong, Xun Wu, Shaohan Huang, Zewen Chi, and Furu Wei. On-policy rl with optimal
reward baseline. arXiv preprint arXiv:2505.23585, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun. OlympiadBench: A
challenging benchmark for promoting AGI with olympiad-level bilingual multimodal scientific
problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), ACL, pp. 3828–3850, August
2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. NeurIPS, 35:3843–3857, 2022.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Siheng Li, Zhanhui Zhou, Wai Lam, Chao Yang, and Chaochao Lu. Repo: Replay-enhanced policy
optimization. arXiv preprint arXiv:2506.09340, 2025.

Zhihang Lin, Mingbao Lin, Yuan Xie, and Rongrong Ji. Cppo: Accelerating the training of group
relative policy optimization-based reasoning models. arXiv preprint arXiv:2503.22342, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Pan Lu, Ran Gong, Shibiao Jiang, Liang Qiu, Siyuan Huang, Xiaodan Liang, and Song-Chun Zhu.
Inter-gps: Interpretable geometry problem solving with formal language and symbolic reasoning.
arXiv preprint arXiv:2105.04165, 2021.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
model by scaling rl. Notion Blog, 2025.

Jiayi Pan. Countdown-tasks-3to4 dataset, 2024. Accessed: 2025-02-21.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.15115.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. In NeurIPS, volume 12, 1999.

Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
effective reinforcement learning for llm reasoning. arXiv preprint arXiv:2506.01939, 2025.

Siye Wu, Jian Xie, Yikai Zhang, Aili Chen, Kai Zhang, Yu Su, and Yanghua Xiao. Arm: Adaptive
reasoning model. arXiv preprint arXiv:2505.20258, 2025.

Changyi Xiao, Mengdi Zhang, and Yixin Cao. Bnpo: Beta normalization policy optimization. arXiv
preprint arXiv:2506.02864, 2025.

12

https://arxiv.org/abs/2412.15115


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jian Xiong, Jingbo Zhou, Jingyong Ye, and Dejing Dou. Aapo: Enhance the reasoning capabilities of
llms with advantage momentum. arXiv preprint arXiv:2505.14264, 2025a.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025b.

Yixuan Even Xu, Yash Savani, Fei Fang, and Zico Kolter. Not all rollouts are useful: Down-sampling
rollouts in llm reinforcement learning. arXiv preprint arXiv:2504.13818, 2025.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical
expert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin
Chen, Ruobing Xie, Yankai Lin, et al. Advancing llm reasoning generalists with preference trees.
arXiv preprint arXiv:2404.02078, 2024.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Jixiao Zhang and Chunsheng Zuo. Grpo-lead: A difficulty-aware reinforcement learning approach
for concise mathematical reasoning in language models. arXiv preprint arXiv:2504.09696, 2025.

Kaichen Zhang, Yuzhong Hong, Junwei Bao, Hongfei Jiang, Yang Song, Dingqian Hong, and Hui
Xiong. Gvpo: Group variance policy optimization for large language model post-training. arXiv
preprint arXiv:2504.19599, 2025a.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025b.

Xiaojiang Zhang, Jinghui Wang, Zifei Cheng, Wenhao Zhuang, Zheng Lin, Minglei Zhang, Shaojie
Wang, Yinghan Cui, Chao Wang, Junyi Peng, et al. Srpo: A cross-domain implementation of
large-scale reinforcement learning on llm. arXiv preprint arXiv:2504.14286, 2025c.

Xuandong Zhao, Zhewei Kang, Aosong Feng, Sergey Levine, and Dawn Song. Learning to reason
without external rewards. arXiv preprint arXiv:2505.19590, 2025.

Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen Xiong.
Easyr1: An efficient, scalable, multi-modality rl training framework. https://github.com/
hiyouga/EasyR1, 2025.

13

https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendices

A GRADIENT DERIVATION

To better understand why GMPO is more stable than GRPO, we analyze its robustness to tokens
with extreme importance sampling ratios from a gradient perspective. Specifically, we first derive the
gradient of the importance sampling ratio ρi,t(θ) with respect to the model parameter θ in Lemma
1. Building on this result, we then derive the gradients of GRPO and GMPO with respect to θ in
Lemmas 2 and 3. For clarity, the clipping range term is omitted in the gradient derivation.

Lemma: 1. The derivative of the importance sampling ratio is:

∇θρi,t(θ) = ρi,t(θ)∇θlog(πθ(oi,t|q, oi,<t)) (8)

Proof.

∇θρi,t(θ) = ∇θ
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)

=
1

πθold(oi,t|q, oi,<t)
∇θπθ(oi,t|q, oi,<t)

=
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
· 1

πθ(oi,t|q, oi,<t)
· ∇θπθ(oi,t|q, oi,<t)

= ρi,t(θ)∇θlog(πθ(oi,t|q, oi,<t))

Lemma: 2. The derivative of the GRPO objective is:

∇θJ ∗
GRPO(πθ)

∣∣∣
q,oi

=
1

G · |oi|

|oi|∑
t=1

ρi,t(θ) · Âi · ∇θlog(πθ(oi,t|q, oi,<t)) (9)

Proof.

∇θJ ∗
GRPO(πθ)

∣∣∣
q,oi

= ∇θ
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

ρi,t(θ)Âi

=
1

G · |oi|

|oi|∑
t=1

·Âi · ∇θρi,t(θ)

=
1

G · |oi|

|oi|∑
t=1

ρi,t(θ) · Âi · ∇θlog(πθ(oi,t|q, oi,<t))

Lemma: 3. The derivative of the GMPO objective is:

∇θJ ∗
GMPO(πθ)

∣∣∣
q,oi

=
1

G · |oi|

|oi|∑
k=1

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi| · Âi · ∇θlog(πθ(oi,k|q, oi,<k)) (10)
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Proof.

∇θJ ∗
GMPO(πθ)

∣∣∣
q,oi

= ∇θ
1

G

G∑
i=1

( |oi|∏
t=1

∣∣ρi,t(θ)Âi

∣∣) 1
|oi| · sgn(Âi)

= ∇θ
1

G

G∑
i=1

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi| · Âi

=
1

G · |oi|

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi|
−1

· Âi · ∇θ

|oi|∏
t=1

ρi,t(θ)

=
1

G · |oi|

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi|
−1

· Âi ·
|oi|∑
k=1

( |oi|∏
t=1,t̸=k

ρi,t(θ)
)
∇θρi,k(θ)

=
1

G · |oi|

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi|
−1

· Âi ·
|oi|∑
k=1

( |oi|∏
t=1

ρi,t(θ)
)
∇θlog(πθ(oi,k|q, oi,<k))

=
1

G · |oi|

|oi|∑
k=1

( |oi|∏
t=1

ρi,t(θ)
) 1

|oi| · Âi · ∇θlog(πθ(oi,k|q, oi,<k))

B THEORETICAL CONNECTIONS WITH GRPO

As the foundation of PPO (Schulman et al., 2017) and GRPO Shao et al. (2024), TRPO (Schulman
et al., 2015) establishes a monotonic improvement guarantee for general stochastic policies with
a trust region constraint. Consequently, under mild assumptions, GRPO inherits these desirable
properties from TRPO.

In this section, we show that, within a trust region, GMPO is an O(δ2) Lipschitz-stable perturbation
of GRPO, where δ denotes the maximum token-level ratio deviation across the sampled trajectories.
As a result, GMPO preserves GRPO’s monotonic-improvement and convergence guarantees up to
O(δ2) error (Bertsekas, 1997), making it a principled optimization objective.

Our argument proceeds in two steps. First, Lemma 4 quantifies the difference between GMPO
and GRPO when the policy update remains in a small trust region. Then, Lemma 5 shows that
this discrepancy is O(δ2), establishing that GMPO is a Lipschitz-stable perturbation of GRPO and
therefore inherits its local theoretical guarantees.

Lemma: 4. Let ρi,t(θ) =
πθ(oi,t|q,oi,<t)

πθold
(oi,t|q,oi,<t)

be the importance ratio and define the token-level

deviation δi,t(θ) = ρi,t(θ)− 1. The trajectory-level mean deviation is δi(θ) = 1
|oi|
∑|oi|

t=1 δi,t(θ), and

we define the population variance Vari(θ) =
1

|oi|
∑|oi|

t=1

(
δi,t(θ)− δi(θ)

)2
. Assume that the update

lies in a trust region where |δi,t(θ)| ≤ δ for all i, t and some δ > 0. Then, as δ → 0, we have

J ∗
GMPO(πθ) = J ∗

GRPO(πθ)− E

[
1

G

G∑
i=1

Âi

2
Vari(θ)

]
+O(δ3). (11)

Proof. The training objectives of GRPO (J ∗
GRPO(πθ)) and GMPO (J ∗

GMPO(πθ)) are defined as
(clipping range term and KL regularization term are omitted for clarity):

J ∗
GRPO(πθ) = Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

ρi,t(θ)Âi

 ,
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J ∗
GMPO(πθ) = Eq∼Q,{oi}G

i=1∼πθold
(·|q)

 1

G

G∑
i=1

( |oi|∏
t=1

∣∣ρi,t(θ)Âi

∣∣) 1
|oi| · sgn(Âi)

 .

Then we can deduce the difference between the two objectives as follows:

J ∗
GMPO(πθ) = E

[
1

G

G∑
i=1

( |oi|∏
t=1

∣∣ρi,t(θ)Âi

∣∣) 1
|oi| · sgn(Âi)

]

= E

[
1

G

G∑
i=1

Âi · exp
( 1

|oi|

|oi|∑
t=1

log(1 + δi,t(θ))
)]

= E

[
1

G

G∑
i=1

Âi · exp
( 1

|oi|

|oi|∑
t=1

[
δi,t(θ)−

1

2
δi,t(θ)

2 +O(δ3)︸ ︷︷ ︸
Taylor expansion of log(1+x)

])]

= E

[
1

G

G∑
i=1

Âi · exp
(
δi(θ)−

1

2

1

|oi|

|oi|∑
t=1

δi,t(θ)
2 +O(δ3)

)]

= E

[
1

G

G∑
i=1

Âi ·
(
1 + δi(θ)−

1

2

1

|oi|

|oi|∑
t=1

δi,t(θ)
2 +

1

2

(
δi(θ)−

1

2

1

|oi|

|oi|∑
t=1

δi,t(θ)
2)2 +O(δ3)︸ ︷︷ ︸

Taylor expansion of exp(x)

)]

= E

[
1

G

G∑
i=1

Âi ·
(
1 + δi(θ)−

1

2
Vari(θ)−

1

2
δi(θ)

2 +
1

2
δi(θ)

2 +O(δ3)
)]

= E

[
1

G

G∑
i=1

Âi ·
(
1 + δi(θ)−

1

2
Vari(θ) +O(δ3)

)]

= E

[
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

ρi,t(θ)Âi

]
− E

[
1

G

G∑
i=1

Âi

2
Vari(θ)

]
+O(δ3)

= J ∗
GRPO(πθ)− E

[
1

G

G∑
i=1

Âi

2
Vari(θ)

]
+O(δ3)

which proves the stated relation in Equation 11.

Lemma: 5. Assume that: (1) the update lies in a trust region where |δi,t(θ)| ≤ δ for all i, t and
some δ > 0, (2) the gradient of importance sampling ratio is bounded ||∇θρi,t(θ)|| ≤ Kδ, (3) the
advantage Âi is bounded |Âi| ≤ Amax. Then GMPO is an O(δ2) Lipschitz-bounded perturbation of
GRPO, which means that there exist constants C1, C2 > 0 such that for all θ in the trust region∣∣J ∗

GMPO(θ)− J ∗
GRPO(θ)

∣∣ ≤ C1 δ
2, (12)

∥∥∇θJ ∗
GMPO(θ)−∇θJ ∗

GRPO(θ)
∥∥ ≤ C2 δ

2, (13)

Proof. We start from the expansion in Lemma 4:

J ∗
GMPO(πθ) = J ∗

GRPO(πθ)− E

[
1

G

G∑
i=1

Âi

2
Vari(θ)

]
+O(δ3),

where

Vari(θ) =
1

|oi|

|oi|∑
t=1

(δi,t(θ)− δi(θ))
2, δi(θ) =

1

|oi|

|oi|∑
t=1

δi,t(θ), δi,t(θ) = ρi,t(θ)− 1.
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Table 5: Comparison of reward aggregators and their performance under same training settings.

Reward Aggregator AIME24 AMC MATH500 Minerva Oly. Avg.
Interquartile Mean 36.7 60.2 79.6 29.0 43.4 49.8
Arithmetic Mean 40.0 59.0 83.4 32.4 41.3 51.2
Harmonic Mean 36.7 56.6 83.4 36.0 45.9 51.7
Geometric Mean 43.3 61.4 82.0 33.5 43.6 52.7

Since the update is in a trust region with |δi,t(θ)| ≤ δ, we can bound the trajectory-level deviation:

|δi(θ)| =

∣∣∣∣∣ 1

|oi|

|oi|∑
t=1

δi,t(θ)

∣∣∣∣∣ ≤ 1

|oi|

|oi|∑
t=1

|δi,t(θ)| ≤ δ,

0 ≤ Vari(θ) =
1

|oi|

|oi|∑
t=1

(δi,t(θ)− δi(θ))
2 ≤ 1

|oi|

|oi|∑
t=1

(|δi,t(θ)|+ |δi(θ)|)2 ≤ 1

|oi|

|oi|∑
t=1

(2δ)2 = 4δ2.

Hence, the difference in objectives satisfies∣∣∣J ∗
GMPO(πθ)− J ∗

GRPO(πθ)
∣∣∣ = ∣∣∣∣∣E[ 1G

G∑
i=1

Âi

2
Vari(θ)

]
+O(δ3)

∣∣∣∣∣ ≤ 2Amaxδ
2 +O(δ3).

which proves Equation 12. To prove Equation 13, we differentiate the expansion:

∇θJ ∗
GMPO(πθ) = ∇θJ ∗

GRPO(πθ)− E

[
1

G

G∑
i=1

Âi

2
∇θVari(θ)

]
+O(δ2).

Now,

∇θVari(θ) = ∇θ
1

|oi|

|oi|∑
t=1

(δi,t(θ)− δi(θ))
2

=
2

|oi|

|oi|∑
t=1

(δi,t(θ)− δi(θ)) · (∇θδi,t(θ)−∇θδi(θ)).

Since |δi,t(θ)− δi(θ)| ≤ 2δ and ||∇θδi,t(θ)|| = ||∇θρi,t(θ)|| ≤ Kδ, we can bound

∥∇θVari(θ)∥ ≤ 2

|oi|

|oi|∑
t=1

2δ · 2Kδ = 8Kδ2.

Therefore, ∥∥∥∇θJ ∗
GMPO(πθ)−∇θJ ∗

GRPO(πθ)
∥∥∥ ≤ 4KAmaxδ

2 +O(δ2). (14)

which proves Equation 13.

C ADDITIONAL ABLATION STUDIES

As shown in Table 5, we compare the performance and importance sampling ratio ranges of several
reward aggregators, including a classic subset of power means (e.g., arithmetic, geometric, and
harmonic means) as well as the interquartile mean, formally defined in Definitions 1 and 2.

Among these choices, the geometric mean achieves the strongest overall performance. The arithmetic
mean used in GRPO is overly sensitive to large outliers, resulting in unstable importance sampling

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 5: The range of importance sampling ratio ρt(θ) with respect to different reward aggregators
and training steps. All curves are smoothed for clarity.

ratios and degraded optimization behavior. The harmonic mean, while yielding the most stable ratios,
performs worse than the geometric mean used in GMPO. Finally, the interquartile mean stabilizes the
arithmetic mean by filtering outliers. However, its performance falls short of the arithmetic mean,
indicating that extreme values might carry meaningful learning signals; overly aggressive trimming
removes useful information and, as a result, degrades model performance.

Definition 1 (Power Mean). Given non-negative samples {xi}ni=1 and an exponent p ∈ R, the power
mean is defined as

Mp(x1, . . . , xn) =

(
1

n

n∑
i=1

x p
i

)1/p
, p ̸= 0,

and in the limit case

M0(x1, . . . , xn) = exp

(
1

n

n∑
i=1

log(xi)

)
.

Special cases include:

M1 = Arithmetic Mean, M0 = Geometric Mean, M−1 = Harmonic Mean.

Definition 2 (Interquartile Mean). Given a sample {xi}ni=1 with order statistics x(1) ≤ · · · ≤ x(n),
the interquartile mean (IQM) is the trimmed mean that removes the lowest 25% and highest 25% of
the sample:

IQM =
1

⌊0.75n⌋ − ⌈0.25n⌉+ 1

⌊0.75n⌋∑
i=⌈0.25n⌉

x(i).

D PERFORMANCE ON AGENTIC REINFORCEMENT LEARNING TASKS

To better demonstrate the stability advantages of GMPO over GRPO, we conduct post-training
experiments on agentic reinforcement learning (RL) tasks. Following the experimental settings of
GiGPO (Feng et al., 2025) and utilizing Qwen2.5-1.5B-Instruct (Qwen et al., 2025) as the base model,
we train and evaluate LLM agents on ALFWorld (Shridhar et al., 2020). ALFWorld is an embodied
environment designed to assess multi-step decision-making, featuring 3,827 task instances across
six common household activity categories: Pick & Place (Pick), Examine in Light (Look), Clean &
Place (Clean), Heat & Place (Heat), Cool & Place (Cool), and Pick Two & Place (Pick2). All RL
training methods, including our method and baselines, use identical hyperparameter configurations
sourced from the verl-agents repo (Feng et al., 2025).

As shown in Table 6, GMPO achieves a significant 13.1% performance gain over GRPO on ALFWorld.
Furthermore, GMPO demonstrates comparable performance even when compared to GiGPO, a
method specifically designed for agentic RL tasks.
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Table 6: Comparison of GMPO and state-of-the-art methods on mathematical reasoning benchmarks.

Agentic Model Pick Look Clean Heat Cool Pick2 ALL
Closed-Source Model
GPT-4o 75.3 60.8 31.2 56.7 21.6 49.8 48.0
Gemini-2.5-Pro 92.8 63.3 62.1 69.0 26.6 58.7 60.3

Open-Source Model
Qwen2.5-1.5B-Instruct Qwen et al. (2025) 5.9 5.5 3.3 9.7 4.2 0.0 4.1
PPO-1.5B Schulman et al. (2017) 64.8 40.5 57.1 60.6 46.4 47.4 54.4
RLOO-1.5B Ahmadian et al. (2024) 88.3 52.8 71.0 62.8 66.4 56.9 69.7
GRPO-1.5B Shao et al. (2024) 85.3 53.7 84.5 78.2 59.7 53.5 72.8
GiGPO-1.5B Feng et al. (2025) 94.4 67.5 94.8 94.4 79.8 76.4 86.7
GMPO-1.5B (Ours) 93.1 78.6 81.0 88.2 82.1 89.5 85.9

Table 7: Training settings for GMPO and GRPO on Mixture-of-Experts models. Qwen2.5-200M† is
a small-scale language model adapted from the Qwen2.5 series (Qwen et al., 2025). “Bs / Mini Bs”
denote the batch size and mini-batch size used during training, respectively. “E./Act. E.” indicate the
total number of experts in the model and the number of experts activated per token, respectively.

Training dataset Eval dataset Base model Bs./Mini Bs. E./Act. E.

DeepScaleR MATH500 Qwen3-32B Yang et al. (2025) 128/64 128/8
CountDown CountDown(Val) Qwen2.5-200M† Bai et al. (2025) 256/128 8/1

E PERFORMANCE ON MIXTURE-OF-EXPERTS MODELS

To better demonstrate the stability advantage of GMPO over GRPO, we conduct post-training
experiments on Mixture-of-Experts (MoE) models, where stability is particularly critical. The
experiments are performed on the DeepScaleR (Luo et al., 2025) and CountDown (Pan, 2024)
datasets, with detailed training settings provided in Table 7. Specifically, DeepScaleR consists of
approximately 40,000 unique mathematics problem-answer pairs compiled from AIME (Li et al.,
2024), AMC (Li et al., 2024), Omni-MATH dataset, and Still dataset. CountDown consists of
arithmetic puzzles where models combine given numbers using basic operations to reach a target,
commonly used to test algorithmic reasoning and step-by-step problem solving. We reserve a subset
of the CountDown dataset for model evaluation.

CountDown. As shown in Figure 6(a)(c), we visualize the KL divergence and gradient norm during
GMPO and GRPO training. GMPO consistently maintains a lower KL divergence from the reference
model and a steadier gradient norm than GRPO. Consequently, GMPO achieves stable validation
scores, whereas GRPO collapses after about 250 steps, as shown in Figure 6 (e).

DeepScaleR. As shown in Figure 6 (b)(d), GMPO achieves higher entropy while a steadier gradient
norm than GRPO. Consequently, GMPO achieves higher validation scores as shown in Figure 6 (f).

F ANALYSIS OF THE NORMALIZATION FACTOR IN THE GEOMETRIC-MEAN

Unlike vanilla GRPO in DeepSeek-math (Shao et al., 2024), DeepSeek-R1 (Guo et al., 2025a)
maximizes the sequence-level reward (

∏|oi|
t=1 ρi,t(θ))Âi. The term

∏|oi|
t=1 ρi,t(θ) also appears in the

objective of GMPO (Equation 5). Unlike DeepSeek-R1, GMPO introduces an additional power-based
normalization term: “ 1

|oi|”, which we find is critical for GMPO objective. As shown in Figure 7, we
visualize the range of sequence-level importance sampling ratios from trajectories that yield positive
rewards during GRPO training. Without the normalization term, these sequence-level importance
sampling ratios can become very large, especially as the response length increases. This phenomenon
ultimately leads to unstable policy optimization, which in turn degrades the model’s final performance.
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Figure 6: Analysis of entropy, KL divergence, gradient norm, and validation score over training
steps on Mixture-of-Experts models. (a) GMPO maintains smaller KL divergence than GRPO. (b)
GMPO maintains higher entropy than GRPO. (c-d) GMPO maintains more stable gradient norm than
GRPO, suggesting more stable policy optimization. (e-f) GMPO achieves higher validation score
than GRPO.

Figure 7: Sequence-level importance sampling ratios from trajectories that yield positive rewards
during GRPO training. Without normalization, these ratios can become highly unstable, especially as
the response length increases.
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G USE OF LARGE LANGUAGE MODELS

During the writing process, we consulted large language models (LLMs) for word choice suggestions
to enhance readability. The final manuscript was carefully reviewed by humans to prevent any
potential inaccuracies or misleading information generated by the LLMs.
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