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ABSTRACT

Group Relative Policy Optimization (GRPO) has significantly enhanced the rea-
soning capability of large language models by optimizing the arithmetic mean
of token-level rewards. Unfortunately, GRPO is observed to suffer from unsta-
ble policy updates when facing tokens with outlier importance-weighted rewards,
which manifest as extreme importance sampling ratios during training. In this
study, we propose Geometric-Mean Policy Optimization (GMPO), with the aim to
improve the stability of GRPO through suppressing token reward outliers. GMPO
is plug-and-play—simply replacing GRPO’s arithmetic mean with the geometric
mean of token-level rewards, as the latter is inherently less sensitive to outliers.
GMPO is theoretically plausible—analysis reveals that both GMPO and GRPO are
weighted forms of the policy gradient while the former enjoys more stable weights,
which consequently benefits policy optimization and performance. Experiments
on multiple mathematical reasoning benchmarks show that GMPO-7B improves
the average Pass@ 1 of GRPO by up to 4.1%, outperforming many state-of-the-art
approaches. The code is enclosed in the supplementary material.
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Figure 1: Comparison between GRPO and our GMPO. GRPO optimizes the arithmetic mean of token-
level rewards while GMPO the geometric mean (left). When training with GRPO, the importance

sample ratio (p,(6) = %) frequently reaches extreme values, leading to unstable policy

updates. In contrast, GMPO enjoys more stable importance sample ratio with fewer outliers (right).

1 INTRODUCTION

As test-time scaling becomes a key research focus in the large language model community, recent post-
training methods have increasingly sought to extend chain-of-thought (CoT) generation to enhance
reasoning capabilities. Recent advances, such as Group Relative Policy Optimization (GRPO) (Shao
et al.| [2024), leverage multiple sampled responses per input prompt to compute relative rewards

and advantages (A in Figur left), leading to notable improvements in reasoning performance.
By maximizing the arithmetic mean of token-level rewards, GRPO has achieved strong results on
complex tasks such as mathematics, code generation, and multimodal reasoning.

During GRPO training, the importance-weighted reward for each token is given by p; (G)A, where

mo(0t]g,0<¢)

the importance sampling ratio p;(6) is defined as p;(0) = y- This ratio plays a key role

T w4 (0tlg o<t
in PPO (Schulman et al.| 2017) and GRPO, ensuring that poliéy updates are grounded in data from
the current policy 7y. Large deviations of p;(6) from 1 indicate excessive policy shifts, leading to
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Figure 2: Compared to the arithmetic mean, the geometric mean is more robust to outliers and yields
importance sampling ratio distributions with lower variance.

overly aggressive updates and instability. Constraining the ratio within a reasonable range is therefore
critical for stable and reliable training.

As shown in Figure [] (top left), objective of GRPO involves the arithmetic mean of token-level
rewards, which is sensitive to outliers (Figure[2). As training progresses (Figure[] right), the range
of p¢(#) under GRPO expands, leading to unstable policy updates and degraded model performance.
To mitigate this, GRPO applies a clipping range (€jow, €nign) to restrict large deviations of p;(6).
However, this constraint causes limited exploration and early deterministic policy, which can hinder
the scaling process (Yu et al.| [2025]).

To alleviate the instability while enhancing exploration capabilities of GRPO, we propose Geometric-
Mean Policy Optimization (GMPO), Figure |1| (bottom left). GMPO takes full advantages of the
geometric mean, which is inherently less sensitive to outliers and yields importance sampling ratio
distributions with lower variance (Figure2). During training (Figure[T] right), the range of GMPO ’s
pt(0) remains stable, exhibiting fewer extreme values than GRPO. With GMPO, we can maintain
stable policy optimization while allowing a larger clipping range to promote greater exploration.

To further emphasize the advantages of GMPO, we provide detailed theoretical and experimental
analyses to justify its training objective. First, we show that GMPO ’s objective produces a narrower
value range than GRPO’s, indicating reduced training variance and more stable policy updates.
Second, from a gradient perspective, GMPO provides a more balanced update signal and is more
robust to outlier values of the importance sampling ratio p;(#). Third, as training progresses, GMPO
maintains a smaller KL divergence from the pre-trained model and higher token entropy than GRPO,
indicating enhanced stability (via smaller KL) and greater policy exploration (via higher entropy).

Extensive experiments on language, multimodal, and agentic reasoning tasks demonstrate the advan-
tages of GMPO over GRPO. Specifically, on five mathematical reasoning benchmarks of varying
difficulty (AIME24 (Li et al.| 2024), AMC (Li et al.l [2024), MATHS500 (Hendrycks et al., [2021]),
Minerva (Lewkowycz et al.l [2022), and OlympiadBench (He et al.| [2024)), GMPO improves the
average Pass@1 accuracy by 4.1% (63.4% vs. 59.3%) with Qwen2.5-7B model compared to GRPO.
Besides, GMPO improves the Pass@1 accuracy by 2.1% (96.7% vs. 94.6%) on MATHS500 with a
Qwen-32B (Yang et al.| [2025) Mixture-of-Experts model. On Geometry3K multimodal reasoning
benchmark (Lu et al.,|2021), GMPO increases the average Pass@1 accuracy by 1.4% (54.7% vs.
53.3%) with Qwen2.5-VL-7B model. On ALFWorld agentic reasoning benchmark (Shridhar et al.|
2020), GMPO increases the overall accuracy by 13.1% (85.9% vs. 72.8%) with Qwen2.5-1.5B
model.

The contributions of this study are summarized as follows:

* We propose Geometric-Mean Policy Optimization (GMPQO), which stabilizes the GRPO algorithm
by maximizing the geometric mean of token-level rewards.

* We conduct thorough theoretical and empirical analyses, showing that GMPO improves stability
while enhancing exploration relative to GRPO.

* GMPO-7B consistently outperforms GRPO-7B across diverse reasoning scenarios, delivering
notable improvements in accuracy: 4.1% higher on five mathematical reasoning benchmarks, 1.4%
higher on the Geometry3K multimodal reasoning benchmark, and a remarkable 13.1% higher on
the ALFWorld agentic reasoning benchmark.
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2 BACKGROUND

2.1 RELATED WORKS

Reinforcement learning (RL) has become a key approach for post-training large language models
(LLMs), with verifiable rewards enabling significant reasoning improvements, as demonstrated by
DeepSeek-R1 (Guo et al.,|2025a). Building on Proximal Policy Optimization (PPO) (Schulman et al.|
2017), numerous variants have been developed to enhance efficiency and performance.

GRPO (Shao et al., 2024; (Guo et al.,|2025a) eliminates the need for computationally expensive value
models while maintaining strong results across mathematics, coding, and QA benchmarks. GPG
(Chu et al.| 2025)) further simplifies optimization by eliminating surrogate losses, critics, and KL
constraints. Several extensions address rollout selection or bias correction: SRPO (Zhang et al.|
2025c) uses history resampling, DAPO (Yu et al., [2025) employs dynamic sampling, Dr.GRPO
(Liu et al., 2025) mitigates length bias, and OPO (Hao et al., [2025) provides an optimal baseline
to reduce gradient variance. Reward shaping and advantage estimation are also actively explored.
EMPO (Zhang et al.,|2025b) incorporates semantic entropy, AAPO (Xiong et al.,[2025a)) introduces
advantage momentum, and BNPO (Xiao et al., |2025) adaptively normalizes rewards via a Beta
distribution. Seed-GRPO (Chen et al., |2025)) scales policy updates by question uncertainty, while
GRPO-lead (Zhang & Zuol |2025) addresses reward sparsity through length-dependent accuracy,
explicit penalties, and difficulty-aware reweighting. Efficiency-driven methods include CPPO (Lin
et al., 2025) (pruning low-advantage completions), S-GRPO (Dai et al.| |2025b) (early exit to cut
redundancy), Ada-GRPO (Wu et al.| 2025) (adaptive reasoning formats), and GVPO (Zhang et al.|
2025a)) (analytical KL-constrained weighting). GRPO-A (Dai et al., [2025a) dynamically switches
between length-penalized and length-agnostic rewards to avoid collapse. Further methods improve
rollout usage. PODS (Xu et al.} [2025) trains only on informative subsets of parallel rollouts, while
RePO (Li et al.| 2025) retrieves diverse off-policy samples via replay. RAFT (Xiong et al., 2025b)
trains solely on positive samples yet rivals GRPO. INTUITOR (Zhao et al.| 2025) eliminates external
rewards by using model self-certainty, and PRIME (Cui et al.l |2025a) provides a scalable RL
framework for reasoning. Exploration-focused techniques include the 80/20 rule (Wang et al., [2025),
which emphasizes high-entropy minority tokens, and entropy-based advantage augmentation (Cheng
et al.} [2025). Complementary to algorithmic advances, data-centric approaches have also proven
crucial. Open-Reasoner-Zero (Hu et al.l 2025) curates 129k diverse, high-quality samples with
curriculum learning. Eurus (Yuan et al.||2024) contributes a large-scale alignment dataset and novel
reward modeling.

Despite rapid progress, the stability of RL for LLMs remains rarely explored, even though it is
essential for developing reliable and scalable post-training systems. While several GRPO variants
enhance stability through better baseline estimation (OPO (Hao et al.| [2025)), reward shaping (GRPO-
lead(Zhang & Zuo, 2025))) or reward normalization (BNPO (Xiao et al., [2025))), the underlying
stability of the RL process remains a persistent challenge. Our work offers a complementary
perspective on these methods by introducing a robust aggregation operator for token-level rewards,
providing an orthogonal approach to achieving more reliable and scalable post-training systems.

2.2  PRELIMINARY

The Group Relative Policy Optimization algorithm is initially proposed in DeepSeek-math (Shao
et al.l 2024). The core idea is to estimate the baseline through a relative reward within a group
of rollouts, which reduces the computational cost of the critic model and improves the training
stability. Specifically, for each question ¢ from the training set (), GRPO samples a group of rollouts
{01, 02, , 0} from the old policy 7y, , and calculates the corresponding rewards {ry, 72, -+ ,7g}.
Then the policy model 7y is optimized by maximizing the following objective:

JGRrPO (7T9) = EqNQ,{Oi}?leﬂeom (la)
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where p; +(0) = . pi.+(0) represents the importance
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A; is the advantage of the i-th rollout and is calculated by normailizing the rewards that belong to
the same group according to GRPO. (€jow, €nign) are the clipping thresholds and Dk, (7 || mrer)
is the KL regularization term. Following Dr. GRPO (Liu et al.,|2025), we ignore Dky,(mg || myef)
for simplicity and memory saving. The objective of GRPO is equivalent to the arithmetic mean of
token-level rewards (We ignore the clipping range term for clarity), which can be formatted as:

o]

G
jéRPO(Tr‘g) q~Q {Ol}z lN‘n’gOld( lq) G Z |02| Zplt A . (2)

In practice, the rollouts are sampled from the old policy 7y,_,,. To approximate policy updates as if

they were based on rollouts sampled from the current policy 7y, the normalized advantage A; of each
rollout is weighted by the importance sampling ratio p; ¢(6).

3 GEOMETRIC-MEAN PoLICY OPTIMIZATION

As shown in Figure [T[right), we observe tokens with extreme importance sampling ratios during
GRPO training, indicating unreliable model updates. This instability arises because GRPO’s objective
is sensitive to outlier values of importance-weighted rewards, which drive aggressive policy updates
and further amplify the variance of importance sampling ratios.

To solve that, we propose Geometric-Mean Policy Optimization (GMPO), a stabilized variant of
GRPO. Instead of optimizing the arithmetic mean of token-level rewards as shown in Equation [2}
GMPO maximizes the geometric mean of them:

G |01‘

Jempo(m0) = B (0,4 ~ro,, (o) Z (H |pi.e(6) A; \)‘ g sen(d) |, )

Gz
where sgn(A 1) ensures the correct optimization direction, returning 1 when A; > 0 and -1 otherwise.
J&mpo (me) has a narrower value range than jéRPO (mp), which can be derived as:

1
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This narrower range suggests that the training process of GMPO experiences lower variance in the
optimization objective, which can be viewed as evidence of more stable policy updates. Compared to
Jerpro(mg), Jampo () is less sensitive to outliers because the geometric mean is inherently more
robust to outliers than the arithmetic mean. As a result, Janmpo (7g) provides more reliable policy
updates and maintains a more stable range of importance sampling ratios as shown in Figure [T{right).
By expanding Equation [3] and incorporating the clipping range term from PPO (Schulman et al
2017) at the token-level, we can derive the complete objective function of GMPO as follows:

Jampro (Wﬁ) = EqNQy{Oz‘}?ﬂN’T%ld (la)

1
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sgn(4;). (9

GMPO is straightforward to implement, and its pseudo-code is given in Algorithm[I] For numerical
stability, both the product and clipping operations in Equation [5]are carried out in log space.

To better understand why GMPO is more stable than GRPO, we show that GMPO is more robust
to tokens with extreme importance sampling ratios from a gradient perspective. Specifically, given
question ¢ and rollout o;, the gradients of J¢rpo () (Equation 2) and J\pe () (Equation 3)
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Algorithm 1 GMPO Training objective

def gmpo_loss (new_probs, old_probs, mask, advantage, epsilon=0.4):
wnn
new_probs [L, 1]: Token probabilities from the current model
old probs [L, 1]: Token probabilities from the old model
mask [L, 1]: Indicates valid (non-padded) tokens
advantage [1]: Advantage or normalized reward for the sequence
epsilon [1]: Controls the clipping range

mun

# Clipping at token-level & Clipping wider

new_log_probs, old_log_probs = torch.log(new_probs), torch.log(old_probs)

sgn_A = 1 if advantage > 0 else -

sgn_A_log_probs_diff = sgn_A * (new_log_probs - old_log_probs)
sgn_A_log_probs_diff2 = torch.clamp(sgn_A_log_probs_diff, -epsilon, epsilon)
sgn_A_log_probs_diff _min = torch.min(sgn_A_log_probs_diff, sgn_A_ log_probs_diff2)
log_probs_diff _min = sgn_A % sgn_A_log_probs_diff min

# Geometric-Mean Policy Optimization
importance_sampling_ratio = torch.exp(log_probs_diff min[mask].sum()/mask.sum())
loss = —advantage * importance_sampling_ratio

return loss

The maximum : log(p;(8)) The minimum : log(p.(6))
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Figure 3: The range of importance sampling ratio p;(6) with respect to different clipping range
and training steps. A wider range indicates less stable policy updates. Compared to GRPO with a
clipping range of (0.8, 1.2), GMPO demonstrates greater stability, even with a larger clipping range
of (794, e%4). All curves are smoothed for clarity.

with respect to the model parameter 6 are as followsﬂ

o]
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The term A; - Vglog(mg(0; ¢|q, 0i,<¢)) quantifies the influence of the generated token o; + on the
parameters 6, which corresponds to the standard policy gradient (Sutton et al.,[1999). The gradients of
both objectives are weighted sums of the policy gradients of the generated tokens, but with different
weights. For Jigpo (me), the weight of the token o; ; includes its individual importance sampling
ratio p; ¢(#). An extreme p; ;(0) will cause the token gradient to be too large or small, resulting in
aggressive policy updates. For jG*MPO(wg), the weight of the token o; ; includes the geometric mean

of all the ratios (HL 1|1 Di k(@)) 2 in the same sequence, provides a more balanced update signal
and is more robust to outlier values.

Beyond the proposed training objective, we demonstrate the effectiveness of the following key designs
in GMPO:

! Clipping range term is omitted for clarity. Detailed derivations are provided in Appendix@
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(i) Clipping at token-level. Unlike vanilla GRPO in DeepSeek-math (Shao et al., 2024)), DeepSeek-

R1 (Guo et al, 2025a) maximizes the sequence-level reward (Hlt‘):‘1 pi,t(H))/li and clips outliers at

the sequence-level, i.e., clip( Hltozll pit(0), €1ow, Ghigh)- The term H‘tozll pi.t(0) also appears in the
objective of GMPO (Equation [3|and [3)). However, instead of applying clipping at the sequence-level
as in DeepSeek-R1, we find it more effective to perform clipping at the token-level, as shown in
Equation[5] The rationale is as follows: (1) Clipping at the token-level is more stable than at the
sequence-level. As shown in Figure [3] the sequence-level clip (GMPO-seq-clip-(e =4, e*)) has
a larger importance sampling range than the token-level clip (GMPO (e~%4, ¢%4)), which makes
it more prone to create extreme gradients during optimization. (2) Sequence-level clipping is too
aggressive compared to token-level clipping. Once triggered, it sets the gradients of all tokens in the
sequence to zero, potentially discarding valuable update signals from informative parts of rollouts.

(ii) Clipping wider. As illustrated in DAPO (Yu et al., [2025), the clipping operation can limit
exploration and cause early deterministic policy, which hinders the scaling process. To encourage
exploration without sacrificing stability, DAPO uses a clip-higher strategy, which slightly expands
the clipping range (€low, €nigh) from (0.8,1.2) to (0.8,1.28). As shown in Figure [T} we visualize
the maximum and minimum importance sampling ratios at each training step for both GRPO and
GMPO. The key observations are: (1) As training proceeds, the importance sampling ratio spans
a wider range, indicating more aggressive policy updates and increased instability. (2) Compared
to GRPO, GMPO preserves a narrower range of importance sampling ratio, suggesting more stable
updates. (3) For GMPO, expanding the clipping range from (e=%2, %2) to (—o0, +-00) increases
instability in policy updates. Based on these findings, we balance training stability with exploration
by setting clipping thresholds (€iow, €nign) in Equation[5|to (=04, e4). This range is significantly
larger than both GRPO and DAPO, encouraging greater exploration and improving performance.

4 EXPERIMENT

4.1 IMPLEMENTATION DETAIL

Model. We evaluate the algorithm’s performance on both language-only, agentic, and multimodal
reasoning tasks. For language-only tasks, following Dr.GRPO (Liu et al., 2025}, we use Qwen2.5-
Math-1.5B (Yang et al.,[2024)), Qwen2.5-Math-7B, DeepSeek-R1-Distill-Qwen-7B (Guo et al.,[2025b)
and Qwen3-32B (Yang et al.,[2025) as our base models to assess performance on mathematical tasks.
For agentic tasks, we use Qwen2.5-Instruct-1.5B (Yang et al. |2024)) as the base model following
GiGPO (Feng et al.;[2025). For multimodal tasks, we use Qwen2.5-VL-Instruct-7B (Bai et al.} [2025)
as the base model to train GRPO and GMPO, and evaluate their performance on geometry reasoning
tasks.

Training. For language-only tasks, following the setup of Dr.GRPO (Liu et al., 2025), we use
MATH (Hendrycks et al.l 2021) Levels 3-5 as the training dataset for models under 7B, which
contains 8,523 mathematical problems. For each question, we generate 8 rollouts and cap the model’s
maximum response length at 3,000 tokens. During each RL training round, the old policy mg_,,
produces 1,024 rollouts, and the current policy 7y is updated 8 times with a batch size of 128. For
Mixture-of-Experts models, we use DeepScaleR (Luo et al., [2025) and CountDown (Panl 2024)) as
the training dataset, with further details provided in Appendix [El For multimodal tasks, we follow the
setup of EasyR1 (Zheng et al.| 2025) and use Geometry3K (Lu et al.,|2021) as the training dataset.
For agentic tasks, we follow the setup of GiGPO (Feng et al., 2025) for training and inference, with
further details provided in Appendix D] For mathematical problems, rewards are verifiable: “1” for
correct responses and “0” for incorrect ones. Our method is mainly compared with Dr.GRPO and
GRPO, under the same experimental setup as in Tables[I| and 2]

Evaluation. We evaluate our method on five mathematical reasoning benchmarks of varying dif-
ficulty following Dr.GRPO (Liu et al., |2025), one multimodal reasoning benchmark following
EasyR1 (Zheng et al [2025)), and one agentic reasoning benchmark: AIME24, which consists of
30 high-school level olympiad problems from the American Invitational Mathematics Examination
2024; AMC, containing 83 intermediate-difficulty multiple-choice problems; MATHS00, a subset
of 500 problems from the original MATH dataset covering algebra, geometry, and number theory;
Minerva (Lewkowycz et al.| [2022), featuring 272 graduate-level problems requiring multi-step rea-
soning; and OlympiadBench (Oly.) (He et al.l 2024), a collection of 675 high-difficulty olympiad
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Table 1: Comparison of GRPO and GMPO for language models (a), multimodal models (b), Mixture-
of-Experts models (c), and agentic models (d).

Language Model | AIME24 AMC MATH500 Minerva Oly. | Avg.
GRPO-1.5B |Shao et al.| (2024) 233 494 75.2 25.7 39.0 | 425
GMPO-1.5B (Ours) 20.0 53.0 77.6 30.1 38.7 | 439
GRPO-7B [Shao et al.|(2024) 40.0 59.0 83.4 324 413 | 512
GMPO-7B (Ours) 433 61.4 82.0 335 43.6 | 52.7
GRPO-7B [Shao et al.| (2024) (R1-Distill) 433 67.5 89.0 39.7 56.7 | 59.3
GMPO-7B (R1-Distill, Ours) 46.6 78.3 914 37.9 62.5 | 63.4
(a) Five mathematical reasoning benchmark.
Multimodal Model | Geometry3K MoE Model | MATH500
GRPO-7B (Shao et al.|[2024) 53.3 GRPO-32B (Shao et al., 2024) 94.6
GMPO-7B (Ours) 54.7 GMPO-32B (Ours) 96.7
(b) Geometry3K benchmark. (c) MATH500 benchmark.

Agentic Model | Pick Look Clean Heat Cool Pick2 | ALL

GRPO-1.5B|Shao et al.|(2024) | 85.3 53.7 84.5 782 59.7 535 72.8

GMPO-1.5B (Ours) 93.1 78.6 81.0 88.2 82.1 89.5 85.9

(d) ALFWorld benchmark.

Table 2: Comparison of GMPO and state-of-the-art methods on mathematical reasoning benchmarks.

Model | AIME24 AMC MATH500 Minerva Oly. | Avg.
Qwen2.5-Math-1.5B |Qwen et al.|(2025) 16.7 434 61.8 15.1 28.4 | 33.1
Qwen2.5-Math-1.5B-Instruct/Qwen et al.| (2025) 10.0 48.2 74.2 26.5 40.2 | 39.8
Oat-Zero-1.5B |Liu et al.| (2025) 20.0 53.0 74.2 25.7 37.6 | 42.1
GMPO-1.5B (Ours) 20.0 53.0 77.6 30.1 38.7 | 43.9
Qwen2.5-Math-7B |Qwen et al.| (2025) 16.7 38.6 50.6 9.9 16.6 | 26.5
SimpleRL-Zero-7B |Zeng et al.| (2025) 26.7 60.2 78.2 27.6 40.3 | 46.6
PRIME-Zero-7B [Cui et al.[(2025a) 16.7 62.7 83.8 36.0 409 | 48.0
OpenReasoner-Zero-7B @ 3k |Hu et al.|(2025) 13.3 47.0 79.2 31.6 44.0 | 43.0
OpenReasoner-Zero-7B @ 8k |Hu et al.|(2025) 13.3 54.2 82.4 31.6 479 | 459
Eurus-7B [Yuan et al.[(2024) 16.7 62.7 83.8 36.0 409 | 48.0
GPG-7B |Chu et al.{(2025) 333 65.0 80.0 342 424 51.0
Oat-Zero-7B|Liu et al.|(2025) 433 62.7 80.0 30.1 41.0 | 514
GMPO-7B (Ours) 433 61.4 82.0 335 43.6 | 52.7
Oat-Zero-7B |Liu et al. (2025) (R1-Distill) 50.0 74.7 89.6 37.5 55.7 | 61.5
GMPO-7B (R1-Distill, Ours) 46.6 78.3 914 37.9 62.5 | 634

problems. These benchmarks collectively cover a broad spectrum of problem types and difficulty
levels. Geometry3K (Lu et al.,2021)) is a visual question answering dataset that consists of a set of 601
questions focused on geometric problem-solving. ALFWorld (Shridhar et al.,[2020) is an embodied
environment designed to assess the ability of LLM agents to perform multi-step decision-making.
We primarily use the Pass@1 metric for comparative analysis. This metric evaluates whether a
single generated response to a problem meets the required criteria. For language tasks, we set the
temperature to 0.0 and generate one answer per question, following Dr.GRPO (Liu et al.;|2025)). For
the multimodal task, we set the temperature to 0.5 and generate 16 answers for each question.
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Table 3: Comparison of objectives and their performance under same training settings.

1 i (min [pt(le)A, clip(pe(0), etows enign) 4] )
2: {1 (@) AL} - sen(A)
3+ { i [T, pe(6)) A, clip(TTE, 16),ctows i) 4]} 7 - sgm(A)
4+ LTI, [min [p0(8) A, cli(p1(6), etow enign) A] |} ~1sgn(/1)
0)A

5: { \tozll |min [pt( ,clip(pe(0), €1ow, ehigh)A] |} tel .sgn(fl)
Training objectives | AIME24 AMC MATH500 Minerva Oly. | Avg.

0 (Pre-RL model) 16.7 38.6 50.6 9.9 16.6 | 26.5
1 (GRPO) 40.0 59.0 83.4 32.4 413 | 51.2
2 (without clip) 40.0 63.9 80.6 335 43.7 | 52.3
3 (with seq-clip) 46.6 57.8 80.2 34.2 443 | 52.6
4 (without norm) 36.6 67.4 82.0 29.8 44.1 | 52.0
5 (GMPO) 43.3 61.4 82.0 335 43.6 | 52.7

4.2 PERFORMANCE

Table present comprehensive evaluation of our GMPO approach against established reason-
ing methods across multiple benchmarks. Our method demonstrates consistent and substantial
improvements over strong baseline systems.

Language-only tasks. GMPO demonstrates consistent improvements across different base models.
With Qwen2.5-Math-1.5B, it achieves 43.9% average performance, outperforming GRPO by 1.4%
and Dr.GRPO by 1.8%. Similar gains are observed with Qwen2.5-Math-7B (+1.5% vs. GRPO,
+1.3% vs. Dr.GRPO) and DeepSeek-R1-Distill-Qwen-7B (+4.1% vs. GRPO, +1.9% vs. Dr.GRPO).
In the stability-sensitive Mixture-of-Experts (MoE) setting with Qwen3-32B, GMPO achieves 96.7%
accuracy on MATHS00, outperforming GRPO by 2.1%. Additional results for MoE models are
provided in Appendix [E]

Multimodal tasks. Using Qwen2.5-VL-Instruct-7B as the base model, GMPO surpasses GRPO by
1.4% on Geometry3K, highlighting its potential for broader application in multimodal tasks.

Agentic tasks. Using Qwen2.5-Instruct-1.5B as the base model, GMPO achieves a 13.1% per-
formance gain over GRPO on ALFWorld, demonstrating its potential in open-world agentic tasks.

4.3 ABLATION STUDIES

Table [3] presents an ablation study of the key modifications in GMPO relative to GRPO. The effect of
the clipping thresholds is presented in Table d] and training statistics are shown in Figure ]

Geometric mean vs. Arithmetic mean. The performance of GRPO and GMPO is reported in lines
1 and 5 of Table 3] respectively. GRPO achieves an average performance of 51.2% by optimizing the
arithmetic mean of token-level rewards. In contrast, GMPO improves this to 52.7%, outperforming
GRPO by 1.5%, by optimizing the geometric mean instead. In row 4 of Table 3] we test removing the
normalization term “l%” from the training objective, similar to Dr. GRPO (Liu et al., [2025). This
results in a 0.7% drop in average performance (52.0% vs. 52.7%), suggesting that the normalization
term is crucial for maintaining optimal performance.

Clipping strategy. The performance of GMPO without clip, with token-level clip, and with sequence-
level clip are shown in lines 2, 3, and 5, respectively. The corresponding ranges of importance
sampling ratios are shown in Figure labeled as GMPO (e=%4, 94), GMPO-seq-clip-(e -4, e24),
and GRPO(0.8, 1.2). Clipping at the sequence-level achieves similar performance to token-level clip-
ping but has a larger range of importance sampling ratios. Therefore, we use the token-level clipping
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Table 4: Influence of the clipping thresholds on model performance.

‘ Clipping thresholds (€1ow, €nigh) ‘ AIME24 AMC MATH500 Minerva Oly. ‘ Avg.

1 (e702,¢02) 36.6 60.2 84.2 357 450 | 524
2 (e704, €0 43.3 61.4 82.0 33.5 436 | 52.7
3 (708, e0®) 40.0 60.2 82.2 335 447 | 521
4 (—o0, +00) 40.0 63.9 80.6 33.5 43.7 | 52.3
(a) - MATH Level 3-Level 5 (b) - DeepScaleR-MoE
- —— GRPO(e~04, 04) o
—— GRPO 03

= = P

8“0 15 GMPO g GRPO

oo 50 — GMPO

M 005 | Entropy collapse due to aggressive policy updates

e ———
L
o 50 100 150 200 250 300 350 400 o 50 100 150 200 250
Training steps Training steps
(c) - MATH Level 3-Level 5 (d) - DeepScaleR-MoE
g | — GRPO 0s{ =—— GRPO
§ ©1 — GMPO E | — GMPOWW
50 S os
5 3 =}

2 3 | W

= % ~ & 04 - Unstable policy updates

g 10 o

0.2
o
0 20 40 60 80 100 0 50 100 150 200 250
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0.52 0.96

8 0.50 r\\ | [5)

o =094

Q048 8

@ @
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0.44 — GMPO 0.90 ] — GMPO
0.42
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0.550
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Figure 4: Analysis of entropy, KL divergence, gradient norm, validation score over training steps.
(a—b) GMPO maintains higher entropy than GRPO, whether trained on MATH Level 3-Level 5
or DeepScaleR dataset. (c-d) GMPO maintains more stable gradient and a smaller KL. divergence
from the pre-RL model than GRPO. (e-h) GMPO outperforms GRPO in validation scores across
language-only and multimodal tasks, for both dense and Mixture-of-Experts models.

strategy. Removing the clipping range term (GMPO (—o0, +00)) leads to excessive fluctuations in
the importance sampling ratio during training, which affects stability and results in a 0.4% decrease
in average performance (52.3% vs. 52.7%).

Influence of the clipping thresholds. To find the optimal clipping thresholds for GMPO, we train
the model under different clipping thresholds, as shown in Table ] and Figure[3] A larger clipping
range encourages exploration but introduces instability to optimization, which ultimately affects
performance. To balance stability and performance, we set (€iow, €nigh) in Equation[§]to (e 704, e0-4)
which has a stable range of importance sampling ratio and achieves the best performance.

Exploration capability. As noted in 2025b), language models in reinforcement learning
often trade off entropy for short-term performance. Premature entropy collapse can cause performance
to plateau. As shown in Figure[d (a-b), we visualize the mean token entropy of GMPO and GRPO
when training the policy model at MATH Level 3-Level 5 and the more challenging mathematical
dataset DeepScaleR. GRPO’s entropy drops rapidly during training, limiting exploration and causing

b}
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performance to plateau (Figure[d](e—g)). As shown in Figure[d](a), applying a wider clipping range for
GRPO temporarily encourages exploration, but entropy still declines quickly over time. This behavior
arises because GRPO optimizes the arithmetic mean of token-level rewards, which is sensitive to
outliers. Consequently, it can generate aggressive updates that sharply reduce entropy while offering
only marginal performance gains, hindering both exploration and scalability.

In contrast, GMPO employs the geometric mean, which is robust to outliers. This allows it to maintain
stable, moderate entropy, enabling consistent exploration throughout training and resulting in higher
rewards and better overall performance than GRPO, as shown in Figure 4{ (e-g).

Training stability. As shown in Figure[d (c-d), we visualize the gradient norm during training, and
the KL divergence between the current model 7y and the reference model mq¢. ot 1s initialized as
the base model before RL training. As training progresses, GMPO maintains stable gradient and a
low KL divergence from the reference model, indicating greater training stability and a lower risk
of overfitting. In contrast, GRPO exhibits unstable gradient and large KL divergence, suggesting
unstable learning and a greater tendency to drift away from the reference model.

Validation scores. Figure[d] (e-h) shows validation scores under different training settings. Figures
(e) and (f, g) correspond to Tables E], while results on CountDown are detailed in Appendix @ GMPO
consistently outperforms GRPO in validation scores across language-only (e, f, h) and multimodal
(g) tasks, for both dense (e, g) and Mixture-of-Experts models (f, h).

5 CONCLUSION

We propose GMPO, a stabilized variant of GRPO. By optimizing the geometric mean of token-level
rewards and enlarging the clipping range of importance sampling ratio, GMPO not only alleviates the
instability in policy updates but also enhances exploration capabilities, as evidenced by a narrower
objective value range, more stable gradients, and consistently lower KL divergence with higher token
entropy throughout training. Extensive experiments on language-only and multimodal reasoning
benchmarks demonstrate that GMPO outperforms GRPO in terms of both stability and reasoning
capacity. This work sets the stage for future research on developing more reliable and scalable RL
systems.

10
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Appendices

A GRADIENT DERIVATION

To better understand why GMPO is more stable than GRPO, we analyze its robustness to tokens
with extreme importance sampling ratios from a gradient perspective. Specifically, we first derive the
gradient of the importance sampling ratio p; ;(6) with respect to the model parameter 6 in Lemma
1. Building on this result, we then derive the gradients of GRPO and GMPO with respect to 6 in
Lemmas 2 and 3. For clarity, the clipping range term is omitted in the gradient derivation.

Lemma: 1. The derivative of the importance sampling ratio is:

V@Pi,t(e) = p“(@)Vglog(ﬂ'g (Oi,t lq, 0i,<t)) (®)

Proof.

79(0i.t]q, 0;
Vopia(0) = Vyel0ilt: 0ict)
T001a (01,¢]q, 05, <)

1
= VGWQ(Oi,tMa Oi,<t)
TOo1a (Oii'q? Oi,<t)
T (0it|q, 0i,<t) 1

= -V@T(@ 0; ¢4, 05
T001a (04,¢|0, 01, <t)  T0(0i¢|q; 05, <t) (0itlg; 0i.<t)

pit(0)Vglog(ma(0it]q, 0i,<t))

O
Lemma: 2. The derivative of the GRPO objective is:
los |
VoJareo(mo)| |0 2 Z/m - A; - Viglog(mg(0itlg, 0i.<t)) ©)
Proof.
1 & A
Vo Térpo () Vog > o] > pin(0)A;
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= A; - Vpi (0
a0l ; 003t (0)
1 |oi |
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O
Lemma: 3. The derivative of the GMPO objective is
1 [oi [oi ‘ 1|
VoTémpo(mo) o~ G o > (HPM(H)) Ay Vlog(mo(0iklg, 0i,<k))  (10)
ot =1 i=1
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Proof.
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B THEORETICAL CONNECTIONS WITH GRPO

As the foundation of PPO (Schulman et all,[2017) and GRPO [Shao et al,| (2024), TRPO
establishes a monotonic improvement guarantee for general stochastic policies with
a trust region constraint. Consequently, under mild assumptions, GRPO inherits these desirable
properties from TRPO.

In this section, we show that, within a trust region, GMPO is an O(?) Lipschitz-stable perturbation

of GRPO, where § denotes the maximum token-level ratio deviation across the sampled trajectories.

As a result, GMPO reserves GRPO’s monotonic-improvement and convergence guarantees up to
O(6?) error (Bertsekas, 1997 , 1997), making it a principled optimization objective.

Our argument proceeds in two steps. First, Lemma [4] quantiﬁes the difference between GMPO
and GRPO when the policy update remains in a small trust region. Then, Lemma [5] shows that
this discrepancy is O(0?), establishing that GMPO is a Lipschitz-stable perturbation of GRPO and
therefore inherits its local theoretical guarantees.

Lemma: 4. Let p; (0) = % be the importance ratio and define the token-level
o1a 01,114,010, <t

deviation §; ,(0) = p; (0) — 1. The trajectory—level mean deviation is 0;(6) = Io i Zlo’l 0;.1(0), and
we define the population variance Var;(0) = |O i Zloll (6:,0(0) — 52-(9)) . Assume that the update
lies in a trust region where |9, +(0)| < 6 for all i,t and some 6 > 0. Then, as 6 — 0, we have

Bl 3 v
=1 2 '

Témro(me) = Térpo () )| +O(8°). (11)

Proof. The training objectives of GRPO (J¢irpo (7)) and GMPO (T po (7)) are defined as
(clipping range term and KL regularization term are omitted for clarity):

|oi]

G
; 1
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[o;]
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Then we can deduce the difference between the two objectives as follows:
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which proves the stated relation in Equation [TT]
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Lemma: 5. Assume that: (1) the update lies in a trust region where |9; ((0)| < § for all i,t and
some & > 0, (2) the gradient of importance sampling ratio is bounded ||V p; +(0)|| < K0, (3) the
advantage A; is bounded |AZ\ < Amax. Then GMPO is an O(6?) Lipschitz-bounded perturbation of
GRPO, which means that there exist constants C,Cy > 0 such that for all 0 in the trust region

| Tenipo(0) — Tarpo(0)] < C1 6%,

HvﬁjéMPo(e) — VoTérpo(9)|| < C2 62,

Proof. We start from the expansion in Lemma 4}

(12)

(13)
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Table 5: Comparison of reward aggregators and their performance under same training settings.

Reward Aggregator | AIME24 AMC MATH500 Minerva Oly. | Avg.

Interquartile Mean 36.7 60.2 79.6 29.0 43.4 | 49.8
Arithmetic Mean 40.0 59.0 83.4 32.4 413 | 51.2
Harmonic Mean 36.7 56.6 834 36.0 459 | 51.7
Geometric Mean 43.3 61.4 82.0 33.5 43.6 | 52.7

Since the update is in a trust region with |J; ;(6)| < ¢, we can bound the trajectory-level deviation:

loi] [os ]
| i Z‘Szt S |5z t(9)| <9,
‘Oz| 1‘ —1
Ioz\ 1 Lol 1 Ll
0<Var(0) = 7> Z (0) = (0D < 22> (10:0) + 18:(0))* < 75> (20)" = 467
v =1 =1

Hence, the difference in objectives satisfies

{ Z “Var; (0 }—i—O(ég)

which proves Equation[T2] To prove Equatlon@ we differentiate the expansion:

Jampo (o) — Tarpo (T ’ < 2A450x8% + O(5%).

oiaro(m) = Vednrolmo) ~E| G i%ve%(@) +0W).
Now,
Ve Var;(0) = g: 54 ))2
|oi|
" il & Z il (©)) - (Voi,:(0) — Vdi(0)).

Since |9; +(0) — 0;(0)| < 26 and ||Vgd; +(0)|| = ||Vapsi:(0)|| < K6, we can bound

[oi]

[V Var; (0)| < o > 26 2K6 = 8K 4.
0;
t=1
Therefore,
|VoTeareo(ma) = VoTinpo(m0)|| < 4K Amaxd® + 0(52). (14)
which proves Equation[T3]

C ADDITIONAL ABLATION STUDIES

As shown in Table[5] we compare the performance and importance sampling ratio ranges of several
reward aggregators, including a classic subset of power means (e.g., arithmetic, geometric, and
harmonic means) as well as the interquartile mean, formally defined in Definitions[I] and 2}

Among these choices, the geometric mean achieves the strongest overall performance. The arithmetic
mean used in GRPO is overly sensitive to large outliers, resulting in unstable importance sampling
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Figure 5: The range of importance sampling ratio p;(6) with respect to different reward aggregators
and training steps. All curves are smoothed for clarity.

ratios and degraded optimization behavior. The harmonic mean, while yielding the most stable ratios,
performs worse than the geometric mean used in GMPO. Finally, the interquartile mean stabilizes the
arithmetic mean by filtering outliers. However, its performance falls short of the arithmetic mean,
indicating that extreme values might carry meaningful learning signals; overly aggressive trimming
removes useful information and, as a result, degrades model performance.

Definition 1 (Power Mean). Given non-negative samples {x;}!_, and an exponent p € R, the power
mean is defined as

n 1/p
1
Mp(xlvawn):<nzlxip> ’ p#o?
and in the limit case

Mo(x1,..., 2, —exp( Zlog xl>.

Special cases include:
My = Arithmetic Mean, My = Geometric Mean, M _1 = Harmonic Mean.

Definition 2 (Interquartile Mean). Given a sample {x;}}_, with order statistics x(1y < - -+ < 2(y,),
the interquartile mean (IQM) is the trimmed mean that removes the lowest 25% and highest 25% of
the sample:

1 10.75n |
IQM = N
M = 0 75n = To.25n] + 1 HOZ;W )

D PERFORMANCE ON AGENTIC REINFORCEMENT LEARNING TASKS

To better demonstrate the stability advantages of GMPO over GRPO, we conduct post-training
experiments on agentic reinforcement learning (RL) tasks. Following the experimental settings of
GiGPO 2025)) and utilizing Qwen2.5-1.5B-Instruct 2025)) as the base model,
we train and evaluate LLM agents on ALFWorld (Shridhar et al., [2020). ALFWorld is an embodied
environment designed to assess multi-step decision-making, featuring 3,827 task instances across
six common household activity categories: Pick & Place (Pick), Examine in Light (Look), Clean &
Place (Clean), Heat & Place (Heat), Cool & Place (Cool), and Pick Two & Place (Pick2). All RL
training methods, including our method and baselines, use identical hyperparameter configurations

sourced from the verl-agents repo (Feng et al. 2025)).

As shown in Table[6] GMPO achieves a significant 13.1% performance gain over GRPO on ALFWorld.
Furthermore, GMPO demonstrates comparable performance even when compared to GiGPO, a
method specifically designed for agentic RL tasks.
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Table 6: Comparison of GMPO and state-of-the-art methods on mathematical reasoning benchmarks.

Agentic Model | Pick Look Clean Heat Cool Pick2 | ALL
Closed-Source Model

GPT-40 753 60.8 312 56.7 21.6 49.8 | 48.0
Gemini-2.5-Pro 92.8 633 62.1 69.0 26.6 587 | 60.3

Open-Source Model
Qwen2.5-1.5B-InstructQwen et al.|(2025) | 5.9 5.5 3.3 97 4.2 0.0 4.1

PPO-1.5B Schulman et al.[{(2017) 64.8 40.5 57.1 606 464 474 | 544
RLOO-1.5B |Ahmadian et al.| (2024]) 88.3 528 71.0 628 664 569 | 69.7
GRPO-1.5B |Shao et al.[(2024) 853 5377 845 782 597 535 | 728
GiGPO-1.5B [Feng et al.| (2025) 944 675 948 944 79.8 764 | 86.7
GMPO-1.5B (Ours) 93.1 78.6 81.0 882 82.1 89.5 | 8.9

Table 7: Training settings for GMPO and GRPO on Mixture-of-Experts models. Qwen2.5-200M is
a small-scale language model adapted from the Qwen2.5 series (Qwen et al.,[2025). “Bs / Mini Bs”
denote the batch size and mini-batch size used during training, respectively. “E./Act. E.” indicate the
total number of experts in the model and the number of experts activated per token, respectively.

Training dataset Eval dataset Base model Bs./Mini Bs.  E./Act. E.
DeepScaleR MATHS500 Qwen3-32B |Yang et al.[(2025) 128/64 128/8
CountDown CountDown(Val) Qwen2.5-200M" |Bai et al.| (2025)) 256/128 8/1

E PERFORMANCE ON MIXTURE-OF-EXPERTS MODELS

To better demonstrate the stability advantage of GMPO over GRPO, we conduct post-training
experiments on Mixture-of-Experts (MoE) models, where stability is particularly critical. The
experiments are performed on the DeepScaleR (Luo et al., [2025) and CountDown (Pan, [2024)
datasets, with detailed training settings provided in Table[/| Specifically, DeepScaleR consists of
approximately 40,000 unique mathematics problem-answer pairs compiled from AIME (Li et al.
2024), AMC (L1 et al., 2024), Omni-MATH dataset, and Still dataset. CountDown consists of
arithmetic puzzles where models combine given numbers using basic operations to reach a target,
commonly used to test algorithmic reasoning and step-by-step problem solving. We reserve a subset
of the CountDown dataset for model evaluation.

CountDown. As shown in Figure[6{a)(c), we visualize the KL divergence and gradient norm during
GMPO and GRPO training. GMPO consistently maintains a lower KL divergence from the reference
model and a steadier gradient norm than GRPO. Consequently, GMPO achieves stable validation
scores, whereas GRPO collapses after about 250 steps, as shown in Figure [6] (e).

DeepScaleR. As shown in Figure [6](b)(d), GMPO achieves higher entropy while a steadier gradient
norm than GRPO. Consequently, GMPO achieves higher validation scores as shown in Figure [§] (f).

F ANALYSIS OF THE NORMALIZATION FACTOR IN THE GEOMETRIC-MEAN

Unlike vanilla GRPO in DeepSeek-math (Shao et al., [2024), DeepSeek-R1 (Guo et al., |2025a)

o] [oi]

maximizes the sequence-level reward ([ [,”*; pi (¢ ))A;. The term [ 1.2} pi,(0) also appears in the
objective of GMPO (Equation[5). Unlike DeepSeek-R1, GMPO introduces an additional power-based
normalization term: “ 1 ”, which we find is critical for GMPO objective. As shown in Flgure we
visualize the range of sequence -level importance sampling ratios from trajectories that yield positive
rewards during GRPO training. Without the normalization term, these sequence-level importance
sampling ratios can become very large, especially as the response length increases. This phenomenon
ultimately leads to unstable policy optimization, which in turn degrades the model’s final performance.
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Figure 6: Analysis of entropy, KL divergence, gradient norm, and validation score over training
steps on Mixture-of-Experts models. (a) GMPO maintains smaller KL divergence than GRPO. (b)
GMPO maintains higher entropy than GRPO. (c-d) GMPO maintains more stable gradient norm than
GRPO, suggesting more stable policy optimization. (e-f) GMPO achieves higher validation score
than GRPO.
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Figure 7: Sequence-level importance sampling ratios from trajectories that yield positive rewards
during GRPO training. Without normalization, these ratios can become highly unstable, especially as
the response length increases.
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G USE OF LARGE LANGUAGE MODELS

During the writing process, we consulted large language models (LLMs) for word choice suggestions
to enhance readability. The final manuscript was carefully reviewed by humans to prevent any
potential inaccuracies or misleading information generated by the LLMs.
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