
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TWINSHIELD: SECURE FOUNDATION MODEL EXECU-
TION BY UNIFYING TEES AND CRYPTO-PROTECTED
ACCELERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Transformer-based foundation models (FMs) have driven sig-
nificant developments across diverse AI tasks, facilitating their deployment in
security-sensitive domains. Despite their capabilities, FMs impose substantial in-
ference costs, driving reliance on third-party cloud infrastructure equipped with
high-performance computation resources. However, these cloud platforms can-
not be fully trusted and remain vulnerable to data breaches, introducing dual
confidentiality challenges: protecting user data from exposure and safeguarding
models against unauthorized access. Mainstream protection mechanisms lever-
age trusted execution environments (TEEs), where confidentiality and integrity
are enforced through hardware-based isolation, encryption, and integrity verifica-
tion. But executing inference entirely within TEEs incurs a significant overhead,
which is further exacerbated in large-scale FMs. Recent studies have proposed
schemes that combine TEEs with untrusted accelerators (e.g., GPUs) to offload
partial inference operations. However, prior offloading schemes cannot solve dual
confidentiality challenges in FM inference, since operations such as Attention
depend on dynamic operands that prevent secure precomputation and must re-
main within TEEs. Moreover, the communication overhead between TEEs and
accelerators grows dramatically with model scale, constituting a new system de-
sign challenge for FMs. To address these challenges, we propose TwinShield,
a framework that enables secure inference of Transformer-based FMs in hetero-
geneous TEE–accelerator systems with dual protection for both model and data.
TwinShield improves efficiency through protocol-level outsourcing, which se-
curely offloads the majority of operations to accelerators, and enhances through-
put via a system-level design that overlaps TEE preparation, communication,
and accelerator execution. Our evaluation on representative LLMs and VLMs
shows that TwinShield offloads about 87% of computations to accelerators and
achieves 3.3×–5.1× speedups over baselines. The code is publicly available at
https://anonymous.4open.science/r/Twinshield.

1 INTRODUCTION

With the rapid advances in Transformer architectures (Vaswani et al., 2017), they have been widely
applied in domains such as computer vision (Dosovitskiy et al., 2020) and natural language process-
ing (Devlin et al., 2018). Building on this architecture, large-scale foundation models (FMs) such as
LLaMA and Qwen have emerged. Benefiting from their remarkable capabilities, FMs are becoming
increasingly popular and are being deployed in many critical scenarios. However, these capabili-
ties are primarily driven by the enormous parameter sizes of such models, which consequently im-
pose significant computational demands. To address the challenges of model size and deployment
complexity, cloud-based Foundation Model-as-a-Service (FMaaS)1 has become a widely adopted
paradigm, enabling model owner to provide state-of-the-art FMs as inference services to end users
in a cost-effective manner.

1https://builder.aws.com/building-a-foundation-model-as-a-service-fmaas-on-aws

1

https://anonymous.4open.science/r/Twinshield/README.md
https://builder.aws.com/content/2hPu03PLX1F3UYpMzVwxi2Abk6O/building-a-foundation-model-as-a-service-fmaas-on-aws

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In the FMaaS, input data provided by clients, such as personal health information (e.g., sleep pat-
terns, pulse, heart rate) and financial records, is highly sensitive. Meanwhile, model providers del-
egate the hosting and execution of their FMs to the cloud, which constitutes valuable intellectual
property, since developing them requires enormous investments in data collection, domain exper-
tise, and computational resources for training. Despite leveraging the cloud’s powerful computation
resources, remote execution cannot be fully trusted, as adversaries may exploit privileged system
software (Pahima, 2022) or hardware vulnerabilities (Tung, 2021) to compromise privacy and com-
putation integrity. Therefore, guaranteeing the confidentiality of both client inputs and provider
models, as well as the integrity of inference, is imperative for FMaaS.

Twinshield

Trusted
CPU

Untrusted
Accelerator

Model developerUser Cloud service provider

Model

Heavy
computation

Encrypted
Results Attacker

Confused

Input

Output

Diagram1, version 3

Figure 1: Overview of our trusted foundation
models (FMs) inference, TwinShield.

Trusted Execution Environments (TEEs), such
as Intel SGX, provide a trusted environment to
safeguard the privacy and integrity of sensitive
computations. In systems with TEEs, the CPU
is treated as the root of trust. The processor
shields individual secure enclaves from priv-
ileged system software attacks via hardware-
enforced isolation. Furthermore, counter-mode
encryption and integrity tree-based data verifi-
cation are performed by the TEE hardware to
protect against breaches and tampering with en-
clave off-chip data. Accordingly, prior studies
have investigated the use of TEEs for secure
machine learning inference. For instance, Hanzlik et al. (2021) proposed to store ML models in
the secure enclave and perform inference completely in TEEs, hence protecting computation in-
tegrity and the confidentiality of all data. Unfortunately, deployment of the entire model inside
TEEs introduces extremely high overhead due to the limited resources of TEEs. Recent advances
in TEE-based accelerators (e.g., NVIDIA H100 confidential mode) attempt to mitigate this issue,
but they remain vendor-specific, technically restrictive, and provide weaker guarantees than CPU-
based TEEs. Subsequent works (Tramer & Boneh, 2018; Hashemi et al., 2021; Sun et al., 2023;
Shen et al., 2022) attempt to improve the performance of TEE-based model inference by outsourc-
ing heavy computations from TEEs to an untrusted external accelerator (e.g., GPUs, FPGAs and
ASICs), and verifying the computation integrity inside the enclave. While the aforementioned se-
cure outsourcing techniques enhance the system efficiency of TEE-only methods, they struggle to
outsource sufficient computations of Transformer-based FMs to untrusted accelerators from trusted
TEEs. The challenges are summarized as follows:

(I) Confidential Attention Computation: Traditional schemes for non-Transformer models rely on
additive secret sharing to outsource linear operationsW ·x by sending the masked input x+r to un-
trusted accelerator for W · (x+ r) and recovering the result by subtracting the precomputable W · r.
In contrast, Attention involves computations such as q · k and softmax(qk) · v, where both
operands are generated at runtime. This property precludes precomputation and renders existing
methods inapplicable. Moreover, prior studies in cloud settings (Tramer & Boneh, 2018; Hashemi
et al., 2021) focus solely on input protection while assuming the model resides with the server, leav-
ing it unprotected. Conversely, on-device approaches (Shen et al., 2022; Sun et al., 2023) focus on
model privacy but treat user inputs as local and leave them unprotected. We argue that both the
model and inputs must be protected simultaneously, a setting substantially more complex than safe-
guarding either alone. Achieving this dual protection requires obfuscating both components before
outsourcing any operation to untrusted accelerators, necessitating a redesign of secure computation
algorithms.

(II) Significant Communication: Foundation models contain billions of parameters, making acceler-
ator–TEE communication non-negligible and increasingly costly. For example, outsourcing a single
layer of LLaMA-8B can incur 3.38 GB of bidirectional data transfer. While prior works designed
for small models such as CNNs tolerate this overhead, they become inefficient when applied to
FMs. This scalability gap underscores the need for new system designs that mitigate the substantial
communication inherent in outsourcing large-scale FMs.

To address these challenges, we propose TwinShield (as shown in Figure 1), a framework for con-
fidential and verifiable inference on Transformer-based FMs. The model developer deploys the
model on the cloud to process the client input. TwinShield’s protocol enables most computations

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

to run on accelerators while ensuring data confidentiality and computation integrity. For Challenge
(I), we design a confidentiality-guaranteed outsourcing protocol, OutMult, which consists of two
components: OutAttnMult for Attention computations and OutLinearMult for weight–input
multiplications, both ensuring protection of model and input. For Challenge (II), our key insight
is that attention heads can be computed independently, which allows their workloads to be decom-
posed into smaller parallel tasks. By pipelining TEE computation, data transfers, and accelerator
computation across different heads, we effectively utilize the idle time. The proposed design, i.e.,
OutPipe, overlaps communication and computation, thereby improving hardware utilization and
increasing throughput by 52.4%. Through extensive experiments on various FMs, such as large
language models (LLMs) and vision language models (VLMs), we show that TwinShield achieves
substantial throughput improvements ranging from 3.3× to 5.1× for private verifiable inferences,
without sacrificing accuracy.

2 THREAT MODEL

We consider a cloud-based Foundation Model-as-a-Service (FMaaS) scenario with three parties: the
model developer, the cloud service provider, and the model user, as illustrated in Figure 1. The model
developer trains and then deploys a foundation model f : X → Y on the cloud service provider.
The user queries the model through the cloud service. The cloud service provider is equipped with a
trusted CPU TEE (e.g., Intel SGX) that serves as the root of trust, and an untrusted accelerator (e.g.,
GPU) that performs heavy computations but is not fully trustworthy.

An ideal protection scheme should satisfy the following security properties:

• Data Privacy: The cloud server cannot learn any information about the input x.

• Model Privacy: The cloud server cannot learn any information about the model F .

• t-Integrity: The probability that a user accepts an incorrect output ỹ ̸= F (x) from the cloud
server without aborting is less than t.

We treat the CPU TEE as the secure and reliable root of trust (Tramer & Boneh, 2018; Hashemi et al.,
2021), which can be verified through remote attestation. Our goal is to extend these guarantees to
outsourced computations executed on the untrusted accelerator.

We note that Intel SGX and other TEEs have been shown vulnerable to side-channel attacks and
denial-of-service attacks (Van Bulck et al., 2018; Van Schaik et al., 2019). These attacks have
been extensively studied, and a wide range of defense mechanisms have been proposed, including
constant-time implementations, oblivious memory primitives, and obfuscation techniques that con-
ceal both code and data access patterns (Brasser et al., 2019; Lou et al., 2021; Ahmad et al., 2019;
Wichelmann et al., 2024). Such defenses are orthogonal to the focus of this work, which addresses
different aspects of secure computation.

3 BACKGROUND AND RELATED WORK

3.1 TRANSFORMER-BASED FOUNDATION MODELS

Transformer architectures (Vaswani et al., 2017) have become the backbone of modern AI, achieving
state-of-the-art performance in natural language processing (Myers et al., 2024), computer vision,
and multi-modal tasks (Awais et al., 2025). Building on this architecture, large-scale foundation
models such as LLaMA (Touvron et al., 2023), Qwen (Yang et al., 2025) and Phi (Abdin et al.,
2024) have emerged, with billions of parameters and pretraining on massive corpora. These models
demonstrate strong generalization and transferability, enabling deployment across diverse applica-
tions, including dialogue systems, code generation, healthcare, and finance. The Attention is the
core module of the Transformer architecture, which can be formulated as:

Xl = Attention(Q,K,V) = SoftMax(QKT /
√
dh)V

whereW are the model parameters with a size of dh×dh, and the query, key, and value are computed
via Q = Xl−1W

Q
l , K = Xl−1W

K
l , and V = Xl−1W

V
l .

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Due to their massive scale, FMs are typically deployed in the cloud, where client inputs may con-
tain sensitive information and model parameters represent valuable intellectual property. This dual
confidentiality requirement necessitates protecting both user data and proprietary models during in-
ference. To address this challenge, we propose TwinShield, a framework that enables efficient and
secure execution of Transformer-based foundation models with dual protection guarantees.

3.2 TRUSTED EXECUTION ENVIRONMENTS (TEES)

Trusted Execution Environments (TEEs) such as Intel SGX provide secure enclaves that guarantee
confidentiality and integrity of computations by isolating code and data from the rest of the system,
including the operating system and hypervisor. These hardware-based protections have motivated
research into running deep learning inference inside TEEs to protect sensitive user data and pro-
prietary models. However, the high computational and memory demands of modern foundation
models make TEE inference inefficient, motivating the use of accelerators such as GPUs to improve
performance.

Limitations of Accelerators with TEEs. Most current AI infrastructures and cloud platforms lack
TEE-based accelerators, as extending accelerator support remains vendor-specific, technically chal-
lenging, and fraught with unresolved security concerns. Recent studies show that even NVIDIA
H100 GPUs with confidential mode fall short of the security guarantees offered by CPU-based
TEEs, underscoring the need for further refinement of secure accelerator designs (Gu et al., 2025;
Mohan et al., 2024). In addition, many data centers still rely on legacy GPUs, such as A100s and
V100s, making it necessary to explore how these widely deployed accelerators can perform confi-
dential computing. A common approach is to treat the CPU TEE as the root of trust and offload
heavy linear operations to untrusted accelerators through controlled interfaces. Yet, existing proto-
cols cannot simultaneously protect both inputs and model weights, and have been demonstrated only
on small-scale models such as CNNs. Extending secure support to key primitives in Transformer-
based FMs, particularly the attention mechanism, remains a pressing and unresolved challenge.

3.3 RELATED WORK

Table 1: OutSrc. stands for outsource and Cld Infer.
for cloud inference. • denotes supported, ◦ denotes
not supported, ⋆ denotes the user input privacy is
protected by on-device setting.

Method Model
Privacy

Input
Privacy

Inference
Integrity

Linear
OutSrc.

Attn
OutSrc.

Comm.
Optim.

FMs
Cld Infer.

Occlumency • • • ◦ ◦ ◦ ◦
Slalom ◦ • • • ◦ ◦ ◦
DarKnight ◦ • • • ◦ ◦ ◦
SOTER • ⋆ • • ◦ ◦ ◦
ShadowNet • ⋆ • • ◦ ◦ ◦
NNSplitter • ◦ ◦ • ◦ ◦ ◦
TSDP • ⋆ ◦ • ◦ ◦ ◦
GroupCover • ⋆ • • ◦ ◦ ◦

TwinShield • • • • • • •

We compare TwinShield with several lines
of related work in Table 1. The first cate-
gory executes all computations inside TEEs,
with representative work such as Occlu-
mency (Lee et al., 2019). While this ap-
proach guarantees strong security, it suffers
from significant efficiency loss due to the lim-
ited computational resources available within
TEEs. The second category focuses on pro-
tecting user input data while outsourcing lin-
ear operations to untrusted hardware. Repre-
sentative examples include Slalom (Tramer &
Boneh, 2018) and DarKnight (Hashemi et al.,
2021), which assume that the model belongs
to the cloud provider and therefore do not
address model confidentiality. A third category of work, mainly in on-device scenarios (e.g.,
SOTER (Shen et al., 2022), ShadowNet (Sun et al., 2023), and others (Zhou et al., 2023; Zhang
et al., 2023; Liu et al., 2023; Zhang et al., 2022; Sun et al., 2025; Zhang et al., 2024)), shifts the
focus to model privacy while assuming user inputs remain local and thus unprotected. Since these
protocols do not protect input privacy during computation, they are not applicable to cloud FM
inference setting.

Our work, TwinShield, is the first framework designed for dual protection of model and input in
the cloud setting. Moreover, it is the first to efficiently support large-scale FM inference with both
secure outsourcing of attention computations and optimized TEE-accelerator communication, two
challenges unique to FM inference that prior approaches did not address.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 TwinShield DESIGN

Figure 2 provides an overview of TwinShield, our proposed framework for secure inference. Since
the majority of the computation in Transformer-based Foundation Models comes from large-scale
matrix multiplications (Hoffmann et al., 2022), we propose OutMult which includes OutAttnMult
(in Sec. 4.1) and OutLinearMult (in Sec. 4.2). Then, we propose OutPipe in Sec. 4.2 to overlap
computation and communication, further improving throughput. By outsourcing these bottlenecks,
we can significantly improve overall efficiency and enable secure Transformer inference at scale.

Embedding

~𝟐 × 𝑭𝒂𝒔𝒕𝒆𝒓

Secret Mask

OutLinearMult

~𝟒 × 𝑭𝒂𝒔𝒕𝒆𝒓

Secret Mask

෩𝑸
OutAttnMult OutAttnMult OutLinearMult

User Input

෩𝑲

Secret Mask Secret Mask

𝑽

Encrypted Flow

Data Flow

Model Provider

Trusted Inference

Input Output

User

C
lo

u
d

 S
e

rv
ic

e
 P

ro
vi

d
e

r

OutPipe

Accelerator

TEE

Foundation Model

~𝟐 × 𝑭𝒂𝒔𝒕𝒆𝒓

~𝟐 × 𝑭𝒂𝒔𝒕𝒆𝒓 ~𝟒 × 𝑭𝒂𝒔𝒕𝒆𝒓

SoftMaxVerify

Recover Verify

Recover

Verify

Recover

Verify

Recover

Figure 2: Overview of TwinShield. The model developer deploys a foundation model to the cloud
service provider, which hosts a trusted CPU TEE and an untrusted accelerator. The user submits
input to the trusted TEE, which masks sensitive inputs and model parameters before outsourcing
heavy computations to the untrusted accelerator. We propose three secure outsourcing protocols:
OutLinearMult for linear layers, OutAttnMult for attention operations, and OutPipe for pipelined
communication and computation.

4.1 OUTSOURCE ATTENTION OPERATION: OutAttnMult

Unlike linear operations between weights and inputs, Attention in FMs involves two variable
operands, namely the multiplications between Q and KT , and between SoftMax(QKT) and V .
This variability prevents TEEs from precomputing masked products, as done in prior work (Tramer
& Boneh, 2018; Hashemi et al., 2021; Sun et al., 2023), since the operands are not known before
inference. Consider the multiplication QKT : the TEE masks Q with RQ and KT with RTK , and
outsources (Q+RQ)(K

T +RTK) to the accelerator. The result expands to

QKT +RQK
T +QRTK +RQR

T
K

To recover QKT , the TEE must subtract the additional terms. Among them, only RQRTK is pre-
computable, since the other terms depend on the unknown matrices Q or KT .

We observe that the un-precomputable terms, QRTK and RQKT , each involves one predetermined
mask, which seems to allow outsourcing through precomputation. For example, the TEE could
outsource (Q+RQ) ·RTK and then recoverQRTK by subtracting the precomputedRQRTK . However,
this naı̈ve strategy compromises security: exposing RTK enables the accelerator adversary to infer
KT by simply subtracting it from the masked value KT +RTK in the first outsourcing round.

To prevent this risk, we propose a Scale-then-Permute strategy. Rather than exposing RTK directly,
the TEE embeds RTKB into the masked matrix KT + RTK with a column-wise permutation, where
B is a scalar matrix. This achieves two goals: (i) it hides the distinction between KT + RTK and
RTKB, so an attacker cannot recover KT by simple subtraction without knowing the secret B; and
(ii) it allows the accelerator to compute (Q+RQ)(K

T +RTK) and (Q+RQ)R
T
KB in a single round,

avoiding extra communication. The TEE en restores QRTK by applying the inverse permutation and
scaling withB−1, and subtractingRQRTK . An analogous construction applies symmetrically toRQ.

Workflow and Complexity Analysis. The OutAttnMult protocol, illustrated in Figure 3, proceeds
in two phases. In the offline phase, the TEE samples masks RQ and RK , and generates their scaled
variants using diagonal matrices A and B. In the online phase, the TEE embeds and permutes
the masked inputs to construct Q̃ ∈ F2m×n and K̃T ∈ Fn×2p with additions and permutations of
cost O(mn + np). The accelerator then performs the dominant multiplication Q̃K̃T . Finally, the
TEE recovers the result using four scalings and five additions, also bounded by O(mn + np). In
summary, OutAttnMult reduces the TEE workload from O(mnp) multiplications to only O(mn+
np) lightweight scalar operations, while offloading the O(mnp) multiplication to the accelerator.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Security Analysis. We model the accelerator as an adversary A interacting with a TEE oracle O.
For each query, O returns Q̃ = perm(Q+RQ,ARQ;λQ) and K̃T = perm(KT+RTK ,RTKB;λK),
where masks, scalings, and permutations are secret. Since Q+RQ forms a one-time pad (Bellare &
Rogaway, 2001), its distribution is indistinguishable from ARQ in the adversary’s view, while the
scale-then-permuted embedding of RTKB prevents subtraction attacks on KT . Thus, no adversary
running in probabilistic polynomial time (PPT) can recover Q with non-negligible advantage. The
security level can be estimated as log2

((
2m
m

)
m! |F|m

)
(scalar 8-bit, i.e., |F| = 2ℓ with ℓ = 8); for

a typical input length m = 512, this is ≈ 8,990 bits, far exceeding 128/256-bit security; further
details appear in Appendix D.

TEE Accelerator

Offline:

𝑅𝑄 ← 𝐹𝑚×𝑛; 𝑅𝐾
𝑇 ← 𝐹𝑛×𝑝; 𝐴 = 𝑑𝑖𝑎𝑔(𝑎1, . . . , 𝑎𝑚), 𝐵 = 𝑑𝑖𝑎𝑔(𝑏1, . . . , 𝑏𝑝)

𝑃𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒:

෨𝑄 = 𝑝erm
𝑄 + 𝑅𝑄

𝐴𝑅𝑄
, 𝜆𝑄

෪𝐾𝑇 = 𝑝𝑒𝑟𝑚(𝐾𝑇 + 𝑅𝐾
𝑇 𝑅𝐾

𝑇 𝐵 , 𝜆𝐾)

❶ Embedded Outsource

❷ Recovery

=
(𝑄 + 𝑅𝑄)(𝐾𝑇 + 𝑅𝐾

𝑇), 𝑄 + 𝑅𝑄 𝑅𝐾
𝑇𝐵

𝐴𝑅𝑄 𝐾𝑇 + 𝑅𝐾
𝑇 , 𝐴𝑅𝑄𝑅𝐾

𝑇𝐵

෫𝑄𝐾𝑇 = ෨𝑄 ⋅ ෪𝐾𝑇

෨𝑄

෪𝐾𝑇

𝑆𝑎𝑚𝑝𝑙𝑒:

𝐴𝑅𝑄, 𝑅𝐾
𝑇 𝐵

𝑝𝑒𝑟𝑚 ෫𝑄𝐾𝑇 , 𝜆𝑄
−1, 𝜆𝐾

−1 =
𝑇1, 𝑇2

𝑇3, 𝑇4

𝑄𝑅𝐾
𝑇 = 𝑇2 ⋅ 𝐵−1 −𝑅𝑄𝑅𝐾

𝑇

𝑅𝑄𝐾𝑇 = 𝐴−1 ⋅ 𝑇3 − 𝑅𝑄𝑅𝐾
𝑇

TEE Scaler Multiplication and Addition

TEE Scaler Multiplication and Addition

𝑄𝐾𝑇 = 𝑇1 − 𝑅𝑄𝑅𝐾
𝑇 − 𝑄𝑅𝐾

𝑇 − 𝑅𝑄𝐾𝑇 # TEE Scaler Addition

TEE Scaler Multiplication

𝑅𝑄𝑅𝐾
𝑇 = 𝐴−1 ⋅ 𝑇4 ⋅ 𝐵−1 # TEE Scaler Multiplication

Figure 3: Protocol of OutAttnMult.

TEE Accelerator
Offline:

����������:

� = �erm � + ��
���

 , ��

� = ����(� + �� , ��)

❶ Embedded Outsource

❷ Recovery

= (� + ��)(� + ��)
���(� + ��)

�� = � ⋅ �

�

�

������:

���

���� ��, ��
−1, ��

−1 = �1
�2

�� = �1 − �−1 ⋅ �2 − ���

TEE Scaler Multiplication and Addition

�� ← ��×�; �� ← ��×�; � = ����(�1, . . . , ��)

Figure 4: Protocol of OutLinearMult.

4.2 OUTSOURCE LINEAR OPERATIONS: OutLinearMult

Existing outsourcing schemes such as Slalom (Tramer & Boneh, 2018) protect only the input in
linear computations Y =WX: the TEE blindsX with a random maskRX and precomputesWRX
offline before outsourcing (X +RX)W . This ensures input privacy but leaves the weight matrix W
exposed, i.e., no dual protection. A natural extension is to also mask the weights by W + RW , so
the accelerator computes (W +RW)(X +RX), and the TEE recovers WX by subtracting WRX ,
RWX , and RWRX . However, as in attention outsourcing, RWX cannot be precomputed since X
is unknown before inference. One option is to reuse the OutAttnMult protocol, but the linear case
is simpler because W is known in advance. This allows us to design a more lightweight protocol,
OutLinearMult (in Figure 4). Here, the TEE integratesRW withW +RW via a Scale-then-Permute
strategy, analogous to handling RQ and Q + RQ in OutAttnMult while precomputable terms such
as WRX are handled offline.

Workflow and Complexity Analysis. As shown in Figure 4, the protocol proceeds in two phases.
In the offline phase, the TEE samples a weight mask RW ∈ Fm×n and an input mask RX ∈ Fn×p,
selects a diagonal scalar matrixC ∈ Fm×m, and precomputesWRX andCRW . In the online phase,
the TEE masks and permutes the inputs to obtain W̃ ∈ F2m×n and X̃ ∈ Fn×p, and outsources them
to the accelerator. The accelerator then performs the dominant multiplication W̃ X̃ with complexity
O(mnp). Finally, in the recovery stage, the TEE applies one scaling and a few additions, with total
cost O(mp). Altogether, OutLinearMult reduces the TEE workload from O(mnp) multiplications
in vanilla secure linear computation to only O(mn+mp) lightweight operations, while offloading
the main O(mnp) cost to the accelerator.

Security Analysis. Similar to the protocol of OutAttnMult, we defer the details to the Appendix D.

t-Integrity Guarantee. Following Slalom (Tramer & Boneh, 2018), TwinShield verifies out-
sourced multiplications using Freivalds’ algorithm (Freivalds, 1977). Given matrices A,B and a
candidate result C, the TEE samples a random vector s and checks whether Cs = A(Bs). If

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

C ̸= AB, the probability of passing is at most 1/|F|, which drops to t = (1/|F|)k after k repeti-
tions. Each check costs only O(n2), much cheaper than recomputing the O(n3) product inside the
TEE, thus providing efficient and tunable t-Integrity for outsourced linear operations.

4.3 OUTSOURCE COMMUNICATION-COMPUTATION OPTIMIZATION: OutPipe

Existing TEE offloading schemes adopt a serial workflow: inputs are transferred to the ac-
celerator, computation is performed, and results are copied back to TEE for post-processing.

OutPipe
OutMult
TEE-Only

0 100 200 300
Inference Time (Seconds)

Linear Others
Communication

Figure 5: Inference Breakdown.

This design was acceptable for small models such as CNNs,
however, foundation models with billions of parameters im-
pose significant communication overhead. As shown in
Figure 5, after outsourcing linear and attention computa-
tions via OutMult, the bottleneck shifts from computation to
communication. This arises because in the serial workflow,
the TEE must wait for all accelerator results (and vice versa)
before proceeding, leaving both sides idle during transfers.
As demonstrated in Figure 6 (upper), the TEE remains idle during data transfers and accelerator
computation.

To address this challenge, we propose OutPipe, a pipelined workflow that overlaps com-
munication and computation to eliminate the idle time of the serial design. The key ob-
servation is that workloads such as multi-head attention exhibit independence across heads,
which we group into compute blocks. Each block proceeds through four pipeline stages:
preparation inside the TEE, data transfer from TEE to accelerator, computation on the ac-
celerator, and data transfer back to the TEE. This design leverages accelerators that sup-
port concurrent copy-and-compute (NVIDIA, 2025; AMD, 2025). To coordinate the TEE
and the accelerator, we organize their communication through a shared ring buffer divided
into slots. Each slot holds one compute block together with a state flag (READY or DONE).

Trans(to Acc.)

Accelerator

Trans(to TEE)

TEE Pre-process

TEE Post-process

Trans(to Acc.)

Trans(to TEE)

Accelerator

TEE Speedup

TEE Wasted Idle Time

Figure 6: Comparison of baseline (upper) and pro-
posed OutPipe (bottom).

The TEE fills a free slot and marks it READY,
while the accelerator processes ready slots and
marks them DONE once finished. This mech-
anism decouples the two sides: the TEE can
continue preparing the next block without wait-
ing, and the accelerator can continuously fetch
new work. As shown in Figure 6 (bottom),
the pipelined design achieves fine-grained over-
lap across TEE pre-processing, communica-
tion, accelerator computation, and TEE post-
processing. Once the TEE finishes pre-
processing the first block, it immediately starts
transferring it to the accelerator while continuing to prepare the next block. Once the first block
arrives, the accelerator begins computation in parallel with the ongoing transfer of the second block.
When the accelerator completes a block, the results are directly transferred back to the TEE while
the accelerator proceeds with the next computation. This staged handoff ensures that all components
(TEE, communication channels, and accelerator) remain active simultaneously, thereby maximizing
utilization and throughput.

5 EXPERIMENTAL METHODOLOGY

In this section, we introduce the experimental methodology.

Models. We evaluate our approach on four models from three LLM families: LLaMA3 (3B and 8B),
Qwen3 (14B), and Phi-4 (14B). In addition to these LLMs, we also include two vision-language
models, Qwen2.5-VL (7B) and Pixtral (12B) to cover multimodal tasks.

System Setup and Implementation. We conducted the TwinShield implementation on a server
equipped with an Intel(R) Xeon(R) Gold 6342 CPU running at 2.8GHz and 512GB DRAM, together
with an NVIDIA A40 GPU with 48GB VRAM. TEE enclave is built on the Gramine LibOS, which
runs unmodified applications inside Intel SGX. Communication between TEE and the accelerator is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

enabled via a shared memory region, with EDMM (Enclave Dynamic Memory Management) acti-
vated to support dynamic enclave resizing and thread management. Since our threat model excludes
denial-of-service attacks, we assume reliable communication between the CPU and the accelera-
tor. Furthermore, our matrix computation and model inference framework builds upon ggml and
llama.cpp, which provide an efficient and lightweight large language model inference pipeline.

Quantization. TwinShield adopts a quantization strategy for both activations and model weights,
drawing on the approaches of Slalom Tramer & Boneh (2018) and DarKnight Hashemi et al. (2021).
Specifically, it converts values from floating-point to fixed-point by selecting a fractional bit number
l (we use l = 8 in our implementation), scaling values by 2l, and rounding to integers. For negative
values, a correction p is applied to adjust them into the field Zp, where the prime is chosen as p =
224 − 3. The TEEs then outsource the subsequent computations to the GPUs, and later dequantize
the results to recover the original values.

6 EXPERIMENTAL RESULTS

6.1 END-TO-END PERFORMANCE

Comparison with baseline methods. We evaluate the proposed TwinShield and TEE-only base-
line (Hanzlik et al., 2021) across four large-scale foundation models, including LLaMA3-3B,
LLaMA3-8B, Qwen3-14B and Phi4-14B. To ensure fairness, both methods are tested under the
same setting, using identical models and adopting the same quantization scheme. As shown in Fig-
ure 7, TwinShield consistently outperforms the TEE-only baseline across different pre-filling token
lengths. For LLaMA3-3B, TwinShield achieves a 3.33× speedup at 2,048 tokens, while the gains
increase to 4.13× for LLaMA3-8B, 5.03× for Qwen3-14B, and 5.11× for Phi4-14B. These results
demonstrate that the benefit of TwinShield scales with model size, effectively reducing the overhead
of secure inference from hundreds of seconds to a fraction of the baseline.

256 512 768 1024 1280 1536 1792 2048

0
20
40
60
80

100
120

Ti
m

e
(S

)

Token Number

 TEE-Only
 TwinShield

x3.33

(a) LlaMA3-3B (b) LlaMA3-8B (c) Qwen3-14B (d) Phi4-14B

256 512 768 1024 1280 1536 1792 2048
0

50
100
150
200
250
300

Ti
m

e
(S

)

Token Number

 TEE-Only
 TwinShield

x4.13

256 512 768 1024 1280 1536 1792 2048
0

150
300
450
600
750
900

Ti
m

e
(S

)

Token Number

 TEE-Only
 TwinShield

x5.03

256 512 768 1024 1280 1536 1792 2048

0
150
300
450
600
750
900

Ti
m

e
(S

)

Token Number

 TEE-Only
 TwinShield

x5.11

Figure 7: Prefilling latency comparison between TEE-only and TwinShield across four foundation
models under varying token lengths. TwinShield consistently achieves multi-fold speedups, with
gains increasing alongside model size and input token lengths.

1024 2048 3072 4096
0

1500
3000
4500
6000

Ti
m

e
(s

)

Token Number

TEE-Only (Dual) ShadowNet (Weights)
Slalom (Input) TwinShield (Dual)

Figure 8: Compare to baselines.

We further compare TwinShield with related outsourc-
ing methods, Slalom (Tramer & Boneh, 2018) and Shad-
owNet (Sun et al., 2023), on matrix multiplication. As shown
in Figure 8, TwinShield delivers comparable or better per-
formance while providing dual protection, whereas Slalom
protects only inputs and ShadowNet protects only weights.
The advantage of TwinShield stems from its combination of
protocol-level outsourcing and the pipelined design OutPipe,
which overlaps computation and communication to reduce idle
time and achieve higher throughput.

Results on long-token inputs. Figure 7 further reports the speedup of TwinShield over the TEE-
only baseline across different token lengths. The relative gain grows with input length; for instance,
on Phi4-14B the speedup increases from 2.42× at shorter inputs to 5.11× at longer ones. This trend
is consistent with our complexity analysis: in the TEE-only baseline, the enclave must perform
the full O(mnp) multiplications, whereas TwinShield offloads these O(mnp) operations to the
accelerator and leaves only O(mn+mp) lightweight scaling and additions in the TEE. As the token
length p increases, the gap between these complexities widens, producing larger speedups.

Model Performance. Our outsourcing protocols do not introduce performance drops, since we
only offload heavy matrix multiplication to accelerators and the correctness is verified inside the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

TEE. Thus, the model performance remains identical to the TEE-only baseline. The only source of
performance degradation comes from quantization. We therefore measure perplexity (PPL) using
the Wikitext (Merity et al., 2016) dataset to quantify this effect. As shown in Table 3, quantization
introduces only marginal increases in PPL, while preserving the performance of FMs and enabling
efficient secure execution.

Evaluation on vision language models To demonstrate the generality of our method across
transformer-based FMs, we further test it on vision-language models (VLMs). Compared to LLMs,
VLMs only introduce additional visual tokens while the overall processing pipeline remains iden-
tical. We evaluate our approach on Qwen2.5-VL-7B and Pixtral-12B, measuring the runtime for
processing image inputs with prompts. Specifically, the input images all have the resolution of
960×619, which is tokenized into 805 and 2378 tokens. On the other hand, the input text is “Please
describe this image in detail”, which is tokenized into 16 and 11 tokens. The inference time and
speedups are shown in Table 2.

Table 2: Time and speedup on VLMs.

T-Vision T-Text TEE-Only TwinShield

Qwen2.5VL-7B 805 16 191.3 s 61.2 s
1.00× 3.13×

Pixtral-12B 2378 11 587.1 s 183.9 s
1.00× 3.19×

Table 3: Quantization effect on Perplexity.

Original Quantized

LLaMA3-3B 10.27 10.63
LLaMA3-8B 7.14 7.84
Qwen3-14B 8.42 8.67
Phi4-14B 6.31 6.40

6.2 ABLATION STUDY AND BENCHMARK

Ablation study on the effectiveness of proposed techniques. Figure 9 (a) evaluates the contribu-
tion of different components of TwinShield on the Llama3-8B model. By outsourcing all multipli-
cations through OutAttnMult and OutLinearMult, TwinShield achieves 2.71× inference speedup.
Building on this, the system-level optimization OutPipe further enhances the speedup to 4.13× by
overlapping TEE preparation, communication, and accelerator computation. This overlap eliminates
the idle periods inherent in the serial workflow, thereby improving utilization on both the TEE and
the accelerator and delivering substantial end-to-end performance gains.

Performance Evaluation on Micro-Benchmark. To isolate the effect of the protocol itself, we
benchmark the matrix multiplications in Attention independently. Figure 9 (b) shows that
OutAttnMult accelerates these operations, and with OutPipe reduces latency by 2.4× at 2048 to-
kens. For linear layers, OutLinearMult with OutPipe achieves a 4.2× reduction at the same length.

256 512 768 1024 1280 1536 1792 2048
1

2

3

4

5

Sp
ee

du
p

(x
)

Token Number

 OutMult
 OutMult+OutPipe

x 4.13

x 2.71

(a) (b) (c)

512 1024 1536 2048
0

200
400
600
800

1000
1200

Ti
m

e
(m

s)

Token Numner

TEE-Only OutAttnMult
OutAttnMult+OutPipe

512 1024 1536 2048
0

500
1000
1500
2000
2500
3000

Ti
m

e
(m

s)

Token Numner

TEE-Only OutLinearMult
OutLinearMult+OutPipe

Figure 9: (a) End-to-end improvements with different techniques. OutMult includes OutAttnMult
and OutLinearMult. (b) Latency of Attention Multiplication. (c) Latency of Linear Multiplication.

7 CONCLUSION

We propose TwinShield, a framework for secure and efficient foundation model inference that
unifies TEEs with crypto-protected accelerators. By introducing OutAttnMult, OutLinearMult, and
the pipelined scheme OutPipe, TwinShield achieves dual protection of inputs and models while
enabling lightweight integrity verification. Experiments across multiple large-scale models show up
to 5.03× speedup over TEE-only execution, with ablation and micro-benchmarks confirming the
complementary benefits of protocol- and system-level optimizations. These results demonstrate that
TwinShield effectively bridges the gap between security and efficiency, offering a practical path
toward trustworthy Foundation Model-as-a-Service.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Adil Ahmad, Byunggill Joe, Yuan Xiao, Yinqian Zhang, Insik Shin, and Byoungyoung Lee. Obfus-
curo: A commodity obfuscation engine on intel sgx. In Network and Distributed System Security
Symposium, 2019.

AMD. Hip developing guide. https://rocm.docs.amd.com/projects/HIP/en/
docs-develop/, 2025.

Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a
new era in vision: a survey and outlook. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2025.

Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography. Lecture Notes, 2001.

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kostiainen, and
Ahmad-Reza Sadeghi. Dr. sgx: Automated and adjustable side-channel protection for sgx using
data location randomization. In Proceedings of the 35th Annual Computer Security Applications
Conference, pp. 788–800, 2019.

Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro, 43(3):9–17, 2023.

Ronald Cramer, Ivan Bjerre Damgård, et al. Secure multiparty computation. Cambridge University
Press, 2015.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Rusins Freivalds. Probabilistic machines can use less running time. In IFIP congress, volume 839,
pp. 842, 1977.

Zhongshu Gu, Enriquillo Valdez, Salman Ahmed, Julian James Stephen, Michael Le, Hani
Jamjoom, Shixuan Zhao, and Zhiqiang Lin. Nvidia gpu confidential computing demystified.
arXiv preprint arXiv:2507.02770, 2025.

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin, Michael
Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of machine learning as a ser-
vice. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 3300–3309, 2021.

Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: An accelerated framework
for privacy and integrity preserving deep learning using trusted hardware. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 212–224, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Intel SGX. Intel® software guard extensions (intel® sgx) developer guide.
https://www.intel.com/content/www/us/en/developer/tools/
software-guard-extensions/overview.html, 2023.

10

https://rocm.docs.amd.com/projects/HIP/en/docs-develop/
https://rocm.docs.amd.com/projects/HIP/en/docs-develop/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu,
Chenren Xu, Lintao Zhang, and Junehwa Song. Occlumency: Privacy-preserving remote deep-
learning inference using sgx. In The 25th Annual International Conference on Mobile Computing
and Networking, pp. 1–17, 2019.

Ziyu Liu, Yukui Luo, Shijin Duan, Tong Zhou, and Xiaolin Xu. Mirrornet: A tee-friendly framework
for secure on-device dnn inference. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yinqian Zhang. A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. ACM Computing Surveys (CSUR),
54(6):1–37, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Apoorve Mohan, Mengmei Ye, Hubertus Franke, Mudhakar Srivatsa, Zhuoran Liu, and Nel-
son Mimura Gonzalez. Securing ai inference in the cloud: Is cpu-gpu confidential computing
ready? In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pp. 164–
175. IEEE, 2024.

Devon Myers, Rami Mohawesh, Venkata Ishwarya Chellaboina, Anantha Lakshmi Sathvik, Praveen
Venkatesh, Yi-Hui Ho, Hanna Henshaw, Muna Alhawawreh, David Berdik, and Yaser Jararweh.
Foundation and large language models: fundamentals, challenges, opportunities, and social im-
pacts. Cluster Computing, 27(1):1–26, 2024.

NVIDIA. CUDA C++ Programming Guide. NVIDIA, 2025. URL https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html.

T Pahima. Breakingformation: Orca security research team discovers aws cloudformation vulnera-
bility. Complete Cloud Security in Minutes-Orca Security, 2022.

Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen
Wang, Li Chen, Xiapu Luo, et al. {SOTER}: Guarding black-box inference for general neural
networks at the edge. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp.
723–738, 2022.

Tong Sun, Bowen Jiang, Hailong Lin, Borui Li, Yixiao Teng, Yi Gao, and Wei Dong. Tensor-
shield: Safeguarding on-device inference by shielding critical dnn tensors with tee. arXiv preprint
arXiv:2505.22735, 2025.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh Jha.
Shadownet: A secure and efficient on-device model inference system for convolutional neural
networks. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1596–1612. IEEE, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In International Conference on Learning Representations, 2018.

L Tung. Google cloud: Here are the six’best’vulnerabilities security researchers found last year.
ZDNET, Mar, 2021.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the intel {SGX} kingdom with transient {Out-of-Order} execution. In 27th USENIX
Security Symposium (USENIX Security 18), pp. 991–1008, 2018.

Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue in-flight data load. In 2019 IEEE
Symposium on Security and Privacy (SP), pp. 88–105. IEEE, 2019.

11

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yuntao Wei, Xueyan Wang, Song Bian, Weisheng Zhao, and Yier Jin. The-v: Verifiable privacy-
preserving neural network via trusted homomorphic execution. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1–9. IEEE, 2023.

Jan Wichelmann, Anja Rabich, Anna Pätschke, and Thomas Eisenbarth. Obelix: Mitigating side-
channels through dynamic obfuscation. In 2024 IEEE Symposium on Security and Privacy (SP),
pp. 4182–4199. IEEE, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
cover: a secure, efficient and scalable inference framework for on-device model protection based
on tees. In Forty-first international conference on machine learning, 2024.

Ziqi Zhang, Lucien KL Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen.
Teeslice: slicing dnn models for secure and efficient deployment. In Proceedings of the 2nd ACM
International Workshop on AI and Software Testing/Analysis, pp. 1–8, 2022.

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun
Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for on-device
ml. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 52–52. IEEE Computer Society,
2023.

Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution for dnn
model via automated weight obfuscation. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A The Use of Large Language Models (LLMs) 14

B Ethics statement 14

C Reproducibility Statement 14

D Security Analysis of OutAttnMult 14

D.1 Analysis Takeaway . 14

D.2 Feasible Set Construction . 15

D.3 Theoretical guarantee . 15

D.4 Bounding the adversary’s success probability . 16

D.5 Discussion . 16

E Security Analysis of OutLinearMult 16

E.1 Theoretical guarantee . 16

E.2 Bounding the adversary’s success probability . 17

E.3 Discussion . 17

F Background and Related Work 17

F.1 Transformers . 17

F.2 Trusted Execution Environments (TEEs) . 18

F.3 Secret Sharing for Data Confidentiality . 19

F.4 Computation Verification for Integrity . 19

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used ChatGPT and Grammarly to check and correct any typos and grammatical errors.

B ETHICS STATEMENT

This work focuses on improving the security and efficiency of foundation model inference by com-
bining TEEs with cryptographic protocols. Our study does not involve human or animal subjects,
nor does it require the collection of personal or sensitive data. The evaluation uses publicly avail-
able pretrained models and datasets, and no private or proprietary datasets are disclosed. We believe
our method enhances privacy protection by safeguarding both user data and model confidentiality in
cloud inference. The research complies with the ICLR Code of Ethics, and we are not aware of any
ethical concerns or potential harms arising from this work.

C REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. The code is publicly avail-
able at https://anonymous.4open.science/r/Twinshield, together with a README file that includes
instructions for installation, configuration, and execution of experiments.

D SECURITY ANALYSIS OF OutAttnMult

D.1 ANALYSIS TAKEAWAY

In the outsourcing protocol in Figure 3, data inside the TEE is protected, while data processed by the
accelerator may be observed by adversaries. To prevent attackers from inferring the original Q, the
TEE constructs a masked representation Q̃ by (i) adding a random maskRQ, (ii) permutingQ+RQ
together with ARQ under secret permutation indices, and (iii) scaling rows with a private diagonal
matrix A.

From the adversary’s perspective, recovering Q from Q̃ requires solving three layers of uncertainty:

1. Combination: choosing which m out of the 2m rows correspond to the true Q+RQ block,
contributing

(
2m
m

)
possibilities.

2. Permutation: recovering the correct order of these m rows, contributing m! possibilities.

3. Scaling: guessing the diagonal scaling applied to each row, with each entry selected from
the finite field F, contributing |F|m possibilities.

Putting these together, the adversary’s search space is(
2m

m

)
·m! · |F|m,

and thus the security level is quantified as

log2

((
2m

m

)
m! |F|m

)
,

where 2m denotes the total number of rows in Q̃ and |F| is the size of the finite field. Here,
(
2m
m

)
captures the row combination, m! the permutation order, and |F|m the design space of the diagonal
matrix A.

For a typical FM setting with input length m = 512 and 8-bit scalars (i.e., |F| = 28), this evaluates
to roughly 8,990 bits of security, which is far beyond the standard 128/256-bit levels.

14

https://anonymous.4open.science/r/Twinshield/README.md

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D.2 FEASIBLE SET CONSTRUCTION

We formalize the feasible set F(Ẑ) of all possible pre-imagesZ of a transformed and shuffled matrix
Ẑ ∈ Rt×d (here Z represents Q, K, or W). Let n be the number of original rows, t = |Ẑ| the total
number of rows observed, and m = t − n the number of mask rows. Denote [t] = {1, . . . , t} and
let D be the set of admissible non-singular diagonal scaling matrices used by the transformation.

Assumption. Rows in Ẑ are generated by concatenating the original and mask rows, applying a
common right diagonal scaling D ∈ D, followed by a row permutation; i.e.,

Ẑ = Π [Z;R]D,

where R =

r
⊤
1
...
r⊤m

 and Π permute t rows.

1. (Candidate mask index sets) For any Ω ⊆ [t] with |Ω| = m, define the candidate mask
set

ΦΩ = {ẑ⊤j | j ∈ Ω}, CΩ = [t] \ Ω.

Here ẑ⊤j denotes the j-th row of Ẑ.

2. (Candidate original rows) Choose any injective selection ψ : [n] ↪→ CΩ and set Z =
[z⊤1 ; . . . ; z

⊤
n] with z⊤i = ẑ⊤ψ(i).

3. (Candidate ordering) For any permutation σ on [n], form Zσ = [z⊤σ(1); . . . ; z
⊤
σ(n)].

4. (Per-row feasible pre-images) For each i ∈ [n], define

F i
Ω,ψ,σ(Ẑ) =

{
z⊤ ∈ Rd

∣∣ ∃D ∈ D, ∃ ẑ′⊤ ∈ ΦΩ s.t. z⊤ = (z⊤σ(i) − ẑ′⊤)D−1
}
.

5. (Matrix-level feasible set) The feasible set corresponding to (Ω,ψ,σ) is the Cartesian
product

FΩ,ψ,σ(Ẑ) =

n∏
i=1

F i
Ω,ψ,σ(Ẑ),

and the global feasible set is

F(Ẑ) =
⋃

Ω∈([t]m)

⋃
ψ

⋃
σ

FΩ,ψ,σ(Ẑ).

Let the obfuscation ratio be r := m/t. Under fixed n and a fixed D, increasing r (equivalently t)
strictly enlarges the index-family

(
[t]
m

)
and hence cannot decrease F(Ẑ) (monotonicity).

D.3 THEORETICAL GUARANTEE

Assumption (Obfuscation Model). All computations are carried out over a large finite field Fp
(via fixed-point quantization). TEE samples secret diagonal scalings A,B, secret permutations
λQ,λK , and fresh random mask blocks RQ,RK uniformly at random; none are revealed to the
GPU. The embedded, permuted inputs are

Q̃ = perm
(
Q+RQ, ARQ; λQ

)
, K̃T = perm

(
KT +RTK , RTKB; λK

)
,

where perm(·, ·;λ) concatenates the two blocks along the embedding dimension and applies per-
mutation λ.

Theorem 1 (Indistinguishability). For a Q̃KT computation and GPU view

ViewGPU = (Q̃, K̃T , Q̃KT , (QKT)′),

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where (QKT)′ is freshly re-masked inside the TEE, we have

∀(Qi,Qj) ∈ F(Q̃)2 : Pr[Q = Qi | ViewGPU] = Pr[Q = Qj | ViewGPU], (1)

∀(KT
i ,K

T
j) ∈ F(K̃T)2 : Pr[KT = KT

i | ViewGPU] = Pr[KT = KT
j | ViewGPU]. (2)

Proof sketch.

• Lemma 1. The attacker cannot recover QKT from (Q̃KT , (QKT)′) because the TEE
inverts the embeddings with secret (A,B,λQ,λK) and then applies fresh re-masking; these
are unknown to the GPU.

• Lemma 2. Masked vectors from RQ,RK are indistinguishable from transformed data
vectors: over Fp, additive masking with fresh uniform vectors (scaled by secret diagonals)
is a one-time pad; permutation hides positions.

Together these lemmas imply uniform posterior distributions over feasible sets, proving equa-
tion 1–equation 2.

D.4 BOUNDING THE ADVERSARY’S SUCCESS PROBABILITY

The chance of exactly recovering (Q,KT) is bounded by the feasible-set sizes:

Pr[Correct] ≤ 1

|F(Q̃)| · |F(K̃T)|
. (3)

Conservative lower bounds are

|F(Q̃)| ≥
(
tQ
nQ

)
nQ! (p− 1)κQ , |F(K̃T)| ≥

(
tK
nK

)
nK ! (p− 1)κK , (4)

yielding

Pr[Correct] ≤
[(tQ
nQ

)
nQ! (p− 1)κQ

]−1

·
[(tK
nK

)
nK ! (p− 1)κK

]−1

. (5)

D.5 DISCUSSION

Increasing the obfuscation ratio r = m/t enlarges feasible sets, thereby lowering the adversary’s
success probability. Each round uses fresh masks (RQ,RK) (and may refresh A,B,λQ,λK), en-
suring independence across rounds and preventing cumulative leakage.

E SECURITY ANALYSIS OF OutLinearMult

E.1 THEORETICAL GUARANTEE

Assumption (Obfuscation Model). All computations take place over Fp. The TEE samples: (i)
a secret row-wise diagonal scaling C = diag(c1, . . . , cdout); (ii) fresh mask rows RW ; and (iii) a
secret row permutation Π. These are never revealed to the accelerator. The transformed weights and
masked inputs are

W̃ = Π

[
W +RW
CRW

]
, X̃ = X +RX ,

with RX uniform. The accelerator computes Ỹ = W̃ X̃ , while the TEE recovers WX using (C, Π)
and offline correction WRX .

Adversary’s view. The accelerator observes

Viewlin = (W̃ , X̃, W̃ X̃, (WX)⋄),

where (WX)⋄ is freshly re-masked inside the TEE.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Theorem 3 (Indistinguishability). Conditioned on Viewlin, all W ′ ∈ F(W̃) are equally likely:

∀(W ′,W ′′) ∈ F(W̃)2 : Pr[W =W ′ | Viewlin] = Pr[W =W ′′ | Viewlin]. (6)

Proof sketch.

• Lemma 3. Since X̃ = X + RX with RX uniform, X̃ is information-theoretically inde-
pendent of W .

• Lemma 4. The TEE uses (C, Π) and WRX to obtain WX , then re-masks it freshly. With
(C, Π,RW ,RX) secret, the pair (W̃ X̃, (WX)⋄) leaks nothing about W .

Thus Viewlin is invariant across feasible pre-images, proving equation 6.

E.2 BOUNDING THE ADVERSARY’S SUCCESS PROBABILITY

The attacker’s chance of reconstructing W exactly is bounded by

Pr[Correct] ≤ 1

|F(W̃)|
. (7)

A conservative lower bound is

|F(W̃)| ≥
(
t

dout

)
dout! (p− 1)κ, (8)

where t = dout +m is the number of real+mask rows and κ the independent scales in C. Hence

Pr[Correct] ≤
[(t

dout

)
dout! (p− 1)κ

]−1

. (9)

E.3 DISCUSSION

Monotonicity holds: increasing r = m/t enlarges feasible sets and decreases the adversary’s success
probability. Each round uses fresh (RX ,RW) (and may refresh (C, Π)), ensuring independence
across layers and preventing cumulative leakage.

F BACKGROUND AND RELATED WORK

F.1 TRANSFORMERS

Transformer architecture consists of an embedding layer and consecutive transformer layers. Every
transformer layer is a composition of a multi-head self-attention (MHA) module, a feed-forward
(FFN) module, two normalization modules and residual connections. The input data is transformed
into a token sequence through the embedding layer with positional encoding. The input token se-
quence can be uniformly denoted as Xe ∈ RN×D, where N is the number of tokens and D is the
embedding dimension. We describe the main computation blocks in Transformers below.

Additive Linear Operations. The additive linear operations in Transformers are mainly the linear
layers, where the output features are computed by multiplying the input features with weight matri-
ces. In the Attention module, given the input tokens Xe ∈ RN×D, the output Q,K,V ∈ RN×D are
computed by multiplying Xe with three weight matrices Wq,Wk,Wv ∈ RD×D:

Q = XeWq, K = XeWk, V = XeWv. (10)

Similarly, in the Feed Forward module, the embedding Xe ∈ RN×D is multiplied by two weight
matrices W1,W2 ∈ RD′×D:

FeedForward(Xe) = Act(Xe ·WT
1) ·W2 (11)

Existing techniques Tramer & Boneh (2018); Hashemi et al. (2021) can securely outsource these
additive linear operations while protecting the input data Xe. However, they cannot protect the
weight matrices W , which remain exposed to the untrusted accelerator.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Multiplicative Attention Operations. There are massive multiplicative linear operations in Trans-
formers which cannot be outsourced via prior methods. The primary multiplicative attention opera-
tions are computing the attention map and attention output in the Attention module:

Attention(Q,K,V) = SoftMax(QKT /
√
dh)V (12)

The multiplicative operations (e.g., Q · KT) are fundamentally different from the additive linear
operations (e.g., Q = Xe ·Wq). This is because in the multiplicative operations, neither operand is a
constant matrix. As a result, the multiplicative operations cannot be securely outsourced via existing
techniques. We refer to the matrix multiplication between Q and K, and between the attention map
and V as attention matrix multiplication.

The multiplicative linear operations such as Q · KT are computed independently across multiple
attention heads. For MHA with H heads, the multi-head attention is computed as:

MHA(Q,K,V) = Concat(head1, ...,headH)WO (13)

where Concat(·) is the concatenation operation,

headi = Attention(XW i
q ,XW

i
k,XW

i
v) (14)

and WO ∈ RHdh×D is a weight matrix to map features in all heads to the output dimension. The
MHA is the key mechanism in the Transformers and also the performance bottleneck. However, ex-
isting works cannot securely outsource the heavy computation in the multiplicative linear operations
within the MHA module.

F.2 TRUSTED EXECUTION ENVIRONMENTS (TEES)

TEEs like Intel SGX (Intel SGX) provide a secure environment where data confidentiality and,
in some cases, computation integrity are ensured by hardware. Intel SGX specifically safeguards
the confidentiality and integrity by isolating data and code within an enclave, shielded from exter-
nal elements including the operating system, hypervisor, and hardware devices on the system bus.
This isolation involves a dedicated memory region, the Processor Reserved Memory (PRM), man-
aged by SGX-enabled CPUs. Here, the Enclave Page Cache (EPC) stores enclave data and code
in 4 KB pages, accessible only through specific CPU instructions. This setup prevents unautho-
rized access to the EPC, maintaining a secure environment for sensitive computations. SGX also
supports remote attestation, allowing remote verification of an enclave’s integrity through crypto-
graphic proofs. These features have inspired research into running deep learning inference entirely
within CPU TEEs to protect data and model confidentiality (Hanzlik et al., 2021). However, the high
computational and memory demands of deep learning models make CPU TEE inference inefficient,
motivating the use of accelerators such as GPUs, TPUs, and ASICs to improve performance.

TEE with AI Accelerators. Although some high-end accelerators (e.g., NVIDIA H100 (Choquette,
2023)) have begun to support TEE capabilities, enabling secure computation directly on the accel-
erator remains impractical in most real-world deployments. This is due to two key factors: firstly,
TEE-enabled accelerators are rare and expensive, while many emerging and legacy GPUs (such as
GTX series and A100) currently deployed in data centers remain in use and are likely to persist for
years. Secondly, the growing heterogeneity of hardware accelerators (e.g., GPUs, TPUs, and FP-
GAs) introduces vendor incompatibilities and the complexity of cross-device TEE protocols, making
a unified TEE solution across diverse devices infeasible;

For accelerators without native TEE support, a more promising approach treats the CPU TEE as
the root of trust, and considers the accelerator as an untrusted but controlled extension of the TEE.
In this design, sensitive data is decrypted and processed inside the CPU TEE, which enforces strict
isolation and integrity guarantees, while delegating computationally intensive linear operations to
the untrusted accelerator through carefully controlled and isolated interfaces. These interfaces may
include exclusive device assignment, core pinning, and secure memory buffer management to min-
imize the risk of confidential data leakage. To further mitigate the risk of exposing plaintext data
during offloading, cryptographic techniques such as secret sharing are integrated, allowing the CPU
TEE to securely partition computations, outsource them to the accelerator, and verify the correct-
ness of results upon return. However, this approach remains limited in its ability to support attention
mechanisms in Transformer-based models, which are critical to modern deep learning workloads.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Therefore, it is imperative to design advanced secure outsourcing schemes that preserve the CPU
TEE as the single root of trust while efficiently leveraging heterogeneous and vendor-diverse un-
trusted accelerators to fully exploit their performance potential without compromising security.

F.3 SECRET SHARING FOR DATA CONFIDENTIALITY

Secret Sharing Cramer et al. (2015); Demmler et al. (2015) is a cryptographic primitive that allows
multiple parties to compute a function over their inputs while keeping them private. All our algo-
rithms are built on a two-party secret sharing over the field Fp, where p is a prime number indicating
field size. In a two-party secret sharing, a secret x is split into two shares by random sampling
⟨x⟩0 , ⟨x⟩1 ∈ Fp, such that x = ⟨x⟩0 + ⟨x⟩1 mod Fp. Secret sharing offers a strong security guar-
antee that, given a share ⟨x⟩0 or ⟨x⟩1, the value of the original x is hidden, i.e., either party can
reconstruct the value of x with negligible possibility Cramer et al. (2015). In the setting of TEE-
based confidential inference, the value x can be split by a randomness r ∈ Fp chosen by the TEEs,
such that the two shares are ⟨x⟩0 = r and ⟨x⟩1 = x− r, respectively. Prior works Tramer & Boneh
(2018); Sun et al. (2023) employ secret sharing to provide privacy guarantees when outsourcing
additive linear operations with constant weights w. Yet, existing outsourcing schemes cannot be
extended to multiplicative attention operations where both operands are variables, such as Q and K,
as it is impossible to precompute multiplication between r and either Q or K. Even for additive
linear operations, they only protect the input data x, leaving the weight matrix W exposed to the
untrusted accelerator.

F.4 COMPUTATION VERIFICATION FOR INTEGRITY

The verification algorithm enables a client to assert the correctness of computations performed by
a server. Within the landscape of TEEs, where computations are outsourced to high-performance
untrusted devices such as GPU, ensuring the integrity of these operations is paramount. Soter (Shen
et al., 2022) introduces a ”fingerprint” matrix method for integrity checks by the TEEs, which, how-
ever, may be vulnerable to targeted attacks. Additionally, recent research Wei et al. (2023) suggests
a sampling-based verification by the TEEs to compare against GPU outputs, facing limitations in de-
tecting selective manipulations without extensive sampling. Freivalds’ algorithm Freivalds (1977),
referenced in Tramer & Boneh (2018); Sun et al. (2023); Hashemi et al. (2021), provides an efficient
mechanism for verifying matrix multiplications of the form AB = C. The algorithm commences
by generating a random vector r, followed by the TEEs computing the products B · r and C · r. The
next step involves multiplying A with B · r, and comparing this outcome to C · r. A discrepancy
between these products indicates a failure of AB to equal C, whereas a match suggests a probable
equality between AB and C. Employing this method, the TEEs are able to perform a verification of
O(n3) matrix multiplication complexity using a more efficient O(n2) vector-matrix multiplication
operation, thereby enhancing the verification efficiency within the TEEs.

19

	Introduction
	Threat Model
	Background and Related Work
	Transformer-based Foundation Models
	Trusted Execution Environments (TEEs)
	Related Work

	TwinShield Design
	Outsource Attention Operation: OutAttnMult
	Outsource linear Operations: OutLinearMult
	Outsource communication-computation Optimization: OutPipe

	Experimental Methodology
	Experimental Results
	End-to-end performance
	Ablation Study and Benchmark

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Ethics statement
	Reproducibility Statement
	Security Analysis of OutAttnMult
	Analysis Takeaway
	Feasible Set Construction
	Theoretical guarantee
	Bounding the adversary's success probability
	Discussion

	Security Analysis of OutLinearMult
	Theoretical guarantee
	Bounding the adversary's success probability
	Discussion

	Background and Related Work
	Transformers
	Trusted Execution Environments (TEEs)
	Secret Sharing for Data Confidentiality
	Computation Verification for Integrity

