Under review as a conference paper at ICLR 2026

TWINSHIELD: SECURE FOUNDATION MODEL EXECU-
TION BY UNIFYING TEES AND CRYPTO-PROTECTED
ACCELERATORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in Transformer-based foundation models (FMs) have driven sig-
nificant developments across diverse Al tasks, facilitating their deployment in
security-sensitive domains. Despite their capabilities, FMs impose substantial in-
ference costs, driving reliance on third-party cloud infrastructure equipped with
high-performance computation resources. However, these cloud platforms can-
not be fully trusted and remain vulnerable to data breaches, introducing dual
confidentiality challenges: protecting user data from exposure and safeguarding
models against unauthorized access. Mainstream protection mechanisms lever-
age trusted execution environments (TEEs), where confidentiality and integrity
are enforced through hardware-based isolation, encryption, and integrity verifica-
tion. But executing inference entirely within TEEs incurs a significant overhead,
which is further exacerbated in large-scale FMs. Recent studies have proposed
schemes that combine TEEs with untrusted accelerators (e.g., GPUs) to offload
partial inference operations. However, prior offloading schemes cannot solve dual
confidentiality challenges in FM inference, since operations such as Attention
depend on dynamic operands that prevent secure precomputation and must re-
main within TEEs. Moreover, the communication overhead between TEEs and
accelerators grows dramatically with model scale, constituting a new system de-
sign challenge for FMs. To address these challenges, we propose TwinShield,
a framework that enables secure inference of Transformer-based FMs in hetero-
geneous TEE-accelerator systems with dual protection for both model and data.
TwinShield improves efficiency through protocol-level outsourcing, which se-
curely offloads the majority of operations to accelerators, and enhances through-
put via a system-level design that overlaps TEE preparation, communication,
and accelerator execution. Our evaluation on representative LLMs and VLMs
shows that TwinShield offloads about 87% of computations to accelerators and
achieves 3.3x-5.1x speedups over baselines. The code is publicly available at
https://anonymous.4open.science/r/Twinshield|

1 INTRODUCTION

With the rapid advances in Transformer architectures (Vaswani et al., 2017), they have been widely
applied in domains such as computer vision (Dosovitskiy et al.,[2020) and natural language process-
ing (Devlin et al.,|2018)). Building on this architecture, large-scale foundation models (FMs) such as
LLaMA and Qwen have emerged. Benefiting from their remarkable capabilities, FMs are becoming
increasingly popular and are being deployed in many critical scenarios. However, these capabili-
ties are primarily driven by the enormous parameter sizes of such models, which consequently im-
pose significant computational demands. To address the challenges of model size and deployment
complexity, cloud-based Foundation Model-as-a-Service (FMaaS has become a widely adopted
paradigm, enabling model owner to provide state-of-the-art FMs as inference services to end users
in a cost-effective manner.

"https://builder.aws.com/building-a-foundation-model-as-a-service-fmaas-on-aws

https://anonymous.4open.science/r/Twinshield/README.md
https://builder.aws.com/content/2hPu03PLX1F3UYpMzVwxi2Abk6O/building-a-foundation-model-as-a-service-fmaas-on-aws

Under review as a conference paper at ICLR 2026

In the FMaa$, input data provided by clients, such as personal health information (e.g., sleep pat-
terns, pulse, heart rate) and financial records, is highly sensitive. Meanwhile, model providers del-
egate the hosting and execution of their FMs to the cloud, which constitutes valuable intellectual
property, since developing them requires enormous investments in data collection, domain exper-
tise, and computational resources for training. Despite leveraging the cloud’s powerful computation
resources, remote execution cannot be fully trusted, as adversaries may exploit privileged system
software (Pahima), |2022)) or hardware vulnerabilities (Tung} 2021)) to compromise privacy and com-
putation integrity. Therefore, guaranteeing the confidentiality of both client inputs and provider
models, as well as the integrity of inference, is imperative for FMaaS.

Trusted Execution Environments (TEEs), such @d
as [Intel SGX|, provide a trusted environment to HA¥EEH RN A)

. . ; ..)00
safeguard the privacy and integrity of sensitive —(xm)
computations. In systems with TEEs, the CPU P [m—

Untrusted Attacker

is treated as the root of trust. The processor cPU

shields individual secure enclaves from priv- — ~=====-eo____
ileged system software attacks via hardware- Input 3 aws
enforced isolation. Furthermore, counter-mode &—> <—M°de'

. . . . | H </>
encryption and integrity tree-based data verifi- Output | mm Microsoft Azure
cation are performed by the TEE hardware to ~ Yser Cloud service provider Model developer
protect against breaches and fampering with e Figure 1: Overview of our trusted foundation
clave off-chip data. Accordingly, prior studies) .o
have investigated the use of TEEs for secure models (FMs) inference, TwinShield.
machine learning inference. For instance, |Hanzlik et al.|(2021) proposed to store ML models in
the secure enclave and perform inference completely in TEEs, hence protecting computation in-
tegrity and the confidentiality of all data. Unfortunately, deployment of the entire model inside
TEEs introduces extremely high overhead due to the limited resources of TEEs. Recent advances
in TEE-based accelerators (e.g., NVIDIA H100 confidential mode) attempt to mitigate this issue,
but they remain vendor-specific, technically restrictive, and provide weaker guarantees than CPU-
based TEEs. Subsequent works (Tramer & Boneh, |2018; [Hashemi et al., 2021} |Sun et al., [2023;
Shen et al., [2022) attempt to improve the performance of TEE-based model inference by outsourc-
ing heavy computations from TEEs to an untrusted external accelerator (e.g., GPUs, FPGAs and
ASICs), and verifying the computation integrity inside the enclave. While the aforementioned se-
cure outsourcing techniques enhance the system efficiency of TEE-only methods, they struggle to
outsource sufficient computations of Transformer-based FMs to untrusted accelerators from trusted
TEEs. The challenges are summarized as follows:

Accelerator

(I) Confidential Attention Computation: Traditional schemes for non-Transformer models rely on
additive secret sharing to outsource linear operations W - x by sending the masked input x + r to un-
trusted accelerator for W - (x +7) and recovering the result by subtracting the precomputable W - .
In contrast, Attention involves computations such as ¢ - k and softmax(gk) - v, where both
operands are generated at runtime. This property precludes precomputation and renders existing
methods inapplicable. Moreover, prior studies in cloud settings (Iramer & Boneh| |2018; |Hashemi
et al.,|2021) focus solely on input protection while assuming the model resides with the server, leav-
ing it unprotected. Conversely, on-device approaches (Shen et al., 2022; Sun et al., |2023)) focus on
model privacy but treat user inputs as local and leave them unprotected. We argue that both the
model and inputs must be protected simultaneously, a setting substantially more complex than safe-
guarding either alone. Achieving this dual protection requires obfuscating both components before
outsourcing any operation to untrusted accelerators, necessitating a redesign of secure computation
algorithms.

(11) Significant Communication: Foundation models contain billions of parameters, making acceler-
ator—-TEE communication non-negligible and increasingly costly. For example, outsourcing a single
layer of LLaMA-8B can incur 3.38 GB of bidirectional data transfer. While prior works designed
for small models such as CNNs tolerate this overhead, they become inefficient when applied to
FMs. This scalability gap underscores the need for new system designs that mitigate the substantial
communication inherent in outsourcing large-scale FMs.

To address these challenges, we propose TwinShield (as shown in Figure[]), a framework for con-
fidential and verifiable inference on Transformer-based FMs. The model developer deploys the
model on the cloud to process the client input. TwinShield’s protocol enables most computations

Under review as a conference paper at ICLR 2026

to run on accelerators while ensuring data confidentiality and computation integrity. For Challenge
(I), we design a confidentiality-guaranteed outsourcing protocol, OutMult, which consists of two
components: OutAttnMult for Attention computations and OutLinearMult for weight-input
multiplications, both ensuring protection of model and input. For Challenge (II), our key insight
is that attention heads can be computed independently, which allows their workloads to be decom-
posed into smaller parallel tasks. By pipelining TEE computation, data transfers, and accelerator
computation across different heads, we effectively utilize the idle time. The proposed design, i.e.,
OutPipe, overlaps communication and computation, thereby improving hardware utilization and
increasing throughput by 52.4%. Through extensive experiments on various FMs, such as large
language models (LLMs) and vision language models (VLMs), we show that TwinShield achieves
substantial throughput improvements ranging from 3.3x to 5.1x for private verifiable inferences,
without sacrificing accuracy.

2 THREAT MODEL

We consider a cloud-based Foundation Model-as-a-Service (FMaaS) scenario with three parties: the
model developer, the cloud service provider, and the model user, as illustrated in Fi gurem The model
developer trains and then deploys a foundation model f : X — Y on the cloud service provider.
The user queries the model through the cloud service. The cloud service provider is equipped with a
trusted CPU TEE (e.g., Intel SGX) that serves as the root of trust, and an untrusted accelerator (e.g.,
GPU) that performs heavy computations but is not fully trustworthy.

An ideal protection scheme should satisfy the following security properties:
* Data Privacy: The cloud server cannot learn any information about the input x.
* Model Privacy: The cloud server cannot learn any information about the model F'.

* t-Integrity: The probability that a user accepts an incorrect output § # F(x) from the cloud
server without aborting is less than ¢.

We treat the CPU TEE as the secure and reliable root of trust (Tramer & Boneh,2018;Hashemi et al.,
2021), which can be verified through remote attestation. Our goal is to extend these guarantees to
outsourced computations executed on the untrusted accelerator.

We note that Intel SGX and other TEEs have been shown vulnerable to side-channel attacks and
denial-of-service attacks (Van Bulck et al., 2018} [Van Schaik et al.l [2019). These attacks have
been extensively studied, and a wide range of defense mechanisms have been proposed, including
constant-time implementations, oblivious memory primitives, and obfuscation techniques that con-
ceal both code and data access patterns (Brasser et al., [2019; |Lou et al., 2021} |Ahmad et al.| 2019;
Wichelmann et al., 2024). Such defenses are orthogonal to the focus of this work, which addresses
different aspects of secure computation.

3 BACKGROUND AND RELATED WORK

3.1 TRANSFORMER-BASED FOUNDATION MODELS

Transformer architectures (Vaswani et al.,|2017)) have become the backbone of modern Al, achieving
state-of-the-art performance in natural language processing (Myers et al.| [2024), computer vision,
and multi-modal tasks (Awais et al.| [2025). Building on this architecture, large-scale foundation
models such as LLaMA (Touvron et al., [2023)), Qwen (Yang et al., 2025) and Phi (Abdin et al.,
2024) have emerged, with billions of parameters and pretraining on massive corpora. These models
demonstrate strong generalization and transferability, enabling deployment across diverse applica-
tions, including dialogue systems, code generation, healthcare, and finance. The Attention is the
core module of the Transformer architecture, which can be formulated as:

X, =attention(Q,K,V) = softMax(QKT /\/dp)V

where W are the model parameters with a size of dj, x dj,, and the query, key, and value are computed
viaQ = X, W2, K = X, WK, and V = X;_ W)

Under review as a conference paper at ICLR 2026

Due to their massive scale, FMs are typically deployed in the cloud, where client inputs may con-
tain sensitive information and model parameters represent valuable intellectual property. This dual
confidentiality requirement necessitates protecting both user data and proprietary models during in-
ference. To address this challenge, we propose TwinShield, a framework that enables efficient and
secure execution of Transformer-based foundation models with dual protection guarantees.

3.2 TRUSTED EXECUTION ENVIRONMENTS (TEES)

Trusted Execution Environments (TEEs) such as Intel SGX| provide secure enclaves that guarantee
confidentiality and integrity of computations by isolating code and data from the rest of the system,
including the operating system and hypervisor. These hardware-based protections have motivated
research into running deep learning inference inside TEEs to protect sensitive user data and pro-
prietary models. However, the high computational and memory demands of modern foundation
models make TEE inference inefficient, motivating the use of accelerators such as GPUs to improve
performance.

Limitations of Accelerators with TEEs. Most current Al infrastructures and cloud platforms lack
TEE-based accelerators, as extending accelerator support remains vendor-specific, technically chal-
lenging, and fraught with unresolved security concerns. Recent studies show that even NVIDIA
H100 GPUs with confidential mode fall short of the security guarantees offered by CPU-based
TEEs, underscoring the need for further refinement of secure accelerator designs (Gu et al., 2025
Mohan et al., 2024)). In addition, many data centers still rely on legacy GPUs, such as A100s and
V100s, making it necessary to explore how these widely deployed accelerators can perform confi-
dential computing. A common approach is to treat the CPU TEE as the root of trust and offload
heavy linear operations to untrusted accelerators through controlled interfaces. Yet, existing proto-
cols cannot simultaneously protect both inputs and model weights, and have been demonstrated only
on small-scale models such as CNNs. Extending secure support to key primitives in Transformer-
based FMs, particularly the attention mechanism, remains a pressing and unresolved challenge.

3.3 RELATED WORK

We compare TwlinShield with several lines Taple 1: OutSrc. stands for outsource and Cld Infer.
of related work in Table [Il The first cate- for cloud inference. o denotes supported, o denotes

gory executes all computations inside TEEs, pot supported, « denotes the user input privacy is
with representative work such as Occlu- protected by on-device setting.

mency (Lee et al., 2019). While this ap-
proach guarantees strong security, it suffers

.o . X Method Model Input Inference Linear Attn Comm. FMs
from significant efficiency loss due to the lim- Privacy Privacy Integrity OutSrc. OutSrc. Optim. Cld Infer.
ited computational resources available within ~ Occlumency o . . ° o ° °

Slalom o . . . o o o

TEES. The §econd category focuses ON Pro- b kiehe o . . . ° : c
tecting user input data while outsourcing lin- SOTER . * . . o ° °
: ShadowNet . * . . o o o

ear operations to ur}trusted hardware. Repre- \Nspjiger . z : . o N o
sentative examples include Slalom (Tramer & TsDP . * ° . ° ° °
L] * L] L] o o o

Boneh| 2018) and DarKnight (Hashemi et al, Srowpcover
2021), which assume that the model belongs ~TwinShield e
to the cloud provider and therefore do not

address model confidentiality. A third category of work, mainly in on-device scenarios (e.g.,
SOTER (Shen et al., [2022)), ShadowNet (Sun et al., 2023), and others (Zhou et al.| |2023; |Zhang
et al., [2023; [Liu et al.| |2023; |[Zhang et al. 2022} [Sun et al.| [2025; |Zhang et al., [2024)), shifts the
focus to model privacy while assuming user inputs remain local and thus unprotected. Since these
protocols do not protect input privacy during computation, they are not applicable to cloud FM
inference setting.

Our work, TwinShield, is the first framework designed for dual protection of model and input in
the cloud setting. Moreover, it is the first to efficiently support large-scale FM inference with both
secure outsourcing of attention computations and optimized TEE-accelerator communication, two
challenges unique to FM inference that prior approaches did not address.

Under review as a conference paper at ICLR 2026

4 TwinShield DESIGN

Figure 2| provides an overview of TwinShield, our proposed framework for secure inference. Since
the majority of the computation in Transformer-based Foundation Models comes from large-scale
matrix multiplications (Hoffmann et al.|, [2022)), we propose OutMult which includes OutAttnMult
(in Sec. and OutLinearMult (in Sec.[4.2). Then, we propose OutPipe in Sec. to overlap
computation and communication, further improving throughput. By outsourcing these bottlenecks,
we can significantly improve overall efficiency and enable secure Transformer inference at scale.

Model Provider J
/ i | 1 i
g User Input v = Reco.ver L’ 2
£ Recover |4 ! Verify Recover Recover
2 Embefdin Verify | i Verify Verify
2 ! ¥
o i
2 (Secret Mask] 1 Secret Mask] i Secret Mask Secret Mask TEE
g H 1 ~2 x_Faster i H ! !
\ _‘g [OutPipe]
> N [y g - P S p———
DatalElow \ |G | OutlinearMult |- Q'—‘ '->[OutAttnMult]—' [OutLinearMult]—-'
---3> Encrypted Flow \ ST O aster o Faster) o Accelerator

Figure 2: Overview of TwinShield. The model developer deploys a foundation model to the cloud
service provider, which hosts a trusted CPU TEE and an untrusted accelerator. The user submits
input to the trusted TEE, which masks sensitive inputs and model parameters before outsourcing
heavy computations to the untrusted accelerator. We propose three secure outsourcing protocols:
OutLinearMult for linear layers, OutAttnMult for attention operations, and OutPipe for pipelined
communication and computation.

4.1 OUTSOURCE ATTENTION OPERATION: OutAttnMult

Unlike linear operations between weights and inputs, Attention in FMs involves two variable
operands, namely the multiplications between) and K7, and between SoftMax(QK7) and V.
This variability prevents TEEs from precomputing masked products, as done in prior work (Tramer
& Boneh, 2018} Hashemi et al., [2021; Sun et al., 2023), since the operands are not known before
inference. Consider the multiplication QK : the TEE masks @) with Rg and K T with R%, and
outsources (Q + Rq)(K” + RL) to the accelerator. The result expands to

QK" + RoK" + QR + RoRY
To recover QK T, the TEE must subtract the additional terms. Among them, only RqR% is pre-
computable, since the other terms depend on the unknown matrices @ or K.

We observe that the un-precomputable terms, QR% and R K T each involves one predetermined
mask, which seems to allow outsourcing through precomputation. For example, the TEE could
outsource (Q + Rg) - Rk and then recover Q R%; by subtracting the precomputed Rg R%. However,
this naive strategy compromises security: exposing R% enables the accelerator adversary to infer
KT by simply subtracting it from the masked value K7 + RL in the first outsourcing round.

To prevent this risk, we propose a Scale-then-Permute strategy. Rather than exposing R%; directly,
the TEE embeds R;(B into the masked matrix K7 + RIT(with a column-wise permutation, where
B is a scalar matrix. This achieves two goals: (i) it hides the distinction between K7 + R% and
R%B , s0 an attacker cannot recover K7 by simple subtraction without knowing the secret B; and
(ii) it allows the accelerator to compute (Q + Rg) (KT + R%) and (Q + Rg) R% B in a single round,
avoiding extra communication. The TEE en restores Q R% by applying the inverse permutation and
scaling with B~!, and subtracting RQRIT(. An analogous construction applies symmetrically to R,.

Workflow and Complexity Analysis. The OutAttnMult protocol, illustrated in Figure[3] proceeds
in two phases. In the offline phase, the TEE samples masks 2 and R, and generates their scaled
variants using diagonal matrices A and B. In the online phase, the TEE embeds and permutes
the masked inputs to construct Q € F?"*" and KT € F"*?P with additions and permutations of
cost O(mn + np). The accelerator then performs the dominant multiplication QK 7. Finally, the
TEE recovers the result using four scalings and five additions, also bounded by O(mn + np). In
summary, OutAttnMult reduces the TEE workload from O(mnp) multiplications to only O(mn +
np) lightweight scalar operations, while offloading the O(mmnp) multiplication to the accelerator.

Under review as a conference paper at ICLR 2026

Security Analysis. We model the accelerator as an adversary A interacting with a TEE oracle O.
For each query, O returns Q = perm(Q+Rg, ARg; A\g) and KT = perm(KT+RLE, RL. B; \i),
where masks, scalings, and permutations are secret. Since) + R forms a one-time pad (Bellare &
Rogawayl, 2001), its distribution is indistinguishable from AR, in the adversary’s view, while the
scale-then-permuted embedding of R% B prevents subtraction attacks on K. Thus, no adversary
running in probabilistic polynomial time (PPT) can recover () with non-negligible advantage. The
security level can be estimated as log, (%) m! [F|™) (scalar 8-bit, i.e., [F| = 2¢ with ¢ = 8); for
a typical input length m = 512, this is = 8,990 bits, far exceeding 128/256-bit security; further
details appear in Appendix

TEE Accelerator TEE Accelerator
Offline: Offline:
Sample: :
Rg « F™; R « F™P; A = diag(ay,..., ap), B =diag(by,..., by) -y e X = (@)
Precompute:
ARg, REB # TEE Scaler Multiplication
o Embedded Outsource @ Embedded Outsource
~ Q+Ry ~ ~_ + —
Q = perm AR, Ao — 1] = erm , N
KT = perm([K™ + Rk REB] Ax) — KT =+) — -
— Ty, T;
erm(QKT, A5t Axt =[1 ‘] —_— o~ ~ -1 -1 - 1 —_— ~
perm(@KT. A3 4) = |r, 1, — QKT=0-KT it — =
_[@+ R)(K™ + RE), (@ + Ro)REB _C+)+)
| ARG(KT +RE), AR REB C+)
@ Recovery @ Recovery
RoRg =AY T, - B # TEE Scaler Multiplication
QR =T, B! —RQR](' # TEE Scaler Multiplication and Addition = .- -
RQK"' =A1 Ty - RUR% # TEE Scaler Multiplication and Addition #TEE Scaler Multiplication and Addition

QK" =T, — RoRk — QR — RoK"™ # TEE Scaler Addition

Figure 3: Protocol of OutAttnMult. Figure 4: Protocol of OutLinearMult.
4.2 OUTSOURCE LINEAR OPERATIONS: OutLinearMult

Existing outsourcing schemes such as Slalom (ITramer & Bonehl 2018)) protect only the input in
linear computations Y = W X: the TEE blinds X with a random mask R x and precomputes W R x
offline before outsourcing (X + Rx)W. This ensures input privacy but leaves the weight matrix W
exposed, i.e., no dual protection. A natural extension is to also mask the weights by W 4 Ry, so
the accelerator computes (W + Ry)(X + Rx), and the TEE recovers WX by subtracting W Rx,
Rw X, and Ry Rx. However, as in attention outsourcing, Ry X cannot be precomputed since X
is unknown before inference. One option is to reuse the OutAttnMult protocol, but the linear case
is simpler because W is known in advance. This allows us to design a more lightweight protocol,
OutLinearMult (in Figure . Here, the TEE integrates Ry with W + Ry via a Scale-then-Permute
strategy, analogous to handling R and @) + R¢ in OutAttnMult while precomputable terms such
as W Rx are handled offline.

Workflow and Complexity Analysis. As shown in Figure 4] the protocol proceeds in two phases.
In the offline phase, the TEE samples a weight mask Ry € F™*™ and an input mask Rx € F"*P,
selects a diagonal scalar matrix C' € F™*™, and precomputes W R X and C Ry . In the online phase,

the TEE masks and permutes the inputs to obtain W € F2mxn and X € P, , and outsources them

to the accelerator. The accelerator then performs the dominant multiplication WX with complexity
O(mnp). Finally, in the recovery stage, the TEE applies one scaling and a few additions, with total
cost O(mp). Altogether, OutLinearMult reduces the TEE workload from O(mnp) multiplications
in vanilla secure linear computation to only O(mn + mp) lightweight operations, while offloading
the main O(mnp) cost to the accelerator.

Security Analysis. Similar to the protocol of OutAttnMult, we defer the details to the Appendix [D]

t-Integrity Guarantee. Following Slalom (Tramer & Boneh| 2018), TwinShield verifies out-
sourced multiplications using Freivalds’ algorithm (Freivalds, |1977). Given matrices A, B and a
candidate result C, the TEE samples a random vector s and checks whether Cs = A(Bs). If

Under review as a conference paper at ICLR 2026

C # AB, the probability of passing is at most 1/|FF|, which drops to t = (1/|F|)* after k repeti-
tions. Each check costs only O(n?), much cheaper than recomputing the O(n?) product inside the
TEE, thus providing efficient and tunable t-Integrity for outsourced linear operations.

4.3 OUTSOURCE COMMUNICATION-COMPUTATION OPTIMIZATION: OutPipe

Existing TEE offloading schemes adopt a serial workflow: inputs are transferred to the ac-
celerator, computation is performed, and results are copied back to TEE for post-processing.
This design was acceptable for small models such as CNNss,
however, foundation models with billions of parameters im- TEE-Only [
pose significant communication overhead. As shown in OutMult TR Linear [Others
Figure [5] after outsourcing linear and attention computa- OutPipe [= Communication
tions via OutMult, the bottleneck shifts from computation to 0 100 200 300
communication. This arises because in the serial workflow, Inference Time (Seconds)
the TEE must wait for all accelerator results (and vice versa)
before proceeding, leaving both sides idle during transfers.
As demonstrated in Figure [6] (upper), the TEE remains idle during data transfers and accelerator
computation.

Figure 5: Inference Breakdown.

To address this challenge, we propose OutPipe, a pipelined workflow that overlaps com-
munication and computation to eliminate the idle time of the serial design. The key ob-
servation is that workloads such as multi-head attention exhibit independence across heads,
which we group into compute blocks. Each block proceeds through four pipeline stages:
preparation inside the TEE, data transfer from TEE to accelerator, computation on the ac-
celerator, and data transfer back to the TEE. This design leverages accelerators that sup-
port concurrent copy-and-compute (NVIDIA| 2025; |AMD| [2025). To coordinate the TEE
and the accelerator, we organize their communication through a shared ring buffer divided
into slots. Each slot holds one compute block together with a state flag (READY or DONE).

The TEE fills a free slot and marks it READY, - >
while the accelerator processes ready slots and b wasted dle Time — 27777722

. - Trans(to Acc.
marks them DONE once finished. This mech- A?C:L;OC:) I:I-
anism decouples the two sides: the TEE can .10 7er) S
continue preparing the next block without wait- ¢ IIL Speedup |

ing, and the accelerator can continuously fetch qansto acc)| JOI0
new work. As shown in Figure [6] (bottom), accelerator | HEEME
the pipelined design achieves fine-grained over- Trans(to Teg) | |
lap across TEE pre-processing, communica-

tion, accelerator computation, and TEE post- Figure 6: Comparison of baseline (upper) and pro-
processing. Once the TEE finishes pre- posed OutPipe (bottom).

processing the first block, it immediately starts

transferring it to the accelerator while continuing to prepare the next block. Once the first block
arrives, the accelerator begins computation in parallel with the ongoing transfer of the second block.
When the accelerator completes a block, the results are directly transferred back to the TEE while
the accelerator proceeds with the next computation. This staged handoff ensures that all components
(TEE, communication channels, and accelerator) remain active simultaneously, thereby maximizing
utilization and throughput.

I TEE Pre-process
EATEE Post-process

5 EXPERIMENTAL METHODOLOGY

In this section, we introduce the experimental methodology.

Models. We evaluate our approach on four models from three LLM families: LLaMA3 (3B and 8B),
Qwen3 (14B), and Phi-4 (14B). In addition to these LLMs, we also include two vision-language
models, Qwen2.5-VL (7B) and Pixtral (12B) to cover multimodal tasks.

System Setup and Implementation. We conducted the TwinShield implementation on a server
equipped with an Intel(R) Xeon(R) Gold 6342 CPU running at 2.8GHz and 512GB DRAM, together
with an NVIDIA A40 GPU with 48GB VRAM. TEE enclave is built on the Gramine LibOS, which
runs unmodified applications inside Inte]l SGX. Communication between TEE and the accelerator is

Under review as a conference paper at ICLR 2026

enabled via a shared memory region, with EDMM (Enclave Dynamic Memory Management) acti-
vated to support dynamic enclave resizing and thread management. Since our threat model excludes
denial-of-service attacks, we assume reliable communication between the CPU and the accelera-
tor. Furthermore, our matrix computation and model inference framework builds upon ggml and
1lama . cpp, which provide an efficient and lightweight large language model inference pipeline.

Quantization. TwinShield adopts a quantization strategy for both activations and model weights,
drawing on the approaches of Slalom Tramer & Boneh|(2018)) and DarKnight Hashemi et al.|(2021).
Specifically, it converts values from floating-point to fixed-point by selecting a fractional bit number
[(we use | = 8 in our implementation), scaling values by 2, and rounding to integers. For negative
values, a correction p is applied to adjust them into the field Z,,, where the prime is chosen as p =
224 _ 3. The TEEs then outsource the subsequent computations to the GPUs, and later dequantize
the results to recover the original values.

6 EXPERIMENTAL RESULTS

6.1 END-TO-END PERFORMANCE

Comparison with baseline methods. We evaluate the proposed TwinShield and TEE-only base-
line (Hanzlik et al., 2021) across four large-scale foundation models, including LLaMA3-3B,
LLaMA3-8B, Qwen3-14B and Phi4-14B. To ensure fairness, both methods are tested under the
same setting, using identical models and adopting the same quantization scheme. As shown in Fig-
ure[7] TwinShield consistently outperforms the TEE-only baseline across different pre-filling token
lengths. For LLaMA3-3B, TwinShield achieves a 3.33x speedup at 2,048 tokens, while the gains
increase to 4.13x for LLaMA3-8B, 5.03x for Qwen3-14B, and 5.11 x for Phi4-14B. These results
demonstrate that the benefit of TwinShield scales with model size, effectively reducing the overhead
of secure inference from hundreds of seconds to a fraction of the baseline.

- - c) Qwen3-14B d) Phi4-14B
120 (a) LlaMA3-38 200 (b) LlaMA3-88 900 @a 900 (d)
___ 100{—=—TEE-Only 250 { === TEE-Only __ 750 | —=—TEE-Only __ 750 {—=—TEE-Only
L 804—e—TwinShield L 200 { =@ Twinshield £ 600{—e—Twinshield L 6001 —e—TwinShield
o 60 x3.33|| o 150 x4.13 || @ as0 450 X5.11
£ 404 € 1004 € 300 £ 30
= 20 [50_././‘.’4,_*4—4———- = 150 = 150

0 0 0 0

256 512 768 102412801536 17922048 256 512 768 102412801536 1792 2048 256 512 768 102412801536 17922048 256 512 768 102412801536 17922048
Token Number Token Number Token Number Token Number

Figure 7: Prefilling latency comparison between TEE-only and TwinShield across four foundation
models under varying token lengths. TwinShield consistently achieves multi-fold speedups, with

gains increasing alongside model size and input token lengths. B TEE-Only (Dual) B ShadowNet (Weights)

We further compare TwinShield with related outsourc- = 52om (nput) ElTwinshield (Dual

ing methods, Slalom (Tramer & Boneh, [2018) and Shad- ?iggg
owNet (Sun et all 2023)), on matrix multiplication. As shown

in Figure 8| TwinShield delivers comparable or better per- £ 3000
formance while providing dual protection, whereas Slalom a 1508

protects only inputs and ShadowNet protects only weights.
The advantage of TwinShield stems from its combination of
protocol-level outsourcing and the pipelined design OutPipe,
which overlaps computation and communication to reduce idle ~ Figure 8: Compare to baselines.
time and achieve higher throughput.

1024 2048 3072 4096
Token Number

Results on long-token inputs. Figure [/|further reports the speedup of TwinShield over the TEE-
only baseline across different token lengths. The relative gain grows with input length; for instance,
on Phi4-14B the speedup increases from 2.42x at shorter inputs to 5.11x at longer ones. This trend
is consistent with our complexity analysis: in the TEE-only baseline, the enclave must perform
the full O(mnp) multiplications, whereas TwinShield offloads these O(mnp) operations to the
accelerator and leaves only O (mn +mp) lightweight scaling and additions in the TEE. As the token
length p increases, the gap between these complexities widens, producing larger speedups.

Model Performance. Our outsourcing protocols do not introduce performance drops, since we
only offload heavy matrix multiplication to accelerators and the correctness is verified inside the

Under review as a conference paper at ICLR 2026

TEE. Thus, the model performance remains identical to the TEE-only baseline. The only source of
performance degradation comes from quantization. We therefore measure perplexity (PPL) using
the Wikitext (Merity et al., 2016) dataset to quantify this effect. As shown in Table[3] quantization
introduces only marginal increases in PPL, while preserving the performance of FMs and enabling
efficient secure execution.

Evaluation on vision language models To demonstrate the generality of our method across
transformer-based FMs, we further test it on vision-language models (VLMs). Compared to LLMs,
VLMs only introduce additional visual tokens while the overall processing pipeline remains iden-
tical. We evaluate our approach on Qwen2.5-VL-7B and Pixtral-12B, measuring the runtime for
processing image inputs with prompts. Specifically, the input images all have the resolution of
960 x 619, which is tokenized into 805 and 2378 tokens. On the other hand, the input text is “Please
describe this image in detail”, which is tokenized into 16 and 11 tokens. The inference time and
speedups are shown in Table 2]

Table 2: Time and speedup on VLMs. Table 3: Quantization effect on Perplexity.
T-Vision T-Text TEE-Only T'winShield Original Quantized
19135 61.2s
Qwen2SVL-7B 805 16 LLaMA3-3B 1027 10.63
1.00x 3.18X LLaMA3-8B 7.14 7.84
, 587.1s 183.9s Qwen3-14B 8.42 8.67
Pixtal-12B 2378 11 [0lS S80S Phid 148 631 6.40

6.2 ABLATION STUDY AND BENCHMARK

Ablation study on the effectiveness of proposed techniques. Figure 0] (a) evaluates the contribu-
tion of different components of TwinShield on the Llama3-8B model. By outsourcing all multipli-
cations through OutAttnMult and OutLinearMult, TwinShield achieves 2.71 x inference speedup.
Building on this, the system-level optimization OutPipe further enhances the speedup to 4.13x by
overlapping TEE preparation, communication, and accelerator computation. This overlap eliminates
the idle periods inherent in the serial workflow, thereby improving utilization on both the TEE and
the accelerator and delivering substantial end-to-end performance gains.

Performance Evaluation on Micro-Benchmark. To isolate the effect of the protocol itself, we
benchmark the matrix multiplications in Attention independently. Figure [9] (b) shows that
OutAttnMult accelerates these operations, and with OutPipe reduces latency by 2.4x at 2048 to-
kens. For linear layers, OutLinearMult with OutPipe achieves a 4.2x reduction at the same length.

= OutMult x4.13 1200 1 [TEE-Only [OutAttnMult 3000 4 [l TEE-Only [@ OutLinearMult
X 49 = OutMult+OutPipe % 10009 outAttnMult+OutPipe % 25001 outLinearMult+OutPipe
2 E 800 £ 2000
3 31 2 600 o 1500
7] = 400 = 1000
2] _/—»—""—‘/ = =
v x2.71 200 500
14y T T T T T T T 0 0
256 512 768 1024 1280 1536 1792 2048 512 1024 1536 2048 512 1024 1536 2048
Token Number Token Numner Token Numner
(a) (b) (c)

Figure 9: (a) End-to-end improvements with different techniques. OutMult includes OutAttnMult
and OutLinearMult. (b) Latency of Attention Multiplication. (c) Latency of Linear Multiplication.

7 CONCLUSION

We propose TwinShield, a framework for secure and efficient foundation model inference that
unifies TEEs with crypto-protected accelerators. By introducing OutAttnMult, OutLinearMult, and
the pipelined scheme OutPipe, T'winShield achieves dual protection of inputs and models while
enabling lightweight integrity verification. Experiments across multiple large-scale models show up
to 5.03x speedup over TEE-only execution, with ablation and micro-benchmarks confirming the
complementary benefits of protocol- and system-level optimizations. These results demonstrate that
TwinShield effectively bridges the gap between security and efficiency, offering a practical path
toward trustworthy Foundation Model-as-a-Service.

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
cal report. arXiv preprint arXiv:2412.08905, 2024.

Adil Ahmad, Byunggill Joe, Yuan Xiao, Yingian Zhang, Insik Shin, and Byoungyoung Lee. Obfus-
curo: A commodity obfuscation engine on intel sgx. In Network and Distributed System Security
Symposium, 2019.

AMD. Hip developing guide. https://rocm.docs.amd.com/projects/HIP/en/
docs—develop/, 2025.

Muhammad Awais, Muzammal Naseer, Salman Khan, Rao Muhammad Anwer, Hisham Cholakkal,
Mubarak Shah, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Foundation models defining a
new era in vision: a survey and outlook. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 2025.

Mihir Bellare and Phillip Rogaway. Introduction to modern cryptography. Lecture Notes, 2001.

Ferdinand Brasser, Srdjan Capkun, Alexandra Dmitrienko, Tommaso Frassetto, Kari Kostiainen, and
Ahmad-Reza Sadeghi. Dr. sgx: Automated and adjustable side-channel protection for sgx using
data location randomization. In Proceedings of the 35th Annual Computer Security Applications
Conference, pp. 788-800, 2019.

Jack Choquette. Nvidia hopper h100 gpu: Scaling performance. IEEE Micro, 43(3):9-17, 2023.

Ronald Cramer, Ivan Bjerre Damgérd, et al. Secure multiparty computation. Cambridge University
Press, 2015.

Daniel Demmler, Thomas Schneider, and Michael Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Rusins Freivalds. Probabilistic machines can use less running time. In IFIP congress, volume 839,
pp- 842, 1977.

Zhongshu Gu, Enriquillo Valdez, Salman Ahmed, Julian James Stephen, Michael Le, Hani
Jamjoom, Shixuan Zhao, and Zhigiang Lin. Nvidia gpu confidential computing demystified.
arXiv preprint arXiv:2507.02770, 2025.

Lucjan Hanzlik, Yang Zhang, Kathrin Grosse, Ahmed Salem, Maximilian Augustin, Michael
Backes, and Mario Fritz. Mlcapsule: Guarded offline deployment of machine learning as a ser-
vice. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp- 3300-3309, 2021.

Hanieh Hashemi, Yongqin Wang, and Murali Annavaram. Darknight: An accelerated framework
for privacy and integrity preserving deep learning using trusted hardware. In MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture, pp. 212-224, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Intel SGX. Intel® software guard extensions (intel® sgx) developer guide.
https://www.intel.com/content/www/us/en/developer/tools/
software—-guard-extensions/overview.html, 2023.

10

https://rocm.docs.amd.com/projects/HIP/en/docs-develop/
https://rocm.docs.amd.com/projects/HIP/en/docs-develop/
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html
https://www.intel.com/content/www/us/en/developer/tools/software-guard-extensions/overview.html

Under review as a conference paper at ICLR 2026

Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu,
Chenren Xu, Lintao Zhang, and Junehwa Song. Occlumency: Privacy-preserving remote deep-
learning inference using sgx. In The 25th Annual International Conference on Mobile Computing
and Networking, pp. 1-17, 2019.

Ziyu Liu, Yukui Luo, Shijin Duan, Tong Zhou, and Xiaolin Xu. Mirrornet: A tee-friendly framework
for secure on-device dnn inference. In 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pp. 1-9. IEEE, 2023.

Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, and Yingian Zhang. A survey of microarchitectural side-
channel vulnerabilities, attacks, and defenses in cryptography. ACM Computing Surveys (CSUR),
54(6):1-37, 2021.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Apoorve Mohan, Mengmei Ye, Hubertus Franke, Mudhakar Srivatsa, Zhuoran Liu, and Nel-
son Mimura Gonzalez. Securing ai inference in the cloud: Is cpu-gpu confidential computing
ready? In 2024 IEEE 17th International Conference on Cloud Computing (CLOUD), pp. 164—
175. IEEE, 2024.

Devon Myers, Rami Mohawesh, Venkata Ishwarya Chellaboina, Anantha Lakshmi Sathvik, Praveen
Venkatesh, Yi-Hui Ho, Hanna Henshaw, Muna Alhawawreh, David Berdik, and Yaser Jararweh.
Foundation and large language models: fundamentals, challenges, opportunities, and social im-
pacts. Cluster Computing, 27(1):1-26, 2024.

NVIDIA. CUDA C++ Programming Guide. NVIDIA, 2025. URL https://docs.nvidia.
com/cuda/cuda-c-programming—guide/index.htmll

T Pahima. Breakingformation: Orca security research team discovers aws cloudformation vulnera-
bility. Complete Cloud Security in Minutes-Orca Security, 2022.

Tianxiang Shen, Ji Qi, Jianyu Jiang, Xian Wang, Siyuan Wen, Xusheng Chen, Shixiong Zhao, Sen
Wang, Li Chen, Xiapu Luo, et al. {SOTER}: Guarding black-box inference for general neural
networks at the edge. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pp.
723-738, 2022.

Tong Sun, Bowen Jiang, Hailong Lin, Borui Li, Yixiao Teng, Yi Gao, and Wei Dong. Tensor-
shield: Safeguarding on-device inference by shielding critical dnn tensors with tee. arXiv preprint
arXiv:2505.22735, 2025.

Zhichuang Sun, Ruimin Sun, Changming Liu, Amrita Roy Chowdhury, Long Lu, and Somesh Jha.
Shadownet: A secure and efficient on-device model inference system for convolutional neural
networks. In 2023 IEEE Symposium on Security and Privacy (SP), pp. 1596-1612. IEEE, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Florian Tramer and Dan Boneh. Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware. In International Conference on Learning Representations, 2018.

L Tung. Google cloud: Here are the six’best’vulnerabilities security researchers found last year.
ZDNET, Mar, 2021.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark
Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the
keys to the intel {SGX} kingdom with transient {Out-of-Order} execution. In 27th USENIX
Security Symposium (USENIX Security 18), pp. 991-1008, 2018.

Stephan Van Schaik, Alyssa Milburn, Sebastian Osterlund, Pietro Frigo, Giorgi Maisuradze, Kaveh
Razavi, Herbert Bos, and Cristiano Giuffrida. Ridl: Rogue in-flight data load. In 2019 IEEE
Symposium on Security and Privacy (SP), pp. 88—105. IEEE, 2019.

11

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yuntao Wei, Xueyan Wang, Song Bian, Weisheng Zhao, and Yier Jin. The-v: Verifiable privacy-
preserving neural network via trusted homomorphic execution. In 2023 IEEE/ACM International
Conference on Computer Aided Design (ICCAD), pp. 1-9. IEEE, 2023.

Jan Wichelmann, Anja Rabich, Anna Pitschke, and Thomas Eisenbarth. Obelix: Mitigating side-
channels through dynamic obfuscation. In 2024 IEEE Symposium on Security and Privacy (SP),
pp. 4182-4199. IEEE, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Zheng Zhang, Na Wang, Ziqi Zhang, Yao Zhang, Tianyi Zhang, Jianwei Liu, and Ye Wu. Group-
cover: a secure, efficient and scalable inference framework for on-device model protection based
on tees. In Forty-first international conference on machine learning, 2024.

Ziqi Zhang, Lucien KL Ng, Bingyan Liu, Yifeng Cai, Ding Li, Yao Guo, and Xiangqun Chen.
Teeslice: slicing dnn models for secure and efficient deployment. In Proceedings of the 2nd ACM
International Workshop on Al and Software Testing/Analysis, pp. 1-8, 2022.

Ziqi Zhang, Chen Gong, Yifeng Cai, Yuanyuan Yuan, Bingyan Liu, Ding Li, Yao Guo, and Xiangqun
Chen. No privacy left outside: On the (in-) security of tee-shielded dnn partition for on-device
ml. In 2024 IEEE Symposium on Security and Privacy (SP), pp. 52-52. IEEE Computer Society,
2023.

Tong Zhou, Yukui Luo, Shaolei Ren, and Xiaolin Xu. Nnsplitter: an active defense solution for dnn
model via automated weight obfuscation. In Proceedings of the 40th International Conference on
Machine Learning, ICML’23. JMLR.org, 2023.

12

Under review as a conference paper at ICLR 2026

APPENDIX

|A" The Use of Large Language Models (LLLMs)|

(B Ethics statement|

|C Reproducibility Statement]

D Security Analysis of OutAttnMult|

ID.1 Analysis Takeaway|

[E Security Analysis of OutLinearMult]

[E.1 Theoretical guarantee| o

|[E.2 Bounding the adversary’s success probability|

IE.2 Trusted Execution Environments (I'EEs)|

[E.3 Secret Sharing for Data Confidentiality|.

[F.4 Computation Verification for Integrity| L.

13

14

14

14

14
14
15
15
16
16

16
16
17
17

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors used ChatGPT and Grammarly to check and correct any typos and grammatical errors.

B ETHICS STATEMENT

This work focuses on improving the security and efficiency of foundation model inference by com-
bining TEEs with cryptographic protocols. Our study does not involve human or animal subjects,
nor does it require the collection of personal or sensitive data. The evaluation uses publicly avail-
able pretrained models and datasets, and no private or proprietary datasets are disclosed. We believe
our method enhances privacy protection by safeguarding both user data and model confidentiality in
cloud inference. The research complies with the ICLR Code of Ethics, and we are not aware of any
ethical concerns or potential harms arising from this work.

C REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. The code is publicly avail-
able at https://anonymous.4open.science/r/Twinshield, together with a README file that includes
instructions for installation, configuration, and execution of experiments.

D SECURITY ANALYSIS OF OutAttnMult

D.1 ANALYSIS TAKEAWAY

In the outsourcing protocol in Figure[3] data inside the TEE is protected, while data processed by the
accelerator may be observed by adversaries. To prevent attackers from inferring the original Q, the

TEE constructs a masked representation @) by (i) adding a random mask Rg, (ii) permuting Q + R¢
together with AR under secret permutation indices, and (iii) scaling rows with a private diagonal
matrix A.

From the adversary’s perspective, recovering () from @ requires solving three layers of uncertainty:

1. Combination: choosing which m out of the 2m rows correspond to the true () + R block,

contributing (QTZL) possibilities.

2. Permutation: recovering the correct order of these m rows, contributing m! possibilities.

3. Scaling: guessing the diagonal scaling applied to each row, with each entry selected from
the finite field F, contributing |F|™ possibilities.

Putting these together, the adversary’s search space is

2
(2 e,
m

and thus the security level is quantified as

2
o ((207 mt 17
m
2m)

where 2m denotes the total number of rows in Q and |F| is the size of the finite field. Here, (%"
captures the row combination, m! the permutation order, and |F|™ the design space of the diagonal
matrix A.

For a typical FM setting with input length m = 512 and 8-bit scalars (i.e., [F| = 28), this evaluates
to roughly 8,990 bits of security, which is far beyond the standard 128/256-bit levels.

14

https://anonymous.4open.science/r/Twinshield/README.md

Under review as a conference paper at ICLR 2026

D.2 FEASIBLE SET CONSTRUCTION

We formalize the feasible set F (Z) of all possible pre-images Z of a transformed and shuffled matrix

7 € Rixd (here Z represents), K, or W). Let n be the number of original rows, ¢t = |Z | the total
number of rows observed, and m = t — n the number of mask rows. Denote [t] = {1,...,t} and
let D be the set of admissible non-singular diagonal scaling matrices used by the transformation.

Assumption. Rows in Z are generated by concatenating the original and mask rows, applying a
common right diagonal scaling D € D, followed by a row permutation; i.e.,

Z =11|Z;R]D,

+
1

where R = | : | and II permute ¢ rows.

T
"m

1. (Candidate mask index sets) For any 2 C [t] with |Q2] = m, define the candidate mask
set
o ={2 |jeQ}, Co = [t]\ Q.

Here 2; denotes the j-th row of Z.

2. (Candidate original rows) Choose any injective selection ¢ : [n] < Cq and set Z =
57, withz] = 2.

3. (Candidate ordering) For any permutation o on [n], form Z, = [51(1)5 . 'ET(") .

4. (Per-row feasible pre-images) For each i € [n], define
FouoZ)={z"€R"|IDeD, 3¢ € stz =(z);)—#T)D"}.

5. (Matrix-level feasible set) The feasible set corresponding to (2,1,) is the Cartesian
product

Let the obfuscation ratio be r := m/t. Under fixed n and a fixed D, increasing r (equivalently t)
strictly enlarges the index-family (Eﬂ) and hence cannot decrease F(Z) (monotonicity).

D.3 THEORETICAL GUARANTEE

Assumption (Obfuscation Model). All computations are carried out over a large finite field I,
(via fixed-point quantization). TEE samples secret diagonal scalings A, B, secret permutations
AQ, Ak, and fresh random mask blocks R, Ri uniformly at random; none are revealed to the
GPU. The embedded, permuted inputs are

Q= perm(Q + Ro, ARg;)\Q), KT = perm(KT + RY, RLB:;)\K),

where perm(+, -; A) concatenates the two blocks along the embedding dimension and applies per-
mutation \.

Theorem 1 (Indistinguishability). For a Q K™ computation and GPU view

VieWGPU = (@7 }(\f7 QKT) (QKT)/)a

15

Under review as a conference paper at ICLR 2026

where (QKT) is freshly re-masked inside the TEE, we have
¥(Qi.Q)) € F(Q)?: Pr[Q = Qi | Viewgpy] = Pr[Q = Q; | Viewgpu], (1)
V(KT KT) e F(KT)?: Pr[KT = KT | Viewgpy] = Pr[KT = KT | Viewgeu]. (2)

Proof sketch.

« Lemma 1. The attacker cannot recover QK7 from (QK” (QK™)’) because the TEE
inverts the embeddings with secret (A, B, Ag, Ak) and then applies fresh re-masking; these
are unknown to the GPU.

* Lemma 2. Masked vectors from Rg, Rx are indistinguishable from transformed data
vectors: over IF,,, additive masking with fresh uniform vectors (scaled by secret diagonals)
is a one-time pad; permutation hides positions.

Together these lemmas imply uniform posterior distributions over feasible sets, proving equa-

tion [[}-equation 2]

D.4 BOUNDING THE ADVERSARY’S SUCCESS PROBABILITY

The chance of exactly recovering (Q, KT) is bounded by the feasible-set sizes:

Pr[Correct] < — ! —. 3)
|F(Q) - [F(KT)|
Conservative lower bounds are
~ t — t
7@z () neto-vre FED 2 (M)t @
nQ ng
yielding
Pr[Correct] < [fo no! (p — 1)"‘Q} o [b ng!(p — 1)’”(}_1 Q)
< nQ Q- ik ! .

D.5 DISCUSSION

Increasing the obfuscation ratio r = m/t enlarges feasible sets, thereby lowering the adversary’s
success probability. Each round uses fresh masks (R, R) (and may refresh A, B, A\g, Ak), en-
suring independence across rounds and preventing cumulative leakage.

E SECURITY ANALYSIS OF QutLinearMult

E.1 THEORETICAL GUARANTEE

Assumption (Obfuscation Model). All computations take place over IF,,. The TEE samples: (i)
a secret row-wise diagonal scaling C' = diag(cq, ..., cq,,); (ii) fresh mask rows Ryy; and (iii) a
secret row permutation II. These are never revealed to the accelerator. The transformed weights and
masked inputs are

W + Ry

with Rx uniform. The accelerator computes Y = WX, while the TEE recovers WX using (C, IT)
and offline correction W Rx .

Adversary’s view. The accelerator observes
Viewi, = (W, X, WX, (WX)°),
where (W X)® is freshly re-masked inside the TEE.

16

Under review as a conference paper at ICLR 2026

Theorem 3 (Indistinguishability). Conditioned on Viewy;,, all W’ € F(W) are equally likely:
YW, W e J’-"(W)2 : Pr[W =W’ | Viewy,| = Pr[W = W” | Viewyy,]. (6)
Proof sketch.

 Lemma 3. Since X = X + Rx with Rx uniform, X is information-theoretically inde-
pendent of W.

* Lemma 4. The TEE uses (C,II) and W Rx to obtain W X, then re-masks it freshly. With
(C, 11, Rw, Rx) secret, the pair (WX, (W X)?) leaks nothing about W.

Thus Viewy, is invariant across feasible pre-images, proving equation [¢]

E.2 BOUNDING THE ADVERSARY’S SUCCESS PROBABILITY

The attacker’s chance of reconstructing W exactly is bounded by

1
Pr[Correct] < —. 7
|F(W)]
A conservative lower bound is
—~ t
FOP)| > (])domup— 1", ®)
out
where t = dyy + m is the number of real+mask rows and « the independent scales in C'. Hence
t —1
Pr[Correct] < [() dow! (p —)| . 9)
dOlll

E.3 DISCUSSION

Monotonicity holds: increasing r = m/t enlarges feasible sets and decreases the adversary’s success
probability. Each round uses fresh (Ry, Ry) (and may refresh (C,II)), ensuring independence
across layers and preventing cumulative leakage.

F BACKGROUND AND RELATED WORK

F.1 TRANSFORMERS

Transformer architecture consists of an embedding layer and consecutive transformer layers. Every
transformer layer is a composition of a multi-head self-attention (MHA) module, a feed-forward
(FFN) module, two normalization modules and residual connections. The input data is transformed
into a token sequence through the embedding layer with positional encoding. The input token se-
quence can be uniformly denoted as X, € RV*P where N is the number of tokens and D is the
embedding dimension. We describe the main computation blocks in Transformers below.

Additive Linear Operations. The additive linear operations in Transformers are mainly the linear
layers, where the output features are computed by multiplying the input features with weight matri-
ces. In the Attention module, given the input tokens X, € R™V* P the output Q, K,V € RV are
computed by multiplying X, with three weight matrices W,, Wy, W,, € RP*D:

Q=XW, K=XW, V=XW,. (10)

Similarly, in the Feed Forward module, the embedding X, € R¥*P is multiplied by two weight
matrices W1, Wy € RD'xD.

FeedForward(X.) = Act(X, - WlT) - Wh (11)

Existing techniques Tramer & Boneh| (2018); [Hashemi et al.| (2021) can securely outsource these
additive linear operations while protecting the input data X.. However, they cannot protect the
weight matrices W, which remain exposed to the untrusted accelerator.

17

Under review as a conference paper at ICLR 2026

Multiplicative Attention Operations. There are massive multiplicative linear operations in Trans-
formers which cannot be outsourced via prior methods. The primary multiplicative attention opera-
tions are computing the attention map and attention output in the Attention module:

Attention(Q, K, V) = SoftMaz(QK™ /\/d,)V (12)

The multiplicative operations (e.g., @ - K1) are fundamentally different from the additive linear
operations (e.g., @ = X, - W,). This is because in the multiplicative operations, neither operand is a
constant matrix. As a result, the multiplicative operations cannot be securely outsourced via existing
techniques. We refer to the matrix multiplication between () and K, and between the attention map
and V as attention matrix multiplication.

The multiplicative linear operations such as @ - K7 are computed independently across multiple
attention heads. For MHA with H heads, the multi-head attention is computed as:

MHA(Q, K,V) = Concat(heady, ..., head g)Wo (13)
where C'oncat(-) is the concatenation operation,
head; = Attention(XW}, XW}, XW}) (14)

and Wo € RH4xD jg a weight matrix to map features in all heads to the output dimension. The
MHA is the key mechanism in the Transformers and also the performance bottleneck. However, ex-
isting works cannot securely outsource the heavy computation in the multiplicative linear operations
within the MHA module.

F.2 TRUSTED EXECUTION ENVIRONMENTS (TEES)

TEEs like Intel SGX (Intel SGX) provide a secure environment where data confidentiality and,
in some cases, computation integrity are ensured by hardware. Intel SGX specifically safeguards
the confidentiality and integrity by isolating data and code within an enclave, shielded from exter-
nal elements including the operating system, hypervisor, and hardware devices on the system bus.
This isolation involves a dedicated memory region, the Processor Reserved Memory (PRM), man-
aged by SGX-enabled CPUs. Here, the Enclave Page Cache (EPC) stores enclave data and code
in 4 KB pages, accessible only through specific CPU instructions. This setup prevents unautho-
rized access to the EPC, maintaining a secure environment for sensitive computations. SGX also
supports remote attestation, allowing remote verification of an enclave’s integrity through crypto-
graphic proofs. These features have inspired research into running deep learning inference entirely
within CPU TEEs to protect data and model confidentiality (Hanzlik et al.,|2021)). However, the high
computational and memory demands of deep learning models make CPU TEE inference inefficient,
motivating the use of accelerators such as GPUs, TPUs, and ASICs to improve performance.

TEE with AI Accelerators. Although some high-end accelerators (e.g., NVIDIA H100 (Choquette),
2023)) have begun to support TEE capabilities, enabling secure computation directly on the accel-
erator remains impractical in most real-world deployments. This is due to two key factors: firstly,
TEE-enabled accelerators are rare and expensive, while many emerging and legacy GPUs (such as
GTX series and A100) currently deployed in data centers remain in use and are likely to persist for
years. Secondly, the growing heterogeneity of hardware accelerators (e.g., GPUs, TPUs, and FP-
GAs) introduces vendor incompatibilities and the complexity of cross-device TEE protocols, making
a unified TEE solution across diverse devices infeasible;

For accelerators without native TEE support, a more promising approach treats the CPU TEE as
the root of trust, and considers the accelerator as an untrusted but controlled extension of the TEE.
In this design, sensitive data is decrypted and processed inside the CPU TEE, which enforces strict
isolation and integrity guarantees, while delegating computationally intensive linear operations to
the untrusted accelerator through carefully controlled and isolated interfaces. These interfaces may
include exclusive device assignment, core pinning, and secure memory buffer management to min-
imize the risk of confidential data leakage. To further mitigate the risk of exposing plaintext data
during offloading, cryptographic techniques such as secret sharing are integrated, allowing the CPU
TEE to securely partition computations, outsource them to the accelerator, and verify the correct-
ness of results upon return. However, this approach remains limited in its ability to support attention
mechanisms in Transformer-based models, which are critical to modern deep learning workloads.

18

Under review as a conference paper at ICLR 2026

Therefore, it is imperative to design advanced secure outsourcing schemes that preserve the CPU
TEE as the single root of trust while efficiently leveraging heterogeneous and vendor-diverse un-
trusted accelerators to fully exploit their performance potential without compromising security.

F.3 SECRET SHARING FOR DATA CONFIDENTIALITY

Secret Sharing [Cramer et al.| (2015); Demmler et al.| (2015)) is a cryptographic primitive that allows
multiple parties to compute a function over their inputs while keeping them private. All our algo-
rithms are built on a two-party secret sharing over the field IF,,, where p is a prime number indicating
field size. In a two-party secret sharing, a secret x is split into two shares by random sampling
(x)y, (x); € Fp, such that x = (x), + (x); mod F,,. Secret sharing offers a strong security guar-
antee that, given a share (z), or (x),, the value of the original x is hidden, i.e., either party can
reconstruct the value of x with negligible possibility |Cramer et al.| (2015). In the setting of TEE-
based confidential inference, the value x can be split by a randomness r € I, chosen by the TEEs,
such that the two shares are (), = 7 and (x), = x — r, respectively. Prior works|Tramer & Boneh
(2018); Sun et al.| (2023) employ secret sharing to provide privacy guarantees when outsourcing
additive linear operations with constant weights w. Yet, existing outsourcing schemes cannot be
extended to multiplicative attention operations where both operands are variables, such as () and K,
as it is impossible to precompute multiplication between r and either () or K. Even for additive
linear operations, they only protect the input data z, leaving the weight matrix W exposed to the
untrusted accelerator.

F.4 COMPUTATION VERIFICATION FOR INTEGRITY

The verification algorithm enables a client to assert the correctness of computations performed by
a server. Within the landscape of TEEs, where computations are outsourced to high-performance
untrusted devices such as GPU, ensuring the integrity of these operations is paramount. Soter (Shen
et al.,|2022) introduces a “fingerprint” matrix method for integrity checks by the TEEs, which, how-
ever, may be vulnerable to targeted attacks. Additionally, recent research |Wei et al.| (2023) suggests
a sampling-based verification by the TEEs to compare against GPU outputs, facing limitations in de-
tecting selective manipulations without extensive sampling. Freivalds’ algorithm [Freivalds| (1977),
referenced in|{Tramer & Boneh|(2018));|Sun et al.|(2023)); Hashemi et al.| (2021), provides an efficient
mechanism for verifying matrix multiplications of the form AB = C. The algorithm commences
by generating a random vector r, followed by the TEEs computing the products B - r and C' - r. The
next step involves multiplying A with B - r, and comparing this outcome to C' - r. A discrepancy
between these products indicates a failure of AB to equal C, whereas a match suggests a probable
equality between AB and C'. Employing this method, the TEEs are able to perform a verification of
O(n?) matrix multiplication complexity using a more efficient O(n?) vector-matrix multiplication
operation, thereby enhancing the verification efficiency within the TEEs.

19

	Introduction
	Threat Model
	Background and Related Work
	Transformer-based Foundation Models
	Trusted Execution Environments (TEEs)
	Related Work

	TwinShield Design
	Outsource Attention Operation: OutAttnMult
	Outsource linear Operations: OutLinearMult
	Outsource communication-computation Optimization: OutPipe

	Experimental Methodology
	Experimental Results
	End-to-end performance
	Ablation Study and Benchmark

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Ethics statement
	Reproducibility Statement
	Security Analysis of OutAttnMult
	Analysis Takeaway
	Feasible Set Construction
	Theoretical guarantee
	Bounding the adversary's success probability
	Discussion

	Security Analysis of OutLinearMult
	Theoretical guarantee
	Bounding the adversary's success probability
	Discussion

	Background and Related Work
	Transformers
	Trusted Execution Environments (TEEs)
	Secret Sharing for Data Confidentiality
	Computation Verification for Integrity

