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Abstract

Comparing causal relations across different pop-
ulations is essential in various fields, including
medicine and ecology. Recently, several methods
have been developed to directly infer difference
graphs from observational data. These methods
rely on semi-parametric assumptions and suppose
that the data is continuous. We propose a new ap-
proach for discovering causal difference graphs
without any semi-parametric assumption and can
be applied on continuous or discrete or mixed
data. We provide theoretical guarantees of the new
method and test it on simulated data.

1 INTRODUCTION

Understanding the causal relations among variables is an im-
portant topic in many domains, such as medicine [Belyaeva
et al., 2021] and ecology [Pellissier et al., 2018]. Causal re-
lationships between variables can be represented by a struc-
tural causal model (SCM) [Pearl, 2000]. Each SCM can be
graphically represented using a causal graph G = (V,E),
where the nodes V represent random variables, and the
edges E represent causal relationships. In this paper, we
consider only causal graphs that are directed acyclic graphs
(DAGs). In many applications causal graphs are unknown,
so causal discovery methods infer causal graphs from ob-
servational data. One of the most well-known algorithm for
discovering causal graphs is the PC algorithm [Spirtes et al.,
2000] which assumes Faithfulness and Causal Sufficiency
[Spirtes et al., 2000], but no parametric assumptions on the
underlying distribution.

In many applications, researchers are interested in compar-
ing relationships between different groups. However, in-
ferring a causal graph from observational data is already
challenging, so discovering two different causal graphs and
then comparing them is not optimal. Additionally, such an

approach would not account for all types of differences be-
tween the groups, because the graphs could be the same but
encode different causal strength. Therefore, recently, new
methods have emerged to discover directly a difference DAG
D = (V,E) from observational data, such as DCI [Wang
et al., 2018] and iSCAN [Chen et al., 2024]. Both meth-
ods assume causal sufficiency, parametric assumptions on
the underlying distributions, and that the graphs share the
same topological order and they require that the variables
are continuous.

In this work, we propose a new algorithm, called Implicit
Difference Inference (IDI), which directly infers the dif-
ference DAG without any parametric assumptions on the
underlying distribution and can be applied to continuous,
discrete or mixed data. The proposed method is based on
the PC algorithm but does not require the faithfulness as-
sumption, only a lighter version of faithfulness.

2 SETTING

Consider there exists an unknown true SCM M on the ran-
dom variables X1, . . . , Xp. Let M1 and M2 be two under-
lying SCMs obtained by a set of interventions (structural
or parametric) on M , and let P1 and P2 be the underlying
distributions of M1 and M2, respectively. We have two
datasets sampled respectively from the distributions P1 and
P2. Our goal is to infer the difference graph D = (V,E),
where the vertices set is V = {X1, . . . , Xp} and there is an
edge between two vertices if there is a significant difference
between the two datasets relating those vertices.

The algorithm we present to discover D is based on the PC
algorithm. Instead of using an independence test, we use a
statistical test on equality of the dependence measures (we
state everything with mutual information, as it is a general
form, but any other dependence measure can be used):

H0 : IP1(X1, X2|X3) = IP2(X1, X2|X3),

for I the mutual information (for estimation and test, see
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Figure 1: Violation of faithfulness but not interventional
faithfulness. PC algorithm will not be able to infer G1, but
IDI is able to infer the CPDAG D̂ of the true difference
DAG D (which, in that case, coincides with D).

[Runge, 2018] for continuous variables and [Zan et al.,
2022] for mixed data).

2.1 IMPLICIT DIFFERENCE INFERENCE
ALGORITHM

We follow the main steps of the PC algorithm [Spirtes et al.,
2000, Colombo and Maathuis, 2014] to construct the dif-
ference DAG. First, IDI starts with the complete undirected
graph on {X1, . . . , Xp}. Then, for every pair of variables,
we check if their dependencies are similar within the two
datasets or if they can be separated by a separation set. For
every size of conditional set (from 0 to p − 2), we test if
the mutual information on the two datasets are equal. As
soon as there exists a conditional set such that the mutual
information on the two datasets are equal, we remove the
edge between the two variables. We use the four rules of the
PC algorithm to orient the edges: first, the origin of causal-
ity to orient V structures; then, the classical three rules in a
loop to orient as many edges as possible. The algorithm is
summarized in Algorithm 1 in the Supplementary materials.

2.2 THEORETICAL GUARANTEES

The IDI algorithm is developed to discover difference DAGs
rather than causal graphs. Unlike the PC algorithm, IDI does
not require the faithfulness assumption, which asserts that
if two variables are independent, they remain independent
under all possible conditioning sets. This assumption is
often criticized for being too stringent, particularly when
conditional independencies result from subtle cancellations
of causal effects.

To illustrate this, consider the diamond structure introduced
in Figure 1. If there exists canceling paths from X to W , the
PC algorithm might conclude that X and W are indepen-
dent, thereby removing the edge between them. However,
if the causal coefficients are slightly altered, making each
path’s strength different, X and W may show different
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Figure 2: Violation of interventional faithfulness. IDI is not
able to discover the CPDAG D̂ of the true difference DAG.

dependencies in the second graph. Therefore, the IDI algo-
rithm would only remove the edge between X and W if it
conditions on both Y and Z.

IDI bypasses the faithfulness assumption by not relying on
exact cancellations of paths, making it robust in scenarios
where the PC algorithm might fail. Similarly, IDI does not
require the minimality assumption, which ensures that every
edge in the DAG represents a dependence in the distribu-
tion. This relaxation allows IDI to handle more complex
or over-specified models without needing the causal graph
to be in its minimal form. While IDI relaxes some tradi-
tional assumptions, it introduces its own set of requirements.
Specifically, the IDI algorithm relies on:

Causal Sufficiency: This assumption requires that there are
no hidden confounders, meaning all relevant variables are
observed.

Interventional Faithfulness: Unique to IDI, this assump-
tion posits that intervening on a vertex will change the mu-
tual information between this node and all its ancestors.
This ensures that intervention effects are detectable through
changes in the mutual information, enabling the identifica-
tion of difference DAGs. It implies that the same canceling
paths (violations of faithfulness) cannot exist in all causal
graphs and prohibits swapping coefficients between causal
graphs as in Figure 2. Remark that depending on the de-
pendence measure considered, several implications can be
drawn. For example, if we consider the causal graph with
two variables X and Y such that X → Y . Suppose that in
M1, Y = aX + ξy in M1, Y = −aX + ξy, then in this
case the two mutual informations are equal. This scenario
can be avoided by assuming linearity and replacing mutual
information with correlation, but this would imply the need
of a parametric assumption.

Assuming the above assumptions given perfect conditional
independence information about all pairs of variables, the
IDI algorithm discovers the CPDAG D̂ of the true difference
DAG D. Experiments are available in the Supplementary
materials.
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A PSEUDOCODE OF THE IDI ALGORITHM

Algorithm 1 IDI algorithm

1: function IDI(V, P1, P2):
2: Form the complete undirected graph D̂ on the vertex set V.
3: n← 0
4: repeat
5: repeat
6: select an ordered pair of variables X

and Y that are adjacent in D̂ such that
Adjacencies(D̂, X) \ Y has cardinality
greater than or equal to n, and a subset S
of Adjacencies(D̂, X) \ Y of cardinality n

7: if IP
1

(X,Y |S) = IP
2

(X,Y |S) then
8: delete edge X − Y from D̂
9: record S in Sepset(X,Y ) and Sepset(Y,X)

10: end if
11: until all ordered pairs of adjacent variables X and

Y such that Adjacencies(D̂, X) \ Y has car-
dinality greater than or equal to n and all sub-
sets S of Adjacencies(D̂, X)\Y of cardinal-
ity n have been tested

12: n← n+ 1
13: until for each ordered pair of adjacent vertices X ,

Y , Adjacencies(D̂, X) \ Y is of cardinality
less than n

14: For each X − Z − Y in D̂ such that X − Y is
not in D̂, if Z ̸∈ Sepset(X,Y ) then orient the
substructure as X → Z ← Y

15: repeat
16: Apply Rules 1,2,3 of the PC algorithm
17: until no edge can be oriented
18: return D̂
19: end function
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B EXPERIMENTS

The simulated 100 datasets corresponding to the two causal graphs presented in Figure 1. Each dataset corresponding to G1
are simulated used the following generator:

X := ξx

Y := aX + ξy

Z := bX + ξz

W := cY − ac

b
Z + ξw

(1)

and the datasets corresponding to G2 are simulated using the following generator:

X := ξx

Y := a′X + ξy

Z := b′X + ξz

W := c′Y + dZ + ξw

(2)

where d is different than a′c′

b′ .

The results of our experiment showed that IDI was able to recover the CPDAG of true difference DAG in 90% of the
datasets.
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