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Abstract

We investigate the robustness of vision transformers (ViTs) through the lens of
their special patch-based architectural structure, i.e., they process an image as
a sequence of image patches. We find that ViTs are surprisingly insensitive to
patch-based transformations, even when the transformation largely destroys the
original semantics and makes the image unrecognizable by humans. This indicates
that ViTs heavily use features that survived such transformations but are generally
not indicative of the semantic class to humans. Further investigations show that
these features are useful but non-robust, as ViTs trained on them can achieve high
in-distribution accuracy, but break down under distribution shifts. Based on this
understanding, we use the images transformed with our patch-based operations as
negatively augmented views and offer losses to regularize the training away from
using non-robust features. This is a complementary view to existing research that
mostly focuses on augmenting inputs with semantic-preserving transformations
to enforce models’ invariance. We show that patch-based negative augmentation
consistently improves robustness of ViTs across a wide set of ImageNet based ro-
bustness benchmarks. Furthermore, we find our patch-based negative augmentation
are complementary to traditional (positive) data augmentation, and together boost
the performance further1.

1 Introduction

Building vision models that are robust, i.e., that are highly accurate even on unexpected and out-of-
distribution images, is increasingly a requirement to trusting vision models and a strong benchmark
for progress in the field. Recently, Vision Transformers (ViTs, Dosovitskiy et al. (2021)) achieved
a great sucess in image classification. With the new promise of vision transformers, it is critical to
understand their properties and in particular their robustness. Recent early studies (Naseer et al.,
2021; Paul & Chen, 2021; Bhojanapalli et al., 2021) have found ViTs be more robust than ConvNets
in some scenarios, with the hypothesis that the non-local attention based interactions enabled ViTs
to capture more global and semantic features. In contrast, we add to this line of research showing a
different side of the challenge: we find ViTs are still vulnerable to relying on non-robust features
impeding out-of-distribution performance.

In this paper, we first demonstrate ViTs rely on specific non-robust features and then show how to
reduce the reliance on these non-robust features, enabling improved out-of-distribution performance.

1A full version of the work is available at https://arxiv.org/abs/2110.07858.
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Figure 1: Patch-based transformations largely destroy images to be unrecognizable to humans
whereas ViT recognizes them as the original class (e.g., keeshond or magpie) with high confidence.
Visualization of patch-based transformations. On the top of each image, we display the predicted
confidence score of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k.

To understand the robustness properties of ViTs, we start with the architectural traits of ViTs –
ViTs operate on non-overlapping image patches and allow long range interaction between patches
even in lower layers. It is hypothesized in recent studies (Naseer et al., 2021; Paul & Chen, 2021;
Bhojanapalli et al., 2021) that the non-local attention based interactions contribute to better robustness
of ViTs than ConvNets. To study the ability of ViTs to integrate global semantics structures across
patches, we design and apply patch-based image transformations, such as random patch rotation,
shuffling, and background-infilling (Figure 1). Those transformations destroy the spatial relationship
between patches and corrupted the global semantics, and the resultant images are often visually
unrecognizable. However, we find that ViTs are surprisingly insensitive to these transformations
and can make highly accurate predictions on these transformed images. This suggests that ViTs use
features that survive such transformations but are generally not indicative of the semantic class to
humans. Going one step further, we find that those features are useful but not robust, as ViTs trained
on them achieved high in-distribution accuracy, but suffered significantly on robustness benchmarks.

With this understanding of ViTs’ reliance on non-robust features captured by patch-based transforma-
tions, we still must answer: how can we train ViTs to improve out-of-distribution performance and
not sacrifice in-distribution accuracy? A majority of past robust training algorithms encourage the
smoothness of model predictions on augmented images with semantic preserving transformations
(Hendrycks et al., 2020b; Cubuk et al., 2019). However, the patch-based transformations deliberately
destroy the semantic meaning and only leave non-robust features. Taking inspiration from recent
research on generative modeling (Sinha et al., 2020), we propose a family of robust training algo-
rithms based on patch-based negative augmentations that regularize the training from relying on
non-robust features surviving patch-based transformations. Through extensive evaluation on a wide
set of ImageNet-based benchmarks, we find that our methods consistently improve the robustness
of the trained ViTs. Furthermore, our patch-based negative augmentation can be combined with the
traditional (positive) data augmentation to boost the performance further.

2 Understanding Robustness of Vision Transformers
To investigate if ViT has successfully taken advantage of the long range interactions between patches,
we design a series of patch-based transformations which significantly destroys the global structure of
images. The patch-based transformations (see Fig. 1) are:

• Patch-based Shuffle (P-Shuffle): we randomly shuffle the input image patches to change their
positions2.

• Patch-based Rotate (P-Rotate): we randomly select a rotation degree from the set Ω =
{0◦, 90◦, 180◦, 270◦} and rotate each image patch independently.

• Patch-based Infill (P-Infill): we replace the image patches in the center region of an image
with the patches on the image boundary3.

2P-Shuffle is equivalent to shuffling the position embeddings.
3For example, given an image with size 384× 384, input patch size is 16× 16 and replace rate 0.25, we in

total have 576 patches xi,j , where i and j denotes the row and column index and 1 ≤ i, j ≤ 24. The patches in
the center xm,n, 7 ≤ m,n ≤ 18 are replaced by the remaining patches.
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Figure 2: ViTs can rely on features surviving patch-based transformations to maintain a high accuracy,
even after images have been heavily transformed to be largely unrecognizable. Top-1 accuracy of ViT
models when tested on patch-based transformed images using the semantic class of the corresponding
clean image as ground-truth. The test accuracy on ImageNet-1k validation set is shown on the right.
All ViT models are pre-trained on ImageNet-21k and fine-tuned on ImageNet-1k.

Figure 3: Features preserved in patch-based transformations are useful but non-robust as training
ViT on them impedes robustness. Top-1 Accuracy (%) on ImageNet-1k validation set and Ima-
geNet robustness datasets: ImageNet-A, ImageNet-C, ImageNet-R. The baseline model is ViT-B/16
in (Dosovitskiy et al., 2021) trained on original images. Other models are trained on patch-based
transformed images, e.g., “P-Shuffle” stands for a ViT-B/16 model trained on patch-based shuffled
images. Numbers above the bars are either accuracy (e.g., ViT-B/16) or the max accuracy difference
between each model family and the baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and
replacement ratio in P-Infill is denoted by “ps” and “rr” respectively.

Each patch-based transformation is performed to a single image. We make sure the patch size of our
patch-based transformation is a multiple of the input image patch of ViT so that the content within
each patch is well-maintained. For P-infill, we use “replace rate” to denote the ratio of replaced
patches in the center over the total number of patches in an image. Examples of transformed images
are shown in Fig. 1 (see Appendix E for more examples). In most cases, it is challenging to recognize
the semantic classes after those transformations.

Do ViTs rely on features not indicative of the semantic classes to humans? To validate if ViTs
behave similarly as humans on these patch-based transformed images, we evaluate ViT models (Doso-
vitskiy et al., 2021) on these patch-based transformed image. Specifically, we apply each patch-based
transformation to ImageNet-1k validation set and report the test accuracy of each ViT on the trans-
formed images. The test accuracy is computed by using the semantic class of the corresponding
original image as the ground-truth. As shown in Figure 2, the accuracy achieved by ViTs are sig-
nificantly higher than random guessing (0.1%). In addition, as shown in Figure 1, ViT gives these
patch-based transformed images a very high-confident prediction even when the transformation
largely destroys the semantics and make the image unrecognizable by humans.

Do features preserved in patch-based transformations impede robustness? Taking one step further,
we want to know if the features preserved by simple patch-based transformations result in robustness
issues. To this end, we train a vision transformer, e.g., ViT-B/164, on patch-based transformed
images with original semantic class assigned as their ground-truth. Note that all the training images
are patch-based transformed images. In this way, we force the model to fully exploit the features
preserved in patch-based transformations. Then, we test the model on ImageNet-1k validation set
and three robustness benchmarks, ImageNet-A (Hendrycks et al., 2019), ImageNet-C (Hendrycks &
Dietterich, 2019), ImageNet-R (Hendrycks et al., 2020a) without any transformation.

When we compare the accuracy between the baseline model and models trained on patch-based
transformations (i.e., the difference between the blue bar and one of the red/green/orange bars in

4We adopt the notations used in (Dosovitskiy et al., 2021) to denote model size and input patch size. For
example, ViT-B/16 denotes the “Base” model variant with input patch size 16× 16.
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Figure 3), we find that ViTs’ in-distribution accuracy drops only slightly, but the robustness drop is
significant when models are trained on these patch-based transformations. This strongly suggests
that the features preserved in patch-based transformations are useful for high-accurate in-distribution
prediction but are non-robust under distributional shifts.

3 Improving the Robustness of Vision Transformers

Based on the key observations that the patch-based transformations encode features that contribute
to the non-robustness of ViTs, we propose a negative augmentation procedure to regularize ViTs
from relying on such features. Specifically, given a clean image x, we generate its negative view,
denoted as x̃, by applying a patch-based transformation to x. We call it negative augmentation,
in contrast with the standard (positive) augmentation that are semantic preserving. Let Lce(B;θ)
represent the cross-entropy loss function used to train a vision transformer with parameters θ, where
B is a minibatch of clean examples. The loss on negative views Lneg(B, B̃;θ) can be easily added to
the cross-entropy loss Lce(B;θ) via

Lce(B;θ) + λ · Lneg(B, B̃;θ), (1)
where λ is a coefficient balancing the importance between clean data as well as negative augmentation.
We introduce three different losses on negative views to leverage patch-based negative augmentation
through label, logit and representation space respectively.

Label space: uniform loss Many existing data augmentation techniques (Cubuk et al., 2019, 2020;
Hendrycks et al., 2020b) use one-hot labels for semantic-preserving augmented data to enforce the
invariance of the model prediction. In contrast, the semantic classes of our generated patch-based
negative augmented data are visually unrecognizable, as shown in Figure 1. Therefore, we propose
to use uniform labels instead for those negative augmentations. Specifically, the loss function on
negative views that we optimize at each training step can be formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
(x̃,ỹ)∈B̃

ỹ log softmax(f(x̃;θ)), (2)

where ỹ denotes the uniform distribution: ỹk = 1
K where K is the total number of classes. f(x;θ)

denotes the function mapping the input image into the logit space.

Logit space: `2 Loss An alternative to pre-assuming labels for negative augmentation is to add
the constraints on the logit space (or the space of predicted probability). Inspired by existing
work (Kannan et al., 2018; Zhang et al., 2019; Hendrycks et al., 2020b) which provides an extra
regularization term encouraging similar logits between clean and “positive” augmented counterparts,
we instead encourage the logits of clean examples and their corresponding negative augmentations to
be far away. In this way, we prevent the model from relying on the non-robust features preserved
in negative views. Specifically, we maximize the `2 distance between the predicted probability of
clean examples and their corresponding negative views. The loss on negative views, therefore, can be
formulated as:

Lneg(B, B̃;θ) = − 1

|B̃|

∑
x∈B,x̃∈B̃

‖softmax(f(x;θ))− softmax(f(x̃;θ))‖2. (3)

Here the `2 distance is computed over the predicted probability rather than the logits f(x;θ) because
empirically we observe that maximizing the difference of logits can cause numerical instability.

Representation space: contrastive loss Lastly, we propose to use a contrastive loss (Oord et al.,
2018; Chen et al., 2020a; Khosla et al., 2020) to regularize the training away from using non-robust
features. For an example xi ∈ B, we create a positive set Pi ≡ {xj ∈ B\{xi}|yj = yi} with all
the examples in the minibatch B sharing the same class as xi. The anchor xi is excluded from its
positive set Pi. Next, we can generate the negative set composed of two types of negative examples:
1) all the examples in the minibatch B with a different class as xi, 2) the patch-based negatively
transformed images x̃ ∈ B̃. For each anchor xi, we can in total have 2|B| − |Pi| − 1 negative pairs,
where |B| is the batch size and |Pi| is the cardinality of the positive set Pi. Let the candidate set
Qi ≡ B̃ ∪ B\{xi}, the loss function can be expressed as:

Lneg(B, B̃;θ) = − 1

|B|
∑
xi∈B

1

|Pi|
∑
xj∈Pi

log
exp(sim(xi,xj)/τ)∑

xk∈Qi
exp(sim(xi,xk)/τ)

, (4)

where τ is the temperature and sim(xi,xj) =
g(xi;θ)

ᵀ·g(xj ;θ)
‖g(xi;θ)‖‖g(xj ;θ)‖ computes the cosine similarity

between g(xi;θ) and g(xj ;θ), and g(x;θ) denotes the representation learned by the penultimate
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Table 1: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k using Rand-
Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al., 2020b). The proposed negative aug-
mentation is added on top of either positive augmentation. Patch-based negative augmentation is
complementary to “positive” data augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 79.1 7.2 55.2 23.0

+ P-Rotate / L2 79.1 (+0.0) 7.9 (+0.7) 56.7 (+1.5) 23.8 (+0.8)
+ P-Infill / Contrastive 79.9 (+0.8) 9.3 (+2.1) 57.9 (+2.7) 25.0 (+2.0)

AugMix (Hendrycks et al., 2020b) 78.8 7.7 57.8 24.9

+ P-Rotate / L2 79.0 (+0.2) 8.3 (+0.6) 58.8 (+1.0) 26.0 (+1.1)
+ P-Infill / Contrastive 79.6 (+0.8) 9.9 (+2.2) 60.3 (+2.5) 27.3 (+2.4)

layer of the classifier. We do not use a learnable projection head5 as in contrastive representation learn-
ing (Chen et al., 2020a,b). Therefore, no extra network parameters are used for our proposed method
and the improvement of robustness can be mainly attributed to patch-based negative augmentations.

When the batch size is larger than the number of classes (which is the case for our ImageNet-
1K experiments), it is easy to find positive examples from the same class in a mini-batch, so we
only extend candidate set Qi with our proposed patch-based negative data augmentations. When
the batch size is far smaller than the number of classes (which is the case for our ImageNet-21K
experiments), it can be difficult to find two examples from the same classes. Similar to (Chen et al.,
2020a; Khosla et al., 2020), we generate another “positive” view for each image using common data
augmentation (e.g., random cropping) so that we can make sure there is at least one positive pair
from the same class. Denoting the set of positively augmented data as B+, the modified positive set
is Pi ≡ {xj ∈ B+|yj = yi}, the candidate set Qi is now B̃ ∪ B+ instead of B̃ ∪ B\{xi}.
Experimental setup We follow Dosovitskiy et al. (2021) to first pre-train all the models with image
size 224× 224 and then fine-tune the models with a higher resolution 384× 384 (see Appendix A for
details). The top-1 accuracy of the fine-tuned models are reported on ImageNet-1k validation set as
well as three robustness benchmarks, ImageNet-A (Hendrycks et al., 2019), ImageNet-C (Hendrycks
& Dietterich, 2019) and ImageNet-R (Hendrycks et al., 2020a). For ImageNet-C, the reported
accuracy is averaged over 19 corruptions types and 5 different corruption severities.

Complementary to traditional (“positive”) data augmentation To investigate if our proposed
patch-based negative augmentation is complementary to “positive” data augmentation, we apply
our patch-based negative transformation on top of Rand-Augment (Cubuk et al., 2020) and Aug-
Mix (Hendrycks et al., 2020b). As in Table 1, when patch-based negative augmentations are applied to
either Rand-Augment or AugMix, we can consistently improve the robustness of vision transformers
across all three robustness benchmarks (please refer to Table 5 in Appendix for a full table with three
losses for each patch-based transformation). This is particularly noteworthy as both Rand-Agument
and AugMix are already designed to significantly improve the robustness of vision models. Yet, we
see that patch-based negative augmentation provides further robustness benefits. This suggests that
robustness of vision models was not adequately addressed by “positive” data augmentation and that
patch-based negative augmentation is complementary to traditional approaches.

4 Conclusion
Through this research we have found concrete examples of ViTs relying on non-robust features for
predictions and shown that this reliance is limiting robustness and out-of-distribution performance. We
believe this opens multiple exciting new lines of research. First, we believe that the methodological
approach developed here is a valuable recipe for further progress. Through finding patch-wise,
semantic-destroying transformations that ViTs are insensitive to we can identify when models rely on
non-robust features, and through incorporating them as negative augmentations during training we
can meaningfully reduce reliance on such features. Second, we believe this shows the potential for
further improving the robustness of ViTs. Through training the model to use such non-robust features
less, we have seen we can significantly improve the out-of-distribution performance of ViTs, without
harming in-distribution accuracy!

5We did not experiment if an extra projection head can push the result further as it is not our main focus but
we encourage interested readers to validate if it is true or not.
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A Training Details

We follow (Dosovitskiy et al., 2021) to train each model using Adam (Kingma & Ba, 2015) optimizer
with β1 = 0.9, β2 = 0.999 for pre-training and SGD with momentum for fine-tuning. The batch
size is set to be 4096 for pre-training and 512 for fine-tuning. All models are trained with 300
epochs on ImageNet-1k and 90 epochs on ImageNet-21k in the pre-training stage. In the fine-tuning
stage, all models are trained with 20k steps except the models pretrained from ImageNet-1k without
Rand-Augment (Cubuk et al., 2020) or Augmix (Hendrycks et al., 2020b), which we train them with
8k steps. The learning rate warm-up is set to be 10k steps. Dropout is used for both pre-training
and fine-tuning with dropout rate 0.1. If the training dataset is ImageNet-1k, we additionally apply
gradient clipping at global norm 1.

Table 2: Training details following (Dosovitskiy et al., 2021).
Pre-train Dataset Stage Base LR LR Decay Weight Decay Label Smoothing

ImageNet-1K Pre-train 3 · 10−3 ‘cosine’ None 10−4

ImageNet-21k Pre-train 10−3 ‘linear’ 0.03 10−4

ImageNet-1K Fine-tune 0.01 ‘cosine’ None None
ImageNet-21K Fine-tune 0.03 ‘cosine’ None None

Table 3: Models using a different hyperparameter λ than the default value (1.5).
Model Pre-train Dataset Training stage Hyperparameter λ

Rand-Augment + P-Shuffle / Uniform ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Rotate / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Infill / L2 ImageNet-1k Pre-train 1.0
AugMix + P-Shuffle / Contrastive ImageNet-1k Pre-train 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / L2 ImageNet-21k Pre-train 0.5
Rand-Augment + P-Shuffle / Contrastive ImageNet-21k Pre-train 0.5
Rand-Augment + P-Rotate / Uniform ImageNet-1k Fine-tune 0.5
Rand-Augment + P-Infill / Uniform ImageNet-1k Fine-tune 1.0
AugMix + P-Rotate / Uniform ImageNet-1k Fine-tune 1.0
Rand-Augment + P-Shuffle / Uniform ImageNet-21k Fine-tune 0.5

B Hyper-parameters in Patch-based Negative Augmentation

For the temperature τ used in contrastive loss, we consistently observe that τ = 0.5 works better in
pre-training stage and τ = 0.1 works better in fine-tuning stage. Therefore, we keep this setting for
all the models in our paper.

Since we sweep the coefficient λ in Eqn. 1 from the set {0.5, 1.0, 1.5}, we observe that for most of
the cases, λ = 1.5 works the best. In total we have 48 models using loss regularization on negative
views in Table 8, Table 1, Table 6 and Table 5. We use λ = 1.5 for all of them except those listed
in Table 3, where either λ = 0.5 or λ = 1.0 works better. Actually, we find our proposed negative
augmentation is relatively robust to λ. Therefore, we suggest using λ = 1.5 if readers do not want to
sweep for the best value for this hyperparameter.

In Table. 4, we display the hyperparameters in each patch-based transformation that we use for the
reported results in this work. Our algorithms are generally insensitive to these parameters, and we
use the same hyperparameter for all the settings investigated in this work.
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Table 4: Hyperparameters in patch-based transformations.
Image Size Stage Transformation Hyperparameter

224× 224 Pre-train P-Shuffle patch size = 32
224× 224 Pre-train P-Rotate patch size = 16
224× 224 Pre-train P-Infill replace rate = 15/49

384× 384 Fine-tune P-Shuffle patch size = 64
384× 384 Fine-tune P-Rotate patch size = 32
384× 384 Fine-tune P-Infill replace rate = 3/8

Table 5: Patch-based negative augmentation is complementary to “positive” data augmentation.
Top-1 accuracy on ImageNet-1k (IN), ImageNet-A (IN-A), ImageNet-C (IN-C) and ImageNet-R
(IN-R) of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Our proposed patch-based negative
augmentation are applied to either Rand-Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al.,
2020b). We display the accuracy of five different corruption severities on ImageNet-C (IN-C).

Model IN IN-A IN-C IN-R

1 2 3 4 5

Rand-Augment (Cubuk et al., 2020) 79.1 7.2 70.4 63.7 57.9 48.2 36.1 23.0

+ P-Shuffle / Uniform 79.3 7.7 71.0 64.4 59.0 49.5 37.3 23.4
+ P-Rotate / Uniform 79.3 8.1 71.1 64.6 59.0 50.0 37.6 23.8
+ P-Infill / Uniform 79.2 7.8 71.1 64.6 59.1 49.5 37.3 24.0

+ P-Shuffle / L2 78.9 7.5 70.5 63.9 58.3 48.6 36.6 22.6
+ P-Rotate / L2 79.1 7.9 71.1 64.8 59.5 50.1 37.8 23.8
+ P-Infill / L2 78.8 7.4 70.5 63.8 58.2 48.4 36.0 23.2

+ P-Shuffle / Contrastive 79.7 8.9 72.2 65.9 60.6 51.2 38.9 24.7
+ P-Rotate / Contrastive 79.9 9.4 72.4 66.3 61.2 52.1 40.1 25.4
+ P-Infill / Contrastive 79.9 9.3 72.3 66.1 61.0 51.8 39.5 25.0

AugMix (Hendrycks et al., 2020b) 78.8 7.7 71.4 65.2 60.5 51.9 40.2 24.9

+ P-Shuffle / Uniform 79.2 8.0 71.6 65.7 61.2 52.8 41.4 25.7
+ P-Rotate / Uniform 79.1 8.2 71.7 65.7 61.1 52.7 41.4 25.7
+ P-Infill / Uniform 79.3 8.3 71.9 65.8 61.1 52.4 40.8 25.7

+ P-Shuffle / L2 78.8 7.9 71.8 65.8 61.0 52.4 40.7 25.7
+ P-Rotate / L2 79.0 8.3 71.9 66.0 61.5 52.9 41.6 26.0
+ P-Infill / L2 79.0 7.9 71.8 65.8 61.3 52.7 41.0 25.6

+ P-Shuffle / Contrastive 79.6 9.0 72.9 67.2 62.8 54.6 43.2 27.3
+ P-Rotate / Contrastive 79.6 9.8 72.6 66.9 62.6 54.5 43.5 27.5
+ P-Infill / Contrastive 79.6 9.9 72.9 67.4 63.0 54.8 43.4 27.3

C Related Work
Vision transformers (Dosovitskiy et al., 2021; Touvron et al., 2021) are a family of Transformer
models (Vaswani et al., 2017) that directly process visual tokens constructed from image patch
embedding. Unlike convolutional neural networks (LeCun et al., 1989; Krizhevsky et al., 2012; He
et al., 2016) that assume locality and translation invariance in their architectures, vision transformers
have no such assumptions and are able to exchange information globally, thus having less inductive
bias about the input image data. The significant difference in architectures raises questions about
their robustness properties. A few recent studies find pretrained vision transformers are at least as
robust as the ResNet counterparts (Bhojanapalli et al., 2021), and possibly more robust (Naseer et al.,
2021; Paul & Chen, 2021). Our work studies a specific aspect of robustness pertaining patch-based
visual tokens in ViT, and show it may lead to a generalization gap. Different from (Naseer et al.,
2021) which also shows ViTs are insensitive to patch operations such as shuffle and occlusion, we
further propose a mitigation strategy to increase robustness of patch-based architectures.

Data augmentation is widely used in computer vision models to improve model performance (Howard,
2013; Szegedy et al., 2015; Cubuk et al., 2020, 2019; Qin et al., 2021). It has been shown that data
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Table 6: Top-1 accuracies of ViT-B/16 pretrained on ImageNet-21k and finetuned on ImageNet-1k.
Patch-based negative augmentation is helpful even with large-scale pretraining.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 (Dosovitskiy et al., 2021) 84.1 26.7 65.2 37.9

Rand-Augment (Cubuk et al., 2020) 84.4 28.7 67.2 38.7

+ P-Shuffle / Uniform 84.5 (+0.1) 29.9 (+1.2) 67.7 (+0.5) 38.9 (+0.2)
+ P-Shuffle / L2 84.5 (+0.1) 29.7 (+1.0) 68.0 (+0.8) 39.6 (+0.9)
+ P-Shuffle / Contrastive 84.3 (-0.1) 30.8 (+2.1) 68.1 (+0.9) 38.6 (-0.1)

augmentation benefits vision transformers more than convolutional networks for relatively small
scaled datasets (Touvron et al., 2021). However, most of the existing data augmentations are
“positive” in the sense they assume the class semantic being preserved after the transformation.
In this work, we explore “negative” data augmentation operations based on patches, where we
encourage the representations of transformed example to be different from the original ones. Most
related to our work in this direction is the work of Sinha et al. (2020). Although the concept of
negative augmentation was proposed in their work, they only apply it for generative and unsupervised
modeling. In contrast, our work focuses on discriminative and supervised modeling, and demonstrate
how such negative examples can reveal specific robustness issues and such augmentation approaches
can directly mitigate them, offering robustness improvements under large-scale pretraining settings.

Our work is also related to contrastive learning (Wu et al., 2018; Hjelm et al., 2019; Oord et al., 2018;
He et al., 2020; Tian et al., 2020). The increasing number of negative pairs has shown to be important
for representation learning in self-supervised contrastive learning (Chen et al., 2020a), where different
images serve as negative examples for each other, and supervised contrastive learning (Khosla et al.,
2020), where images with different classes are used as negative examples. Unlike the traditional
setting of representation learning, our proposed contrastive loss serves as a regularization term with
patch-based negative augmentations as extra negative data points.

D Experiments

D.1 Effective in improving robustness

First, we apply our proposed patch-based transformations to a ViT-B/16 model pre-trained and fine-
tuned on ImageNet-1k. The extra loss regularization on negative views is used in both pre-training
and fine-tuning stages to prevent the model from learning non-robust features preserved in patch-
based transformations. We use “Transformation / Regularization” to denote a pair of patch-based
negative augmentation and loss regularization. For examples, “P-Rotate / Uniform” means that we
use P-Rotate to generate the negative views and use uniform loss to regularize the training. We display
the results in Table 8, where we can clearly see that our proposed patch-based negative augmentation
effectively improves the in-distribution test accuracy and the out-of-distribution robustness across all
ImageNet-based benchmarks. We observe that all three loss regularizations effectively leverage the
negative views to regularize the training away from using non-robust features, while the contrastive
loss works the best.

D.2 Robustness improvements even under larger pre-training datasets
Considering that larger training data can significantly improve models’ robustness and achieve state-
of-the-art performance, we further investigate if our proposed method can scale up to larger datasets
and continues to be necessary and valuable. To this end, we test if our proposed patch-based negative
augmentation still helps robustness even when models are pre-trained on ImageNet-21k (10x larger
than ImageNet-1k). Since we follow (Dosovitskiy et al., 2021) and use a batch size of 4096 in the
pretraining stage, which is much less than the 21K classes in ImageNet-21k, it is unlikely to have
multiple images of the same class in a mini-batch during pretraining. As mentioned above, we address
this issue by augmenting each image one more time, generating another positive view of the same
image, to make sure there is at least two examples from the same class in the mini-batch.

We use P-Shuffle as an example to generate negative views and display the results in Table 6 with
negative augmentation in both pre-training and fine-tuning stages. We can clearly see that even when
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Table 7: Effect of patch-based negative augmentation in pre-training and fine-tuning stages. Top-1
accuracies of ViT-B/16 pretrained and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote which
training stage patch-based negative augmentation is used. The best result under each setting is
highlighted in bold.

Pre-train on ImageNet-1k

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) - 79.1 7.2 55.2 23.0

+ P-Shuffle / Uniform Fine-tune 79.1 7.1 55.3 23.0
+ P-Shuffle / Uniform Pre-train 79.3 7.6 56.2 23.5
+ P-Shuffle / Uniform Both 79.3 7.7 56.2 23.4

+ P-Shuffle / Contrastive Fine-tune 79.5 7.6 56.2 23.7
+ P-Shuffle / Contrastive Pre-train 79.4 8.5 56.8 24.0
+ P-Shuffle / Contrastive Both 79.7 8.9 57.8 24.7

Pre-train on ImageNet-21k

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) - 84.4 28.7 67.2 38.7

+ P-Shuffle / L2 Fine-tune 84.5 29.4 67.9 39.0
+ P-Shuffle / L2 Pre-train 84.4 29.9 67.5 38.8
+ P-Shuffle / L2 Both 84.5 29.7 68.0 39.6

+ P-Shuffle / Contrastive Fine-tune 84.4 29.2 67.5 38.7
+ P-Shuffle / Contrastive Pre-train 84.6 29.9 67.7 38.5
+ P-Shuffle / Contrastive Both 84.3 30.8 68.1 38.6

Table 8: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k with or without
the proposed negative augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 (Dosovitskiy et al., 2021) 77.6 6.7 50.8 20.3

+ P-Rotate / Uniform 78.2 (+0.6) 7.0 (+0.3) 52.4 (+1.6) 21.4 (+1.1)
+ P-Rotate / L2 77.8 (+0.2) 6.7 (+0.0) 51.6 (+0.8) 21.0 (+0.7)
+ P-Rotate / Contrastive 78.9 (+1.3) 8.6 (+1.9) 54.1 (+3.3) 23.6 (+3.3)

we greatly increase the size of pre-training dataset (i.e., ImageNet-21k is 10x larger than ImageNet-
1k), our proposed patch-based negative augmentation can still further improve the robustness of ViT.
This demonstrates that our approach is valuable at scale and improves models’ robustness from an
angle orthogonal to larger training data.

D.3 Pre-training vs. Fine-tuning
We further disentangle the effect of patch-based negative data augmentation in pre-training and
fine-tuning. Take P-Shuffle as an example, we design experiments to apply negative augmentation
1) only at the fine-tuning stage, 2) only at the pre-training stage, and 3) at both stages. As shown in
Table 7, compared to the baselines, patch-based negative augmentation can effectively help improve
robustness in both stages, and its effect in pre-training is slightly larger than in fine-tuning. Finally,
we found using negative augmentation in both stages during training yields the largest gain.

D.4 When to use Positive data augmentation

As Steiner et al. (2021) observed that traditional (positive) augmentation can slightly hurt the
accuracy of ViT if applied to fine-tuning stage, we compare the accuracy of a ViT-B/16 when positive
augmentation (e.g., Rand-Augment (Cubuk et al., 2020)) is only applied to pre-training stage as well
as both stages. As shown in Table 9, fine-tuning without Rand-Augment achieves slightly better
performance. In addition, we also provide the results in Table 10 where we apply positive data
augmentation in both stages, our proposed negative augmentation are still complementary to positive
ones.
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Table 9: Effect of positive augmentation in pre-training and fine-tuning stages. Top-1 accuracies of
ViT-B/16 pretrained on ImageNet-21k and fine-tuned on ImageNet-1k. Under ‘Stage’ we denote
which training stage Rand-Augment (Cubuk et al., 2020) is used.

Model Stage ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment Pre-train 84.4 28.7 67.2 38.7

Rand-Augment Both 84.4 29.1 67.0 38.4

Table 10: Top-1 accuracies for ViT-B/16 pre-trained and fine-tuned on ImageNet-1k using Rand-
Augment (Cubuk et al., 2020) or AugMix (Hendrycks et al., 2020b) in both pre-training and fine-
tuning. The proposed negative augmentation is added on top of either positive augmentation. Patch-
based negative augmentation is complementary to “positive” data augmentation.

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment (Cubuk et al., 2020) 79.2 7.9 55.1 23.2

+ P-Shuffle / Uniform 79.4 (+0.2) 8.6 (+0.7) 56.0 (+0.9) 23.3 (+0.1)
+ P-Shuffle / L2 79.3 (+0.1) 8.2 (+0.3) 55.5 (+0.4) 22.6 (-0.6)
+ P-Shuffle / Contrastive 79.4 (+0.1) 9.4 (+1.5) 56.9 (+1.8) 24.9 (+1.7)

AugMix (Hendrycks et al., 2020b) 78.7 8.8 57.9 24.7

+ P-Shuffle / Uniform 79.4 (+0.7) 9.0 (+0.2) 59.0 (+1.1) 25.3 (+0.6)
+ P-Shuffle / L2 78.9 (+0.2) 8.6 (-0.2) 58.5 (+0.6) 25.5 (+0.8)
+ P-Shuffle / Contrastive 79.2 (+0.5) 10.2 (+1.4) 59.4 (+1.5) 26.6 (+1.9)

D.5 Effect of negative augmentation in contrastive loss

Since we consistently observe that contrastive loss regularization works the best across all the settings
that we have studied, we want to further investigate the effect of our proposed negative augmentation
in contrastive loss. To this end, we design a stronger baseline by “only” excluding the patch-based
negative augmentation in the negative set. Specifically, we replace Q ≡ B̃ ∪ B\{xi} in Eqn. 4 with
Q ≡ B\{xi}. We denote this stronger baseline as “Contrastive*” and display the comparison in
Table 11. We can see that even if we add the patch-based negative augmentation on top of this stronger
contrastive baseline, we can still achieve extra improvement across robustness benchmarks. This
further supports the effectiveness of our proposed patch-based negative augmentation in improving
models’ robustness.

D.6 Understanding the effects of patch-based Negative Augmentation

Does ViT become more robust w.r.t. transformed images? We further evaluate ViTs trained with
our robust training algorithms on the patch-based transformed images. We found all three losses on
negative views can successfully reduce the prediction accuracy of ViTs to be close to random guess
(0.1%) with the original semantic classes as the ground-truth. In other words, our robust training
algorithms make ViTs behave similarly as humans on those patch-based transformed images.

Are texture biases contributing to non-robust features? Geirhos et al. (2018) observed that unlike
humans, CNNs rely on more local information (e.g., texture) rather than more global information
(e.g., shape) to make a classification. Since our patch-based transformations largely destroy the
global structure (e.g., shape), we want to investigate if the non-robust features surviving patch-based
transformation overlap with local texture biases. To this end, we evaluate ViT-B/16 trained on patch-
based transformations on Conflict Stimuli benchmark (Geirhos et al., 2018), and we see that ViTs
trained only on patch-based transformation have a 4.9pp to 31.1pp increase on texture bias (Figure 4).
This suggests that the useful but non-robust features preserved in patch-based transformation are
indeed overlapped with the local texture bias. In addition, using our patch-negative augmentation
can also to some extent reduce models’ reliance on local texture bias, e.g., we decrease the texture
accuracy from 71.7% to 62.2% for ViT-B/16 (Table 12).
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Table 11: Effect of patch-based negative augmentation in contrastive loss regularization. Top-1
accuracies of ViT-B/16 trained with or without patch-based negative augmentation.

Pre-train on ImageNet-1k

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

ViT-B/16 + Contrastive* 78.7 8.1 53.5 22.8
ViT-B/16 + Shuffle / Contrastive 78.9 8.2 54.1 23.2
ViT-B/16 + P-Rotate / Contrastive 78.9 8.6 54.1 23.6

Rand-Augment + Contrastive* 79.7 8.9 57.6 24.7
Rand-Augment + P-Rotate / Contrastive 79.9 9.4 58.4 25.4
Rand-Augment + P-Infill / Contrastive 79.9 9.3 57.9 25.0

AugMix + Contrastive* 79.6 9.0 59.8 27.2
AugMix + P-Rotate / Contrastive 79.6 9.8 60.0 27.5
AugMix + P-Infill / Contrastive 79.6 9.9 60.3 27.3

Pre-train on ImageNet-1k

Model ImageNet-1k ImageNet-A ImageNet-C ImageNet-R

Rand-Augment + Contrastive* 84.1 29.7 67.6 39.2
Rand-Augment + P-Shuffle / Contrastive 84.3 30.8 68.1 38.6

Figure 4: ViTs trained only on our patch-based transformations exhibit stronger texture bias. Each bar
is the texture accuracy (%) on Conflict Stimuli (Geirhos et al., 2018), and a higher texture accuracy
indicates the model has a higher bias towards texture. The “texture accuracy” is defined as the
percentage of images that are classified as the “texture” label, provided the image is classified as
either “texture” or “shape” label. The baseline model is ViT-B/16 in (Dosovitskiy et al., 2021) trained
on original images. Other models are trained on patch-based transformed images, e.g., “P-Shuffle”
stands for a ViT-B/16 model trained on patch-based shuffled images. Numbers above the bars are
either accuracy (e.g., ViT-B/16) or the max accuracy difference between each model family and the
baseline ViT-B/16. The patch size in P-Shuffle and P-Rotate and replacement ratio in P-Infill is
denoted by “ps” and “rr” respectively.

D.7 Ablation Study

Sensitivity analysis We test the sensitivity of our patch-based negative augmentation to various patch
sizes in P-Shuffle and P-Rotate, and different replace rates in P-Infill. We find that P-Shuffle and
P-Rotate are insensitive to patch sizes from {16, 32, 48, 64, 96} for ViT-B/16, and P-Infill is robust to
replace rates ranging from 1/3 to 1/2. The accuracy difference is smaller than 0.5% on ImageNet-1k
as well as ImageNet-A and ImageNet-R. Therefore, we use the same parameter for all the settings
investigated in this work (see Table 4 and Appendix B for details).

Double batch-size of baselines As we use the negative augmented view per example, the effective
batch size is doubled compared to the vanilla ViT-B/16 trained with only cross-entropy loss. Therefore,
we further investigate if the robustness improvement is a result from a larger batch size. When we
increase the batch size from 4096 to 8192 in pre-training while keeping the same 300 training
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Table 12: Patch-based negative augmentation effectively reduce models’ texture bias on Conflict
Stimuli (Geirhos et al., 2018). A higher texture accuracy indicates the model has a higher bias
towards texture. The “texture accuracy” is defined as the percentage of images that are classified as
the “texture” label, provided the image is classified as either “texture” or “shape” label.

Pre-train on ImageNet-1k Pre-train on ImageNet-21k

Model Texture Accuracy Model Texture Accuracy

ViT-B/16 71.7 Rand-Augment 57.5

+ P-Rotate / Uniform 66.5 + P-Shuffle / Uniform 56.4
+ P-Rotate / L2 67.2 + P-Shuffle / L2 54.7
+ P-Rotate / Contrastive 62.2 + P-Shuffle / Contrastive 56.4

epochs, it decreases the in-distribution accuracy to 76.0% on ImageNet-1k as well as the accuracy on
robustness benchmarks, e.g., ImageNet-R from 20.3% to 19.3%. Hence we conclude the robustness
improvement is from the negative data augmentation we applied.

E Visualization of Patch-based Transformations

We display more examples with patch-based transformations without cherry-picking in Figure 5,
Figure 6 and Figure 7.
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Figure 5: Examples of original images (on the top) and their corresponding patch-based shuffle (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 6: Examples of original images (on the top) and their corresponding patch-based rotation (at
the bottom) with either patch size 32 or 48 without cherry-picking.
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Figure 7: Examples of original images (on the top) and their corresponding patch-based infill (at the
bottom) with either replace rate 0.25 or 0.375 without cherry-picking.
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