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Figure 1: Prior works of spatial reasoning have largely focused on indoor (1-30 m) scenes, while our
SpaceVista model and dataset span scales from mm (le-3 m) to km (1le+3 m). Dotted lines represent
our contribution in filling the gap. This six-order-of-magnitude range introduces not only scale
variation but also rich semantics and diverse tasks. SpaceVista enables all-scale spatial reasoning by
integrating cues from micro-objects to macro-scenes.

ABSTRACT

With the current surge in spatial reasoning explorations, researchers have made
significant progress in understanding indoor scenes, but still struggle with diverse
applications such as robotics and autonomous driving. This paper aims to advance
all-scale spatial reasoning across diverse scenarios by tackling two key challenges:
1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations
for dataset curation; 2) the absence of effective all-scale scene modeling, which
often leads to overfitting to individual scenes. In this paper, we introduce a holistic
solution that integrates a structured spatial reasoning knowledge system, scale-
aware modeling, and a progressive training paradigm, as the first attempt to
broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge.
Using a task-specific, specialist-driven automated pipeline, we curate over 38K
video scenes across 5 spatial scales to create SpaceVista-1M, a dataset compris-
ing approximately 1M spatial QA pairs spanning 19 diverse task types. While
specialist models can inject useful domain knowledge, they are not reliable for
evaluation. We then build an all-scale benchmark with precise annotations by
manually recording, retrieving, and assembling video-based data. However, naive
training with SpaceVista-1M often yields suboptimal results due to the potential
knowledge conflict. Accordingly, we introduce SpaceVista-7B, a spatial reasoning
model that accepts dense inputs beyond semantics and uses scale as an anchor
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for scale-aware experts and progressive rewards. Finally, extensive evaluations
across 5 benchmarks, including our SpaceVista-Bench, demonstrate competitive
performance, showcasing strong generalization across all scales and scenarios. Our
dataset, model, and benchmark will be released at our project page@.

1 INTRODUCTION

Spatial reasoning, the ability to sense, interpret, and interact with environments across scales from
tiny objects understanding to remote drone sensing, is crucial for next-generation intelligent systems.
It significantly enhances 3D and even 4D scene understanding, enabling agents to interpret complex
environments from easily obtainable videos. All-scale reasoning capability supports diverse applica-
tions: mm for advanced manufacturing (Song et al.l 2024), cm and m for embodied intelligence (Pan
et al.| [2025)), 10m for autonomous driving (Liu et al.,2022), and 100m for drone-based sensing (Xiao
et al.}2023). Recent research (Yang et al., 2025a), especially on how Multimodal Large Language
Models (MLLMs) perceive and recall space, is narrowing the gap in visual spatial reasoning.

The current works on spatial reasoning pri-
marily focus on improvements from two
perspectives: data and model. From the

data perspective, pioneer works (Ouyang| i vow eng is the screw> .~ % How far between the street lanp and
et al.,2025;|Zhang et al., 2025¢;|Deng et al., o A Q BWar2n @ @ QD % 13.0m @ B 102m Q
2025b) utilize more scanning-based data, #?23n@ Bosn@ g3en@ ¢ D M0 @ p2mD
or image_based data employing fully auto- (a) Case comparison across scales on popular MLLMs

mated pipelines to acquire additional infor- SpaceVista1m (Ours) W InteraVL A3 Qwen2.5V1 T3

mation for Supervised Fine-Tuning (SFT)  Gemini R SpaceVista W@ VG-LLM

and Reinforcement Learning (RL). Dur-

ing modeling indoor spatial scenes, [Wu e e S
et al] (2025a)); [Zheng et al]| (2025)) lever- '
age latent features from VGGT (Wang = —

et al| [2025a)) by incorporating geometric 3 - o - e
information to enhance spatial understand- -
ing. Concurrently, a series of outstanding <video> <mult

works (Ouyang et all, [2025} [Zhang et al.]

2025¢e) have improved the performance of

existing models by refining the training and -

thinking appr oaches. Moreover, Wu et al. (b) Scale comparison on popular spatial datasets and benchmarks
(2025b)) employs multi-turn dialogues to

enhance self-correction capabilities. Figure 2: (a) and (b) show model performance and

dataset distribution across scales. Current models and
Despite these works” advancements, their  datasets necessitate all-scale spatial reasoning.
spatial perception capabilities are primarily
limited to indoor settings, specific objects, and constrained scales, as shown in the the bar chart Fig|[T]
Moreover, current methodologies lack dedicated training frameworks for holistic all-scale scene
understanding. To bridge this gap, we introduce the first comprehensive solution to address data,
model, and evaluation dimensions for all-scale scenarios.

Previous datasets (Yang et al.,|2025a3bj Ouyang et al.|[2025 Zhang et al.|[2025¢]) for spatial reasoning
have primarily been constructed based on indoor scanning video data (Dai et al., 2017 |Yeshwanth
et al., [2023) as shown in Fig. J(b). These indoor datasets often feature relatively simple scenes
and depend on manual 3D annotations. Scaling up to build large-scale, wild datasets encompassing
video scenes ranging from mm to km presents two major challenges: 1) the high cost of large-scale
annotation from complex and wild scenes; 2) the difficulty in obtaining precise evaluations that
align with the physical world. To address these challenges, we use an automated pipeline leveraging
popular specialized models to generate structured training data across 5 different scales. Since
different scales have distinct characteristics and applications, we define several scale-specific tasks for
better application, i.e., manipulation planning and area estimation. Overall, we provide over 1 million
QA pairs across 19 diverse tasks from around 38K wild video scenes. To adapt to different stages of
training, we provide both answers with rationale for SFT and regression/multiple-choice answers
for RL. To facilitate accurate evaluation, we collect a highly accurate SpaceVista-Bench through
manually recording or retrieving authoritative sources, supplemented with human annotations.


https://mm2km.github.io/
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Most popular reasoning models are optimized for indoor settings, which leads to clear limitations:
their responses often deviate significantly, in tabletop and other diverse real-world scenes illustrated
in Fig.[2[a). We address this by first injecting SpaceVista-1M knowledge to fine-tune existing models
with the self-supervised visual encoder to make compensation for the classic semantic visual tokenizer,
enabling extra geometry-based and depth-based spatial understanding. However, naive fine-tuning
rarely yields optimal results, largely due to cross-scale conflicts between scenes and objects based
on our observation. To address this, we introduce LoRA-like scale experts that cooperates with a
scale router during fine-tuning. Moreover, to strengthen the model’s ability to learn scale-centric
spatial reasoning processes, we design a training strategy that uses scale as an anchor for progressive
rewards. During evaluation, SpaceVista-7B shows superior understanding of spatial layout, size, and
comparison, delivering a clear improvement on popular benchmarks and SpaceVista-Bench.

Our key contributions with this comprehensive solution are:

* Developing an automated pipeline to create a diverse, real-world, all-scale reasoning dataset,
SpaceVista-1M, with 1M QA pairs across 5 scales and 19 tasks (including specific-scale
tasks), and supporting both cold start with rationale and high-quality reinforced learning.

* Introducing SpaceVista-7B, a spatial reasoning model that integrates rich spatial information
and employs scale experts with a customized training strategy to alleviate potential cross-
scale conflicts during all-scale finetuning.

* Hand-crafting SpaceVista-Bench, an accurate video benchmark spanning all scales, by
measuring and recording real-world objects, retrieving authoritative sources, and performing
human annotation.

2 RELATED WORKS

Visual Reasoning. Currently, vision-based general reasoning has seen diverse developments (Tan
et al.| 2025} [Wang et al., | 2025b;|Qiao et al.,[2025)). General MLLMs (Wang et al.,2025c} |Bai et al.,
2025) first provided the basic understanding ability towards video to the community. Pioneering
works (Feng et al.| |2025; [Liao et al.l 2025)) started to provide reasonable rewards during model
training using Group Relative Policy Optimization (GRPO) for the reasonable Chain of Thought
(CoT). Then, visual reasoning (Li et al.,[2025¢} [Chen et al.|[2025}; |Liu et al.l 2025c) was considered
from broader perspectives, ranging from data to training structure. In general video reasoning, spatial
claims are generally divided into two categories: 2D plane-based spatial reasoning (Han et al., 2025
Zhou et al.| 2025), and 3D space-based spatial reasoning (Wu et al., 2025a; |Zheng et al., 2025). This
paper primarily focuses on the latter. Although these general models have achieved a certain degree
of spatial ability, spatial MLLM is still in its early stages.

Spatial Reasoning. Mainstream spatial reasoning models can be categorized based on input modali-
ties into image (Ma et al., |2025} |Liu et al.;[2025b} |Chen et al., |2024a), multi-image (Xu et al., [2025),
multi-view (Li et al.,[2025b)), video (Wu et al.} 2025a; |Zheng et al.| [2025} |(Ouyang et al.|[2025;|Zhang
et al., 2025b; [Ghazanfari et al.| [2025)), and simulation (L1 et al.| [2025a; Tang et al.| [2025}; [Zhang
et al., [2025¢c; [Wang et al., |2025d; Zhang et al.| 2025f). Among these categories, video stands out
as the challenging task due to the difficulty of data acquisition and modeling. As the first work in
spatial reasoning, VSI-Bench (Yang et al.l [2025a) introduced a video-based benchmark that removes
linguistic shortcuts and evaluated MLLMs on spatial tasks such as counting, direction, and planning,
highlighting substantial performance gaps compared to humans. InternSpatial (Deng et al., [2025b)),
SPAR (Zhang et al.}[2025¢), and SpaceR (Ouyang et al.l [2025) enriched spatial supervision through
extensive QA pairs spanning indoor and other limited settings. Q1 et al.[(2025) used the bird-view
map to aid overall understanding. Then, Spatial-MLLM (Wu et al.| 2025a), VG-LLM (Zheng et al.|
2025)), and VLM-3R (Fan et al.,|2025]) adopted geometry-aware dual encoders to capture geometry
cues and inferred occluded structures from monocular inputs. Additionally, spatial reasoning on
long (Zhang et al.| 2025b), omni (Dongfang et al.| 2025)), ego-centric (Wu et al.,[2025¢) and aerial
video (Zhang et al.| 2025b) were also explored separately. However, the systematic data and model
with all-scale video scenes remain unexplored.

All-Scale Exploration. The challenge of multi-scale in early years lay in information loss within
low-resolution image patches (Zhao} |2025; Nikouei et al., 2025), which has almost no effect on spatial
reasoning. In this paper, “all-scale” primarily concerns the real scales of the physical world, including
distances, semantics, and object states across different scales. [Deng et al.|(2025a) pushed the limits of
3D perception and reconstruction from meters to kilometers; Wen et al.| (2025) extended metric depth
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estimation from close range to infinity; and (2025a)) curated uncommon objects, ranging
from screws to airplanes, with object-centric annotations. Together, these developments underscore
the need for Al to move beyond simple single-scale memorization toward robust, multiscale, and
reasonable visual understanding.
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Figure 3: Fig.(a) shows our automated data construction pipeline. The pie charts (b-c) depict the
composition of scenes and sources. The bar charts (d—e) show object sizes ranging mm-100m, while
object-to-camera distances typically span 10-600m. Accordingly, we claim SpaceVista-1M basically
covers the mm-km scale. The word clouds (f-g) provide a glimpse of the scene diversity.

3 DATASET

Due to high labeling cost, Tab[I]and Fig[2] show the clear drawback of the previous datasets. The
limited data and performance constraints in existing models necessitate the creation of a dataset
with all-scale spatial context. We propose SpaceVista-1M, a diverse, real-world, all-scale reasoning
dataset, as the first to the best of our knowledge. SpaceVista-1M primarily comprises diverse spatial
reasoning question—answer pairs, with rich semantic (category, rationale), 2D (mask, box, point),
and 3D (depth, camera parameters, point cloud) annotations, obtained either natively or through
processing. The construction pipeline in Fig. [3] follows the step-by-step procedure of preparing,
transforming, and generating to obtain an all-scale dataset by integrating specialized models.

Data Preparation. We begin by selecting widely used video datasets that provide 3D scene model-
ing [2024; [Xia et al} 2024} [Park et all,[2020; [Liu et al.} [2025a} [Dai et al., 2017} [Yeshwanth
along with camera intrinsic and extrinsic parameters. Most of these sources are videos
of static scenes without moving objects. Leveraging the known camera parameters, we estimate
depth maps and normal maps using specialized metric depth models (Hu et al., 2024} [Piccinelli et al]
2025)) and video depth models [2025)). For semantic understanding, we extract per-frame
semantics and bounding boxes using proprietary grounding specialists (Ren et al.l 2024} [Liu et al,
[2023D). To establish cross-frame object consistency, by further integrating SAM 2 (Ravi et al., 2024)
with the previously mentioned grounding experts, we enable robust object ID association and mask
generation. This pipeline ensures both semantic and spatial consistency across frames. Detailed
preparation can be found in Appendix.[B:3.1]

Task Construction. With the help of official camera parameters and the preparations mentioned
above, we can obtain the positions and dimensions of target objects. As a common practice (Deng|
[2025b)), we adopt a canonical view space of the reference frame, defined as a 3D Cartesian
coordinate system centered at the camera’s optical center. We then design 19 tasks and their
corresponding workflows, even including scale-specific tasks such as tabletop object manipulation
and drone-view area estimation. Taking object counting as an example, which follows: detect objects,
propagate masks across frames, track identities over time, filter out scenes with camera parameters
and ambiguous objects, and derive temporally consistent counts. For each task, we obtain the data
by similar carefully designed computational workflows. A detailed description of each task and its
workflow can be found in Appendix B3]

QA Construction. The pipeline for constructing the QA data is shown in Fig. 3] At the construction
level of QA, we employ two strategies: GPT-based and template-based. For relatively fixed questions
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such as counting and object size, we adopt a template-based approach to obtain reasonable QA pairs.
To ensure the diversity of the questions, we manually curate over 3,000 templates. However, for more
flexible questions like planning, we use a GPT-based (OpenAl| |2025a) method to generate reasonable
answers in naturally language. Additionally, through appropriate randomizing and prompting, we
obtain multiple options to serve as rewards for RL. QA previews and quality control can be found in

Appendix [F.3]and Appendix respectively.

CoT Annotation. To facilitate an ef- Table 1: Comparison of popular spatial reasoning datasets.
ficient cold start, we follow |Feng Only spatial reasoning QA is included. Lower QA/Scene
et al.| (2025) to leverage cognition- Ratio usually means more diverse language and visual scenes.
inspired few-shot prompting strategy “free”,“reg”, and “mc” mean free-form, regression, and
with Qwen2.5-VL-72B-Instruct (Bai, multiple-choice, respectively. SpaceVista-1M does not dif-
et al., 2025) to generate CoT ratio- ferentiate QA pairs by the type; i.e., the semantically similar
nales. After employing the filtering questions with reg/mc/free answers are counted only once.

policy for low-quality or inconsistent

QA Video  QA/Scene

rationale outputs, we obtain the CoT ~ Usage Dataset Type Pairst ScenesT  Ratiol
for SpaceVista- 1M, with high-quality SpaceR reg/me 191K 12K 159
. SPAR-7M reg/mc/free ™ 4.5K 1,556
?aFlon.ale for fundamental knOWIedge Train Spatial- MLLM reg/mc/free 120K 1.5K 83
injection for SFT. InternSpatial free 25M 55K 455
SpaceVista-1M (Ours) free/reg/me M 38K 25
Input Extension. Usually, people re- TempCompass me 75K 04K 18
; P : VideoMME me 27K 09K 3
fer to objects in videos using more AllAngles e Ik %0 3
than just language. To support this, VSI-Bench reg/me 50K 03K 17
D : Benchmark MMSI-Bench mc 1.0K - -
we extend .v1deo—based QA with ex- SPAR-Bench reg/me 79K . :
tra annotations from the video’s key STI-Bench me 20K 03K 7
frames. Besides plain visual input we SpaceVista-Bench (Ours) | reg/mc 3K 0.5K 6
. 9

allow three extra inputs: point, bound-
ing box, and mask, which may support future interactive usage. Each input type is designed to fit its
own template and CoT rationales.

Quality Control & Evaluation. To ensure data quality, we conduct manual verification on a
small portion training set for quality control in Appendix However, for measurement-related
evaluation, human judgment is also susceptible to experiential bias. We choose a more reliable
pathway based on measuring and recording real-world data, retrieving authoritative sources, and
performing human annotation for both distance and non-distance problems, shown in the green block
Fig[(a). For tiny and tabletop scenes, we capture and annotate videos of over 50 objects of different
sizes. For some indoor and outdoor scenes, we search for the landmarks and retrieve statistics from
authoritative sources like Wikipedia. As for other tasks like camera moving, the experts is hired
for checking and annotating. By aligning the answer with the physical world, SpaceVista-Bench
comprises more than 3,000 QA pairs with 99% accuracy across 500 unique video scenes. Please refer
to the details and analysis in Appendix [B.2./

In summary, we propose SpaceVista-1M, an open-source, real-world, all-scale dataset with spatial
video QA. SpaceVista-1M contains 1 million QA pairs spanning 19 tasks, 5 scale types, and over
50 subscene categories. Additionally, we encourage readers to consult the appendix, which presents
meticulous source investigations (Sec. [B.2), systematic processing procedures (Sec. [B.3), in-depth
distribution analyses (Sec.[B.4), and also licensing (Sec. [B.4.§).

4 METHOD

Overview. Our objective is to enhance spatial reasoning by elaborately designing and conditioning
the model on explicit and detailed all-scale information. We first utilize a dense, expressive self-
supervised encoder beyond semantics to strengthen the model’s overall spatial perception. However,
mixing different types of knowledge without distinction hinders, rather than facilitates the model’s
reasoning in Fig.f[a-d), a problem known as knowledge conflict. In all-scale reasoning, this conflict
appears when similar visual patterns are interpreted differently at different scales. To mitigate such
conflict, we propose a LoORA-like scale expert architecture to maintain the independence of scale-level
knowledge, while maintaining parameter efficiency, as shown in Figf[e). Finally, drawing on human
reasoning about scale, we introduce reward-based progressive reasoning paths that employ essential
anchors to constrain the reasoning process to a reliable CoT path.
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Figure 4: The left part (a-d) shows that the undifferentiated mixture of cross-scale knowledge
hinders, rather than facilitates, the model’s reasoning process. The horizontal axis represents the
scale discrepancy, defined as % (=1 for the ideal situation), and the vertical axis denotes the
proportion of answers. Fig.(e) is our SpaceVista model, where “<think>" is omitted for clarity.

Preliminaries. The number of frames is first denoted as 7" with the temporal patch size 7. The visual
representations from Qwen-2.5-VL visual encoder are denoted as I, € RtV *H*W where t = %
is temporal dimension of the feature, dy is the feature dimension per patch, and H and W are the
numbers of patches p along the height and width of each frame, respectively. Then, each i € ¢ X dy
of Fy is directly converted to an image token 7%, as input.

Beyond Semantics. Most open-sourced MLLM tokenizers including Qwen-2.5-VL visual encoder
are pretrained on semantically rich text-image pairs via contrastive training, and thus often lack a well-
formed understanding of information beyond semantics. Meanwhile, [El Banani et al.| (2024); Tong
et al.| (2024bja) draw a valuable conclusion that self-supervised vision models, such as DINO series,
learn rich depth, normal, and pattern representations. Therefore, leveraging popular DINOv3 (Siméoni
et al.| [2025)’s strong dense features seems to be a natural approach beyond simple semantics. The last
layer of DINOV3 produces patch-level dense features F)p € RT*d0xHoxWb “We pad and regularize
the original image to align with the patch size p, enforcing Hp = H and Wp =W . We then apply a
simple MLP, R%> — R?V | to map channel dimensions. For the temporal dimension, we use the same
temporal pooling with the previously mentioned temporal patch size T to aggregate across 7', yielding
features Fj, € R4V >HXW The fusion of the video feature Fy and dense feature I}, is shown as:

F{, = CA(Fv, F},, F}) + Fy, 1)

where CA(q, k, v) denotes multi-layer cross-attention over the query, key, and value inputs. Then, we
convert FY, into a fused image token T7,, and the remaining calculations proceed as before.

Scale Experts Design. During all-scale mixed training in Fig[{a-d), potential cross-scale knowledge
conflicts lead to suboptimal results. This underscores the importance of preserving knowledge
independence between scales during training. Inspired by [Wu et al.| (2024a)); [Buehler & Buehler
(2024); |Chen et al.| (2024b)), we further introduce a LoRA-like module that adds scale experts by fine-
tuning only 0.5% of the overall parameters for each expert. The original LoRA is using B € R4*"
and A € R"*? with the rank r < min(d, k) to approximate orginal weights W. To construct scale
LoRA experts, We attach M scale experts {(A;, B;)}, to mitigate potential scale-level knowledge
interference. Each expert ¢ has a base weight a; and is dynamically scaled by a learned factor \;:

M
h=Wyzx + Z af B;A;x,where o = «; - A\, 2)
i=1
where z, h are the input and output of the projection layer, and «; is the scaled factor. The learned
factor )\; is obtained through a scale router-primarily an MLP and a softmax. We apply M scale

experts to each layer of the foundation LLM. Therefore, different layers, according to their respective
conditions, obtain appropriate \; to allocate the experts within the layer. Given that scenarios of
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scales can overlap (for example, an indoor scene may include some tabletop context), in the ideal
case, the routers can select the suitable experts at different layers.

Process Reward Design. After basic SFT training, RL is used to align the model with human
perception. Inspired by how humans approach spatial observation tasks, we model the reasoning
process explicitly. Humans typically proceed by: 1) identifying the task-specified semantics (if they
help), 2) perceiving the global scale by inspecting surrounding objects (if it helps), and 3) inferring
the answer from spatial relations. Following this paradigm, we construct 3 different anchors for
RL that enforce the reasoning path to traverse the resulting anchor states. While certain reasoning
anchors are not helpful to some tasks, we provide the minimal, sufficient ground-truth anchors for
each question to guide the model in selecting the appropriate ones. We design the following three
reward components based on these anchor formats: <semantics>, <scale>, and <answer>.
Semantic reward Rgemanic 1S used to identify the referenced objects; Scale reward Ry, is used to
estimate the scale of the overall scene; Correctness reward Ryqswer 1S used to ensure the answer is
well derived. The updated correctness reward Rynswer can be formed into

3 k
Ranswer = Z H R, ,with (j1, jo, j3) = (answer, scale, semantic), 3)
k=1n=1
| log C(ans - 10g C(gt| SansSgt
where Rscale = max(O, 1- )» Rseman ic— TTa 1o n° (4)
2 ] S 1 S

Clns, Cgy is the estimated scene scale in the same measurement; Sy, Sy is the calculated semantic
embedding. Cy and Sy can be easily obtained from SGC.E]. It is crucial to note that the order of
(41, ---» jn) matters; rewards at the beginning are stricter and more important. Also, because tasks
differ, for example in the camera rotation task, Rgemantic and Rscale are not needed. Thus, Rypswer Under
such circumstances collapses to a standard R,nswer- The calculation of format reward Rgorma and
answer reward Rqwer remains the same as common practice (Feng et al.| 20255 |Guo et al.|[2025a) to
encourage the generation of valid and executable answers. Therefore, our reward design forms the
accurate reward signals to ensure all-scale spatial compliance and encourage human-like thinking. It
is worth noting that the evaluation does not involve these anchors besides the actual answer.

RL Training Objective. For each question ¢, we define the reward R; to include both the updated
correctness reward Rynswer and Riorma following (Guo et al.[(2025a)), and use this overall reward R; to

compute groupwise normalized advantages A; = %W. {R;} is the response group related

to R;. The final policy 7y is updated by maximizing

J(0) = Eq, (0, {éi <min<m A, Clip(m, 1—¢ 1+ e) Ai)) — B Dk (7o || Wref)] . ()

TOora (Oi ‘ q) TOo1a (Oi ‘ q)

where mp_,, and 7y are the old and new policy model respectively. Dk1, represents KL divergence.

old

Training Strategy. We start with a cold-start phase on SpaceVista-1M, optimizing the input projec-
tion, feature-fusion modules, and scale experts. Next, we introduce the scale router to further train
each scale-specific expert on the appropriate inputs, encouraging specialization. Finally, building on
the SFT model, we apply RL training to obtain the final SpaceVista-7B reasoning model.

5 EXPERIMENT
Datasets. We use SpaceVista-1M in Sec. (3| for SFT and RL; its sources are detailed in Appendix

Model Configurations. Our model is built on Qwen2.5-VL-7B for main experiments and Qwen?2.5-
VL-3B for ablation. Our model is trained on up to 16 NVIDIA A800 (80GB) GPUs. We process
a maximum of 32 frames during training, each with a resolution of 128 x 28 x 28 pixels. During
inference, we increase the resolution (256 x 28 x 28 pixels) to enhance performance. During the
expert training phase, we employ 4 experts, each tailored to a distinct scenario. We set the group size
of GRPO to 8. We first perform SFT on CoT data of SpaceVista-1M for two epochs to obtain the
SFT model. This is followed by RL training for 2.5k steps on multi-choice and regression data to
produce the final SpaceVista-7B. Additional details are provided in Appendix

Benchmarks. We evaluate our model on 5 benchmarks, VSI-Bench (Yang et al.l [2025a), STI-
Bench (L1 et al.} 2025¢), SpaceVista-Bench (Ours), MMSI-Bench (Yang et al., [2025b)) and SPAR-
Bench (Zhang et al., 2025d). Among the benchmarks, the former three are video-based, while the
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Table 2: Performance comparison across five spatial reasoning benchmarks. Among them, SpaceVista-
Bench is our proposed all-scale benchmark. Open-sourced general models are evaluated with a
comparable size. The highest performance of the open-sourced model is marked bold.

Multi-Image Video
Model MMSI-Bench SPAR-Bench VSI-Bench STI-Bench SpaceVista-Bench
Human 97.2 67.3 79.2 - 81.3
Closed-sourced Commercial Model & 70B-class model
GPT-5(OpenAl 40.7 37.4 44.2 39.3 33.7
Gemini-2.5-pro(DeepMind] 36.9 36.3 45.0 414 33.8
InternVL3.5-38B (Wang et al.[[2025c] 36.9 31.0 66.3 39.2 30.7
Qwen2.5-VL-72B (Bai et al.[[2025] 30.7 32.4 30.7 40.7 31.1
Open-sourced General Model
24.5 30.6 324 29.0 13.6
26.8 31.3 35.6 29.9 23.7
30.9 36.0 38.2 332 24.5
31.7 33.1 32.7 32.1 28.9
Open-sourced Specialized Model
SpaceR-7B 2025 26.1 37.6 46.9 37.0 21.2
Spatial MLLM-4B (Wu et al.[[2025a] 27.0 315 48.4 30.5 24.2
VILASR-7B (Wu et al.[|2025b] 30.2 37.6 454 31.5 23.6
VG LLM-4B ( 2025] - - 46.1 29.3 28.8
Qwen2.5-VL-7B w/. SpaceVista-1M 27.3 36.9 42.0 35.0 29.5
SpaceVista-7B (Ours) 29.1 38.1 46.3 359 34.5
SpaceVista-7B (Ours) w/. RL 323 41.6 48.6 38.2 36.7

Table 3: Module ablation study using Qwen-2.5-Table 4: Modality ablation study of the extra

VL-3B on SpaceVista after RL. input types beyond semantic information.
Module | VSI-Bench  SpaceVista-Bench Input | VSI-Bench ~ SpaceVista-Bench
Vanilla 44 .4 31.0 Vanilla 44.4 31.0
w/. Scale 46.3 (+1.9) 34.8 (+3.8) w/. VGGT 443 (-0.1) 31.4 (+0.4)
w/. Scale &Semantic | 46.8 (+2.4) 35.4 (+4.4) w/. DINOv3 46.4 (+2.0) 32.1 (+1.1)
w/. Expert Finetuning | 45.8 (+1.4) 34.8 (+3.8) w/. VGGT + DINOv3 | 45.3 (+0.9) 31.7 (+0.7)

latter two are multi-image benchmarks. We argue that video and multi-image tasks share rather strong
similarities and collectively serve as important benchmarks for cross-frame spatial understanding.
For all evaluations, we follow the configuration used in the official Qwen2.5-VL demo, with top,, =
0.001 and temperature = 0.01.

Comparison on Spatial Reasoning Datasets. Our method attains competitive performance across all
spatial reasoning benchmarks in Tab.[2} On VSI-Bench, we achieve comparable results approaching
the state of the art. More importantly, our approach delivers substantially superior performance in
our all-scale benchmark SpaceVista-Bench, markedly exceeding 3% compared with proprietary and
open-source models. Thus, SpaceVista-7B represents a robust baseline for both indoor and all-scale
scenes, where the full comparison table of each benchmark is shown in Appendix. [D.4]for reference.

(Input: Indoor Scene)

Comparison on Subsets of SpaceVista-Bench. In {nput: Tiny Tabletop Scene)

Layer 28]

Tab5] we analyze the performance of popular models
on each subset of our SpaceVista bench. In general,
the small-scale subsets challenge both commercial
and general models, likely due to biases in the pre-
training corpus. Limited by device constraints, close-
range shots constitute only a small fraction of the data,
while the abundance of indoor and outdoor scenes
yields relatively higher performance. We also observe
that most models perform at a relatively low level on
SpaceVista-Bench, indicating that it has the expected
discriminative power for all-scale reasoning and can
serve as a foundational benchmark to help the com- - R B
munity enrich the overall evaluation ecosystem. Qur =~ ™ Tebewor mcoor ouoor )
SpaceVista-7B, although exhibiting minor improve- Figure 5: Visualization of scale-expert acti-
ments on indoor scenes, attains comparatively high vations on salient tokens with an appropriate
comprehensive scores across other scenarios and in  threshold. This shows the router selects ex-
overall evaluations. The results indicate a clear boost Perts based on the input during inference.

Layers With Expert

Expert: Expert: Expert  Expert:
Tiny  Tabletop Indoor  Outdoor
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of around 6% compared with any size of the open-source models in comprehensive all-scale spatial
reasoning.

Table 5: The SpaceVista-Bench leaderborad. We utilize green (1st) , blue (2nd) , and yellow (3rd)
backgrounds to distinguish the top three results within each scene. We employ bold and
underlined text to denote the bests and second-best results across all open-source models. All
the baselines are instruction-tuned and are evaluated on the same resolution and fps.

SpaceVista-Bench

Models ‘ Tiny Tabletop Tabletop Indoor Outdoor Overall
Closed-sourced Commercial Model
.0‘ GPT-5(OpenAl|[2025) 323 20.3 39.0 43.0 33.7
GPT-4o(Hurst et al.}[2024) 21.7 13.3 343 38.3 26.9
2 Gemini-2.5-pro(DeepMind|[2025) 33.0 38.7 34.5 29.0 33.8
Gemini-2.5-flash(DeepMind|[2025) 20.7 30.0 19.9 26.9 24.4
Claude-Sonnet-4(Anthropic!|2025b) 273 19.3 38.1 34.1 29.7
Claude-Opus-4.1(Anthropic![2025c) 21.7 29.5 243 30.0 26.4

Open-Source General Model

Internvl3.5-38B (Wang et al.}[2025¢) 29.3 252 41.2 27.0 30.7
Internvl3.5-14B (Wang et al..!|2025c¢) 27.7 22.3 31.3 243 26.4
InternvI3-78B (Zhu et al.}|2025) 383 23.3 422 30.3 335
InternvI3-38B (Zhu et al.}|2025) 18.7 14.3 34.8 38.0 26.5
GLM-4.5V (Team et al.|2025) 23.0 17.8 27.3 252 233
GLM-4.1V-Thinking (GLM et al.|[2024) 30.7 19.3 29.0 13.3 23.1
Qwen2.5VL-72B (Bai et al.|2025) 27.7 20.3 29.6 28.0 26.4
Qwen2.5VL-32B (Bai et al.|2025) 25.3 19.3 38.1 30.7 28.4
LLAVA-Onevision-72B (Li et al./[2024a) 25.0 12.0 15.3 11.7 16.0
LLAVA-Onevision-7B (L1 et al./|2024a) 17.5 8.0 13.3 11.6 12.6
Open-Source Specialized Model
SpaceR (Ouyang et al.|[2025) 12.9 17.3 349 19.8 21.2
Spatial- MLLM (Wu et al.|[2025a) 17.3 20.3 36.1 23.1 24.2
VLM-3R (Wu et al.|[2025a) 15.1 24.6 45.1 26.9 27.9
va SpaceVista-7B (Ours) 334 371 42.2 34.1 36.7

Ablation on Each Component. 1) Scale Expert: We examine how potential information conflicts
during cross-scale training are mitigated. As shown in Tab[3] the experts yield substantial gains. As
the number of experts increases, the performance also improves accordingly in Tab.[6] Furthermore,
visualizing the activation distributions of different LoRA experts across scenes (Fig[5) indicates that
scale-specific knowledge is somehow disentangled. 2) Reward: In Tab. 3] the progressive reward
achieves higher performance than the unconstrained reasoning path. These optional anchors indeed
serve as a valuable halfway point in the all-scale reasoning process. This highlights the importance of
specifying thinking anchors when designing all-scale reasoning.

Ablation on Each Modality. As shown in

Tab. 4 incorporating DINO v3 yields greater Taple 6: Ablation of the number of experts based
gains than VGGT with its obvious advantage of o the same training settings.

self-supervised dense cues. In contrast, VGGT’s

. Num of Training Data VSI- SpaceVista
raw geometry features are harder for a simple Expert(s) (M)  (Each Expert) Bench “Bench (Ours)
fusion model to use without the strong decoder. None All 1 3.0
Also, VGGT can be easily influenced by the 1 All 44.2 (-0.2) 31.0 (0)
blur or occlusion in the video. We further pro- 2 172 45.6(+12)  32.7(+L.7)

. - 4 1/4 457 (+13) 329 (+1.9)
vide performance of the rendered 2.5D in Ap- 6 /6 31¢L1) 26743

pendix. [D.6as interesting explorations.

More Experiments. To facilitate a deeper understanding, we provide more previews, statistics,
experiments, user studies, and discussion in the appendix, especially Appendix for more insights.

6 DISCUSSION AND CONCLUSION

Discussion. It is believed that SpaceVista can facilitate widespread application in various areas on all
scales, such as 1) spatial captioning, 2) spatial guided visual generation, 3) interactive world models.
Although our all-scale model shows strong performance in various spatial reasoning tasks, there is
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still potential for improvement, for example, um level for precision manufacturing, mme-level for
medical surgery, km-level coverage for remote sensing, and 10km-scale for cartography.

Conclusion. In this work, we introduce a novel task for all-scale reasoning from visual spatial context,
which requires the machine to understand multimodal information and respond with the correct answer
and rationale. To advance this field, we develop the first open-source, all-scale, spatial reasoning
dataset, SpaceVista-1M, for cold start and reinforcement learning. Additionally, we handcraft
SpaceVista-Bench, an accurate, multi-scale, video-based benchmark that strictly adheres to physical
world measurements and perceptions. Our proposed SpaceVista-7B model further establishes a robust
baseline with enhanced cross-scale perception. During experiments, we compare our Space Vista-7B
model with several existing models and demonstrate our proposed model’s promising performance in
all-scale reasoning. Additionally, our task and dataset have great potential in applications such as
industrial manufacturing, embedded systems, and autonomous driving to understand complicated
spatial environments in the wild.

7 NECESSARY STATEMENT

7.1 REPRODUCIBILITY STATEMENT

We will open-source the dataset, code, and models on our demo page. Appendix [ presents compre-
hensive visual previews and documentation of the dataset, and the release will follow the Creative
Commons Attribution (CC BY) license and Apache License 2.0 specified in Appendix [B.4.8] Ap-
pendix [C|details hyperparameter settings, training and evaluation protocols, and extended analyses.
To facilitate reproducibility, we will provide configuration files and scripts aligned with the main
results. Please refer to the mm2km website| for the most recent releases and updates.

7.2 ETHICS STATEMENT

This work focuses on technical advances in multi-scale spatial reasoning and dataset construction,
without conducting interventional studies on human subjects or collecting sensitive personal data.
Data are curated via expert-driven automated annotation with a small, carefully manual benchmark,
following de-identification and compliant release practices. The model and datasets aim to improve
machine understanding and generalization across scales and scenarios and do not provide actionable
guidance for misuse. No undisclosed conflicts of interest or improper military usage are involved.
Potential bias and fairness risks are acknowledged and mitigated through diverse, multi-scale evalua-
tions. Privacy, copyright, legal compliance, and research ethics (including appropriate documentation
and review) are carefully observed. Accordingly, the topic presents no ethical conflicts.

7.3 THE USE OF LARGE LANGUAGE MODELS

The LLM was indeed used only for language polishing (e.g., grammar, spelling, clarity, tone) on
text whose content and structure were created by the authors. No substantive changes to claims, data
interpretation, or conclusions were introduced by the LLM.
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A IMPORTANT INFORMATION

A.1 TASK DISTRIBUTION

Our SpaceVista-1M consists of a wide range of tasks, including both general tasks and scale-specific
tasks. Fig.[A@]illustrates the data composition for each scene task, where bubble sizes indicate the

relative data volume.
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Figure A6: Statistical chart of QA types. The spatial reasoning tasks for various scenes include
abbreviations, for example, “Est.” for Estimation, “Dist.” for Distance, “Loc.” for Location, and

“Com.” for Comparison.

A.2 PERFORMANCE RADAR

The comparison across models is carried out on multiple spatial reasoning benchmarks. We evaluate
eight multimodal large models on five distinct benchmarks, with the results visualized in the radar

chart in Fig. [A7]
SpaceVlsta-7B achieves significant improvement across the benchmarks, hlghhghtmg its superiority in
(Li et al.l 20244), demonstrate

spatial reasoning tasks. While models, including LLAVA-Onevision-7B (
competitive performance, SpaceVista-7B consistently exhibits superior robustness and adaptability

across a range of tasks, thereby solidifying its position as a robust model in spatial reasoning

B DATA CONSTRUCTION

Our SpaceVista-1M dataset spans 19 spatial reasoning task types, including scale-specific tasks,
comprising 1 million QA pairs and 38 thousand videos collected across diverse scenes. This scale
and variety enable large-scale training of perceptual understanding and spatial reasoning, and support

comparative analysis across tasks and environments.
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Model Performance
MMSI-Bench

LLAVA-Onevision-7B
LLAVA-Next-Video-7B
InternVL3.5-8B
Qwen2.5-VL-7B
—— SpaceR-7B
Spatia MLLM-4B
—— VILASR-7B
—— SpaceVista-7B(Ours)

VSI-Bench

SPAR-Bench

SpaceVista-Bench

STI-Bench

Figure A7: Comparison across popular spatial reasoning benchmarks. Our SpaceVista-7B model
achieves certain performance boosts across all benchmarks.

This chapter details the data sources for each scene category (Sec.[B.2), the end-to-end task construc-
tion pipeline (Sec.[B.3.1), and key dataset statistics (Sec. [B.4).

B.1 DATA COMPARISON

Table B7: The datasets we used to build SpaceVista-1M and SpaceVista-Bench. “!”” means the
datasets are only used for evaluation in SpaceVista-Bench. “}”” means data collected by us and used
for accurate evaluation. The definition of scenes is the number of unique spaces, and one scene can
be transformed into multiple questions.

Dataset Type Scenes
uCO3D(Liu et al.|[2025a) Tiny, Tabletop 10,000
WildRGB-D(Xia et al.|[2024) Tabletop 11,300
SMOT(Park et al.|[2020) Tabletop 13
SpaceR(Ouyang et al.[|2025) Indoor 1,500
Spar-Bench(Zhang et al.|[2025¢) Indoor 4,500
Scannet Series(Dai et al.|[2017{|Yeshwanth et al.|[2023)  Indoor 460
VSI-Bench(Yang et al.[[2025a) Indoor 288
MMSI-Bench' (Yang et al.|[2025b) Indoor 231
DL3DV(Ling et al.|[2024) Drone, Indoor, Outdoor 10,510
STI-benchT(Li et al.||[2025¢) Indoor, Outdoor, Tabletop 372
Our own collected data * Tiny, Tabletop, Outdoor 500

Our current dataset encompasses a broad diversity of scene categories, as summarized in Tab. The
data sources span a wide range of scenarios, including tiny, tabletop, indoor, outdoor, and drone-view.

To ensure evaluation quality and robustness, we apply multiple rounds of processing and rigorous
filtering to all collected data. We remove redundant or inconsistent samples across datasets. Because
scenes may overlap across sources, which can compromise the independence of the training and
test splits, we removed from the training set any scene that appears in all the benchmarks. This
strict separation prevents leakage and enables a fair assessment of generalization. Consequently, the
SpaceVista-1M provides broad scene diversity, with a clean, reliable benchmark SpaceVista-Bench.

B.2 DATA SOURCE

Sec. presents data sources that form our dataset, and systematically describes the provenance
and acquisition of seven scene sources. These sources combine multiple public datasets and our own
collected data, as detailed in Sec. These scenes span object-centric through scene-level
contexts and exhibit substantial variation in scale, shape, pattern, and illumination.

When building the dataset, our foundational data construction process must adhere to the following
key criteria:
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* Video Data with 3D Modeling: The data must consist of video sequences accompanied by
either official or third-party 3D modeling. This enables effective use of camera parameters
for robust data processing.

* Multi-Frame & Multi-Scale: The dataset should support meaningful spatial reasoning
across multiple frames and scales. Its complexity must be sufficient to prevent trivial
single-frame assessments from representing the full sequence.

¢ Comprehensive Annotations & Metadata: Each sample must include the following: (a)
camera intrinsics and extrinsics, (b) detection and segmentation labels, and (c) dense depth
maps. These elements support a broad range of downstream tasks.

B.2.1 TINY TABLETOP SCENE

We curate small-scale, small-object videos from uCO3D (Liu et al., 2025a)), selecting sequences
where the object size falls below a predefined threshold to instantiate the tiny tabletop scenario.
uCO3D comprises approximately 170,000 high-resolution, object-centric 360-degree videos captured
via crowdsourcing, covering more than 1,000 LVIS (Gupta et al., |2019)) categories grouped into 50
categories. For each video, uCO3D applies VGGSfM (Wang et al.| 2024a)) for motion analysis and
3D Gaussian Splatting to generate accurate camera poses, depth maps, sparse and dense point clouds,
and semantic captions. The resulting subset contains everyday small objects, such as stationery, food,
and decorative items, placed on flat surfaces such as tables, counters, and shelves. These scenes
provide complete viewpoint coverage, precise geometry, and rich semantic labels, which make them
well-suited for fine-grained 3D object modeling and spatial video reasoning. Here, we only select a
small part of uCO3D for around 10,000 videos for tiny objects after filtering.

B.2.2 TABLETOP SCENE

For tabletop scene modeling, we select two datasets: WildRGB-D (Xia et al.} 2024) and SMOT (Park
et al.,[2020). WildRGB-D consists of approximately 8,500 objects across 46 categories, recorded
in around 20,000 RGB-D videos, with iPhones rotating 360 degrees around objects to replicate
real-world interactions. It includes single-object, multi-object, and hand-occlusion videos, all
automatically annotated via SLAM-generated camera poses and reconstructed point clouds, making
it suitable for spatial reasoning tasks. To select samples for spatial reasoning, we specifically choose
around 10,000 videos with multiple objects in a scene. SMOT (Park et al.,|2020) is a challenging
small dataset collected by a mobile robot, comprising 13 video sequences.

The tabletop, commonly referred to as the “table” scene, encompasses not only the planar surface of
a table but also extends to various other surfaces, including sand, beds, wardrobes, floors, and similar
environments. In combination, these datasets offer richly varied planar scenes, providing a robust
foundation for challenging spatial video reasoning benchmarks.

B.2.3 INDOOR SCENE

Indoor scenes are among the earliest domains studied in spatial video reasoning. Key datasets,
including ScanNet (Dai et al.,|2017) and ScanNet++ (Yeshwanth et al.} 2023)), collect RGB-D scans
using handheld cameras, yielding aligned RGB images, depth maps, and 3D reconstructions. ScanNet
contains more than 1,500 scenes and 2.5 million frames spanning common indoor spaces, such as
offices and bedrooms, with annotations for over twenty object categories. ScanNet++ extends this
setting with higher geometric fidelity and more complex layouts. The combination of focused object
classes, structured environments, and rich annotations makes these datasets central benchmarks for
spatial reasoning.

B.2.4 WILD INDOOR SCENE

Beyond scan-based indoor modeling, DL3DV (Ling et al.| [2024) adopts a video-based pipeline
that replaces active scanning with video capture and camera parameter estimation. Building on
this framework, and further compressed using 3D Gaussian Splatting (Chen et al.,[2024c), DL3DV
enables high-precision 3D reconstruction of wild indoor scenes. The dataset covers a broad range
of object categories, including challenging reflective and transparent instances. Compared with
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conventional scan-based datasets, these scenes exhibit greater geometric and appearance variability,
providing a more realistic and demanding benchmark for spatial video reasoning.

B.2.5 OUTDOOR SCENE

In addition to tabletop and indoor scene modeling, DL3DV [2024) collects extensive in-
the-wild outdoor videos encompassing landmarks, street corners, private courtyards, and urban parks.
Camera parameters are calibrated using COLMAP (Schonberger et al, 2016} [Schonberger & Frahm),
@. The DL3DV-10K dataset includes 10,510 videos in 4K resolution, totaling about 51.2 million
frames, covering 65 types of locations. Each video is annotated for whether it is indoors or outdoors
as well as for levels of reflection, transparency, and lighting conditions. Compared to conventional
scan-based indoor datasets, these outdoor scenes exhibit richer geometric complexity, greater diversity
of materials, and wider environmental variation, offering more challenging benchmarks for spatial
video reasoning.

B.2.6 DRONE SCENE

DL3DV 2024) extends outdoor scene modeling by incorporating drone-captured videos
that provide aerial perspectives to complement ground level views. Videos are recorded using
unmanned aerial vehicles (UAVs), and camera parameters are calibrated through COLMAP
[berger et al, 2016} [Schonberger & Frahm), [2016)), following the same reconstruction pipeline applied
to handheld footage. The DL3DV Drone subset consists of more than 100 videos covering a variety of
scenes, including open plazas, tree-lined pathways, rooftop platforms, and landmark facades. DL3DV
enhances spatial video reasoning by introducing unique geometric structures and varied viewpoints.

Although the data scale is not as large as tabletop or indoor, the drone-view scenes establish a more
rigorous benchmark for aerial mapping and spatial video reasoning by expanding scene diversity and
viewpoint range.

B.2.7 OUR OWN COLLECTED DATA

The data collection methods described above rely on advanced specialized models and fully automated
pipelines. While we incorporate limited manual filtering, whether the resulting data can be used
as an accurate evaluation of real-world perception is still a question. This limitation motivates our
collection of higher-fidelity data to better align with physical world perception.

Our dataset consists of two types: 1) measured, recorded, and manually annotated data, and 2)
existing video data enhanced by retrieving and verifying publicly available information. The former
is suitable for tiny objects, tabletop objects, whereas the latter is designed for indoor and outdoor
scenarios.

e

Figure B8: Our self-collected data features various cat- Figure B9: A photo of the real
egories of objects, with tabletops and tiny tabletops scene for the collection of tiny
ranging from 0.4m to 3mm, even including transparent tabletop.

and reflective objects.

Data from self-recording and measurement. Precise spatial annotations (e.g., location and dimen-
sions) are scarce in existing datasets such as uCO3D and WildRGB-D. To address this, we captured
length and positional data for nearly 50 object categories across diverse scenarios. Using GoPro
11, iPhone 15, and Vivo X70, we systematically varied object arrangements, distances, lighting
conditions, and backgrounds into over 200 videos and 1,000 QA pairs. As illustrated in Fig. @
and Fig. they show the objects used for self-collected data and a real scene of tiny tabletop data

24



Under review as a conference paper at ICLR 2026

collection. Although we collected the raw high-resolution videos up to 2.7K/60fps, it is still necessary
to resize and resample it for better comparison. The resulting measurements are consolidated into a
unified perceptual space that closely approximates physical world geometry.

Data Retrieved from authoritative sources. Adopting a similar rationale, it is apparent that spatial
information derived solely from wild videos lacks the precision required for robust evaluation.
Consequently, alternative methodologies must be explored. To address this, we propose a systematic
approach that first identifies landmark objects within existing datasets and then manually retrieves
images of these objects from authoritative sources, such as Wikipedieﬂ architectural drawings,
and official design documents, to obtain accurate spatial information, as shown in Fig. This
method ensures that the evaluation data is not only more precise but also more consistent with human
perceptual judgments and preferences.

Enhancement for Existing data

LOVE] T o Location: Museum of Art
EE i Indianapolis, Indiana
Spatial Information:
Get Official Wwidth: 3.7m
Info Height: 3.7m
Relation:

Search Get Name

Letters are attached and stacked...

Lovemzn

Example Cases
DL3DV DL3DV ID:
c506b7ecca72 bB971e10a8bd

'52b79b3bf7e9i67a 8 7b91c1d0feShabc2

Statue of Benjamin Harrison Statue of liberty Bucky Ball Stanford Mausoleum
Indianapolis, Indiana Manhattan, New York San Francisco, California Stanford, California
Width: 0.55 m... Width: 93 m... Width: 7.6 m... Height: 7.4m...

Figure B10: Examples of identifying outdoor landmark objects from existing datasets and retrieving
their scale-related ground truth data.

B.3 TASK CONSTRUCTION

Upon acquiring the appropriate dataset, we initially perform necessary data preparation and processing
in Sec.[B.3.1} Subsequently, we carefully design workflow for each task (Sec.[B.3.3B.3.3)), and we
present detailed task explanations in Tab. The final output consists of high-quality QA pairs,
facilitating the cold-start and reinforcement learning processes of MLLM:s.

B.3.1 DATA PREPARATION

Previous popular approaches, such as InternSpatial (Deng et al., [2025b)), required estimating camera
intrinsic and extrinsic parameters, which introduced cumulative errors that propagated through
subsequent tasks. However, since we exclusively utilize datasets with known camera parameters (as
detailed in Sec[B.2), our framework operates under conditions close to ground truth.

We first employ Metric3Dv2 (Hu et al.} 2024) and UniDepthV2 (Piccinelli et al,[2025) to obtain

accurate metric depth maps and normal maps. The metric depth maps provide precise distance
measurements between the camera and scene objects, while the normal maps facilitate robust plane
estimation. There are two challenges during construction. 1) Video consistency: According to
observation, the metric depth model may not have that level of consistency across frames. So, we use

Video-Depth-Anything [2025) to ensure consistency by minimizing the energy function,

D* = argmin {[|D — M|[} + X |V.(D) = V(N2 } ©)

"https://www.wikipedia.org/
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Table B8: Detailed explanation of 19 tasks included in SpaceVista-1M.

Task

Description

Position Comparison

Size Comparison

Existence Estimation

Object Counting

Rotation Estimation
Absolute Distance

Object Size
Route Planning

Appearance Order
Depth Estimation

View Change Inference

Object Matching

Spatial Relation

General Indoor Scenes
Compare the positions of two objects within or across frames, assess-
ing their spatial relationships in terms of left/right, above/below, and
near/far.
Compare the positions of two objects within or across frames, in-
volving three pairs of size relationships: wider/thinner, taller/shorter,
larger/smaller.
Determine whether there are objects across frames whose posi-
tional/size relationships with the specified object meet the constraint
conditions.
Estimate how many objects meet the constraint conditions across
frames.
Estimate the rotation angle of an object across multiple frames.
Estimate the closest distance between two objects within or across the
frames.
Estimate the longest dimension of an object within or across the frames.
Choose what action should be performed between a sequence of actions
within or across the frames in order to route from a start point to a target.
Given a video, determine the /N-th appearance order of several objects.
Estimate the relative or absolute distance of objects from the camera
viewpoint in a single image or across multiple images.
Infer how the camera viewpoint has changed (position and orientation)
across the video frames.
Determine whether two objects in the beginning and end frames of a
video are the same physical object instance or different instances of the
same object type.
Analyze and describe the spatial relationships (e.g., support, hanging,
adhesion, stacking, encircling, plug-in) between multiple objects or
cameras across the frames.

Every Type in General

Indoor Scenes
All task types from Indoor Scenes can be applied to drone-view per-

spectives.
Room Size Estimate the volume of the room(s) across the frames.
Outdoor Scenes

Every Type in General ~ All task types from Indoor Scenes apply to Outdoor Scenes except for
Room Size estimation.

Navigation Determine the optimal path or movement strategy to navigate from one
location to another across different views (similar to the Route Planning
mentioned in Indoor Scenes).

Drone-View Scenes

Every Type in General ~ All task types from Indoor Scenes can be applied to drone-view per-
spectives.

Route Plan Given a series of aerial images, choose what action should be performed

Area Estimation

between a sequence of actions in order to route from a start point to a
target (similar to the Route Planning mentioned in Indoor Scenes).
Estimate the size or area of regions or objects from an aerial perspective.

Every Type in General
Object Location
Destination Location
Obstacles Location

Manipulation Planning

Tabletop Scenes
All task types from Indoor Scenes can be applied to drone-view per-
spectives.
Determine the precise position of objects on a table surface, typically
corresponding to other objects.
Identify target positions related to single objects (i.e. left, right, front
...) as part of manipulation planning.
Identify and locate objects with the AABB box that may interfere with
manipulation as part of manipulation planning.
Determine the sequence of actions needed to rearrange objects or
achieve a specific configuration on the table.
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where M, N represent metric depth model maps and Video-Depth-Anything map . 2) Extreme Scale:
Although the metric depth model is trained on the datasets as DDAD (Guizilini et al., [2020)) and
NYUv2 (Silberman et al.,2012), it may have a certain level of adaptation to the extreme situations.
For extreme situations, including drone-view and tiny objects, it is still necessary to provide a
prerequisite to adjust the depth normalization accordingly.

For fine-grained semantic understanding at the pixel level, we leverage the advanced proprietary
model DINO-X (Ren et al.| 2024)) to extract semantic information and bounding boxes for complex
scenes, while relying on Grounding DINO (Liu et al.l [2023b) for simpler samples. To address
cross-frame consistency challenges in video data, we integrate the aforementioned grounding models
with SAM2’s (Ravi et al.,|2024) advanced tracking capabilities, generating temporally consistent
masks and unique object IDs across frames based on Grounded-SAMZEl

By this stage, we obtain a comprehensive understanding of each frame, including bounding boxes,
masks, categories, and object IDs, laying a solid foundation for downstream task formulation.

B.3.2 TYPE: DISTANCE

The distance-related tasks, including object size, room size, object distance, and relative distance,
rely on depth maps and computer vision techniques to measure object and spatial dimensions from
monocular images. The method converts 2D depth keypoints into 3D point clouds using camera
calibration parameters and applies Principal Component Analysis (PCA) to extract dimensional
information, focusing on objects larger than 20x20 pixels. For object size estimation, the system
segments visible objects using instance masks and projects the masked depth values into 3D space.
PCA determines the principal axes of the point cloud, with height measured along the vertical axis and
width derived from the convex hull of points projected onto the dominant plane. Relative distances are
calculated by comparing 3D centroids in world coordinates, and room dimensions are estimated by
analyzing the spatial distribution of depth points and identifying major planar surfaces corresponding
to walls.

The method uses camera intrinsics and extrinsics to express all measurements in a consistent world
coordinate system, addressing the scale ambiguity of monocular systems. Multiple frames are
processed to improve robustness, with temporal averaging reducing noise in the estimates. The
technique assumes piecewise rigid scenes, operates on standard RGB images, and produces metric-
scale measurements. Accuracy depends on the quality of depth estimation and segmentation. Overall,
it demonstrates how 2D computer vision pipelines can be extended to 3D measurement tasks through
precise geometric reasoning.

B.3.3 TYPE: COUNTING

Camera Parameter
Positioning Direct
Coordinates

Dataset
Video

Threshold

Object Detection
Object Counting Object Bbox
Selection Filtered

Preliminary Filter
Counting Video

Confirm Counting
Video

Object Tracking

Manually
Refinement

Counting
Dateset

Bbox

Available Object
Video

Filtered Small
Object Video

Object Appearance
Feature Detection

Figure B11: Automatic Processing Pipeline for Counting Task Scenes. Through data filtering, object
tracking, and counting, the final counting video is obtained after data confirmation.

Object counting across real-world scenes faces diverse visual conditions and a high cost of manual
labeling, which motivates an automatic pipeline that adapts to scene type. The automatic pipeline
addresses object counting through two methodologies tailored to specific scenarios, and Fig. [BTI]

2https://github.com/IDEA-Research/Grounded-SAM-2

27



Under review as a conference paper at ICLR 2026

illustrates the workflow that maintains high accuracy while reducing manual effort across indoor,
outdoor, and tabletop scenes. For outdoor video sequences, the open-vocabulary detection model (Ren
et al.,|2024; (Cheng et al., [2024)) uses text prompts with a confidence threshold of 0.3 for zero-shot
detection, projects 2D observations into 3D world coordinates to enforce spatial consistency, and
tracks objects via motion prediction with confirmation after at least ten consistent detections. Given
the difficulty of reliably detecting very small objects in outdoor scenes and to mitigate ID switching
and trajectory fragmentation under severe occlusions, scenes are prefiltered to those containing 2
to 10 objects with a minimum bounding-box size of 32 pixels. For tabletop scenarios, grounding
model (Ren et al., [2024; Liu et al.l 2023b) and SAM2 (Ravi et al., 2024)) are employed, where
open-vocabulary detection uses text and bounding box thresholds of 0.4, and mask propagation
applies IoU and center distance thresholds of 0.4 and 32 pixels, respectively, to distinguish instances.
Both methodologies output object categories and their corresponding counts for each video.

B.3.4 TYPE: PLANNING

3D Obstacles and Path Visualization (Choice D)

—e— Path

(2)3D Path Planning Visualization (b)Trajectory Execution Process

Figure B12: Visualization of robotic manipulation planning. Fig.(a) visualizes the option for moving
the red box to the left of the upper box. Fig.(b) represents the key frame to carry out the manipulation.

In robotic manipulation tasks, effective route planning is essential to ensuring smooth and accurate
object movement. The route planning pipeline proceeds as follows. First, depth information and
object detection are utilized to identify the category, position, shape, and size of all objects within the
image. Subsequently, an arbitrary object is selected as the manipulation source and another as the
target position, with the objective being to relocate the source object to a designated position (e.g.,
front, back, left, right, or above) relative to the target object. Based on this configuration, an LLM
generates corresponding manipulation instructions, such as “What is the correct route of placing
the apple on the box”. Next, the actual spatial positions of the objects are computed using both
intrinsic and extrinsic camera parameters. The Rapidly-exploring Random Tree (RRT) (LaValle|
1998; [ Xul 2024) algorithm is then employed to plan a collision-free path, where the bounding boxes
of objects serve as obstacle constraints during path computation. Finally, two types of data are
generated from the planned path: 1) multiple paths are projected onto the camera plane, with the
correct trajectory serving as the ground truth answer, and 2) the coordinate variations along the path
are translated into natural language instructions via the LLM. For instance, when the x-coordinate of
the object decreases while the y-coordinate remains constant in the camera space, the LLM produces
the instruction “move the object to the left.” Fig.[BI2] demonstrates the visualization of robotic
manipulation under the option, showing the planned movement of the red box to the left of the upper
box. This figure highlights the spatial relationship and intended positioning within the manipulation
task.

B.3.5 TYPE: RELATION

In spatial relation analysis, we combine semantic information with 3D positional data through
an automatic reasoning process to ensure consistency in both semantic and spatial aspects. Our
analysis operates primarily at the semantic level. We first identify and extract common candidate
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relations, such as support, attach, insert, and surround. Based on the consistent 3D keypoint semantics
established earlier, we generate potential relation pairs that may exhibit these spatial relationships.
These candidate pairs are then evaluated for spatial plausibility by integrating 3D positional data
with the few-shot prompt through Chain-of-Thought (CoT) reasoning using the foundation model.
Finally, the validated pairs are processed by GPT for transformation and answer generation, ensuring
semantically and spatially consistent outputs.

B.3.6 DATA POST-PROCESSING

To address the cold-start challenge in SFT, we prioritize the acquisition of explicit “thinking process”
rationales—step-by-step explanations that clarify how answers are derived. For example, in object
counting, the model is prompted to articulate intermediate reasoning (e.g., “there are 2 cups on the
table and 3 on the chair, totaling 5”), enriching task understanding and facilitating more robust
generalization.

Following common practice (Feng et al.}[2025)), we acquire high-quality rationales by distilling from
advanced open-source and proprietary large models. Specifically, we use Qwen2.5-VL-72B and
Gemini-2.5-Pro for complex tasks, and Qwen2.5-VL-32B for simpler ones, balancing reasoning
depth with efficiency. We then compare these generated rationales and their corresponding answers
with previously collected cases. When GPT answers are different from the answers from previous
workflows, we apply a confidence-based filtering strategy to curate the training set, retaining only
instances with consistent, well-supported reasoning. This pipeline generates a cleaner, rationale-
augmented dataset, mitigating SFT cold-start effects and enhancing downstream performance.

B.3.7 BENCHMARK CONSTRUCTION

Our benchmark comprises two components: 1) Measurement-Related. For the scale-related portion
requiring precise scale annotations, we collect approximately 500 videos across diverse scenes using
the two methods described in Appendix and human annotation for other spatial tasks, covering
tiny, tabletop, and outdoor settings. For the indoor evaluation set, we instead selected suitable
data from ScanNet-based datasets (e.g., VSI-bench and SPAR-bench) and constructed a series of
scale-focused questions on top of these bases. 2) Non-Measurement. For the non-measurement
questions, we manually annotate the data collected in the previous step to produce additional spatial
reasoning QA pairs. In total, we curate 3,000 fully human-annotated QA pairs for model evaluation.

B.4 DATA STATISTICS

From a visual perspective, our dataset comprises wild scenes spanning scales from millimeters to
kilometers. Although the raw dataset contains over 100 million frames, we calculate unsupervised
annotations as intermediate information at both the pixel and semantic levels for a curated subset
of 10 million frames. These frames vary in resolution from 480p to 2.7K, with frame rates ranging
from 24 to 30 fps. During data processing, we preserve the original resolution whenever possible and
apply uniform sampling during training as needed.

In terms of the QA component, we employ a combination of templated generation and GPT-based
methods to produce 1 million QA pairs with a theoretical duplication rate of only 0.0005%. These
pairs are structured into diverse answer formats, including free-form, multiple-choice, and regression-
based responses, catering to different analytical needs. Rigorous quality control measures are
implemented, with detailed analyses provided in Sec.

In this section, we first conduct a diversity analysis of the visual scenes, examining their composition,
categories, and object size distributions (Sec.[B.4.1}Sec.[B.4.5). We then present a statistical overview
of the QA pairs, along with an evaluation of quality control mechanisms (Sec.[F.3}Sec.[B.4.7). And
also, at the beginning of the appendix, Fig. [A@]illustrates the data composition for each scene task,
where bubble sizes indicate the relative data volume.

B.4.1 TARGET CATEGORY DISTRIBUTION

The introduction of diverse scenarios, such as tabletop, indoor, and outdoor, aims to establish a more
inclusive object composition system. Due to the limited drone data, we incorporate drone-view data
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into the outdoor analysis. By approximating complex object distribution patterns to the real world,
this approach enhances the scene adaptation capabilities of visual reasoning models. To quantitatively
assess the impact of scene diversity on model generalization, we use the word cloud to compare object
distribution characteristics across different scenarios, as shown in Figs.[BI3HBT8] The results reveal
that indoor scenes are predominantly composed of rigid objects such as furniture and electronics,
exhibiting a highly structured spatial layout. In contrast, outdoor scenes feature more scale-varying
objects like vehicles and natural landscapes, demonstrating spatial openness. Meanwhile, tabletop
scenes focus on manipulable items such as tools and daily necessities, reflecting precise spatial
arrangements. These cross-scene differences provide complementary training samples, effectively
mitigating the risk of overfitting to specific scenarios. Thus, the necessity of a multi-scenario strategy
to enhance cross-domain generalization is validated.

Overall, each subset scenario differs significantly from the previous indoor-dominated setting, high-

lighting the diversity of our scenes.
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B.4.2 SCALE DISTRIBUTION

To evaluate the dynamic range of depth across different scenes, we statistically analyze the distri-
butions of the maximum and minimum depth values in each scenario, with the results visualized in
Fig.[BI9] This analysis reveals the variation in extreme depth ranges. Notably, the farthest depth
point progressively decreases from the drone scene to the tiny tabletop scene, indicating a consistent
reduction in the overall scene. While we can see some extreme values for tiny object scenes, it might
be the small object around the window, and extreme depth represents the outside of the window view.
It is not unavoidable for data construction and will not affect the overall quality.
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Figure B19: The distribution of the maximum

depth value of our dataset. The maximum dis-  Figure B20: The distribution of the specific
tance denotes the farthest point observed. sceneries. Note: this chart is just for basic knowl-

edge. Due to the latter filtering policy, there
might be some vague or inaccurate analysis.

B.4.3 SUBSCENE TYPE DISTRIBUTION

While our dataset is largely derived from multiple existing sources, we perform a thorough analysis
of its scene type diversity. As shown in Fig.[B20] the dataset covers a broad range of real-world
scenarios, enhancing its complexity and generalizability. To quantify this diversity, we utilize LLM
for scene understanding, leveraging object-level annotations from the video data. However, certain
subsets, such as partial tabletop scenes and most of the tiny tabletop data, are excluded from the
analysis due to limited visual cues. As a result, these statistics primarily illustrate the dataset’s variety
rather than providing an exact distribution for downstream tasks.

B.4.4 OBIJECT SIZE DISTRIBUTION

To enhance spatial understanding at design scales, we analyze the distribution of object sizes in
the dataset. The results, shown in Fig. B2} reveal a relatively uniform distribution for objects
smaller than 50m, while those exceeding 100m exhibit a certain tail distribution. This trend likely
reflects real-world bias in object sizing, with high-rise buildings, common in urban environments,
dominating the larger size categories. Consequently, the observed minor long-tail distribution aligns
with real-world phenomena and is considered an acceptable characteristic of the dataset.

B.4.5 CAMERA To OBJECT DISTRIBUTION

To examine biases regarding camera positioning relative to the subject, we analyze the distance
(depth) between the camera and the primary object, with the statistical results shown in Fig.[B22} The
distribution of object-camera distances follows a spindle-shaped pattern, with few instances where
the object is positioned closer than 10 cm or farther than 500 m from the camera. This trend is largely
influenced by the focusing limitations of most hardware, like lenses, which exhibit reduced sensitivity
to objects at extreme distances. Notably, this distribution mirrors that of conventional optical devices
in real-world settings and should not be interpreted as a dataset bias.
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B.4.6 QA STATISTICS ACROSS SCENES

We also provide the overall statistics of SpaceVista-1M dataset in Tab.[B9] The SpaceVista-1M
dataset consists of approximately 1 million QA pairs, covering a wide range of tasks and scene types
across all scales, from tiny tabletop objects to large-scale outdoor and drone-view scenarios, with
scales ranging from 1 millimeter to 0.7 kilometers. Its diversity offers extensive challenges for model
training and evaluation, enhancing the model’s adaptability and reasoning capabilities across different
environments.

Table B9: Statistics of QA Pairs for different tasks in SpaceVista-1M.

Task Category Total Tiny Tabletop Tabletop Indoor Wild Indoor Outdoor Drone-View
Scale Distribution Imm-0.7km  2mm - S5cm Sem-2m - 0.5m-20m  0.3m-50m 0.5m-500m  10m-0.7km
All Scenes | 1,014K 79K 242K 162.5K 213.3K 284.3K 33.1K
General Scenes Tasks
Position Comparison 70.5K - 10K 22K 18K 20K 0.5K
Size Comparison 88K - 8K - 30K 40K 10K
Existence Estimation 82K 15K 25K - 20K 20K 2K
Rotation Estimation 85.5K 18K 20K - 22K 25K 0.5K
Relative Distance 81K - 24K 11K 15K 30K IK
Absolute Distance 99K - 25K 26K 13K 34K 1K
Object Counting 21.3K - 1K 11K 35K 5.5K 0.3K
Object Size 157K 15K 30K 33K 38K 34K 7K
Route Plan 2.5K - - - 1K 1K 0.5K
Appearance Order 273K - 4K 15K 3K 4.5K 0.8K
Depth Estimation 102K 19K 32K 10K 15K 23K 3K
View Change Inference | 51.7K 6K 27K 8K 4K 6.5K 0.2K
Object Matching 102K 3K 24K 12K 26K 32K 5K
Spatial Relation 19K - 6K - 4K 8K 1K
Indoor Scenes Tasks
Room Size | 153K - - 14.5K 0.8K - -
Qutdoor Scenes Tasks
Navigation | 0.8K - - - - 0.8K -
Drone-View Scenes Tasks
Area Estimation | 0.3K - - - - - 0.3K
Tabletop Scenes Tasks
Obstacles Location 3K - 3K - - - -
Manipulation Planning | 6K 3K 3K - - - -

B.4.7 DATA QUALITY CONTROL

During construction of our dataset, we distinguish between two notions of answer correctness: 1)
strict correctness, which requires that an answer conform to objective physical reality, and 2)
perceptual correctness, which requires that an answer align with typical human judgments. Since
strict correctness is difficult to 1 for training data derived from in-the-wild videos (due to issues like
missing calibration, occlusions, and limited metadata), we adopt the perceptual criterion. Specifically,
during validation, we present annotators with both the question and a candidate answer and ask them
to judge its acceptability. Consequently, the reported accuracy should be interpreted as agreement
with human perception rather than strict fidelity to physical-world quantities or metric scale. For
these statistics and the user study, we use MTurk®|for these statistics and the user study. Dataset tasks
and corresponding human checking accuracies are shown in Fig.[BT0] It is important that perceptual

3https://www.mturk.com/
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correctness is only used in training data quality control, while model evaluation still follows strict

correctness.

Table B10: Human checking accuracy over each task category.

variation for different annotators.

3

‘~” means we observe unusual

Task Categories

Task Position Size Existence  Rotation  Relative
as Comp. Comp. Est. Est. Dist.
Accuracy 95% 84% 94% 95% 82%
Task Room Object Object Route Appear.
as Size Count Size Plan Order
Accuracy 84% 87% 81% ~65% 80%
View Object Spatial N Area
Task Change Match Rel. Navigation Est.
Accuracy 96% 93% 95% ~63% 78%
Task N{;}Z;p Abbsiosltute Dgith Obstacles
Accuracy 73% 84% 95% 67%

B.4.8 LICENSE

We conduct a systematic review of the open-source licenses for the datasets we use, with the results
summarized in Tab. The analysis indicates that CC BY 4.0 and Apache License 2.0 are the most
widely adopted. After comprehensive consideration, our SpaceVista-1M dataset adopts the Creative
Commons Attribution (CC BY) 4.0 or Apache License 2.0 for different sources of data, which is
already used by most of the source data.

Table B11: The licenses for the dataset and benchmark included in this paper.

Dataset Type License
Benchmarks

VSI-Bench(Yang et al./[2025a) Indoor Apache License 2.0

STI-bench(Li et al.[[2025¢) Indoor Apache License 2.0

MMSI-Bench(Yang et al.[[2025b) Indoor CCBY 4.0

STI-Bench(Li et al.[[2025¢) Outdoor, Tabletop Apache License 2.0

Spar-Bench(Zhang et al.|[|2025¢) Indoor Apache License 2.0

SpaceVista-Bench (Ours)

Tiny, Tabletop, Indoor, Outdoor

Apache License License 2.0 & CC BY 4.0

uCO3D(Liu et al.||2025a)

SMOT (Park et al.|[2020)
WildRGBD(Xia et al.||2024)
SpaceR(Ouyang et al.|[2025)

Scannet Series(Yeshwanth et al.}[2023)
DL3DV(Ling et al.|[[2024)
SpaceVista-IM (Ours)

Training Datasets
Tiny, Tabletop
Tabletop
Tabletop
Indoor
Indoor
Indoor, Outdoor, Drone
Tiny, Tabletop, Outdoor

CCBY 4.0

Unknown

None

CCBY-NC 4.0

ScanNet Terms of Use

DL3DV-10K Terms of Use

Apache License License 2.0 & CC BY 4.0

B.5 SUPPLEMENTARY CITATION

Due to the page limit, we have omitted some citations in Tab.|l} Here, we provide a supplementary
table of citations.

Table B12: Supplementary citation of Tab.

Dataset Citation Dataset Citation
SpaceR Ouyang et al.[(2025) | All-Angles Yeh et al.[(2025)
SPAR-TM Zhang et al.|(2025e) | MVBench Li et al.|(2024b)
Spatial-MLLM  |Wu et al.|(2025a) VSI-Bench Yang et al.[(2025a)
InternSpatial Deng et al.[(2025b) MMSI-Bench  |Yang et al.|(2025¢)
Video-MME Fu et al.|(2024) SPAR-Bench  |[Zhang et al.|(2025¢)
TempCompass  |[Liu et al.|(2024b) STI-Bench Li et al.|(2025¢e)
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C MODEL DETAIL

C.1 PARAMETER SETTING

SFT. The model architecture is based on Qwen2.5-VL-7B-Instruct, a 7-billion parameter vision-
language model capable of processing both images (resized to 100,352 pixels) and videos (16,384
pixels at 16/32 frames). In the ablation study, we use the 3B model for efficiency. For fine-tuning, we
employ a selective freezing strategy: while the vision tower and multi-modal projector remain frozen
to preserve pretrained visual representations, the language model is fully trainable. Training utilizes
full parameter fine-tuning with a DeepSpee(ﬂ ZeRO-2 configuration for memory optimization. The
model is trained on our proposed dataset for spatial understanding in indoor environments, with
samples truncated at 32,768 tokens. We implement a cosine learning rate schedule (initial LR=5e-7)
with 10% warmup over 2 epochs. We maintain computational efficiency through mixed-precision
bfloat16 training.

RL. We conduct our experiments using the Qwen2.5-VL (Bai et al.,|2025) on a custom spatial dataset.
The training utilizes 7 GPUs with DeepSpeed acceleration and mixed-precision bf16 training with
flash attention. Key hyperparameters include a batch size of 1 per device, gradient accumulation steps
of 1, an initial learning rate of le-6 with cosine scheduling, and weight decay of 0.01. The model
processes input sequences up to 16,384 tokens long while generating outputs up to 1,024 tokens.
Training runs for 2 epochs with evaluation performed every 200 steps. For inference, we use vVLLM
on a separate GPU with temperature 1.0 and generate 8 samples per input.

Other Setting. We set the number of experts M to 4 in most cases. We also add LoRA with the
same default behavior as PEFT. Additionally, we apply expert scaling factors on a layer-wise basis
rather than globally.

Ablation Setting. Unless otherwise noted, we conduct all ablation experiments using the Qwen2.5-
VL-3B model because of resource constraints; all other settings are identical to those described
above.

C.2 PATCH LEVEL ENCODER ABLATION

We evaluate several visual encoders with dense feature or geometry-aware representations, including
VGGT-1B (Deng et al.l [2025a)(the only publicly available model) and the generalDINOv3 ViT+
Base, and perform ablations on the patch encoder. Tab. [C13|reports the performance gains and
computational costs associated with each model. Across encoders, DINOv3 achieves more favorable
efficiency—accuracy trade-offs with a smaller parameter budget. We attribute this to its self-supervised
pretraining, which is not constrained by labeled data and thus confers stronger generalization. In
contrast, VGGT exhibits strong reconstruction capabilities but depends on annotations that lack rich
semantic content and further relies on a large decoder to recover geometry. Consequently, compared
to VGGT, DINOV3 features are more readily consumed by the fusion module, facilitating more
effective mapping.

Table C13: Ablation of the patch-level encoder across different sizes of models on the indoor set
VSI-Bench based on the same SFT training settings.

Model&Parameter | Video-Only +VGGT +DINOv3 +VGGT +DINO v3
SpaceVista-3B (Ours) 41.9 433 43.5 43 .3
SpaceVista-3B (Ours) w/o. fusion module - 42.0 44.8 44.7
SpaceVista-7B (Ours) 45.0 45.7 46.3 46.0
Extra Parameter \ 0 909M 303M 1,320M

C.3 LoORA LIKE EXPERT ABLATION

On top of the same 3B pretrained base model, we compare three training strategies: 1) Full-
parameter Fine-tuning, 2) Vanilla LoRA, and 3) LoRA-like Expert, with the results shown

*https://github.com/deepspeedai/DeepSpeed
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Table C14: Ablation of the LoRA-like expert in the SFT training stage.

w/. Full-parameter w/. Vanilla w/. LoRA-like w/. LoRA-like
Model Benchmark
enchma Fine-tuning LoRA Fine-tuning Expert (model-wise) Expert (layer-wise)
SpaceVista-3B VSI-Bench 435 429 439 453
P ) SpaceVista-Bench 29.5 29.4 325 33.0
Trainable Parameters 3B 20M 8OM+30M 80M+34M

in Fig. We observe that vanilla SFT-based fine-tuning still suffers from latent cross-scale
information conflicts. The difference between model-wise and layer-wise is that, for each input,
the router is calculated and implemented to the whole model or to separate layers, respectively. In
contrast, the model-wise LoRA-like Expert yields clear gains over both full-parameter fine-tuning
and vanilla LoRA. Furthermore, scaling to a higher-capacity, layer-wise LoRA-like Expert delivers
additional improvements.

D OBSERVATION RESULTS

D.1 GRPO REWARD OBSERVATION

During reinforcement learning training, we observe a relatively stable increase in reward without
evidence of reward hacking, as shown in Fig.[D23] In most settings, the reward reliably converges
within a few thousand environment steps, after which further training yields minimal additional
improvements. This suggests that the learning dynamics are well-behaved under our setup and that
extending training beyond the convergence point offers limited marginal benefit. Additionally, this
may be also treated as the curve of data amount and its performance during post training.
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Figure D23: Visualization of GRPO updated and normalized correctness reward chart. This figure
visualizes how the reward grows during the RL training stage.

D.2 EXPERT OBSERVATION

We select 10 samples from tiny and indoor scenes and visualize the expert scale distribution in
Fig. As shown, inputs from each scene type tend to activate the expert specialized for that
scene. This demonstrates the model’s ability to distinguish scene-specific characteristics and allocate
resources accordingly. By activating the most relevant expert, the model ensures efficient processing
and enhanced performance in scene-specific tasks, highlighting its ability to focus on distinct features
and patterns within each scene.

D.3 REASONING VS MEMORIZING (OUT-OF-DISTRIBUTION PROBLEM)

In our experiments, we observe that models often exhibit a strong bias toward memorizing fixed sizes
for certain objects—for instance, chairs are typically assumed to be 50-70 cm tall. Consequently, the
network tends to rely on memorized size priors rather than reasoning about object scale. However,
this phenomenon presents a dual nature. On one hand, human perception of size and scale also
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Expert: Expert: Expert: Expert: Expert: Expert: Expert: Expert:
Tiny Tabletop Indoor Outdoor Tiny Tabletop Indoor Outdoor

(a) Normalized distribution of the selected tiny (b) Normalized distribution of the selected indoor
scale samples scale samples

Figure D24: Visualization of the normalized scale of each expert with different selected samples. It
reflects the model’s capacity to allocate resources according to the inherent properties of each scene.

depends on reference objects and familiar benchmarks, which are essential for intuitive understanding.
On the other hand, since real-world spatial relationships can vary significantly, such biases may lead
to erroneous judgments in atypical cases.

We argue there is two types of Out-of-Distribution (OOD) that should be discussed separately. 1)
OOD category with normal size 2) normal category with OOD size.

For OOD category with normal size, to systematically evaluate the impact of this bias and its
potential implications for advancing the field, we design three specialized subsets at the same scale:

* Seen Set: Common object categories from the training distribution (i.e., bicycle, table,
chair).

* Seen Set with Various Scales: bjects of the same category (i.e., different sizes and shapes
of screw).

* Unseen Set: Rare or culturally specific objects requiring contextual size reasoning (i.e.,
ethnic items with regional characteristics, such as a traditional food).

The Seen Set provides baseline performance metrics for familiar objects but may overlook biases
due to training conformity. The Seen Set with scale variety directly probes size generalization for
known categories, but it is limited to variations within seen objects. The Unseen Set evaluates
robustness to novel, culturally diverse scenarios but risks introducing confounders beyond scale
bias. Collectively, these subsets balance ecological validity with experimental control, offering a
comprehensive framework to diagnose size-related biases. This structured approach enables us to
analyze how size biases manifest under different conditions, combining ecological validity with
controlled experimentation. As shown in Fig.[DT3] all-scale training benefits the overall reasoning
model; however, the general models still tend to memorize the regular size of the target object.

Table D15: Reasoning VS memorizing analysis of different subsets.

Model Seen Set Seen Set Unseen
ode (Normal) (Various Scales) Set
Qwen2.5-VL-3B-Instruct 35.7 34.7 23.1
Qwen2.5-VL-7B-Instruct 37.0 38.9 28.0
SpaceVista-7B (Ours) 37.3 41.0 32.8

For normal category with OOD size, we need to develop a dataset with precise annotation. The
Guinness World Records (GWR) is a globally recognized organizatiorﬂ that catalogs uncommon
objects and forms. We obtain precise size measurements along with the corresponding images/videos,
and construct a series of QA pairs about object sizes as shown in Fig.[D25] The GWR data comprises
diverse scenes, including outdoor, indoor, and drone, with over 50 images and over 50 questions.

>https://www.guinnessworldrecords.com/records/showcase
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Table D16: Performance comparison across GWR dataset.

Size-Related QA | Qwen2.5VL-7B Qwen2.5VL-3B  SpaceVista-7B  SpaceVista-3B
SpaceVista-Bench 49.9 44.0 583 49.3
GWR set 27.8 23.1 31.1 27.3

Because only a small portion of the records is documented on the website, we used nearly all available
website content to construct this GWR test set. All questions were created through human annotation
to ensure dataset quality. This data is used solely for insight and analysis, not for official purposes.
The licensing status of GWR content is unclear. If the license permits, we will release this GWR set
on Hugging Face.

Figure D25: The Guinness World Records (GWR) is a globally recognized organization that catalogs
uncommon objects and forms. We scraped precise size measurements along with the corresponding
images/videos, and constructed a series of QA pairs about object sizes.

As shown in Table[DT6] we evaluate the popular Qwen2.5-VL model and our SpaceVista-7B model.
Because the GWR data contain only size-related questions, we select the size-related subset of
SpaceVista-Bench to ensure a fair comparison. We find that these OOD data are challenging for both
the general-purpose model and our specialist model. However, the OOD challenge does not produce
a clear performance gap between Qwen2.5-VL and SpaceVista. Although our model is not designed
for purely image-based tasks, this potential bias suggests a promising direction for future work in
VLLMs.

Our analysis of potential bias has two parts:

1. Depth Knowledge. Current metric depth models estimate distance primarily based on
accurate camera parameters, such as focal length. These parameters vary across different
scales, which is why our model performs slightly better than a general model.

2. Scale Prior. Human distance estimation also strongly relies on reference objects (i.e., scale
priors in question). When these references are unusual, humans also unavoidably exhibit
bias. Thus, scale priors are a double-edged sword and cannot be simply described as good
or bad.

D.4 DETAILED ANALYSIS ON EACH BENCHMARK

We conduct a comprehensive evaluation of SpaceVista-7B across multiple benchmarks, including
STI-Bench 2025¢), SPAR-Bench (Zhang et al.,[2025¢), MMSI-Bench (Yang et al.| 2025b)
and VSI-Bench (Yang et al,[2025a)). In this section, we analyze SpaceVista-7B’s performance on
each benchmark and compare it to other state-of-the-art models. The results from these benchmarks
provide a thorough assessment of SpaceVista-7B’s spatial reasoning capabilities, highlighting its
versatility and adaptability across diverse tasks.
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Table D17: Performance comparison of our SpaceVista-7B and other baselines on STI-Bench.We use
bold and underlined text for the top two within open-source categories, while ranks are computed
across all model categories. In Static Understanding, “Dim. Meas.” refers to Dimensional Measure-
ment. In Dynamic Understanding, “Disp. & P.L.”, “Speed & Acc.”, “Ego Orient.”, “Traj. Desc.”,
and “Pose Est.” represent Displacement and Path Length, Speed and Acceleration, Ego-Centric
Orientation, Trajectory Description, and Pose Estimation, respectively. This table includes only
the popular model for which the detailed scores are available. For average-score comparisons, see

Table El

Static Understanding Dynamic Understanding

Model/Method Rank  Avg.  piy. Spatial 3D Video  Disp.  Speed Ego Traj.  Pose
Meas. Relation Grounding & PL. & Acc. Orient. Desc.  Est.

Closed-source Models

GPT-40 (Hurst et al.| 8 348  27.1 51.8 29.0 232 354 33.7 320 536
Gemini-2.0-Flash (Deepmind|[2024 3 387 319 50.0 31.8 27.7 32.1 10.8 385 613
Claude-3.7-Sonnet (Anthropic[2025a] 2 405 298 455 35.7 28.9 38.8 40.0 474 626
Gemini-2.5-Pro (DeepMind][2025} 1 414 387 53.8 36.9 33.9 33.1 52.5 474 504
Open-source Models
7 352 294 48.6 36.1 21.5 36.7 232 54.6  48.1
10 269 277 44.5 29.0 19.0 25.7 7.0 30.8  35.6
9 328 232 473 31.5 22.4 31.1 26.0 479 483
4 385 299 52.8 31.6 249 372 49.2 436  53.6
6 363  33.6 51.4 33.1 27.1 323 222 542 514
SpaceVista-7B (Ours) 5 382  33.1 47.2 37.6 23.6 37.3 39.6 431 512

Table D18: Performance comparison of our SpaceVista-7B and other baselines on SPAR-Bench.We
use bold and underlined text for the top two within open-source categories, while ranks are computed
across all model categories. OO, OC, and MV refer to object-object, object-camera, and multi-view,
respectively. This table includes only the popular model for which the detailed scores are available.

For average-score comparisons, see Table El
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54.12 49.11 21.75 2527 12.47 23.92 27.62 24.83 14.85
59.71 52.38 30.25 38.46 41.00 22.04 28.49 22.52 38.38
51.49 4475 50.00 32.13 33.87 32.85 27.15 31.93
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8 30.74|27.52 3597 3522 20.83 12.88 28.68 29.95 28.21 28.45|20.44 3537 20.25 5.69 |37.03
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SpaceVista-7B (Ours) 1 4]68‘42.51 57.78 51.94 24.44 2022 57.02 51.12 42.62 34.98‘36.02 Bl

On STI-Bench, SpaceVista-7B ranks fifth overall and exhibits strong performance on 3D video

grounding as well as speed and acceleration estimation. It achieves 37.6% on 3D video grounding and

37.3% on speed-related tasks. Gemini-2.5-Pro (DeepMind, [2025)) attains the highest average score

of 41.4%, followed by Claude-3.7-Sonnet (Anthropic}, [2025a). In contrast, Ego-Centric Orientation,
Trajectory Description, and Displacement and Path Length remain highly challenging, as they require

accurate modeling of egocentric camera motion, long-range temporal integration, and stable 3D

reasoning under viewpoint changes and occlusions. Dynamic, long-term spatiotemporal reasoning
remains a challenge for current vision-language models. The evaluation results are presented in
Tab.[DI7

SpaceVista-7B attains the highest overall performance among all compared models on SPAR-Bench,
with an average accuracy of 41.68% and rank 1. SPAR-Bench evaluates spatial compositional
reasoning over object—object(O0), object—camera(OC), and multi-view(MV) relations under low,
medium, and high difficulty settings. Across all difficulty levels, SpaceVista-7B consistently ranks
within the top two, and on the most challenging OC and MV subsets it reaches up to 66.76%,
indicating robust modeling of complex object—camera relations under large viewpoint changes, as
summarized in Tab.[DT8] Meanwhile, most OO subsets remain highly challenging for all models,
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and reasoning about fine-grained multi-object spatial relations in heavily occluded scenes with subtle
depth and ordering differences is still problematic.

On MMSI-Bench, SpaceVista-7B achieves an average accuracy of 30.7% and ranks fifth overall,
representing the strongest performance among all open-source models. It performs particularly
well on positional-relationship tasks, such as camera—object reasoning with 45.3%, and maintains
competitive results on attribute and motion categories, as summarized in Tab. [DI9] indicating a
reasonably balanced multi-dimensional spatial understanding. Nevertheless, all models, including
SpaceVista-7B, remain far below the human upper bound of 97.0%, and sub-tasks involving camera
motion and the composite MSR metric are still notably difficult.

Finally, in the VSI-Bench evaluation, SpaceVista-7B outperforms all other models, excelling in
object counting, appearance sequencing, and absolute distance tasks, achieving 62.9% in object
counting and 36.0% in absolute distance, surpassing several open-source models, including LLaVA-

Video-72B (Zhang et al| [2024c) and LLaVA-OneVision-72B [20244). The results of this

evaluation are shown in Tab. [D20)

Table D19: Performance Comparison of our SpaceVista-7M and other baselines on MMSI-Bench.We
use bold and underlined text for the top two within open-source categories, while ranks are computed
across all model categories. Cam., Obj., Reg., Meas., and Appr. denote Camera, Object, Region,
Measurement, and Appearance, respectively. This table includes only the popular model for which
the detailed scores are available. For average-score comparisons, see TableEl

Positional Relationship Attribute Motion MSR
Model/Method Rank Avg.
Cam.-Cam. Obj.-Obj. Reg.-Reg. Cam.-Obj. Obj.-Reg. Cam.-Reg. Meas. Appr. Cam. Obj. -
Baseline
Blind GPT-40 32 227 202 17.0 29.6 139 29.4 19.2 21.8 121 202 29.0 202
Random Guessing 29 250 25.0 25.0 25.0 25.0 25.0 25.0 250 250 250 250 250
Human Level 1 972 95.7 98.9 97.5 94.2 98.8 96.4 953 985 98.6 987 97.0

Closed-source Models

03 (OpenAl 2025b 2 410 45.2 39.4 37.0 44.2 47.1 62.6 547 288 31.1 329 349
GPT-4.5 ( 3403 344 29.8 395 51.2 47.1 55.4 39.1 333 419 408 364
GPT-40 ( 7 303 344 24.5 235 19.8 37.6 27.7 32.8 31.8 351 36.8 308
Gemini-2.5-Pro (Dec 4 369 39.7 31.9 39.5 45.3 352 43.3 515 21.2 364 302 343
Claude-3.7-Sonnet ( 10 287 323 26.6 222 349 37.6 422 250 227 21.6 329 227
Seed1.5-VL (Guo et al.| 8§ 297 322 30.8 25.9 232 38.8 325 39.0 21.2 364 250 262

Open-source Models

InternVL3-78B 12 285 344 234 32.1 12.8 376 26.5 375 197 284 316 293
InternVL2.5-78B <MI@E 12 285 237 223 395 29.1 31.8 422 359 197 176 263 273
Qwen2.5-VL-72B (Bai et al.|2025] 5 307 258 34.0 34.6 233 34.1 361 453 273 27.0 303 273
LLaVA-OneVision-72B \m 13 284 430 319 333 30.2 376 386 281 197 135 329 157
InternVL3-38B (Zhu et al.|[2025] 23 263 215 20.2 333 233 353 253 390 212 162 316 258
InternVL2.5-38B (Chen et al.|2024e} 16 279 183 223 35.8 22.1 38.8 349 375 258 149 382 253
Qwen2.5-VL-32B (Bai et al.|[2025] 17 217 247 26.6 29.6 2.1 329 313 312 242 189 355 278
InternVL2.5-26B (Chen et al.|2024e} 15 280 247 19.1 296 3.7 318 373 359 303 108 316 268
NVILA-15B ( [2024c] 6 305 301 394 28.4 36.0 38.8 205 297 318 189 355 2738
InternVL3-14B (Zhu et al.. 20 268 194 245 247 233 376 241 312 227 243 316 293
Llama-3.2-11B-Vision (Gratiafiori et al |2024] 27 254 258 308 320 25.6 21.2 259 203 197 256 289 192
InternVL3-9B (Zhu et al.|[2025 21 267 183 25.5 32.1 29.1 318 229 297 242 162 382 268
InternVL3-8B (Zhu et al|[2025 26 257 258 319 370 25.6 353 289 234 242 162 329 146
InternVL2.5-8B 10 287 323 27.7 29.6 326 247 325 266 273 162 316 303
NVILA-8B 14 281 172 29.8 24.7 30.2 224 349 344 258 257 342 2938
Qwen2.5-VL-7B (Bai et al. ]2 25 259 247 245 24.7 25.6 29.4 265 250 182 203 39.5 258
LLaVA-OneVision-7B (Li et al.| 30 245 204 33.0 29.6 29.1 25.9 300 297 258 189 342 116
InternVL2.5-4B m 23 263 312 234 21.0 314 34.1 253 234 242 135 316 368
Qwen2.5-VL-3B 2 265 269 27.7 30.9 29.1 28.2 349 312 167 17.6 27.6 232
InternVL3-2B ME@ 28 253 269 25.5 29.6 314 28.2 277 266 227 122 237 237
InternVL.2.5-2B ( 9 290 280 27.7 24.7 372 29.4 361 438 152 216 31.6 2638
InternVL3-1B 5| 19 270 247 35.1 222 30.2 29.4 300 328 288 17.6 19.7 263
InternVL2.5-1B { | 24 261 237 26.6 247 25.6 31.8 253 312 303 17.6 250 263
DeepSeek-VL2 ( [2024b) 18 271 237 31.9 222 36.0 30.6 229 281 152 284 263 283
DeepSeek-VL2-Small (Wu et al.[2024b) 11286 247 287 18.5 337 38.8 277 281 333 243 250 298
DeepSeek-VL2-Tiny (Wu et al.|[2024b, 31240 290 27.7 21.0 233 17.6 313 141 242 149 250 273
SpaceVista-7B (Ours) 5307 269 232 30.9 453 27.1 361 344 267 233 355 258

In general, breakthroughs in specialized domains tend to lead to a decline in general VLM capabilities.
This phenomenon has been widely explored in mathematical reasoning, code reasoning, and spatial
reasoning. To analyze general ability, we evaluate the performance of SpaceVista-7B on the widely
accepted video benchmark Video-MME 2025)). Video-MME is a full-spectrum, multi-modal
benchmark of MLLMs in general video analysis. The comparison is shown as Tab.[D21]
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Table D20: Performance comparison of our SpaceVista-7B and other baselines on VSI-Bench.We use
bold and underlined text for the top two within open-source categories, while ranks are computed
across all model categories. This table includes only the popular model for which the detailed scores
are available. For average-score comparisons, see Table El

Obj Appear Object Abs Object Object Rel Object Size Room Size Route Object Rel

Model / Method Rank  Avg. ance Order Distance Counting Distance Estimation Estimation Planning Direction

Proprietary Models(API)

GPT-4o(Hurst et al.|[2024) 10 340 28.5 53 46.2 37.0 43.8 38.2 315 41.3
Gemini-1.5 Flash (API)(Team et al.[2024) 3 421 37.8 30.8 49.8 37.7 535 54.4 315 41.0
Gemini-1.5 Pro (API)Team et al.|(2024) 2 454 34.6 30.9 56.2 51.3 64.1 43.6 36.0 46.3
Open-source Models
InternVL2-2B(Chen et al.}[2024f) 16 265 6.3 24.0 257 32.1 20.0 292 304 44.1
InternVL2-8B(Chen et al.|[2024f) 6 375 46.4 29.0 31.3 38.0 48.9 44.2 289 334
InternVL2-40B(Chen et al.||2024f} 7 370 44.7 26.2 41.3 47.6 48.2 27.5 27.8 327
LongVILA-8B(Chen et al.[|2024d) 17 216 25.5 9.1 29.1 29.6 16.7 0.0 325 30.7
VILA-1.5-8B(Lin et al.[[2023) 14 289 24.8 21.8 174 32.1 50.3 18.8 31.0 34.8
VILA-1.5-40B(Lin et al.|[2023) 12 312 329 24.8 224 40.5 48.7 227 315 25.7
LongVA-7B(Zhang et al.|[2024a) 13292 15.7 16.6 38.0 33.1 389 222 25.4 433
LLaVA-Video-7B(Zhang et al.|{2024c) 8 356 30.6 14.0 48.5 43.5 47.8 242 34.0 424
LLaVA-Video-72B(Zhang et al.|[2024c) 4 409 48.6 22.8 489 424 574 353 35.0 36.7
LLaVA-NeXT-Video-7B(Zhang et al.{[2024b) 8 356 30.6 14.0 48.5 43.5 47.8 242 34.0 424
LLaVA-NeXT-Video-72B(Zhang et al.[2024b) 4 409 48.6 22.8 489 424 574 353 35.0 36.7
LLaVA-OneVision-0.5B(Li et al.!|2024a) 15 28.0 5.8 28.4 46.1 28.3 154 28.3 345 36.9
LLaVA-OneVision-7B(Li et al.|[2024a) 11 324 24.4 20.2 477 42.5 47.4 12.3 294 35.2
LLaVA-OneVision-72B(Li et al.|[2024a) 5 402 44.6 239 435 425 57.6 375 325 39.9
Qwen2.5-VL-7B (Bai et al.||2025) 9 344 32.7 17.5 34.0 35.8 519 36.6 29.4 37.7
SpaceVista-7B (Ours) 1 486 56.3 36.0 62.9 44.2 58.1 42.0 38.9 49.7

Table D21: General ability on popular video benchmark Video-MME

Model Video-MME
VideoLLaMA2 479
LLaVA-OneVision-7B 58.2
Qwen2.5VL-7B 63.8
InternVL3-8B 65.3
VG-LLM-8B (Spatial Model) 59.3
Qwen2.5VL-7B (w/. 1/5 SpaceVista-1M) 59.1
SpaceVista-7B (Spatial Model) 59.6

Therefore, we consider our SpaceVista general ability comparable, and also don’t believe it has "lost"
general ability or merely follows a preset spatial template. It is still undeniable that specialist models
are inspiring for future explorations of general MLLMs.

D.5 THE HARDEST SCENE

Table D22: Results analysis of different scenes. The model mentioned below is trained in a balanced
subset of SpaceVista-1M for better control of experiment conditions.

Model SpaceVista-Bench (Ours)
Indoor Outdoor Tabletop Tabletop

Qwen2.5-VL-7B 30.34 1831 23.79 19.37
38.77 2490  30.17 20.86

w)/. balance training

When testing scenes at varying scales, several critical questions arise: Which scenarios pose greater
challenges, and to what extent is data complexity the primary bottleneck? To systematically investigate
these issues, we design a controlled observational experiment.
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We identify tasks that exhibit consistent properties across different scales, including object size, object
comparison, absolute and relative distance, and depth estimation. For fairness in comparison, we train
models using videos from diverse scenes while maintaining similar quantities of QA pairs and video
samples. Under these controlled conditions, we evaluate and compared performance across different
scale-dependent scenarios. In Tab[D22] it seems indoor data is the easiest task. We hypothesize that a
human-scale estimation bias—arising because both humans and GPT focus on objects expressible in
basic units like meters in pretraining corpora—Ieads to this preference.

D.6 WHY 2.5D>3D

Table D23: Comparison of the robustness of the model training of 3D and 2.5D. All the models are
trained on 3D or 2.5D data along with the video. However, we vary the evaluation input of these
models to see the robustness. “— denotes experiments we consider unnecessary. “low”” means using
low resolution visual for 3D reconstruction. This table includes only the popular model for which a
detailed score is available. For average-score comparisons, see Table[2] “(n%)” means the relative
decrease compared to the original input.

Settings Eval Input ‘VSI-bench SpaceVista-Bench
visual w/. 3D 443 314
mingwinw/. 0 LI eeinm -
visual w/. 2.5D 45.6 33.0

visual w/. 2.5D (low) | 43.9 (-4%) 32.3 (-2%)

Training with w/. 2.5D
visual w/o. 2.5D 40.7 (-10%) 29.1(-12%)

In addition to introducing VGGT(Wang et al.| 2025a) and DINO v3(Siméoni et al., 2025)) as extra
signals, we conduct a series of targeted ablation studies. This suggests that representation formats like
VGGT, when used in their native encoder output, are wonderful for capturing geometry information,
but suboptimal for capturing semantic information or overall scenes, especially for low resolution and
uncommon scenarios. In Tab[D23] we use “3D” to denote the pure geometric features from VGGT,
and “2.5D” to denote the additional 12 viewing angles of the overall scene rendered by the decoder
and the renderer. We use the special prompt and the image token to provide

As shown in Tab[D23] 2.5D is usually more robust in spatial reasoning. Rendering to 2.5D enables
effective exploitation of pretrained image tokenizers, which in turn provides more reliable semantic
information.

Below is the special prompt for 2.5D finetuning.

“Please think about this question as if you were a human pondering deeply. Consider detailed
information from the video frames and coarse spatial information from the 3D point cloud image.
Provide the model’s thought process and reasoning between the <think> </think> tags, and give
your final answer between the <answer> </answer> tags. <video> The images below are obtained
from the 3D point clouds based on the video frames above. The following point cloud images
are randomly selected viewpoints; some may be completely unhelpful, while others may contain
important information. Please discern carefully. <image> Provide your reasoning between the
<think> </think> tags and your final answer between the <answer> </answer> tags.”

D.7 SCALING-UP ANALYSIS

We investigate prospective scaling behavior across three model sizes—3B, 7B, and 32B—to inform
future model development. Our analysis is conducted using the same SpaceVista-1M dataset while
holding all model settings nearly constant. However, there is a minor difference between different
scale models. We use LoRA rather than full scale to finetune 32B model. Since using more experts
will inevitably increase the inference time, we use fewer experts as the scale increases. However, we
still hold the strong belief that it does not affect the overall scaling exploration of our SpaceVista-1M
data and model.
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Table D24: Scaling model with SpaceVista-1M. “Qwen2.5-VL-*B” indicates that the SFT model
used for evaluation is trained on the corresponding base model.

Foundation Model | Qwen2.5-VL-3B Qwen2.5-VL-7B Qwen2.5-VL-32B
VSI-Bench 43.5 46.3 49.0
SpaceVista-Bench 29.5 34.5 36.3

Table D25: The release time and model source of LLMs used

Model Release Time Source

GPT-5(OpenAl}|2025) 2025-08 https://openai.com/gpt-5/

GPT-4o(Hurst et al.|[2024] 2024-05 https://gptdo.ai/
Claude-Opus-4.1(Anthropic|2025c) 2025-08 https://www.anthropic.com/news/claude-opus-4-1
Claude-Sonnet-4(Anthropic||2025b) 2025-05 https://www.anthropic.com/claude/sonnet
Gemini-2.5-Pro(DeepMind|[2025} 2025-06 https://deepmind.google/technologies/gemini/pro/
Gemini-2.5-Flash(DeepMind2025) 2025-06 https://deepmind.google/models/gemini/flash/
Internvl3.5-38B (Wang et al.|[2025¢) 2025-08 https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct
Internv13.5-14B (Wang et al.|2025¢) 2025-08 https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct
Internvl3-78B (Zhu et al.}|2025) 2025-04 https://huggingface.co/OpenGVLab/InternvVL3-78B
Internvl3-38B (Zhu et al.}[2025) 2025-04 https://huggingface.co/OpenGVLab/InternVL3-38B
GLM-4.5V (Team et al.}|2025) 2025-08 https://www.glm45.com/glm45v
GLM-4.1V-Thinking (GLM et al.|[2024) 2025-07 https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
Qwen2.5VL-72B (Bai et al.|2025) 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
Qwen2.5VL-32B (Bai et al.}[2025) 2025-01 https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct

LLAVA-Onevision-72B (Li et al.|[2024a] 2024-08 https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf
LLAVA-Onevision-7B (Li et al.||[2024a} 2024-08 https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

As summarized in Tab.[D24] the dataset affords a certain degree of support for the 32B model’s capa-
bilities. Nevertheless, beyond this observation, the main results are achieved by the 7B configuration,
whereas ablation studies are primarily conducted with the 3B model.

D.8 LEADERBOARD DETAIL

To assess the spatial reasoning ability of both closed-source and open-source models, we evaluate the
latest available versions. Tab.[5|presents their performance across the Tiny Tabletop, Tabletop, Indoor,
and Outdoor scenarios, whereas Tab. [D25] provides an overview of their release dates and sources.
For closed-source models accessed via API and open-source models, the generation configurations
are summarized in Tab. [D26]and respectively.

E FAQ

E.1 ERROR ACCUMULATION

Our data construction pipeline is primarily based on metric depth estimation and the corresponding
transformation to canonical view space. It should be noted that this approach may introduce potential
error accumulation, especially considering that current metric depth estimation models have not yet
achieved high performance at full scale.

To address concerns regarding error accumulation, we justify our methodology from the following
perspectives: 1) data quality assurance: To ensure alignment with human perception, we implement
a multi-tiered validation process. Specifically, we conduct manual verification on a subset of the
training set, perform full human annotation on the entire test set, and additionally collect real-world
measured data to construct a dedicated test subset. These measures effectively ensure that the
automatically generated data remains suitable for learning human perceptual models. We argue that
even if minor error accumulation exists, it does not compromise the overall quality and contribution
of the dataset. 2) forward-looking methodological contribution: The proposed data construction
framework and model architecture will have a significant impact on the field of all-scale spatial
reasoning. Importantly, as more accurate all-scale inference methods emerge in the future, we will
continuously integrate higher-quality data to refine this work. This dynamic updating mechanism
ensures the long-term relevance and value of our research.
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Table D26: Generating parameters for Closed-Source LLMs.

Model ‘ Generation Setup

GPT-5

"model" : "gpt-5", "temperature” : 0, "max_tokens" : 1024

"o

GPT-40 "model" : "gpt-40", "temperature” : 0, "max_tokens" : 1024

Claude-Opus-4.1 | "model" : "claude-opus-4.1", "temperature” : 0, "max_tokens" : 1024

Claude-Sonnet-4 | "model" : "claude-sonnet-4", "temperature” : 0, "max_tokens" : 1024

"o

Gemini-2.5-Pro | "model" : "gemini-2.5-pro”, "temperature” : 0, "max_tokens" : 1024

Gemini-2.5-Flash

"model" : "gemini-2.5-flash", "temperature" : 0, "max_tokens" : 1024

E.2 ALL SCALE POSSIBILITIES

Currently, our data coverage remains limited in addressing the full spectrum of spatial scales, de-
spite the equal importance of spatial understanding across these domains. At fine scales, domains
such as minimally invasive surgery call for millimeter-level models, while precision manufactur-
ing—especially semiconductor production—pushes into the nanometer range. These capabilities
underpin progress in healthcare and technology. In contrast, large-scale applications, including
satellite remote sensing and cartography, typically work with resolutions of 10 kilometers or greater.

While spatial understanding is equally essential across these extremes, the imaging and 3D modeling
techniques involved extend well beyond conventional real-world sensing methods. As a result,
our current work does not fully address these diverse scales. Nevertheless, we aim to expand our
capabilities in the future by integrating modeling across a broader range of dimensions, thereby
bridging these gaps and enabling more unified spatial analysis.

E.3 DISCUSSION OF DATASET

We use the free-form subset of SPAR-7M(Zhang et al.|[2025¢), which consists of approximately 100K
samples, about 1% of the original dataset. This part of the data is later processed and filtered with
original Scannet (Dai et al.,|[2017), Scannet++ (Yeshwanth et al.,|[2023)), and ARKitScenes (Baruch
et al., 2021) to fit the requirements of our dataset. However, we do not consider our model to be
trained on SPAR-7M, nor do we compare it against models trained on SPAR-7M in SparBench. We
observe that SPAR-7M’s data design leads to over 200 QA pairs per scene on average, which can
cause overfitting in indoor scenarios. Instead, we leverage SPAR-7M’s scan-based characteristics
to construct our own CoT for cold-start purposes. It is important to note that neither SpaceR nor
SPAR-7M includes CoT reasoning. We generate CoT following the method described in Sec. [3|and
apply filtering and screening to ensure quality. These processed data sources, along with the wild
video dataset, are integrated into SpaceVista-1M, while acknowledging the additional labeling and

Table D27: Generating parameters for Open-Source LLMs.

Model ‘ Generation Setup
Internv13.5-38B ‘ do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3.5-14B ‘ do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3-38B ‘ do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3-78B ‘ do_sample = False, temperature = 0, max_new_tokens = 512
GLM-4.5V ‘ do_sample = False, temperature = 0, max_new_tokens = 1024

GLM-4.1V-Thinking ‘ do_sample = False, temperature = 0, max_new_tokens = 1024

Qwen2.5VL-32B ‘ do_sample = False, max_new_tokens = 1024

Qwen2.5VL-72B ‘ do_sample = False, max_new_tokens = 1024

LLAVA-Onevision-7B ‘ do_sample = False, temperature = 0, max_new_tokens = 1024

LLAVA-Onevision-72B ‘ do_sample = False, temperature = 0, max_new_tokens = 1024
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filtering steps involved in our pipeline. Overall, these decisions support our position that our data
retains a meaningful degree of independence from SPAR-7M and SpaceR.

F PREVIEW

F.1 SCENE PREVIEW

Indoor Scenes. Our indoor dataset consists of simple and clean room-scale environments such as
living rooms, meeting rooms, and classrooms. An overview of the data is provided in Fig. [F26]
highlighting the simplicity and cleanliness of our indoor scenes compared to more complex wild
indoor environments. Living rooms feature sofas, coffee tables, and shelves arranged along walls
with open floor space. Meeting rooms include evenly spaced chairs around a central table, while
classrooms have rows of desks facing a blackboard or screen. These scenes show limited object
variety and limited scene complexity.

Wild Indoor Scenes. Representative wild indoor scenes, captured via multi-view smartphone
recordings in complex and unconstrained environments such as shopping malls, banquet halls, and
art galleries, are illustrated in Fig. These scenes exhibit diverse architectural layouts and high
object density. Like in shopping malls, elements such as escalators, display shelves, and glass facades
create multi-layered structures with frequent reflections and occlusions. Compared to previous indoor
scenes, wild indoor scenes have irregular layouts, dense furniture, diverse objects, and uneven lighting,
leading to more complex spatial arrangements. This contrast underscores the structured and clear
nature of our data, which supports controlled spatial reasoning evaluation.

Outdoor Scenes. Our outdoor scenes include various environments such as parks, tourist landmarks,
and others, captured from both ground and aerial views, as shown in Fig. [F28] Parks contain
irregularly shaped walking paths winding through dense clusters of trees, shrubs, and open lawns,
creating a mix of natural textures and spatial variations. These areas often include water features,
benches, and varied terrain elevations. Therefore, outdoor scene layouts usually involve plazas,
staircases, and structured open spaces that introduce rich geometric complexity.

Drone Scenes. Fig.[F29]shows examples from a drone’s perspective. Aerial, low-angle, and oblique
views offer detailed spatial structures that are not easily visible from the ground. Playgrounds exhibit
clear arrangements of play equipment and open spaces, while parking lots display orderly rows of
vehicles and marked boundaries. Parks show clusters of trees, pathways, and water bodies, revealing a
layered combination of natural and built elements. These diverse viewpoints provide a more complete
understanding of scene layout and environmental features, supporting improved spatial reasoning.

Tabletop Scenes. Examples of tabletop scenes are illustrated in Fig. [F30] These scenes capture
everyday objects such as keyboards, boxes, and fruits arranged on tabletops, characterized by natural
occlusions, varying object placements, and diverse background textures. The dataset employs
dynamic multi-view acquisition using mobile devices, enabling richer structural coverage compared
to traditional static indoor datasets. This approach captures subtle interactions between objects and
background elements, as well as changes in viewpoint and lighting conditions.

Tiny Tabletop Scenes. The Fig. shows the tiny tabletop scenes from our dataset. These data
are 360-degree turntable videos to capture objects from every angle, solving occlusion issues and
improving scene completeness.

Our Collected Scenes.We use mobile devices to capture and collect data for some Tabletop and
Tiny Tabletop scenes. Our collected data, shown in Fig. features diverse objects and detailed
multi-view coverage, enabling fine-grained spatial analysis. The data is similar to the previously
mentioned tabletop and tiny tabletop. Tabletop scenes have relatively large objects and rich and
diverse backgrounds, which are suitable for capturing diverse objects and natural environments in
daily life; while Tiny Tabletop scenes focus on smaller objects, emphasizing detail integrity and
multi-view coverage, which facilitates in-depth research on the subtle structure and morphology of
these scenes.
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F.2 TEMPLATE PREVIEW

As shown in Tab. [F28] we present three exemplar applications: point input for Object Counting,
bounding box input for Object Distance, and original input for Spatial Relation. Other scenes and
tasks are similar to the example template.

F.3 QA PREVIEW

We provide a comprehensive set of SpaceVista-1M QA pairs here for preview in TabJF29} TabJF47]
Note that the RL-oriented multiple-choice and regression formats omit anchors like <semantic>
and <scale>, since they can be easily injected during training from the meta information. Since if
objects are referred to by a bounding box, the only changes needed are to change the object name
into the corresponding object point/bbox/mask. Each question takes only one video with one form of
referring. For example, “Where is the toothbrush relative to the keyboard from the view of the start
frame?” — “Where is the red mask referred object relative to the keyboard from the view of the start
frame?”. So, in this preview, we only provide the natural language questions for clarity.

Overall, these previews highlight the diversity of our all-scale reasoning SpaceVista-1M dataset.
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Table F28: Multi-type template preview. Examples using the point input for Object Counting, the
bounding-box input for Object Distance, and the original input for Spatial Relation.

Point Input Template

- Refer to the red point in the starting frame and count how many objects are of that type.

- Count the number of objects whose class is referred to by the red point in the first frame throughout the video.

- Using the red point in the first frame as reference, count how many objects of that class appear in the entire video.
- Count every object like the one highlighted by the red point in the video’s first frame.

- Find all video objects that are of the same kind as the one identified by the red point.

- Identify the class from the red point in frame one and tally all instances of that class in the video.

- How many objects in the video resemble the one tagged with the red point in the first frame?

- Search for all items that belong to the same class as the one shown by the red point in frame one.

- Track all objects of the same category as the red-point one from the first frame and count them.

- Count the total number of objects in the video that correspond to the class defined by the red point in the first frame.
- Use the red point to find a class and count how many such instances are there in the video.

- Using the initial frame’s red point as a guide, total up all objects of that class.

- From the first frame’s red point, find that class and count its appearances across the video.

- Match the object under the red point to others in the video and count them.

- Take the red-pointed object as example and count all others like it in the video.

Bounding Box Input Template

- How far apart do the objects enclosed by the red bounding box and blue bounding box appear in these frames?
- What space lies between the red bounding box and the blue bounding box in these frames?

- What is the distance measurement between the red bounding box and blue bounding box in the video?

- What is the distance between the red-bounded object and the blue-bounded object in the video?

- Measure the distance separating the red bounding box and blue bounding box in the video frames.

- What is the estimated distance between the red bounding box and the blue bounding box in the video?

- What is the measured distance between the red bounding box and blue bounding box in the footage?

- Calculate the ground distance from the red bounding box to the blue bounding box based on the frames.

- Find the ground distance between the red bounding box and the blue bounding box in these images.

- How wide is the space between the red bounding box and the blue bounding box in the video?

- Based on the frames, what is the distance from the red bounding box to the blue bounding box?

- Please estimate the ground distance between the red bounding box and the blue bounding box in these images.
- What is the approximate distance between the red bounding box and blue bounding box in these images?

- Provide an estimate for the distance between the red bounding box and blue bounding box seen in the footage.
- How far is the red bounding box from the blue bounding box in the frames?

Original Input Template

- Describe how desk and chair are spatially positioned relative to each other.

- What is the spatial relation type between desk and chair in the video?

- What type of spatial relationship exists between desk and chair in these frames?

- Estimate the spatial relation (such as support, stacking, adhesion, hanging, plug-in) between desk and chair in these frames.
- What is the most likely spatial relationship (support, stacking, adhesion, hanging, plug-in) between cabinet and book?
- Can you describe the spatial relationship type of awning and awning?

- Identify how picture and ceiling are spatially related in the video sequence.

- Between desk and chair, what spatial link exists?

- What spatial relation links tag to hat in the given frames?

- What spatial relation best fits cable and computer mouse in the video frames?

- Identify how cable and socket are spatially related in the video sequence.

- Describe the spatial relation (e.g., support, stacking, adhesion, hanging, plug-in) between fork and spoon.

- Explain the spatial relation between toy camera and building blocks in the video.

- How would you classify the spatial relation between sticky note and tumbler?

- What type of spatial relationship exists between toy block and toy train in these frames?.
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Figure F26: Indoor data are rather simple and clean scenes inside a room. The overall scene is not as
complex as the wild indoor scene.

Figure F27: Wild indoor data includes more light changes, reflections, and transparency. The objects
included are more diverse.
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Figure F28: Outdoor data is jointly collected from ground views, incorporating street, park, building
and so on.

Figure F29: Drone data captures ground objects from above at oblique angles, providing more
complete structural coverage than traditional ground-based capture methods.
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Figure F30: In this tabletop scene, videos capture tabletop objects exhibiting rich background
variation and natural occlusions, delivering clearer structural coverage of the objects than
traditional static indoor datasets.

Figure F31: Tiny tabletop objects captured with rich details for small objects, focusing on fine-scale
scenes, unlike typical large or complex indoor or outdoor datasets.
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offer rich details with accurate annotation.

Table F29: The spatial relation task QA preview.

Spatial Relation Task

Please think about this question as if you were a human pondering deeply. [
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide

only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input
What is the most likely spatial relationship between the red point and the blue point?
Options: A.Stacking B. Dhesion C. Support D. Adjacent E. Plug-in

Bounding Box Input Point Input Mask Input

[{"x1":91, "yl":181,

"x2":439, "y2":458}, [[328, 287], [548,
{"x1":241, "y1":471, 360]1]
"x2":479, "y2":627}]

SFT GT
<think>Based on the spatial relationship in the image, the red point appears to be positioned below

or supporting the blue point. Given their relative arrangement and visual positioning, the red point
is most likely the foundation or support for the blue point.</think> <answer>The red point likely

serves as the foundation or support for the blue point.</answer>
RL GT
<think>*</think><answer>D</answer>
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Table F30: The camera moving task QA preview.

Camera Moving Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input
What directional path did the camera follow in the video, ignoring rotation?
Options: A.Front B. Back C. Left D. Right E: Down

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>The images show a sequence of shots from the same scene, with each frame zooming in
slightly more. This indicates that the camera is moving forward towards the structure, capturing
more detailed parts of the scene as it progresses. The camera keeps moving forward.</think>

<answer>Front</answer>
RL GT
<think>*</think><answer>A</answer>

Table F31: The position comparison task QA preview.

Position Comparison Task

Please think about this question as if you were a human pondering deeply. Cr iy [eeending
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’lhmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

T e
AEEEN EEEEN EEEEN

Text Input
Where is the toothbrush relative to the keyboard from the view of the start frame?
Options: A.Left B. Right C. Front D. Back

Bounding Box Input Point Input Mask Input
Not applicable. [237, 9]
SFT GT

<think>The video starts with the toothbrush on the left side in the green cup. As the view rotates, its
position shifts from left to right and then back to left. Before disappearing, it remains on the left side.

So the toothbrush is on the left from the view of the start frame.</think> <answer>Left</answer>
RL GT
<think>*</think><answer>A</answer>
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Table F32: The size comparison task QA preview.

Size Comparison Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’, it ¢
’wait’, ’hmm’, *oh, I see’, "let’s break it down’, etc, or other natural NS A a—
language thought expressions. It’s encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Based on the height of the referred object shown in the video, which is taller: the red point object or
the blue point object?

Options: A.Streetlight B. Sign

Bounding Box Input Point Input Mask Input
[{"Xl":l7, llyl":llol [[185, 52], [lOl, -
"x2":94, "y2":248}, 1447

{"x1":126, "yl":74,
"x2":163, "y2":220}]
SFT GT

<think>By analyzing the position of the light source in the image, it’s clear that the streetlight
is situated above the sign. Additionally, due to its height and the relatively distant position, the
streetlight has a broader light coverage, further suggesting it is taller than the sign.</think> <an-

swer>Streetlight.</answer>
RL GT
<think>*</think><answer>A</answer>

Table F33: The existence estimation task QA preview.

Existence Estimation Task
. . . . . EEEE NN ...
Please think about this question as if you were a human pondering deef
Engage in an internal dialogue using expressions such as ’let me think’
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural

language thought expressions. It’s encouraged to include self-reflectio Tttt

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input
Determine which objects in the cabinet, printer, dishwasher, and trash bin are found in the footage.
Options: A.Printer B. Cabinet C. Dishwasher D. Trash bin

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>Based on the content in the images, I can see a clearly visible trash bin placed on the
ground. Its presence is obvious in the scene, as it is clearly shown, and other objects in the image
provide a reference for its position and shape. Therefore, it is reasonable to infer the existence of

the trash bin.</think> <answer>Trash bin</answer>
RL GT
<think>*</think><answer>D</answer>
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Table F34: The rotation estimation task QA preview.

Rotation Estimation Task

Please think about this question as if you were a human pondering deeply. " n.w-y:"hﬁnrﬁ
Engage in an internal dialogue using expressions such as ’let me think’, i : :
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

-
EEEEE EEEEE BN

Text Input
Calculate the rotation angle of the object in the red bounding box between the first and last frame.

Bounding Box Input Point Input Mask Input
[{"x1":911,
"yl":605, "x2":1201, [[480, 989]]
"y2":853}]
SFT GT

<think>By observing the change in the object’s position between the frames, I estimate its rotation
angle. Based on the relative rotation in the two images and using reference points, I approximate
the object has rotated by about 136 degrees. The exact angle might vary slightly, but it’s within this

range.</think> <answer>136 degrees</answer>
RL GT
<think>*</think><answer>136</answer>

Table F35: The relative distance task QA preview.

Relative Distance Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’lhmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
How close does the red mask get to the blue mask in the frames (in centimeters)?

Bounding Box Input Point Input Mask Input

[{"Xl":194,
"yl":172, "x2":299,
e [[351, 245], [428,

{"x1":393, "y1":377, sezl

"x2":479, "y2":483}]

@ .

SFT GT
<think>Based on the content of frames, the relative position of the red and blue objects changes

minimally. The bottle seems 20 centimeters tall. Therefore, the relative distance between them in
the frames is estimated to be approximately 7.8 centimeters. The contrast between their shapes and

background positions helps in making this estimation.</think> <answer>8 centimeters</answer>
RL GT
<think>*</think><answer>7.8</answer>
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Table F36: The absolute distance task QA preview.

Absolute Distance Task

Please think about this question as if you were a human pondering deeply. “ap :z ]
Engage in an internal dialogue using expressions such as ’let me think’, 4

’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
What is the estimated distance between the red mask and the blue mask in the video (in meters)?

Bounding Box Input Point Input Mask Input

[{"x1":250,
ey, O L1270, 2781, 1264,
w27 3 , 4421 L&

{("x1":402, "y1":229,
"x2":479, "y2":300}]

SFT GT

<think>The red and blue objects are two regular boxes of around 0.1m in size. Based on the
position of the red and blue objects in the image, the estimated absolute distance between them is
approximately 0.31 meters. This estimation is made based on the size and arrangement of the objects

in the frame.</think> <answer>0.31 meters.</answer>
RL GT
<think>*</think><answer>0.3 1</answer>

Table F37: The room size task QA preview.

Room Size Task

Please think about this question as if you were a human pondering deeply. ==y =
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’lhmm’, “oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
Give an estimate of the room size based on the video (in square meters).
Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>By observing the spatial layout in the image, I estimate the room’s size. Based on the relative
proportions and perspective of the table and sofa within the room, and considering typical room
size proportions with normal table and sofa size, the area of the room is approximately 24.33 square
meters. This estimation is derived from the visible space in the image.</think> <answer>24.33

square meters</answer>
RL GT
<think>*</think><answer>24.33</answer>
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Table F38: The object counting task QA preview.

Object Counting Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection. NEEEE ENEEE REEED
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
How many bowls can be seen throughout the video?

Bounding Box Input Point Input Mask Input

[{*x1":81, "ylm":357,

"x2":408, "y2":539)] (433, 24311

~ A E—

SFT GT
<think>Based on the objects in the image, two bowls are clearly visible in different positions. Their
number is easily identifiable in the frame. Therefore, it can be estimated that there are 2 bowls

visible in the video.</think> <answer>2 bowls</answer>
RL GT
<think>*</think><answer>2</answer>

Table F39: The object size task QA preview.

Object Size Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’lhmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
How wide is the toy in the first frame (in centimeters)?
Bounding Box Input Point Input Mask Input
[{"x1":112,
"yl":547, "x2":717, [[820, 43711
"y2":1089} ]
SFT GT

<think>By observing the size of the toy in the image and its relative proportion to surrounding
objects, the width of the toy can be estimated. Based on the proportional reference in the frame, the

toy’s width is approximately 7.4 centimeters.</think> <answer>7.4 centimeters</answer>
RL GT
<think>*</think><answer>7.4</answer>
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Table F40: The route plan task QA preview for evaluation.

Route Plan/Navigation Task

Please think about this question as if you were a human pondering deeply. " -\: et
Engage in an internal dialogue using expressions such as ’let me think’, \ :
’wait’, ’lhmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

What actions should you take to navigate from the toilet, facing the bathtub, to the door, given
the following steps: 1. [please fill in] 2. Go forward until the door. You have reached the final
destination?

A.Turn left B.Turn right C.Turn back

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>Based on the layout in the image, assuming you start at the toilet, facing the bathtub, the first
step is to turn right, then continue forward until you reach the door. This path is aligned with the

relative positioning of the objects in the room.</think> <answer>Turn right</answer>
RL GT
<think>*</think><answer>B</answer>

Table F41: The appearance order task QA preview.

Appearance Order Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Please provide the sequence in which these objects appear in the video: table, chair, blackboard.
Options: A.["table", "blackboard", "chair"] B. ["chair", "table", "blackboard"] C. ["blackboard",
"chair", "table"] D. ["table", "chair", "blackboard"]

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>Based on the objects’ sequence in the image, the table appears first, followed by the chair,
and finally the blackboard. This order is determined by the relative positions of the objects in the
frame.</think> <answer>Table, chair, blackboard.</answer>

RL GT

<think>*</think><answer>D</answer>
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Table F42: The depth estimation task QA preview.

Depth Estimation Task

EEEEN EEEEE EEEEN
- = m— ——

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’Thmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the
numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
Please provide the depth value of the object labeled by the red mask in the initial frame (in meters).

Bounding Box Input Point Input Mask Input
[{"x1":466,
"y1l":528, "x2":620, [[733, 53511
"y2":1043}]
SFT GT

<think>Based on the position of the object labeled by the red mask in the image and considering the
perspective and size of the object, the estimated depth of the object is 0.72 meters with the reference

spoon’s length of 0.17 meters.</think> <answer>0.72</answer>
RL GT
<think>*</think><answer>0.72</answer>

Table F43: The view change inference task QA preview.

Area Estimation Task

Please think about this question as if you were a human pondering deeply. S _“:T;
Engage in an internal dialogue using expressions such as ’let me think’, oy [N b amh
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural \ L
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the

numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

Text Input
What is the area of the roof shown in the video (in square meters)?

Bounding Box Input Point Input Mask Input

[{"x1":161, "yl":48,

"x2":312, "y2":85}] Not applicable.

SFT GT

<think>Based on the perspective in the image and the relative size of the objects, the area of the roof
can be estimated. By considering the proportions of the objects and the background perspective, the
area of the roof is approximately 146.0 square meters.</think> <answer>The area of the roof in the

video is 146.0 square meters.</answer>
RL GT
<think>*</think><answer>146.0</answer>
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Table F44: The object matching task QA preview.

Object Matching Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, "let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide

only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input
‘Which bounding box (green, blue, or yellow) in the last frame is the same object as the red bounding

box in the first frame?
Options: A.Yellow B. Green

Bounding Box Input Point Input Mask Input
[{"x1":87, "yl":382,
"x2":398, "y2":493}]

[{"x1":122,
"yl":515, "x2":237,
"y2":617}, {"x1":62,
"y1":376, "x2":381,

Not applicable. Not applicable.

non. 53411
SFTGT ~
<think>By analyzing the object positions and color contrasts in the image, the green bounding box

matches the object of the red bounding box in the first frame. This conclusion is based on the relative
f{oﬁi?}%{ls and sizes of the objects in both frames.</think> <answer>The green box.</answer>

<think>*</think><answer>B</answer>

Table F45: The obstacles location task QA preview.

Obstacles Location Task

EEEEE EEEN
F .

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, "let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide

only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Which object will cause obstacles when moving the pliers to the left of the box? (Red point denotes
the pliers, Blue point denotes the target position.)

Options: A.Pineapple B. Charging plug C. None

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>The red-handled pliers are on the right, and the target is on the left side of the box at the
lower right. If the pliers are moved to the box’s left side, the path crosses the pineapple in the center

of the table, making it the main obstacle.</think> <answer>Pineapple.</answer>
RL GT
<think>*</think><answer>A</answer>
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Table F46: The manipulation planning task QA preview.

Manipulation Planning Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural
language thought expressions. It’s encouraged to include self-reflection.
Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

How to move the box to the front of the apple from the viewpoint of the first frame? (Red point
denotes the box, blue point denotes the target position.)

Options: A.Moving backward 43.6cm B. Moving left 10.2cm C. Moving up 45.7cm D. Moving
backward 28.1cm

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>The red point denotes the current position of the box, and the blue point denotes the target.
The task is to move the box in front of the apple by shifting it along the red-to-blue direction
about 28.1cm.</think> <answer>Move the book backwards 28.1cm to put the box in front of the

apple.</answer>
RL GT
<think>*</think><answer>D</answer>

Table F47: The area estimation task QA preview.

View Change Inference Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as ’let me think’,
’wait’, ’hmm’, *oh, I see’, ’let’s break it down’, etc, or other natural R
language thought expressions. It’s encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input
What is the view change between the input frames?
Options: A.Back B. Down C. Right D. Left E. Front

Bounding Box Input Point Input Mask Input
Not applicable. Not applicable. Not applicable.
SFT GT

<think>By analyzing the angle change between the frames, it’s clear that the view shifts down-
ward. This conclusion is drawn from comparing the position and angle of objects in the beginning

frames.</think> <answer>Downward</answer>
RL GT
<think>*</think><answer>B</answer>
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