

SPACEVISTA: ALL-SCALE VISUAL SPATIAL REASONING FROM mm TO km

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

Figure 1: Prior works of spatial reasoning have largely focused on indoor (1-30 m) scenes, while our SpaceVista model and dataset span scales from *mm* (1e-3 m) to *km* (1e+3 m). **Dotted lines represent our contribution in filling the gap.** This six-order-of-magnitude range introduces not only scale variation but also rich semantics and diverse tasks. **SpaceVista** enables all-scale spatial reasoning by integrating cues from micro-objects to macro-scenes.

ABSTRACT

With the current surge in spatial reasoning explorations, researchers have made significant progress in understanding indoor scenes, but still struggle with diverse applications such as robotics and autonomous driving. This paper aims to advance all-scale spatial reasoning across diverse scenarios by tackling two key challenges: 1) the heavy reliance on indoor 3D scans and labor-intensive manual annotations for dataset curation; 2) the absence of effective all-scale scene modeling, which often leads to overfitting to individual scenes. In this paper, we introduce a holistic solution that integrates a structured spatial reasoning knowledge system, scale-aware modeling, and a progressive training paradigm, as the **first attempt** to broaden the all-scale spatial intelligence of MLLMs to the best of our knowledge. Using a task-specific, specialist-driven automated pipeline, we curate over 38K video scenes across 5 spatial scales to create **SpaceVista-1M**, a dataset comprising approximately 1M spatial QA pairs spanning 19 diverse task types. While specialist models can inject useful domain knowledge, they are not reliable for evaluation. We then build an all-scale benchmark with precise annotations by manually recording, retrieving, and assembling video-based data. However, naive training with SpaceVista-1M often yields suboptimal results due to the potential knowledge conflict. Accordingly, we introduce **SpaceVista-7B**, a spatial reasoning model that accepts dense inputs beyond semantics and uses scale as an anchor

054
 055
 056
 057
 058
 059
 060
 061
 062
 063
 064
 065
 066
 067
 068
 069
 070
 071
 072
 073
 074
 075
 076
 077
 078
 079
 080
 081
 082
 083
 084
 085
 086
 087
 088
 089
 090
 091
 092
 093
 094
 095
 096
 097
 098
 099
 100
 101
 102
 103
 104
 105
 106
 107
 for scale-aware experts and progressive rewards. Finally, extensive evaluations across 5 benchmarks, including our **SpaceVista-Bench**, demonstrate competitive performance, showcasing strong generalization across all scales and scenarios. Our dataset, model, and benchmark will be released at our project page [🔗](#).

1 INTRODUCTION

Spatial reasoning, the ability to sense, interpret, and interact with environments across scales from tiny objects understanding to remote drone sensing, is crucial for next-generation intelligent systems. It significantly enhances 3D and even 4D scene understanding, enabling agents to interpret complex environments from easily obtainable videos. **All-scale reasoning** capability supports diverse applications: *mm* for advanced manufacturing (Song et al., 2024), *cm* and *m* for embodied intelligence (Pan et al., 2025), 10*m* for autonomous driving (Liu et al., 2022), and 100*m* for drone-based sensing (Xiao et al., 2023). Recent research (Yang et al., 2025a), especially on how Multimodal Large Language Models (MLLMs) perceive and recall space, is narrowing the gap in visual spatial reasoning.

The current works on spatial reasoning primarily focus on improvements from two perspectives: data and model. From the data perspective, pioneer works (Ouyang et al., 2025; Zhang et al., 2025e; Deng et al., 2025b) utilize more scanning-based data, or image-based data employing fully automated pipelines to acquire additional information for Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL). During modeling indoor spatial scenes, Wu et al. (2025a); Zheng et al. (2025) leverage latent features from VGGT (Wang et al., 2025a) by incorporating geometric information to enhance spatial understanding. Concurrently, a series of outstanding works (Ouyang et al., 2025; Zhang et al., 2025e) have improved the performance of existing models by refining the training and thinking approaches. Moreover, Wu et al. (2025b) employs multi-turn dialogues to enhance self-correction capabilities.

Despite these works’ advancements, their spatial perception capabilities are primarily limited to indoor settings, specific objects, and constrained scales, as shown in the the bar chart Fig.1. Moreover, current methodologies lack dedicated training frameworks for holistic all-scale scene understanding. To bridge this gap, we introduce the **first comprehensive solution** to address data, model, and evaluation dimensions for all-scale scenarios.

Previous datasets (Yang et al., 2025a;b; Ouyang et al., 2025; Zhang et al., 2025e) for spatial reasoning have primarily been constructed based on indoor scanning video data (Dai et al., 2017; Yeshwanth et al., 2023) as shown in Fig. 2(b). These indoor datasets often feature relatively simple scenes and depend on manual 3D annotations. Scaling up to build large-scale, wild datasets encompassing video scenes ranging from *mm* to *km* presents two major challenges: 1) the **high cost** of large-scale annotation from complex and wild scenes; 2) the difficulty in obtaining **precise evaluations** that align with the physical world. To address these challenges, we use an automated pipeline leveraging popular specialized models to generate structured training data across 5 different scales. Since different scales have distinct characteristics and applications, we define several scale-specific tasks for better application, i.e., manipulation planning and area estimation. Overall, we provide over 1 million QA pairs across 19 diverse tasks from around 38K wild video scenes. To adapt to different stages of training, we provide both answers with rationale for SFT and regression/multiple-choice answers for RL. To facilitate accurate evaluation, we collect a highly accurate SpaceVista-Bench through manually recording or retrieving authoritative sources, supplemented with human annotations.

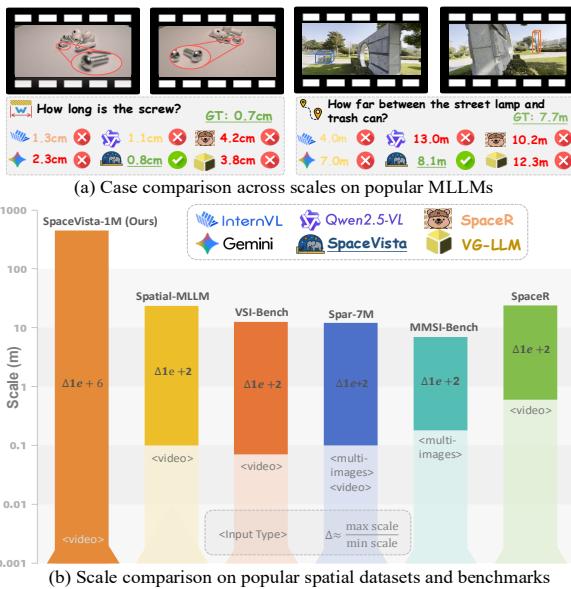


Figure 2: (a) and (b) show model performance and dataset distribution across scales. Current models and datasets necessitate all-scale spatial reasoning.

108 Most popular reasoning models are optimized for indoor settings, which leads to clear limitations:
 109 their responses **often deviate** significantly, in tabletop and other diverse real-world scenes illustrated
 110 in Fig. 2(a). We address this by first injecting SpaceVista-1M knowledge to fine-tune existing models
 111 with the self-supervised visual encoder to make compensation for the classic semantic visual tokenizer,
 112 enabling extra geometry-based and depth-based spatial understanding. However, naive fine-tuning
 113 rarely yields optimal results, largely due to **cross-scale conflicts** between scenes and objects based
 114 on our observation. To address this, we introduce LoRA-like scale experts that cooperates with a
 115 scale router during fine-tuning. Moreover, to strengthen the model’s ability to learn scale-centric
 116 spatial reasoning processes, we design a training strategy that uses scale as an anchor for progressive
 117 rewards. During evaluation, SpaceVista-7B shows superior understanding of spatial layout, size, and
 118 comparison, delivering a clear improvement on popular benchmarks and SpaceVista-Bench.
 119

Our key contributions with this comprehensive solution are:

- Developing an automated pipeline to create a diverse, real-world, all-scale reasoning dataset, **SpaceVista-1M**, with 1M QA pairs across 5 scales and 19 tasks (including specific-scale tasks), and supporting both cold start with rationale and high-quality reinforced learning.
- Introducing **SpaceVista-7B**, a spatial reasoning model that integrates rich spatial information and employs scale experts with a customized training strategy to alleviate potential cross-scale conflicts during all-scale finetuning.
- Hand-crafting **SpaceVista-Bench**, an accurate video benchmark spanning all scales, by measuring and recording real-world objects, retrieving authoritative sources, and performing human annotation.

2 RELATED WORKS

Visual Reasoning. Currently, vision-based general reasoning has seen diverse developments (Tan et al., 2025; Wang et al., 2025b; Qiao et al., 2025). General MLLMs (Wang et al., 2025c; Bai et al., 2025) first provided the basic understanding ability towards video to the community. Pioneering works (Feng et al., 2025; Liao et al., 2025) started to provide reasonable rewards during model training using Group Relative Policy Optimization (GRPO) for the reasonable Chain of Thought (CoT). Then, visual reasoning (Li et al., 2025c; Chen et al., 2025; Liu et al., 2025c) was considered from broader perspectives, ranging from data to training structure. In general video reasoning, spatial claims are generally divided into two categories: 2D plane-based spatial reasoning (Han et al., 2025; Zhou et al., 2025), and 3D space-based spatial reasoning (Wu et al., 2025a; Zheng et al., 2025). This paper primarily focuses on the latter. Although these general models have achieved a certain degree of spatial ability, spatial MLLM is still in its early stages.

Spatial Reasoning. Mainstream spatial reasoning models can be categorized based on input modalities into **image** (Ma et al., 2025; Liu et al., 2025b; Chen et al., 2024a), multi-image (Xu et al., 2025), multi-view (Li et al., 2025b), video (Wu et al., 2025a; Zheng et al., 2025; Ouyang et al., 2025; Zhang et al., 2025b; Ghazanfari et al., 2025), and simulation (Li et al., 2025a; Tang et al., 2025; Zhang et al., 2025c; Wang et al., 2025d; Zhang et al., 2025f). Among these categories, video stands out as the challenging task due to the difficulty of data acquisition and modeling. As the first work in spatial reasoning, VSI-Bench (Yang et al., 2025a) introduced a video-based benchmark that removes linguistic shortcuts and evaluated MLLMs on spatial tasks such as counting, direction, and planning, highlighting substantial performance gaps compared to humans. InternSpatial (Deng et al., 2025b), SPAR (Zhang et al., 2025e), and SpaceR (Ouyang et al., 2025) enriched spatial supervision through extensive QA pairs spanning indoor and other limited settings. Qi et al. (2025) used the bird-view map to aid overall understanding. Then, Spatial-MLLM (Wu et al., 2025a), VG-LLM (Zheng et al., 2025), and VLM-3R (Fan et al., 2025) adopted geometry-aware dual encoders to capture geometry cues and inferred occluded structures from monocular inputs. Additionally, spatial reasoning on long (Zhang et al., 2025b), omni (Dongfang et al., 2025), ego-centric (Wu et al., 2025c) and aerial video (Zhang et al., 2025b) were also explored separately. However, the systematic data and model with all-scale video scenes remain unexplored.

All-Scale Exploration. The challenge of multi-scale in early years lay in information loss within low-resolution image patches (Zhao, 2025; Nikouei et al., 2025), which has almost no effect on spatial reasoning. In this paper, “all-scale” primarily concerns the real scales of the physical world, including distances, semantics, and object states across different scales. Deng et al. (2025a) pushed the limits of 3D perception and reconstruction from meters to kilometers; Wen et al. (2025) extended metric depth

estimation from close range to infinity; and Liu et al. (2025a) curated uncommon objects, ranging from screws to airplanes, with object-centric annotations. Together, these developments underscore the need for AI to move beyond simple single-scale memorization toward robust, multiscale, and reasonable visual understanding.

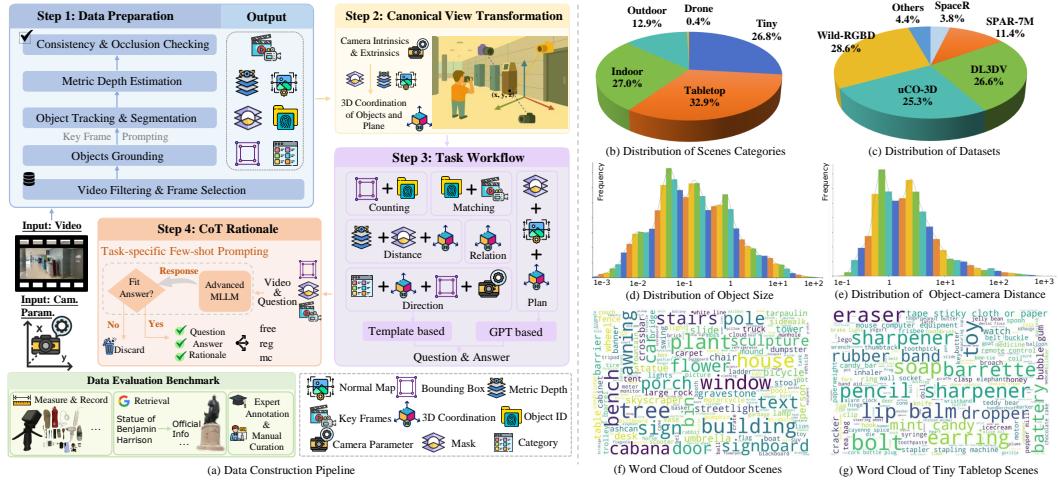


Figure 3: Fig.(a) shows our automated data construction pipeline. The pie charts (b-c) depict the composition of scenes and sources. The bar charts (d-e) show object sizes ranging mm - $100m$, while object-to-camera distances typically span 10 - $600m$. Accordingly, we claim SpaceVista-1M basically covers the mm - km scale. The word clouds (f-g) provide a glimpse of the scene diversity.

3 DATASET

Due to high labeling cost, Tab.1 and Fig.2 show the clear drawback of the previous datasets. The limited data and performance constraints in existing models necessitate the creation of a dataset with all-scale spatial context. We propose **SpaceVista-1M**, a diverse, real-world, all-scale reasoning dataset, as the **first** to the best of our knowledge. SpaceVista-1M primarily comprises diverse spatial reasoning question–answer pairs, with rich semantic (category, rationale), 2D (mask, box, point), and 3D (depth, camera parameters, point cloud) annotations, obtained either natively or through processing. The construction pipeline in Fig. 3 follows the step-by-step procedure of preparing, transforming, and generating to obtain an all-scale dataset by integrating specialized models.

Data Preparation. We begin by selecting widely used video datasets that provide 3D scene modeling (Ling et al., 2024; Xia et al., 2024; Park et al., 2020; Liu et al., 2025a; Dai et al., 2017; Yeshwanth et al., 2023) along with camera intrinsic and extrinsic parameters. Most of these sources are videos of static scenes without moving objects. Leveraging the known camera parameters, we estimate depth maps and normal maps using specialized metric depth models (Hu et al., 2024; Piccinelli et al., 2025) and video depth models (Chen et al., 2025). For semantic understanding, we extract per-frame semantics and bounding boxes using proprietary grounding specialists (Ren et al., 2024; Liu et al., 2023b). To establish cross-frame object consistency, by further integrating SAM 2 (Ravi et al., 2024) with the previously mentioned grounding experts, we enable robust object ID association and mask generation. This pipeline ensures both semantic and spatial consistency across frames. Detailed preparation can be found in Appendix B.3.1

Task Construction. With the help of official camera parameters and the preparations mentioned above, we can obtain the positions and dimensions of target objects. As a common practice (Deng et al., 2025b), we adopt a canonical view space of the reference frame, defined as a 3D Cartesian coordinate system centered at the camera’s optical center. We then design 19 tasks and their corresponding workflows, even including scale-specific tasks such as tabletop object manipulation and drone-view area estimation. Taking object counting as an example, which follows: detect objects, propagate masks across frames, track identities over time, filter out scenes with camera parameters and ambiguous objects, and derive temporally consistent counts. For each task, we obtain the data by similar carefully designed computational workflows. A detailed description of each task and its workflow can be found in Appendix B.3.

QA Construction. The pipeline for constructing the QA data is shown in Fig. 3. At the construction level of QA, we employ two strategies: GPT-based and template-based. For relatively fixed questions

such as counting and object size, we adopt a template-based approach to obtain reasonable QA pairs. To ensure the diversity of the questions, we manually curate over 3,000 templates. However, for more flexible questions like planning, we use a GPT-based (OpenAI, 2025a) method to generate reasonable answers in naturally language. Additionally, through appropriate randomizing and prompting, we obtain multiple options to serve as rewards for RL. QA previews and quality control can be found in Appendix F.3 and Appendix B.4.7 respectively.

CoT Annotation. To facilitate an efficient cold start, we follow Feng et al. (2025) to leverage cognition-inspired few-shot prompting strategy with Qwen2.5-VL-72B-Instruct (Bai et al., 2025) to generate CoT rationales. After employing the filtering policy for low-quality or inconsistent rationale outputs, we obtain the CoT for SpaceVista-1M, with high-quality rationale for fundamental knowledge injection for SFT.

Input Extension. Usually, people refer to objects in videos using more than just language. To support this, we extend video-based QA with extra annotations from the video’s key frames. Besides plain visual input, we allow three extra inputs: point, bounding box, and mask, which may support future interactive usage. Each input type is designed to fit its own template and CoT rationales.

Quality Control & Evaluation. To ensure data quality, we conduct manual verification on a small portion training set for quality control in Appendix B.4.7. However, for measurement-related evaluation, human judgment is also susceptible to experiential bias. We choose a more reliable pathway based on measuring and recording real-world data, retrieving authoritative sources, and performing human annotation for both distance and non-distance problems, shown in the green block Fig.4(a). For tiny and tabletop scenes, we capture and annotate videos of over 50 objects of different sizes. For some indoor and outdoor scenes, we search for the landmarks and retrieve statistics from authoritative sources like Wikipedia. As for other tasks like camera moving, the experts is hired for checking and annotating. By aligning the answer with the physical world, SpaceVista-Bench comprises more than 3,000 QA pairs with 99% accuracy across 500 unique video scenes. [Please refer to the details and analysis in Appendix B.2.7](#).

In summary, we propose SpaceVista-1M, an open-source, real-world, all-scale dataset with spatial video QA. SpaceVista-1M contains 1 million QA pairs spanning 19 tasks, 5 scale types, and over 50 subscene categories. Additionally, we encourage readers to consult the appendix, which presents meticulous source investigations (Sec. B.2), systematic processing procedures (Sec. B.3), in-depth distribution analyses (Sec. B.4), and also licensing (Sec. B.4.8).

4 METHOD

Overview. Our objective is to enhance spatial reasoning by elaborately designing and conditioning the model on explicit and detailed **all-scale information**. We first utilize a dense, expressive self-supervised encoder beyond semantics to strengthen the model’s overall spatial perception. However, mixing different types of knowledge without distinction hinders, rather than facilitates the model’s reasoning in Fig. 4(a-d), a problem known as **knowledge conflict**. In all-scale reasoning, this conflict appears when similar visual patterns are interpreted differently at different scales. To mitigate such conflict, we propose a LoRA-like scale expert architecture to maintain the independence of scale-level knowledge, while maintaining parameter efficiency, as shown in Fig 4(e). Finally, drawing on human reasoning about scale, we introduce reward-based progressive reasoning paths that employ essential anchors to constrain the reasoning process to a reliable CoT path.

Table 1: Comparison of popular spatial reasoning datasets. Only spatial reasoning QA is included. Lower QA/Scene Ratio usually means more diverse language and visual scenes. “free”, “reg”, and “mc” mean free-form, regression, and multiple-choice, respectively. SpaceVista-1M does not differentiate QA pairs by the type; i.e., the semantically similar questions with reg/mc/free answers are counted only once.

Usage	Dataset	Type	QA Pairs↑	Video Scenes↑	QA/Scene Ratio↓
Train	SpaceR	reg/mc	191K	1.2K	159
	SPAR-7M	reg/mc/free	7M	4.5K	1,556
	Spatial-MLLM	reg/mc/free	120K	1.5K	83
	InternSpatial	free	2.5M	5.5K	455
	SpaceVista-1M (Ours)	free/reg/mc	1M	38K	25
Benchmark	TempCompass	mc	7.5K	0.4K	18
	VideoMME	mc	2.7K	0.9K	3
	All-Angles	mc	2.1K	90	23
	VSI-Bench	reg/mc	5.0K	0.3K	17
	MMSI-Bench	mc	1.0K	-	-
	SPAR-Bench	reg/mc	7.2K	-	-
	STI-Bench	mc	2.0K	0.3K	7
	SpaceVista-Bench (Ours)	reg/mc	3K	0.5K	6

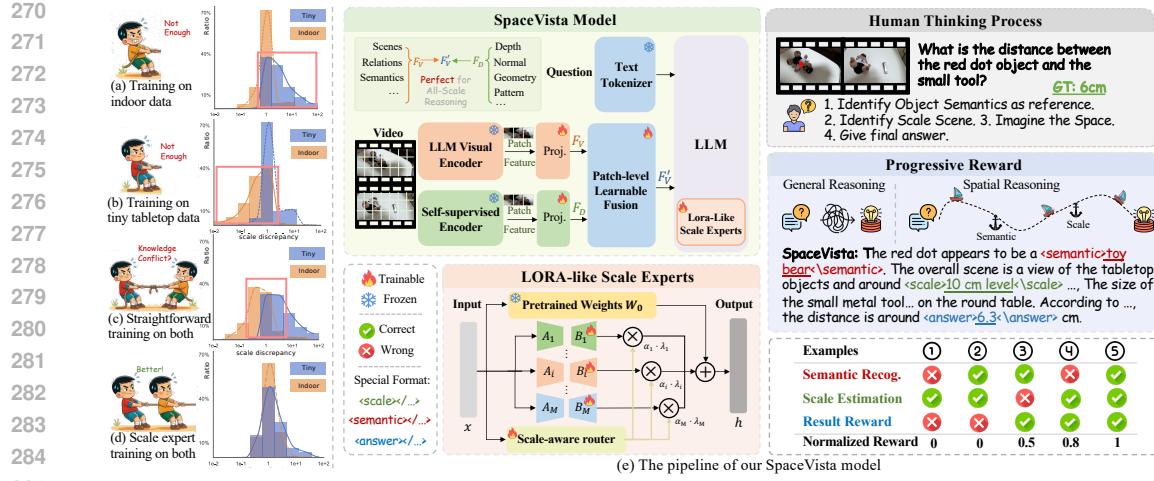


Figure 4: The left part (a-d) shows that the undifferentiated mixture of cross-scale knowledge hinders, rather than facilitates, the model’s reasoning process. The horizontal axis represents the scale discrepancy, defined as $\frac{\text{answer}}{\text{gt}}$ (=1 for the ideal situation), and the vertical axis denotes the proportion of answers. Fig.(e) is our SpaceVista model, where “<think>” is omitted for clarity.

Preliminaries. The number of frames is first denoted as T with the temporal patch size τ . The visual representations from Qwen-2.5-VL visual encoder are denoted as $F_V \in \mathbb{R}^{T \times d_V \times H \times W}$, where $t = \frac{T}{\tau}$ is temporal dimension of the feature, d_V is the feature dimension per patch, and H and W are the numbers of patches p along the height and width of each frame, respectively. Then, each $i \in t \times d_V$ of F_V is directly converted to an image token T_V^i as input.

Beyond Semantics. Most open-sourced MLLM tokenizers including Qwen-2.5-VL visual encoder are pretrained on semantically rich text–image pairs via contrastive training, and thus often lack a well-formed understanding of information beyond semantics. Meanwhile, El Banani et al. (2024); Tong et al. (2024b;a) draw a valuable conclusion that self-supervised vision models, such as DINO series, learn rich depth, normal, and pattern representations. Therefore, leveraging popular DINOv3 (Siméoni et al., 2025)’s strong dense features seems to be a natural approach beyond simple semantics. The last layer of DINOv3 produces patch-level dense features $F_D \in \mathbb{R}^{T \times d_D \times H_D \times W_D}$. We pad and regularize the original image to align with the patch size p , enforcing $H_D = H$ and $W_D = W$. We then apply a simple MLP, $\mathbb{R}^{d_D} \rightarrow \mathbb{R}^{d_V}$, to map channel dimensions. For the temporal dimension, we use the same temporal pooling with the previously mentioned temporal patch size τ to aggregate across T , yielding features $F'_D \in \mathbb{R}^{t \times d_V \times H \times W}$. The fusion of the video feature F_V and dense feature F'_D is shown as:

$$F'_V = \text{CA}(F_V, F'_D, F'_D) + F_V, \quad (1)$$

where $\text{CA}(q, k, v)$ denotes multi-layer cross-attention over the query, key, and value inputs. Then, we convert F'_V into a fused image token T_V^i , and the remaining calculations proceed as before.

Scale Experts Design. During all-scale mixed training in Fig.4(a-d), potential cross-scale knowledge conflicts lead to suboptimal results. This underscores the importance of preserving knowledge independence between scales during training. Inspired by Wu et al. (2024a); Buehler & Buehler (2024); Chen et al. (2024b), we further introduce a LoRA-like module that adds scale experts by fine-tuning only 0.5% of the overall parameters for each expert. The original LoRA is using $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times d}$ with the rank $r \ll \min(d, k)$ to approximate orginal weights W_0 . To construct scale LoRA experts, We attach M scale experts $\{(A_i, B_i)\}_{i=1}^M$ to mitigate potential scale-level knowledge interference. Each expert i has a base weight α_i and is dynamically scaled by a learned factor λ_i :

$$h = W_0 x + \sum_{i=1}^M \alpha_i^* B_i A_i x, \text{ where } \alpha_i^* = \alpha_i \cdot \lambda_i, \quad (2)$$

where x, h are the input and output of the projection layer, and α_i^* is the scaled factor. The learned factor λ_i is obtained through a scale router—primarily an MLP and a softmax. We apply M scale experts to each layer of the foundation LLM. Therefore, different layers, according to their respective conditions, obtain appropriate λ_i to allocate the experts within the layer. Given that scenarios of

324 scales can overlap (for example, an indoor scene may include some tabletop context), in the ideal
 325 case, the routers can select the suitable experts at different layers.
 326

327 **Process Reward Design.** After basic SFT training, RL is used to align the model with human
 328 perception. Inspired by how humans approach spatial observation tasks, we model the reasoning
 329 process explicitly. Humans typically proceed by: 1) identifying the task-specified semantics (if they
 330 help), 2) perceiving the global scale by inspecting surrounding objects (if it helps), and 3) inferring
 331 the answer from spatial relations. Following this paradigm, we construct 3 different anchors for
 332 RL that enforce the reasoning path to traverse the resulting anchor states. While certain reasoning
 333 anchors are not helpful to some tasks, we provide the minimal, sufficient ground-truth anchors for
 334 each question to guide the model in selecting the appropriate ones. We design the following three
 335 reward components based on these anchor formats: $\langle \text{semantics} \rangle$, $\langle \text{scale} \rangle$, and $\langle \text{answer} \rangle$.
 336 Semantic reward R_{semantic} is used to identify the referenced objects; Scale reward R_{scale} is used to
 337 estimate the scale of the overall scene; Correctness reward R_{answer} is used to ensure the answer is
 well derived. The updated correctness reward \bar{R}_{answer} can be formed into

$$338 \quad \bar{R}_{\text{answer}} = \sum_{k=1}^3 \prod_{n=1}^k R_{j_n}, \text{ with } (j_1, j_2, j_3) = (\text{answer}, \text{scale}, \text{semantic}), \quad (3)$$

$$341 \quad \text{where } R_{\text{scale}} = \max(0, 1 - \frac{|\log C_{\text{ans}} - \log C_{\text{gt}}|}{2}), \quad R_{\text{semantic}} = \frac{S_{\text{ans}} S_{\text{gt}}}{\|S_{\text{ans}}\| \|S_{\text{gt}}\|}. \quad (4)$$

343 $C_{\text{ans}}, C_{\text{gt}}$ is the estimated scene scale in the same measurement; $S_{\text{ans}}, S_{\text{gt}}$ is the calculated semantic
 344 embedding. C_{gt} and S_{gt} can be easily obtained from Sec.3. It is crucial to note that the order of
 345 (j_1, \dots, j_n) matters; rewards at the beginning are stricter and more important. Also, because tasks
 346 differ, for example in the camera rotation task, R_{semantic} and R_{scale} are not needed. Thus, \bar{R}_{answer} under
 347 such circumstances collapses to a standard R_{answer} . The calculation of format reward R_{format} and
 348 answer reward R_{answer} remains the same as common practice (Feng et al., 2025; Guo et al., 2025a) to
 349 encourage the generation of valid and executable answers. Therefore, our reward design forms the
 350 accurate reward signals to ensure all-scale spatial compliance and encourage human-like thinking. It
 351 is worth noting that the evaluation does not involve these anchors besides the actual answer.
 352

353 **RL Training Objective.** For each question i , we define the reward R_i to include both the updated
 354 correctness reward \bar{R}_{answer} and R_{format} following Guo et al. (2025a), and use this overall reward R_i to
 355 compute groupwise normalized advantages $A_i = \frac{R_i - \text{mean}(\{R_j\})}{\text{std}(\{R_j\})}$. $\{R_j\}$ is the response group related
 356 to R_i . The final policy π_θ is updated by maximizing

$$357 \quad J(\theta) = \mathbb{E}_{q, \{o_i\}} \left[\frac{1}{G} \sum_{i=1}^G \left(\min \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}, \text{clip} \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}, 1 - \epsilon, 1 + \epsilon \right) A_i \right) \right) - \beta \mathbb{D}_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right], \quad (5)$$

358 where $\pi_{\theta_{\text{old}}}$ and π_θ are the old and new policy model respectively. \mathbb{D}_{KL} represents KL divergence.
 359

360 **Training Strategy.** We start with a cold-start phase on SpaceVista-1M, optimizing the input projection,
 361 feature-fusion modules, and scale experts. Next, we introduce the scale router to further train
 362 each scale-specific expert on the appropriate inputs, encouraging specialization. Finally, building on
 363 the SFT model, we apply RL training to obtain the final SpaceVista-7B reasoning model.
 364

365 5 EXPERIMENT

366 **Datasets.** We use SpaceVista-1M in Sec. 3 for SFT and RL; its sources are detailed in Appendix B.2.

367 **Model Configurations.** Our model is built on Qwen2.5-VL-7B for main experiments and Qwen2.5-
 368 VL-3B for ablation. Our model is trained on up to 16 NVIDIA A800 (80GB) GPUs. We process
 369 a maximum of 32 frames during training, each with a resolution of $128 \times 28 \times 28$ pixels. During
 370 inference, we increase the resolution ($256 \times 28 \times 28$ pixels) to enhance performance. During the
 371 expert training phase, we employ 4 experts, each tailored to a distinct scenario. We set the group size
 372 of GRPO to 8. We first perform SFT on CoT data of SpaceVista-1M for two epochs to obtain the
 373 SFT model. This is followed by RL training for 2.5k steps on multi-choice and regression data to
 374 produce the final SpaceVista-7B. Additional details are provided in Appendix C.1.
 375

376 **Benchmarks.** We evaluate our model on 5 benchmarks, VSI-Bench (Yang et al., 2025a), STI-
 377 Bench (Li et al., 2025e), SpaceVista-Bench (Ours), MMSI-Bench (Yang et al., 2025b) and SPAR-
 378 Bench (Zhang et al., 2025d). Among the benchmarks, the former three are video-based, while the

Table 2: Performance comparison across five spatial reasoning benchmarks. Among them, SpaceVista-Bench is our proposed all-scale benchmark. Open-sourced general models are evaluated with a comparable size. The highest performance of the open-sourced model is marked **bold**.

Model	Multi-Image			Video	
	MMSI-Bench	SPAR-Bench	VSI-Bench	STI-Bench	SpaceVista-Bench
Human	97.2	67.3	79.2	-	81.3
<i>Closed-sourced Commercial Model & 70B-class model</i>					
GPT-5(OpenAI, 2025)	40.7	37.4	44.2	39.3	33.7
Gemini-2.5-pro(DeepMind, 2025)	36.9	36.3	45.0	41.4	33.8
InternVL3.5-38B (Wang et al., 2025c)	36.9	31.0	66.3	39.2	30.7
Qwen2.5-VL-72B (Bai et al., 2025)	30.7	32.4	30.7	40.7	31.1
<i>Open-sourced General Model</i>					
LLAVA-Onevision-7B (Li et al., 2024a)	24.5	30.6	32.4	29.0	13.6
LLaVA-NeXT-Video-7B (Liu et al., 2024a)	26.8	31.3	35.6	29.9	23.7
InternVL3.5-8B (Wang et al., 2025c)	30.9	36.0	38.2	33.2	24.5
Qwen2.5-VL-7B (Bai et al., 2025)	31.7	33.1	32.7	32.1	28.9
<i>Open-sourced Specialized Model</i>					
SpaceR-7B (Ouyang et al., 2025)	26.1	37.6	46.9	37.0	21.2
SpatialMLLM-4B (Wu et al., 2025a)	27.0	31.5	48.4	30.5	24.2
VILASR-7B (Wu et al., 2025b)	30.2	37.6	45.4	31.5	23.6
VG LLM-4B (Zheng et al., 2025)	-	-	46.1	29.3	28.8
Qwen2.5-VL-7B w/. SpaceVista-1M	27.3	36.9	42.0	35.0	29.5
SpaceVista-7B (Ours)	29.1	38.1	46.3	35.9	34.5
SpaceVista-7B (Ours) w/. RL	32.3	41.6	48.6	38.2	36.7

Table 3: Module ablation study using Qwen-2.5-Table 4: Modality ablation study of the extra VL-3B on SpaceVista *after RL*.
Table 4: Modality ablation study of the extra input types beyond semantic information.

Module	VSI-Bench	SpaceVista-Bench	Input	VSI-Bench	SpaceVista-Bench
Vanilla	44.4	31.0	Vanilla	44.4	31.0
w/. Scale	46.3 (+1.9)	34.8 (+3.8)	w/. VGGT	44.3 (-0.1)	31.4 (+0.4)
w/. Scale & Semantic	46.8 (+2.4)	35.4 (+4.4)	w/. DINOv3	46.4 (+2.0)	32.1 (+1.1)
w/. Expert Finetuning	45.8 (+1.4)	34.8 (+3.8)	w/. VGGT + DINOv3	45.3 (+0.9)	31.7 (+0.7)

latter two are multi-image benchmarks. We argue that video and multi-image tasks share rather strong similarities and collectively serve as important benchmarks for cross-frame spatial understanding. For all evaluations, we follow the configuration used in the official Qwen2.5-VL demo, with $\text{top}_p = 0.001$ and temperature = 0.01.

Comparison on Spatial Reasoning Datasets. Our method attains competitive performance across all spatial reasoning benchmarks in Tab. 2. On VSI-Bench, we achieve comparable results approaching the state of the art. More importantly, our approach delivers substantially superior performance in our all-scale benchmark SpaceVista-Bench, markedly exceeding 3% compared with proprietary and open-source models. Thus, SpaceVista-7B represents a robust baseline for both indoor and all-scale scenes, where the full comparison table of each benchmark is shown in Appendix. D.4 for reference.

Comparison on Subsets of SpaceVista-Bench. In

Tab.5, we analyze the performance of popular models on each subset of our SpaceVista bench. In general, the small-scale subsets challenge both commercial and general models, likely due to biases in the pre-training corpus. Limited by device constraints, close-range shots constitute only a small fraction of the data, while the abundance of indoor and outdoor scenes yields relatively higher performance. We also observe that most models perform at a relatively low level on SpaceVista-Bench, indicating that it has the expected discriminative power for all-scale reasoning and can serve as a foundational benchmark to help the community enrich the overall evaluation ecosystem. Our SpaceVista-7B, although exhibiting minor improvements on indoor scenes, attains comparatively high comprehensive scores across other scenarios and in overall evaluations. The results indicate a clear boost



Figure 5: Visualization of scale-expert activations on salient tokens with an appropriate threshold. This shows the router selects experts based on the input *during inference*.

of around 6% compared with any size of the open-source models in comprehensive all-scale spatial reasoning.

Table 5: The SpaceVista-Bench leaderborad. We utilize green (1st), blue (2nd), and yellow (3rd) backgrounds to distinguish the top three results within each scene. We employ **bold** and underlined text to denote the bests and second-best results across all open-source models. All the baselines are instruction-tuned and are evaluated on the same resolution and fps.

Models	SpaceVista-Bench				
	Tiny	Tabletop	Tabletop	Indoor	Outdoor
Closed-sourced Commercial Model					
GPT-5(OpenAI, 2025)	32.3	20.3	39.0	43.0	33.7
GPT-4o(Hurst et al., 2024)	21.7	13.3	34.3	38.3	26.9
Gemini-2.5-pro(DeepMind, 2025)	33.0	38.7	34.5	29.0	33.8
Gemini-2.5-flash(DeepMind, 2025)	20.7	30.0	19.9	26.9	24.4
Claude-Sonnet-4(Anthropic, 2025b)	27.3	19.3	38.1	34.1	29.7
Claude-Opus-4.1(Anthropic, 2025c)	21.7	29.5	24.3	30.0	26.4
Open-Source General Model					
Internvl3.5-38B (Wang et al., 2025c)	29.3	25.2	41.2	27.0	30.7
Internvl3.5-14B (Wang et al., 2025c)	27.7	22.3	31.3	24.3	26.4
Internvl3-78B (Zhu et al., 2025)	38.3	23.3	42.2	30.3	33.5
Internvl3-38B (Zhu et al., 2025)	18.7	14.3	34.8	38.0	26.5
GLM-4.5V (Team et al., 2025)	23.0	17.8	27.3	25.2	23.3
GLM-4.1V-Thinking (GLM et al., 2024)	30.7	19.3	29.0	13.3	23.1
Qwen2.5VL-72B (Bai et al., 2025)	27.7	20.3	29.6	28.0	26.4
Qwen2.5VL-32B (Bai et al., 2025)	25.3	19.3	38.1	30.7	28.4
LLAVA-Onevision-72B (Li et al., 2024a)	25.0	12.0	15.3	11.7	16.0
LLAVA-Onevision-7B (Li et al., 2024a)	17.5	8.0	13.3	11.6	12.6
Open-Source Specialized Model					
SpaceR (Ouyang et al., 2025)	12.9	17.3	34.9	19.8	21.2
Spatial-MLLM (Wu et al., 2025a)	17.3	20.3	36.1	23.1	24.2
VLM-3R (Wu et al., 2025a)	15.1	24.6	45.1	26.9	27.9
SpaceVista-7B (Ours)	33.4	37.1	42.2	34.1	36.7

Ablation on Each Component. 1) Scale Expert: We examine how potential information conflicts during cross-scale training are mitigated. As shown in Tab.3, the experts yield substantial gains. As the number of experts increases, the performance also improves accordingly in Tab. 6. Furthermore, visualizing the activation distributions of different LoRA experts across scenes (Fig.5) indicates that scale-specific knowledge is somehow disentangled. 2) Reward: In Tab. 3, the progressive reward achieves higher performance than the unconstrained reasoning path. These optional anchors indeed serve as a valuable halfway point in the all-scale reasoning process. This highlights the importance of specifying thinking anchors when designing all-scale reasoning.

Ablation on Each Modality. As shown in Tab. 4, incorporating DINO v3 yields greater gains than VGGT with its obvious advantage of self-supervised dense cues. In contrast, VGGT’s raw geometry features are harder for a simple fusion model to use without the strong decoder. Also, VGGT can be easily influenced by the blur or occlusion in the video. We further provide performance of the rendered 2.5D in Appendix. D.6 as interesting explorations.

More Experiments. To facilitate a deeper understanding, we provide more previews, statistics, experiments, user studies, and discussion in the appendix, especially Appendix D,E for more insights.

Table 6: Ablation of the number of experts based on the same training settings.

Num of Expert(s) (M)	Training Data (Each Expert)	VSI-Bench	SpaceVista-Bench (Ours)
None	All	44.4	31.0
1	All	44.2 (-0.2)	31.0 (0)
2	1/2	45.6 (+1.2)	32.7 (+1.7)
4	1/4	45.7 (+1.3)	32.9 (+1.9)
6	1/6	43.1 (-1.1)	26.7 (-4.3)

6 DISCUSSION AND CONCLUSION

Discussion. It is believed that SpaceVista can facilitate widespread application in various areas on all scales, such as 1) spatial captioning, 2) spatial guided visual generation, 3) interactive world models. Although our all-scale model shows strong performance in various spatial reasoning tasks, there is

486 still potential for improvement, for example, μm level for precision manufacturing, mm -level for
 487 medical surgery, km -level coverage for remote sensing, and $10km$ -scale for cartography.
 488

489 **Conclusion.** In this work, we introduce a novel task for all-scale reasoning from visual spatial context,
 490 which requires the machine to understand multimodal information and respond with the correct answer
 491 and rationale. To advance this field, we develop the first open-source, all-scale, spatial reasoning
 492 dataset, SpaceVista-1M, for cold start and reinforcement learning. Additionally, we handcraft
 493 SpaceVista-Bench, an accurate, multi-scale, video-based benchmark that strictly adheres to physical
 494 world measurements and perceptions. Our proposed SpaceVista-7B model further establishes a robust
 495 baseline with enhanced cross-scale perception. During experiments, we compare our SpaceVista-7B
 496 model with several existing models and demonstrate our proposed model’s promising performance in
 497 all-scale reasoning. Additionally, our task and dataset have great potential in applications such as
 498 industrial manufacturing, embedded systems, and autonomous driving to understand complicated
 499 spatial environments in the wild.

500 7 NECESSARY STATEMENT

502 7.1 REPRODUCIBILITY STATEMENT

504 We will open-source the dataset, code, and models on our demo page. Appendix F presents compre-
 505 hensive visual previews and documentation of the dataset, and the release will follow the Creative
 506 Commons Attribution (CC BY) license and Apache License 2.0 specified in Appendix B.4.8. Ap-
 507 pendix C details hyperparameter settings, training and evaluation protocols, and extended analyses.
 508 To facilitate reproducibility, we will provide configuration files and scripts aligned with the main
 509 results. Please refer to the mm2km website for the most recent releases and updates.

510 7.2 ETHICS STATEMENT

512 This work focuses on technical advances in multi-scale spatial reasoning and dataset construction,
 513 without conducting interventional studies on human subjects or collecting sensitive personal data.
 514 Data are curated via expert-driven automated annotation with a small, carefully manual benchmark,
 515 following de-identification and compliant release practices. The model and datasets aim to improve
 516 machine understanding and generalization across scales and scenarios and do not provide actionable
 517 guidance for misuse. No undisclosed conflicts of interest or improper military usage are involved.
 518 Potential bias and fairness risks are acknowledged and mitigated through diverse, multi-scale evalua-
 519 tions. Privacy, copyright, legal compliance, and research ethics (including appropriate documentation
 520 and review) are carefully observed. Accordingly, the topic presents no ethical conflicts.

521 7.3 THE USE OF LARGE LANGUAGE MODELS

523 The LLM was indeed used only for language polishing (e.g., grammar, spelling, clarity, tone) on
 524 text whose content and structure were created by the authors. No substantive changes to claims, data
 525 interpretation, or conclusions were introduced by the LLM.

527 REFERENCES

529 Anthropic. Claude 3.7 sonnet and claude code. [https://www.anthropic.com/news/](https://www.anthropic.com/news/claude-3-7-sonnet)
 530 [claude-3-7-sonnet](https://www.anthropic.com/news/claude-3-7-sonnet), 2025a.

531 Anthropic. Introducing claude 4. <https://www.anthropic.com/news/claude-4>, 2025b. Accessed:
 532 2025-07-24.

533 Anthropic. Claude opus 4.1. <https://www.anthropic.com/news/claude-opus-4-1>, 2025c. Version VIII,
 534 released in 2025.

536 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 537 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 538 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 539 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv*
 preprint *arXiv:2502.13923*, 2025.

540 Gilad Baruch, Zhuoyuan Chen, Afshin Dehghan, Tal Dimry, Yuri Feigin, Peter Fu, Thomas Gebauer,
 541 Brandon Joffe, Daniel Kurz, Arik Schwartz, et al. Arkitscenes: A diverse real-world dataset for 3d
 542 indoor scene understanding using mobile rgb-d data. *arXiv preprint arXiv:2111.08897*, 2021.
 543

544 Eric L Buehler and Markus J Buehler. X-lora: Mixture of low-rank adapter experts, a flexible
 545 framework for large language models with applications in protein mechanics and molecular design.
 546 *APL Machine Learning*, 2(2), 2024.

547 Boyuan Chen, Zhuo Xu, Sean Kirmani, Brain Ichter, Dorsa Sadigh, Leonidas Guibas, and Fei Xia.
 548 Spatialvlm: Endowing vision-language models with spatial reasoning capabilities. In *Proceedings*
 549 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14455–14465,
 550 2024a.

551 Shaoxiang Chen, Zequn Jie, and Lin Ma. Llava-mole: Sparse mixture of lora experts for mitigating
 552 data conflicts in instruction finetuning mllms. *arXiv preprint arXiv:2401.16160*, 2024b.

553 Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, and Bingyi Kang.
 554 Video depth anything: Consistent depth estimation for super-long videos. In *Proceedings of the*
 555 *Computer Vision and Pattern Recognition Conference*, pp. 22831–22840, 2025.

556 Yihang Chen, Qianyi Wu, Mengyao Li, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Fast
 557 feedforward 3d gaussian splatting compression. *arXiv preprint arXiv:2410.08017*, 2024c.

558 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 559 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
 560 long videos. *arXiv preprint arXiv:2408.10188*, 2024d.

561 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
 562 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
 563 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024e.

564 Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
 565 Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
 566 multimodal models with open-source suites. *arXiv preprint arXiv:2404.16821*, 2024f.

567 Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
 568 Real-time open-vocabulary object detection. In *Proc. IEEE Conf. Computer Vision and Pattern*
 569 *Recognition (CVPR)*, 2024.

570 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 571 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proc. Computer Vision*
 572 *and Pattern Recognition (CVPR)*, IEEE, 2017.

573 Google Deepmind. Gemini 2.0: our new ai model for the agen-
 574 tic era. [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#ceo-message)
 575 google-gemini-ai-update-december-2024/#ceo-message, 2024.

576 Google DeepMind. Gemini 2.5: Our most intelligent ai model.
 577 [https://blog.google/technology/google-deepmind/](https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/)
 578 gemini-model-thinking-updates-march-2025/, 2025.

579 Kai Deng, Zexin Ti, Jiawei Xu, Jian Yang, and Jin Xie. Vggt-long: Chunk it, loop it, align it–pushing
 580 vgg’s limits on kilometer-scale long rgb sequences. *arXiv preprint arXiv:2507.16443*, 2025a.

581 Nianchen Deng, Lixin Gu, Shenglong Ye, Yinan He, Zhe Chen, Songze Li, Haomin Wang, Xingguang
 582 Wei, Tianshuo Yang, Min Dou, et al. Internspatial: A comprehensive dataset for spatial reasoning
 583 in vision-language models. *arXiv preprint arXiv:2506.18385*, 2025b.

584 Zihao Dongfang, Xu Zheng, Ziqiao Weng, Yuanhuiyi Lyu, Danda Pani Paudel, Luc Van Gool, Kailun
 585 Yang, and Xuming Hu. Are multimodal large language models ready for omnidirectional spatial
 586 reasoning? *arXiv preprint arXiv:2505.11907*, 2025.

594 Mohamed El Banani, Amit Raj, Kevis-Kokitsi Maninis, Abhishek Kar, Yuanzhen Li, Michael
 595 Rubinstein, Deqing Sun, Leonidas Guibas, Justin Johnson, and Varun Jampani. Probing the 3d
 596 awareness of visual foundation models. In *Proceedings of the IEEE/CVF Conference on Computer*
 597 *Vision and Pattern Recognition*, pp. 21795–21806, 2024.

598

599 Zhiwen Fan, Jian Zhang, Renjie Li, Junge Zhang, Runjin Chen, Hezhen Hu, Kevin Wang, Huaizhi
 600 Qu, Dilin Wang, Zhicheng Yan, et al. Vlm-3r: Vision-language models augmented with instruction-
 601 aligned 3d reconstruction. *arXiv preprint arXiv:2505.20279*, 2025.

602

603 Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
 604 Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
 605 mllms. *arXiv preprint arXiv:2503.21776*, 2025.

606

607 Chaoyou Fu, Yuhan Dai, Yondong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 608 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
 609 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024.

610

611 Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 612 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
 613 benchmark of multi-modal llms in video analysis. In *Proceedings of the Computer Vision and*
614 Pattern Recognition Conference, pp. 24108–24118, 2025.

615

616 Sara Ghazanfari, Francesco Croce, Nicolas Flammarion, Prashanth Krishnamurthy, Farshad Khorrami,
 617 and Siddharth Garg. Chain-of-frames: Advancing video understanding in multimodal llms via
 618 frame-aware reasoning. *arXiv preprint arXiv:2506.00318*, 2025.

619

620 Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu
 621 Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng,
 622 Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu,
 623 Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao,
 624 Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu,
 625 Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu,
 626 Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen
 627 Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models
 628 from glm-130b to glm-4 all tools, 2024.

629

630 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 631 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
 632 models. *arXiv preprint arXiv:2407.21783*, 2024.

633

634 Vitor Guizilini, Rares Ambrus, Sudeep Pillai, Allan Raventos, and Adrien Gaidon. 3d packing for
 635 self-supervised monocular depth estimation. In *Proceedings of the IEEE/CVF conference on*
 636 *computer vision and pattern recognition*, pp. 2485–2494, 2020.

637

638 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 639 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 640 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025a.

641

642 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 643 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 644 2025b.

645

646 Agrim Gupta, Piotr Dollár, and Ross B. Girshick. Lvis: A dataset for large vocabulary instance
 647 segmentation. *2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
 648 pp. 5351–5359, 2019.

649

650 Songhao Han, Wei Huang, Hairong Shi, Le Zhuo, Xiu Su, Shifeng Zhang, Xu Zhou, Xiaojuan Qi,
 651 Yue Liao, and Si Liu. Videospresso: A large-scale chain-of-thought dataset for fine-grained video
 652 reasoning via core frame selection. In *Proceedings of the Computer Vision and Pattern Recognition*
 653 *Conference*, pp. 26181–26191, 2025.

648 Mu Hu, Wei Yin, Chi Zhang, Zhipeng Cai, Xiaoxiao Long, Hao Chen, Kaixuan Wang, Gang Yu,
 649 Chunhua Shen, and Shaojie Shen. Metric3d v2: A versatile monocular geometric foundation
 650 model for zero-shot metric depth and surface normal estimation. *IEEE Transactions on Pattern
 651 Analysis and Machine Intelligence*, 2024.

652 Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 653 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint
 654 arXiv:2410.21276*, 2024.

655 Steven LaValle. Rapidly-exploring random trees: A new tool for path planning. *Research Report
 656 9811*, 1998.

657 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 658 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 659 arXiv:2408.03326*, 2024a.

660 Chengzu Li, Wenshan Wu, Huanyu Zhang, Yan Xia, Shaoguang Mao, Li Dong, Ivan Vulić, and
 661 Furu Wei. Imagine while reasoning in space: Multimodal visualization-of-thought. *arXiv preprint
 662 arXiv:2501.07542*, 2025a.

663 Dingming Li, Hongxing Li, Zixuan Wang, Yuchen Yan, Hang Zhang, Siqi Chen, Guiyang Hou,
 664 Shengpei Jiang, Wenqi Zhang, Yongliang Shen, et al. Viewspatial-bench: Evaluating multi-
 665 perspective spatial localization in vision-language models. *arXiv preprint arXiv:2505.21500*,
 666 2025b.

667 Hongyu Li, Songhao Han, Yue Liao, Junfeng Luo, Jialin Gao, Shuicheng Yan, and Si Liu. Re-
 668 inforcement learning tuning for videollms: Reward design and data efficiency. *arXiv preprint
 669 arXiv:2506.01908*, 2025c.

670 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 671 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 672 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024b.

673 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhang Zhu, Haian Huang, Jianfei Gao, Kunchang Li,
 674 Yinan He, Chenting Wang, Yu Qiao, Yali Wang, and Limin Wang. Videochat-flash: Hierarchical
 675 compression for long-context video modeling. *arXiv preprint arXiv:2501.00574*, 2024c.

676 Xinhao Li, Ziang Yan, Desen Meng, Lu Dong, Xiangyu Zeng, Yinan He, Yali Wang, Yu Qiao,
 677 Yi Wang, and Limin Wang. Videochat-r1: Enhancing spatio-temporal perception via reinforcement
 678 fine-tuning. *arXiv preprint arXiv:2504.06958*, 2025d.

679 Yun Li, Yiming Zhang, Tao Lin, XiangRui Liu, Wenxiao Cai, Zheng Liu, and Bo Zhao. Sti-bench: Are
 680 mllms ready for precise spatial-temporal world understanding? *arXiv preprint arXiv:2503.23765*,
 681 2025e.

682 Zhenyi Liao, Qingsong Xie, Yanhao Zhang, Zijian Kong, Haonan Lu, Zhenyu Yang, and Zhijie Deng.
 683 Improved visual-spatial reasoning via r1-zero-like training. *arXiv preprint arXiv:2504.00883*,
 684 2025.

685 Ji Lin, Hongxu Yin, Wei Ping, Yao Lu, Pavlo Molchanov, Andrew Tao, Huiyi Mao, Jan Kautz,
 686 Mohammad Shoeybi, and Song Han. Vila: On pre-training for visual language models, 2023.

687 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun
 688 Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d vision.
 689 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 690 22160–22169, 2024.

691 Fei Liu, Zihao Lu, and Xianke Lin. Vision-based environmental perception for autonomous driving.
 692 *Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering*,
 693 239:39 – 69, 2022.

694 Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
 695 tuning, 2023a.

702 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 703 Llava-next: Improved reasoning, ocr, and world knowledge, January 2024a. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
 704

705 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Chunyuan Li, Jianwei
 706 Yang, Hang Su, Jun Zhu, et al. Grounding dino: Marrying dino with grounded pre-training for
 707 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023b.
 708

709 Xingchen Liu, Piyush Tayal, Jianyuan Wang, Jesus Zarzar, Tom Monnier, Konstantinos Tertikas, Jiali
 710 Duan, Antoine Toisoul, Jason Y. Zhang, Natalia Neverova, Andrea Vedaldi, Roman Shapovalov,
 711 and David Novotny. Uncommon objects in 3d. In *arXiv*, 2025a.
 712

713 Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun,
 714 and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint arXiv:2403.00476*, 2024b.
 715

716 Yuecheng Liu, Dafeng Chi, Shiguang Wu, Zhanguang Zhang, Yaochen Hu, Lingfeng Zhang, Yingxue
 717 Zhang, Shuang Wu, Tongtong Cao, Guowei Huang, et al. Spatialcot: Advancing spatial reasoning
 718 through coordinate alignment and chain-of-thought for embodied task planning. *arXiv preprint arXiv:2501.10074*, 2025b.
 719

720 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 721 Shiyi Cao, Yuxian Gu, Dacheng Li, Xiuyu Li, Yunhao Fang, Yukang Chen, Cheng-Yu Hsieh,
 722 De-An Huang, An-Chieh Cheng, Vishwesh Nath, Jinyi Hu, Sifei Liu, Ranjay Krishna, Daguang Xu,
 723 Xiaolong Wang, Pavlo Molchanov, Jan Kautz, Hongxu Yin, Song Han, and Yao Lu. Nvila: Efficient
 724 frontier visual language models, 2024c. URL <https://arxiv.org/abs/2412.04468>.
 725

726 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 727 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025c.
 728

729 Wufei Ma, Yu-Cheng Chou, Qihao Liu, Xingrui Wang, Celso de Melo, Jianwen Xie, and Alan
 730 Yuille. Spatialreasoner: Towards explicit and generalizable 3d spatial reasoning. *arXiv preprint
 arXiv:2504.20024*, 2025.
 731

732 Mahya Nikouei, Bita Baroutian, Shahabedin Nabavi, Fateme Taraghi, Atefe Aghaei, Ayoob Sajedi,
 733 and Mohsen Ebrahimi Moghaddam. Small object detection: A comprehensive survey on challenges,
 734 techniques and real-world applications. *ArXiv*, abs/2503.20516, 2025.
 735

736 OpenAI. Introducing gpt-4.5. <https://openai.com/index/introducing-gpt-4-5/>,
 2025a.
 737

738 OpenAI. Introducing o3 and o4 mini. <https://openai.com/index/introducing-o3-and-o4-mini/>, 2025b.
 739

740 OpenAI. GPT-5 System Card. Technical report, OpenAI, August 2025. Accessed: 2025-08-10.
 741

742 Kun Ouyang, Yuanxin Liu, Haoning Wu, Yi Liu, Hao Zhou, Jie Zhou, Fandong Meng, and Xu Sun.
 743 Spacer: Reinforcing mllms in video spatial reasoning. *arXiv preprint arXiv:2504.01805*, 2025.
 744

745 Mingjie Pan, Jiayao Zhang, Tianshu Wu, Yinghao Zhao, Wenlong Gao, and Hao Dong. Omnimaniip:
 746 Towards general robotic manipulation via object-centric interaction primitives as spatial constraints.
 747 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 17359–17369,
 2025.
 748

749 Kiru Park, Timothy Patten, and Markus Vincze. Neural object learning for 6d pose estimation using a
 750 few cluttered images. In *The European Conference on Computer Vision (ECCV)*, 2020.
 751

752 Luigi Piccinelli, Christos Sakaridis, Yung-Hsu Yang, Mattia Segu, Siyuan Li, Wim Abbeloos, and
 753 Luc Van Gool. UniDepthV2: Universal monocular metric depth estimation made simpler, 2025.
 754 URL <https://arxiv.org/abs/2502.20110>.
 755

Zhangyang Qi, Zhixiong Zhang, Ye Fang, Jiaqi Wang, and Hengshuang Zhao. Gpt4scene: Understand
 3d scenes from videos with vision-language models. *arXiv preprint arXiv:2501.01428*, 2025.

756 Runqi Qiao, Qiuna Tan, Peiqing Yang, Yanzi Wang, Xiaowan Wang, Enhui Wan, Sitong Zhou,
 757 Guanting Dong, Yuchen Zeng, Yida Xu, et al. We-math 2.0: A versatile mathbook system for
 758 incentivizing visual mathematical reasoning. *arXiv preprint arXiv:2508.10433*, 2025.

759

760 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 761 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Vasudev
 762 Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Feichtenhofer.
 763 Sam 2: Segment anything in images and videos, 2024.

764 Tianhe Ren, Yihao Chen, Qing Jiang, Zhaoyang Zeng, Yuda Xiong, Wenlong Liu, Zhengyu Ma,
 765 Junyi Shen, Yuan Gao, Xiaoke Jiang, et al. Dino-x: A unified vision model for open-world object
 766 detection and understanding. *arXiv preprint arXiv:2411.14347*, 2024.

767 Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Conference
 768 on Computer Vision and Pattern Recognition (CVPR)*, 2016.

769

770 Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-Michael Frahm. Pixelwise view
 771 selection for unstructured multi-view stereo. In *European Conference on Computer Vision (ECCV)*,
 772 2016.

773 Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
 774 inference from rgbd images. In *European conference on computer vision*, pp. 746–760. Springer,
 775 2012.

776

777 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 778 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv
 779 preprint arXiv:2508.10104*, 2025.

780 Chan Hee Song, Valts Blukis, Jonathan Tremblay, Stephen Tyree, Yu Su, and Stanley T. Birchfield.
 781 Robospatial: Teaching spatial understanding to 2d and 3d vision-language models for robotics.
 782 *ArXiv*, abs/2411.16537, 2024.

783

784 Huajie Tan, Yuheng Ji, Xiaoshuai Hao, Minglan Lin, Pengwei Wang, Zhongyuan Wang, and
 785 Shanghang Zhang. Reason-rft: Reinforcement fine-tuning for visual reasoning. *arXiv preprint
 786 arXiv:2503.20752*, 2025.

787

788 Kexian Tang, Junyao Gao, Yanhong Zeng, Haodong Duan, Yanan Sun, Zhenning Xing, Wenran Liu,
 789 Kaifeng Lyu, and Kai Chen. Lego-puzzles: How good are mllms at multi-step spatial reasoning?
 790 *arXiv preprint arXiv:2503.19990*, 2025.

791

792 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 793 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 794 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024.

795

796 V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
 797 Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng, Zehai
 798 He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi, Changyu
 799 Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazhen Xu, Jiale Zhu, Jiali Chen,
 800 Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong, Leyi
 801 Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong, Shiyu
 802 Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei Luo,
 803 Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu, Xinyue Fan,
 804 Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan An, Yifan
 805 Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li, Yutao Zhang,
 806 Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du, Zihan Wang, Peng
 807 Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie Tang. Glm-4.5v and
 808 glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable reinforcement learning,
 809 2025.

810

811 Peter Tong, Ellis Brown, Penghao Wu, Sanghyun Woo, Adithya Jairam Vedagiri IYER, Sai Charitha
 812 Akula, Shusheng Yang, Jihan Yang, Manoj Middepogu, Ziteng Wang, et al. Cambrian-1: A fully
 813 open, vision-centric exploration of multimodal llms. *Advances in Neural Information Processing
 814 Systems*, 37:87310–87356, 2024a.

810 Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
 811 shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF*
 812 *Conference on Computer Vision and Pattern Recognition*, pp. 9568–9578, 2024b.
 813

814 Jianyuan Wang, Nikita Karaev, Christian Rupprecht, and David Novotny. Vggsfm: Visual geometry
 815 grounded deep structure from motion. In *Proceedings of the IEEE/CVF Conference on Computer*
 816 *Vision and Pattern Recognition*, pp. 21686–21697, 2024a.
 817

818 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
 819 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision*
 820 *and Pattern Recognition Conference*, pp. 5294–5306, 2025a.
 821

822 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 823 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 824 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.
 825

826 Qi Wang, Yanrui Yu, Ye Yuan, Rui Mao, and Tianfei Zhou. Videorf: Incentivizing video reasoning
 827 capability in mllms via reinforced fine-tuning. *arXiv preprint arXiv:2505.12434*, 2025b.
 828

829 Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
 830 Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3.5: Advancing open-source multimodal
 831 models in versatility, reasoning, and efficiency. *arXiv preprint arXiv:2508.18265*, 2025c.
 832

833 Xingrui Wang, Wufei Ma, Tiezheng Zhang, Celso M de Melo, Jieneng Chen, and Alan Yuille.
 834 Spatial457: A diagnostic benchmark for 6d spatial reasoning of large multimodal models, 2025d.
 835 URL <https://arxiv.org/abs/2502.08636>.
 836

837 Tao Wen, Jiepeng Wang, Yabo Chen, Shugong Xu, Chi Zhang, and Xuelong Li. Metric-solver:
 838 Sliding anchored metric depth estimation from a single image. *arXiv preprint arXiv:2504.12103*,
 839 2025.
 840

841 Diankun Wu, Fangfu Liu, Yi-Hsin Hung, and Yueqi Duan. Spatial-mllm: Boosting mllm capabilities
 842 in visual-based spatial intelligence. *arXiv preprint arXiv:2505.23747*, 2025a.
 843

844 Junfei Wu, Jian Guan, Kaituo Feng, Qiang Liu, Shu Wu, Liang Wang, Wei Wu, and Tieniu Tan.
 845 Reinforcing spatial reasoning in vision-language models with interwoven thinking and visual
 846 drawing, 2025b. URL <https://arxiv.org/abs/2506.09965>.
 847

848 Peiran Wu, Yunze Liu, Miao Liu, and Junxiao Shen. St-think: How multimodal large language
 849 models reason about 4d worlds from ego-centric videos. *arXiv preprint arXiv:2503.12542*, 2025c.
 850

851 Xun Wu, Shaohan Huang, and Furu Wei. Mixture of lora experts. *arXiv preprint arXiv:2404.13628*,
 852 2024a.
 853

854 Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang
 855 Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng Sun,
 856 Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu,
 857 Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts
 858 vision-language models for advanced multimodal understanding, 2024b. URL <https://arxiv.org/abs/2412.10302>.
 859

860 Hongchi Xia, Yang Fu, Sifei Liu, and Xiaolong Wang. Rgbd objects in the wild: Scaling real-world
 861 3d object learning from rgbd videos. *2024 IEEE/CVF Conference on Computer Vision and Pattern*
 862 *Recognition (CVPR)*, 2024.
 863

864 Jiaping Xiao, Rangya Zhang, Yuhang Zhang, and Mir Feroskhan. Vision-based learning for drones:
 865 A survey. *IEEE transactions on neural networks and learning systems*, PP, 2023.
 866

867 Runsen Xu, Weiyao Wang, Hao Tang, Xingyu Chen, Xiaodong Wang, Fu-Jen Chu, Dahua Lin, Matt
 868 Feiszli, and Kevin J Liang. Multi-spatialmllm: Multi-frame spatial understanding with multi-modal
 869 large language models. *arXiv preprint arXiv:2505.17015*, 2025.

864 Tong Xu. Recent advances in rapidly-exploring random tree: A review. *Helijon*, 10(11):e32451,
 865 2024. ISSN 2405-8440. doi: <https://doi.org/10.1016/j.heliyon.2024.e32451>. URL <https://www.sciencedirect.com/science/article/pii/S2405844024084822>.

867 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 868 space: How multimodal large language models see, remember, and recall spaces. In *Proceedings*
 869 of the *Computer Vision and Pattern Recognition Conference*, pp. 10632–10643, 2025a.

870 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen
 871 Chen, Haodong Duan, Xiangyu Yue, Dahua Lin, Tai Wang, and Jiangmiao Pang. Mmsi-bench: A
 872 benchmark for multi-image spatial intelligence. *arXiv preprint arXiv:2505.23764*, 2025b.

873 Sihan Yang, Runsen Xu, Yiman Xie, Sizhe Yang, Mo Li, Jingli Lin, Chenming Zhu, Xiaochen
 874 Chen, Haodong Duan, Xiangyu Yue, et al. Mmsi-bench: A benchmark for multi-image spatial
 875 intelligence. *arXiv preprint arXiv:2505.23764*, 2025c.

876 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 877 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint*
 878 *arXiv:2408.01800*, 2024.

879 Chun-Hsiao Yeh, Chenyu Wang, Shengbang Tong, Ta-Ying Cheng, Ruoyu Wang, Tianzhe Chu, Yuex-
 880 iang Zhai, Yubei Chen, Shenghua Gao, and Yi Ma. Seeing from another perspective: Evaluating
 881 multi-view understanding in mllms. *arXiv preprint arXiv:2504.15280*, 2025.

882 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity
 883 dataset of 3d indoor scenes. In *Proceedings of the International Conference on Computer Vision*
 884 (*ICCV*), 2023.

885 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
 886 Yuming Jiang, Hang Zhang, Xin Li, Peng Jin, Wenqi Zhang, Fan Wang, Lidong Bing, and Deli
 887 Zhao. Videollama 3: Frontier multimodal foundation models for image and video understanding.
 888 *arXiv preprint arXiv:2501.13106*, 2025a. URL <https://arxiv.org/abs/2501.13106>.

889 Haoji Zhang, Xin Gu, Jiawen Li, Chixiang Ma, Sule Bai, Chubin Zhang, Bowen Zhang, Zhichao
 890 Zhou, Dongliang He, and Yansong Tang. Thinking with videos: Multimodal tool-augmented
 891 reinforcement learning for long video reasoning. *arXiv preprint arXiv:2508.04416*, 2025b.

892 Haoyu Zhang, Meng Liu, Zaijing Li, Haokun Wen, Weili Guan, Yaowei Wang, and Liqiang Nie.
 893 Spatial understanding from videos: Structured prompts meet simulation data. *arXiv preprint*
 894 *arXiv:2506.03642*, 2025c.

895 Jiahui Zhang, Yurui Chen, Yanpeng Zhou, Yueming Xu, Ze Huang, Jilin Mei, Junhui Chen, Yu-Jie
 896 Yuan, Xinyue Cai, Guowei Huang, et al. From flatland to space: Teaching vision-language models
 897 to perceive and reason in 3d. *arXiv preprint arXiv:2503.22976*, 2025d.

898 Jiahui Zhang, Yurui Chen, Yanpeng Zhou, Yueming Xu, Ze Huang, Jilin Mei, Junhui Chen, Yujie
 899 Yuan, Xinyue Cai, Guowei Huang, Xingyue Quan, Hang Xu, and Li Zhang. From flatland to space:
 900 Teaching vision-language models to perceive and reason in 3d. *arXiv preprint arXiv:2503.22976*,
 901 2025e.

902 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 903 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 904 *arXiv preprint arXiv:2406.16852*, 2024a. URL <https://arxiv.org/abs/2406.16852>.

905 Wanyue Zhang, Yibin Huang, Yangbin Xu, JingJing Huang, Helu Zhi, Shuo Ren, Wang Xu, and
 906 Jiajun Zhang. Why do mllms struggle with spatial understanding? a systematic analysis from data
 907 to architecture. *arXiv preprint arXiv:2509.02359*, 2025f.

908 Yuanhan Zhang, Bo Li, haotian Liu, Yong jae Lee, Liangke Gui, Di Fu, Jiashi Feng, Ziwei Liu, and
 909 Chunyuan Li. Llava-next: A strong zero-shot video understanding model, April 2024b. URL
 910 <https://llava-vl.github.io/blog/2024-04-30-llava-next-video/>.

911 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruc-
 912 tion tuning with synthetic data, 2024c. URL <https://arxiv.org/abs/2410.02713>.

918 Zixuan Zhao. Advances and challenges in small object detection: A comparative analysis of state-of-
919 the-art models and future directions. *Theoretical and Natural Science*, 79:145–153, 01 2025.
920

921 Duo Zheng, Shijia Huang, Yanyang Li, and Liwei Wang. Learning from videos for 3d world:
922 Enhancing mllms with 3d vision geometry priors. *arXiv preprint arXiv:2505.24625*, 2025.

923 Shijie Zhou, Alexander Vilesov, Xuehai He, Ziyu Wan, Shuwang Zhang, Aditya Nagachandra,
924 Di Chang, Dongdong Chen, Xin Eric Wang, and Achuta Kadambi. Vlm4d: Towards spatiotemporal
925 awareness in vision language models. *arXiv preprint arXiv:2508.02095*, 2025.

926 Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
927 Duan, Weijie Su, Jie Shao, Zhangwei Gao, Erfei Cui, Xuehui Wang, Yue Cao, Yangzhou Liu,
928 Xingguang Wei, Hongjie Zhang, Haomin Wang, Weiye Xu, Hao Li, Jiahao Wang, Nianchen Deng,
929 Songze Li, Yinan He, Tan Jiang, Jiapeng Luo, Yi Wang, Conghui He, Botian Shi, Xingcheng
930 Zhang, Wenqi Shao, Junjun He, Yingtong Xiong, Wenwen Qu, Peng Sun, Penglong Jiao, Han Lv,
931 Lijun Wu, Kaipeng Zhang, Huipeng Deng, Jiaye Ge, Kai Chen, Limin Wang, Min Dou, Lewei Lu,
932 Xizhou Zhu, Tong Lu, Dahua Lin, Yu Qiao, Jifeng Dai, and Wenhui Wang. Internvl3: Exploring
933 advanced training and test-time recipes for open-source multimodal models, 2025.

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972	APPENDICES CONTENTS	
973		
974		
975	A Important Information	21
976	A.1 Task Distribution	21
977	A.2 Performance Radar	21
978		
979		
980	B Data Construction	21
981	B.1 Data Comparison	22
982	B.2 Data Source	22
983	B.2.1 Tiny Tabletop Scene	23
984	B.2.2 Tabletop Scene	23
985	B.2.3 Indoor Scene	23
986	B.2.4 Wild Indoor Scene	23
987	B.2.5 Outdoor Scene	24
988	B.2.6 Drone Scene	24
989	B.2.7 Our Own Collected Data	24
990	B.3 Task Construction	25
991	B.3.1 Data Preparation	25
992	B.3.2 Type: Distance	27
993	B.3.3 Type: Counting	27
994	B.3.4 Type: Planning	28
995	B.3.5 Type: Relation	28
996	B.3.6 Data Post-Processing	29
997	B.3.7 Benchmark Construction	29
998	B.4 Data Statistics	29
999	B.4.1 Target Category Distribution	29
1000	B.4.2 Scale Distribution	31
1001	B.4.3 Subscene Type Distribution	31
1002	B.4.4 Object Size Distribution	31
1003	B.4.5 Camera To Object Distribution	31
1004	B.4.6 QA Statistics Across Scenes	32
1005	B.4.7 Data Quality Control	32
1006	B.4.8 License	33
1007	B.5 Supplementary citation	33
1008		
1009		
1010		
1011		
1012		
1013		
1014		
1015		
1016		
1017		
1018		
1019		
1020		
1021	C Model Detail	34
1022	C.1 Parameter Setting	34
1023	C.2 Patch Level Encoder Ablation	34
1024	C.3 LoRA Like Expert Ablation	34
1025		

1026	D Observation Results	35
1027	D.1 GRPO Reward Observation	35
1028	D.2 Expert Observation	35
1029	D.3 Reasoning Vs Memorizing (Out-of-Distribution Problem)	35
1030	D.4 Detailed Analysis on Each Benchmark	37
1031	D.5 The Hardest Scene	40
1032	D.6 Why 2.5D>3D	41
1033	D.7 Scaling-Up Analysis	41
1034	D.8 Leaderboard Detail	42
1035		
1036		
1037		
1038		
1039		
1040	E FAQ	42
1041	E.1 Error Accumulation	42
1042	E.2 All Scale Possibilities	43
1043	E.3 Discussion of Dataset	43
1044		
1045		
1046		
1047	F Preview	44
1048	F.1 Scene Preview	44
1049	F.2 Template Preview	45
1050	F.3 QA Preview	45
1051		
1052		
1053		
1054		
1055		
1056		
1057		
1058		
1059		
1060		
1061		
1062		
1063		
1064		
1065		
1066		
1067		
1068		
1069		
1070		
1071		
1072		
1073		
1074		
1075		
1076		
1077		
1078		
1079		

A IMPORTANT INFORMATION

A.1 TASK DISTRIBUTION

Our SpaceVista-1M consists of a wide range of tasks, including both general tasks and scale-specific tasks. Fig. A6 illustrates the data composition for each scene task, where bubble sizes indicate the relative data volume.

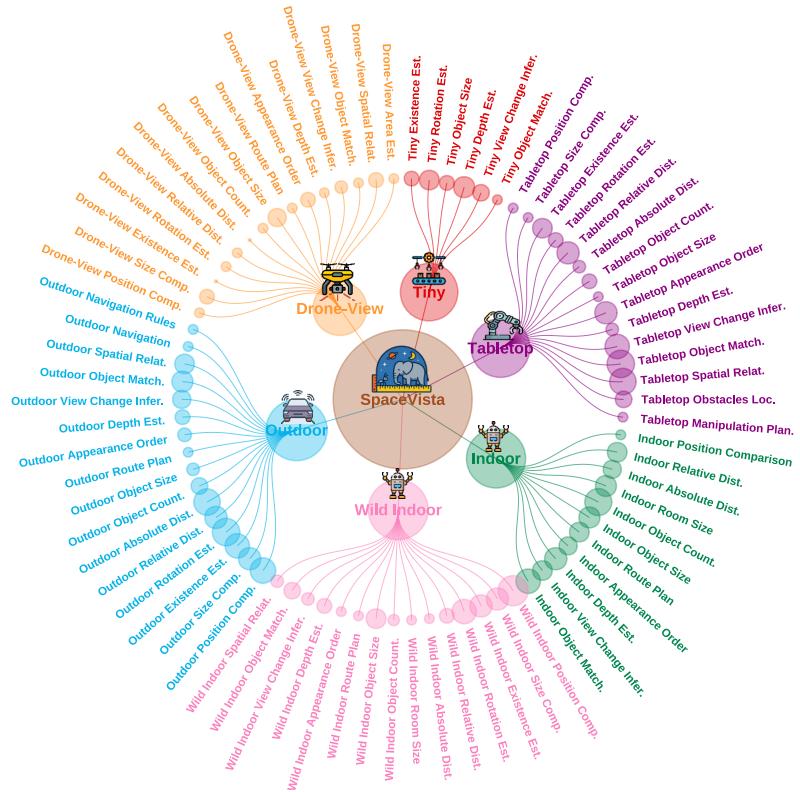


Figure A6: Statistical chart of QA types. The spatial reasoning tasks for various scenes include abbreviations, for example, “Est.” for Estimation, “Dist.” for Distance, “Loc.” for Location, and “Com.” for Comparison.

A.2 PERFORMANCE RADAR

The comparison across models is carried out on multiple spatial reasoning benchmarks. We evaluate eight multimodal large models on five distinct benchmarks, with the results visualized in the radar chart in Fig. A7.

SpaceVista-7B achieves significant improvement across the benchmarks, highlighting its superiority in spatial reasoning tasks. While models, including LLAVA-Onevision-7B (Li et al., 2024a), demonstrate competitive performance, SpaceVista-7B consistently exhibits superior robustness and adaptability across a range of tasks, thereby solidifying its position as a robust model in spatial reasoning.

B DATA CONSTRUCTION

Our SpaceVista-1M dataset spans 19 spatial reasoning task types, including scale-specific tasks, comprising 1 million QA pairs and 38 thousand videos collected across diverse scenes. This scale and variety enable large-scale training of perceptual understanding and spatial reasoning, and support comparative analysis across tasks and environments.

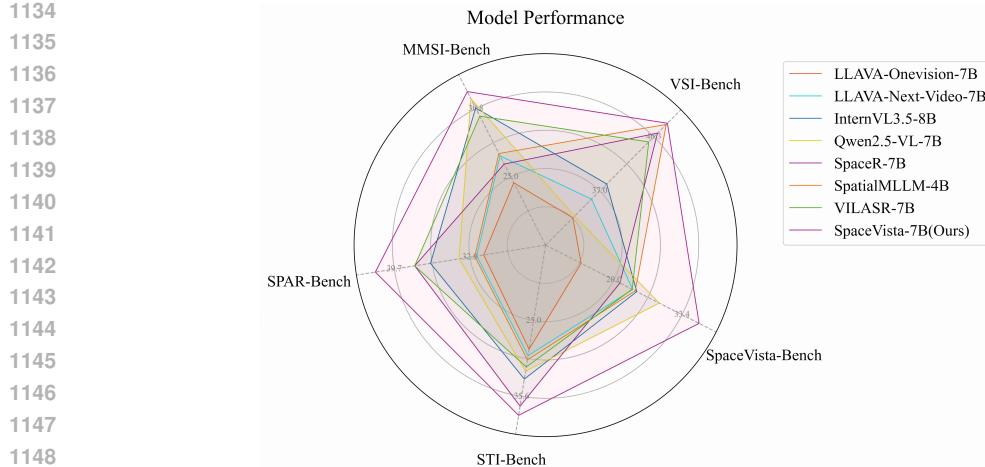


Figure A7: Comparison across popular spatial reasoning benchmarks. Our SpaceVista-7B model achieves certain performance boosts across all benchmarks.

This chapter details the data sources for each scene category (Sec. B.2), the end-to-end task construction pipeline (Sec. B.3.1), and key dataset statistics (Sec. B.4).

B.1 DATA COMPARISON

Table B7: The datasets we used to build SpaceVista-1M and SpaceVista-Bench. “ \dagger ” means the datasets are only used for evaluation in SpaceVista-Bench. “ \ddagger ” means data collected by us and used for accurate evaluation. The definition of scenes is the number of unique spaces, and one scene can be transformed into multiple questions.

Dataset	Type	Scenes
uCO3D(Liu et al., 2025a)	Tiny, Tabletop	10,000
WildRGB-D(Xia et al., 2024)	Tabletop	11,300
SMOT(Park et al., 2020)	Tabletop	13
SpaceR(Ouyang et al., 2025)	Indoor	1,500
Spar-Bench(Zhang et al., 2025e)	Indoor	4,500
Scannet Series(Dai et al., 2017; Yeshwanth et al., 2023)	Indoor	460
VSI-Bench \dagger (Yang et al., 2025a)	Indoor	288
MMSI-Bench \dagger (Yang et al., 2025b)	Indoor	231
DL3DV(Ling et al., 2024)	Drone, Indoor, Outdoor	10,510
STI-bench \dagger (Li et al., 2025e)	Indoor, Outdoor, Tabletop	372
Our own collected data \ddagger	Tiny, Tabletop, Outdoor	500

Our current dataset encompasses a broad diversity of scene categories, as summarized in Tab. B7. The data sources span a wide range of scenarios, including tiny, tabletop, indoor, outdoor, and drone-view.

To ensure evaluation quality and robustness, we apply multiple rounds of processing and rigorous filtering to all collected data. We remove redundant or inconsistent samples across datasets. Because scenes may overlap across sources, which can compromise the independence of the training and test splits, we removed from the training set any scene that appears in all the benchmarks. This strict separation prevents leakage and enables a fair assessment of generalization. Consequently, the SpaceVista-1M provides broad scene diversity, with a clean, reliable benchmark SpaceVista-Bench.

B.2 DATA SOURCE

Sec. B.2 presents data sources that form our dataset, and systematically describes the provenance and acquisition of seven scene sources. These sources combine multiple public datasets and our own collected data, as detailed in Sec. B.2.1- B.2.7. These scenes span object-centric through scene-level contexts and exhibit substantial variation in scale, shape, pattern, and illumination.

When building the dataset, our foundational data construction process must adhere to the following key criteria:

- **Video Data with 3D Modeling:** The data must consist of video sequences accompanied by either official or third-party 3D modeling. This enables effective use of camera parameters for robust data processing.
- **Multi-Frame & Multi-Scale:** The dataset should support meaningful spatial reasoning across multiple frames and scales. Its complexity must be sufficient to prevent trivial single-frame assessments from representing the full sequence.
- **Comprehensive Annotations & Metadata:** Each sample must include the following: (a) camera intrinsics and extrinsics, (b) detection and segmentation labels, and (c) dense depth maps. These elements support a broad range of downstream tasks.

B.2.1 TINY TABLETOP SCENE

We curate small-scale, small-object videos from uCO3D (Liu et al., 2025a), selecting sequences where the object size falls below a predefined threshold to instantiate the tiny tabletop scenario. uCO3D comprises approximately 170,000 high-resolution, object-centric 360-degree videos captured via crowdsourcing, covering more than 1,000 LVIS (Gupta et al., 2019) categories grouped into 50 categories. For each video, uCO3D applies VGGsFm (Wang et al., 2024a) for motion analysis and 3D Gaussian Splatting to generate accurate camera poses, depth maps, sparse and dense point clouds, and semantic captions. The resulting subset contains everyday small objects, such as stationery, food, and decorative items, placed on flat surfaces such as tables, counters, and shelves. These scenes provide complete viewpoint coverage, precise geometry, and rich semantic labels, which make them well-suited for fine-grained 3D object modeling and spatial video reasoning. Here, we only select a small part of uCO3D for around 10,000 videos for tiny objects after filtering.

B.2.2 TABLETOP SCENE

For tabletop scene modeling, we select two datasets: WildRGB-D (Xia et al., 2024) and SMOT (Park et al., 2020). WildRGB-D consists of approximately 8,500 objects across 46 categories, recorded in around 20,000 RGB-D videos, with iPhones rotating 360 degrees around objects to replicate real-world interactions. It includes single-object, multi-object, and hand-occlusion videos, all automatically annotated via SLAM-generated camera poses and reconstructed point clouds, making it suitable for spatial reasoning tasks. To select samples for spatial reasoning, we specifically choose around 10,000 videos with multiple objects in a scene. SMOT (Park et al., 2020) is a challenging small dataset collected by a mobile robot, comprising 13 video sequences.

The tabletop, commonly referred to as the “table” scene, encompasses not only the planar surface of a table but also extends to various other surfaces, including sand, beds, wardrobes, floors, and similar environments. In combination, these datasets offer richly varied planar scenes, providing a robust foundation for challenging spatial video reasoning benchmarks.

B.2.3 INDOOR SCENE

Indoor scenes are among the earliest domains studied in spatial video reasoning. Key datasets, including ScanNet (Dai et al., 2017) and ScanNet++ (Yeshwanth et al., 2023), collect RGB-D scans using handheld cameras, yielding aligned RGB images, depth maps, and 3D reconstructions. ScanNet contains more than 1,500 scenes and 2.5 million frames spanning common indoor spaces, such as offices and bedrooms, with annotations for over twenty object categories. ScanNet++ extends this setting with higher geometric fidelity and more complex layouts. The combination of focused object classes, structured environments, and rich annotations makes these datasets central benchmarks for spatial reasoning.

B.2.4 WILD INDOOR SCENE

Beyond scan-based indoor modeling, DL3DV (Ling et al., 2024) adopts a video-based pipeline that replaces active scanning with video capture and camera parameter estimation. Building on this framework, and further compressed using 3D Gaussian Splatting (Chen et al., 2024c), DL3DV enables high-precision 3D reconstruction of wild indoor scenes. The dataset covers a broad range of object categories, including challenging reflective and transparent instances. Compared with

1242 conventional scan-based datasets, these scenes exhibit greater geometric and appearance variability,
 1243 providing a more realistic and demanding benchmark for spatial video reasoning.
 1244

1245 B.2.5 OUTDOOR SCENE 1246

1247 In addition to tabletop and indoor scene modeling, DL3DV (Ling et al., 2024) collects extensive in-
 1248 the-wild outdoor videos encompassing landmarks, street corners, private courtyards, and urban parks.
 1249 Camera parameters are calibrated using COLMAP (Schönberger et al., 2016; Schönberger & Frahm,
 1250 2016). The DL3DV-10K dataset includes 10,510 videos in 4K resolution, totaling about 51.2 million
 1251 frames, covering 65 types of locations. Each video is annotated for whether it is indoors or outdoors
 1252 as well as for levels of reflection, transparency, and lighting conditions. Compared to conventional
 1253 scan-based indoor datasets, these outdoor scenes exhibit richer geometric complexity, greater diversity
 1254 of materials, and wider environmental variation, offering more challenging benchmarks for spatial
 1255 video reasoning.
 1256

1256 B.2.6 DRONE SCENE 1257

1258 DL3DV (Ling et al., 2024) extends outdoor scene modeling by incorporating drone-captured videos
 1259 that provide aerial perspectives to complement ground level views. Videos are recorded using
 1260 unmanned aerial vehicles (UAVs), and camera parameters are calibrated through COLMAP (Schön-
 1261 berger et al., 2016; Schönberger & Frahm, 2016), following the same reconstruction pipeline applied
 1262 to handheld footage. The DL3DV Drone subset consists of more than 100 videos covering a variety of
 1263 scenes, including open plazas, tree-lined pathways, rooftop platforms, and landmark facades. DL3DV
 1264 enhances spatial video reasoning by introducing unique geometric structures and varied viewpoints.
 1265

1266 Although the data scale is not as large as tabletop or indoor, the drone-view scenes establish a more
 1267 rigorous benchmark for aerial mapping and spatial video reasoning by expanding scene diversity and
 1268 viewpoint range.
 1269

1269 B.2.7 OUR OWN COLLECTED DATA

1270 The data collection methods described above rely on advanced specialized models and fully automated
 1271 pipelines. While we incorporate limited manual filtering, whether the resulting data can be used
 1272 as an accurate evaluation of real-world perception is still a question. This limitation motivates our
 1273 collection of higher-fidelity data to better align with physical world perception.
 1274

1275 Our dataset consists of two types: 1) measured, recorded, and manually annotated data, and 2)
 1276 existing video data enhanced by retrieving and verifying publicly available information. The former
 1277 is suitable for tiny objects, tabletop objects, whereas the latter is designed for indoor and outdoor
 1278 scenarios.
 1279

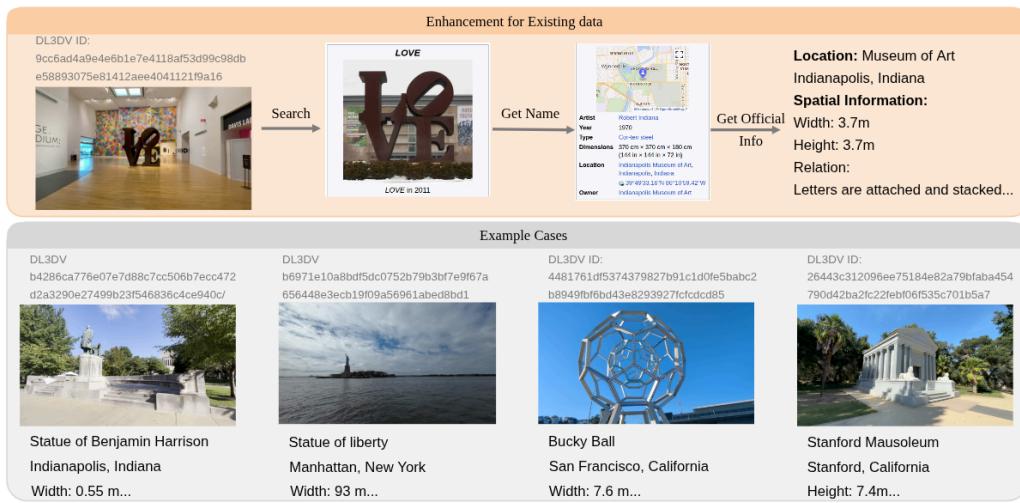
1280 Figure B8: Our self-collected data features various cat-
 1281 egories of objects, with tabletops and tiny tabletops
 1282 ranging from 0.4m to 3mm, even including transparent
 1283 and reflective objects.
 1284

1285 Figure B9: A photo of the real
 1286 scene for the collection of tiny
 1287 tabletop.
 1288

1289 **Data from self-recording and measurement.** Precise spatial annotations (e.g., location and dimen-
 1290 sions) are scarce in existing datasets such as uCO3D and WildRGB-D. To address this, we captured
 1291 length and positional data for nearly 50 object categories across diverse scenarios. Using GoPro
 1292 11, iPhone 15, and Vivo X70, we systematically varied object arrangements, distances, lighting
 1293 conditions, and backgrounds into over 200 videos and 1,000 QA pairs. As illustrated in Fig. B8
 1294 and Fig. B9, they show the objects used for self-collected data and a real scene of tiny tabletop data
 1295

1296 collection. Although we collected the raw high-resolution videos up to 2.7K/60fps, it is still necessary
 1297 to resize and resample it for better comparison. The resulting measurements are consolidated into a
 1298 unified perceptual space that closely approximates physical world geometry.
 1299

1300 **Data Retrieved from authoritative sources.** Adopting a similar rationale, it is apparent that spatial
 1301 information derived solely from wild videos lacks the precision required for robust evaluation.
 1302 Consequently, alternative methodologies must be explored. To address this, we propose a systematic
 1303 approach that first identifies landmark objects within existing datasets and then manually retrieves
 1304 images of these objects from authoritative sources, such as Wikipedia¹, architectural drawings,
 1305 and official design documents, to obtain accurate spatial information, as shown in Fig. B10. This
 1306 method ensures that the evaluation data is not only more precise but also more consistent with human
 1307 perceptual judgments and preferences.
 1308



1315 Figure B10: Examples of identifying outdoor landmark objects from existing datasets and retrieving
 1316 their scale-related ground truth data.
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324

B.3 TASK CONSTRUCTION

1330 Upon acquiring the appropriate dataset, we initially perform necessary data preparation and processing
 1331 in Sec. B.3.1. Subsequently, we carefully design workflow for each task (Sec. B.3.3-B.3.5), and we
 1332 present detailed task explanations in Tab. B8. The final output consists of high-quality QA pairs,
 1333 facilitating the cold-start and reinforcement learning processes of MLLMs.
 1334

B.3.1 DATA PREPARATION

1335 Previous popular approaches, such as InternSpatial (Deng et al., 2025b), required estimating camera
 1336 intrinsic and extrinsic parameters, which introduced cumulative errors that propagated through
 1337 subsequent tasks. However, since we exclusively utilize datasets with known camera parameters (as
 1338 detailed in Sec B.2), our framework operates under conditions close to ground truth.
 1339

1340 We first employ Metric3Dv2 (Hu et al., 2024) and UniDepthV2 (Piccinelli et al., 2025) to obtain
 1341 accurate metric depth maps and normal maps. The metric depth maps provide precise distance
 1342 measurements between the camera and scene objects, while the normal maps facilitate robust plane
 1343 estimation. There are two challenges during construction. **1) Video consistency:** According to
 1344 observation, the metric depth model may not have that level of consistency across frames. So, we use
 1345 Video-Depth-Anything (Chen et al., 2025) to ensure consistency by minimizing the energy function,
 1346

$$D^* = \operatorname{argmin}_D \left\{ \|D - M\|_F^2 + \lambda \|\nabla_t(D) - \nabla_t(N)\|_F^2 \right\}, \quad (6)$$

1¹<https://www.wikipedia.org/>

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Table B8: Detailed explanation of 19 tasks included in SpaceVista-1M.

Task	Description
General Indoor Scenes	
Position Comparison	Compare the positions of two objects within or across frames, assessing their spatial relationships in terms of left/right, above/below, and near/far.
Size Comparison	Compare the positions of two objects within or across frames, involving three pairs of size relationships: wider/thinner, taller/shorter, larger/smaller.
Existence Estimation	Determine whether there are objects across frames whose positional/size relationships with the specified object meet the constraint conditions.
Object Counting	Estimate how many objects meet the constraint conditions across frames.
Rotation Estimation	Estimate the rotation angle of an object across multiple frames.
Absolute Distance	Estimate the closest distance between two objects within or across the frames.
Object Size	Estimate the longest dimension of an object within or across the frames.
Route Planning	Choose what action should be performed between a sequence of actions within or across the frames in order to route from a start point to a target. Given a video, determine the N -th appearance order of several objects.
Appearance Order	Estimate the relative or absolute distance of objects from the camera viewpoint in a single image or across multiple images.
Depth Estimation	Infer how the camera viewpoint has changed (position and orientation) across the video frames.
View Change Inference	Determine whether two objects in the beginning and end frames of a video are the same physical object instance or different instances of the same object type.
Object Matching	Analyze and describe the spatial relationships (e.g., support, hanging, adhesion, stacking, encircling, plug-in) between multiple objects or cameras across the frames.
Indoor Scenes	
Every Type in General	All task types from Indoor Scenes can be applied to drone-view perspectives.
Room Size	Estimate the volume of the room(s) across the frames.
Outdoor Scenes	
Every Type in General	All task types from Indoor Scenes apply to Outdoor Scenes except for Room Size estimation.
Navigation	Determine the optimal path or movement strategy to navigate from one location to another across different views (similar to the Route Planning mentioned in Indoor Scenes).
Drone-View Scenes	
Every Type in General	All task types from Indoor Scenes can be applied to drone-view perspectives.
Route Plan	Given a series of aerial images, choose what action should be performed between a sequence of actions in order to route from a start point to a target (similar to the Route Planning mentioned in Indoor Scenes).
Area Estimation	Estimate the size or area of regions or objects from an aerial perspective.
Tabletop Scenes	
Every Type in General	All task types from Indoor Scenes can be applied to drone-view perspectives.
Object Location	Determine the precise position of objects on a table surface, typically corresponding to other objects.
Destination Location	Identify target positions related to single objects (i.e. left, right, front ...) as part of manipulation planning.
Obstacles Location	Identify and locate objects with the AABB box that may interfere with manipulation as part of manipulation planning.
Manipulation Planning	Determine the sequence of actions needed to rearrange objects or achieve a specific configuration on the table.

1404 where M, N represent metric depth model maps and Video-Depth-Anything map . 2) **Extreme Scale**:
 1405 Although the metric depth model is trained on the datasets as DDAD (Guizilini et al., 2020) and
 1406 NYUv2 (Silberman et al., 2012), it may have a certain level of adaptation to the extreme situations.
 1407 For extreme situations, including drone-view and tiny objects, it is still necessary to provide a
 1408 prerequisite to adjust the depth normalization accordingly.

1409 For fine-grained semantic understanding at the pixel level, we leverage the advanced proprietary
 1410 model DINO-X (Ren et al., 2024) to extract semantic information and bounding boxes for complex
 1411 scenes, while relying on Grounding DINO (Liu et al., 2023b) for simpler samples. To address
 1412 cross-frame consistency challenges in video data, we integrate the aforementioned grounding models
 1413 with SAM2’s (Ravi et al., 2024) advanced tracking capabilities, generating temporally consistent
 1414 masks and unique object IDs across frames based on Grounded-SAM².

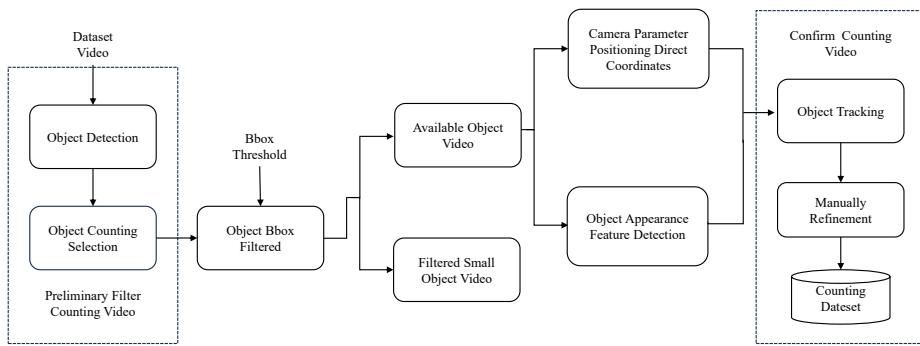
1415 By this stage, we obtain a comprehensive understanding of each frame, including bounding boxes,
 1416 masks, categories, and object IDs, laying a solid foundation for downstream task formulation.

1418 B.3.2 TYPE: DISTANCE

1420 The distance-related tasks, including object size, room size, object distance, and relative distance,
 1421 rely on depth maps and computer vision techniques to measure object and spatial dimensions from
 1422 monocular images. The method converts 2D depth keypoints into 3D point clouds using camera
 1423 calibration parameters and applies Principal Component Analysis (PCA) to extract dimensional
 1424 information, focusing on objects larger than 20×20 pixels. For object size estimation, the system
 1425 segments visible objects using instance masks and projects the masked depth values into 3D space.
 1426 PCA determines the principal axes of the point cloud, with height measured along the vertical axis and
 1427 width derived from the convex hull of points projected onto the dominant plane. Relative distances are
 1428 calculated by comparing 3D centroids in world coordinates, and room dimensions are estimated by
 1429 analyzing the spatial distribution of depth points and identifying major planar surfaces corresponding
 1430 to walls.

1431 The method uses camera intrinsics and extrinsics to express all measurements in a consistent world
 1432 coordinate system, addressing the scale ambiguity of monocular systems. Multiple frames are
 1433 processed to improve robustness, with temporal averaging reducing noise in the estimates. The
 1434 technique assumes piecewise rigid scenes, operates on standard RGB images, and produces metric-
 1435 scale measurements. Accuracy depends on the quality of depth estimation and segmentation. Overall,
 1436 it demonstrates how 2D computer vision pipelines can be extended to 3D measurement tasks through
 1437 precise geometric reasoning.

1438 B.3.3 TYPE: COUNTING



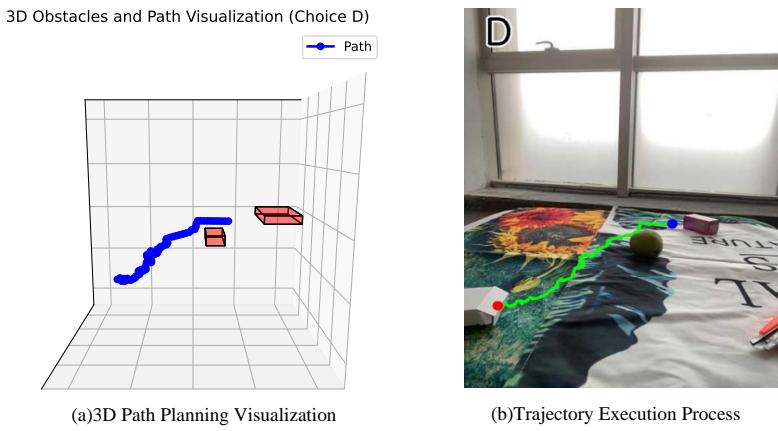
1451 Figure B11: Automatic Processing Pipeline for Counting Task Scenes. Through data filtering, object
 1452 tracking, and counting, the final counting video is obtained after data confirmation.

1453 Object counting across real-world scenes faces diverse visual conditions and a high cost of manual
 1454 labeling, which motivates an automatic pipeline that adapts to scene type. The automatic pipeline
 1455 addresses object counting through two methodologies tailored to specific scenarios, and Fig. B11

1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 266

1458 illustrates the workflow that maintains high accuracy while reducing manual effort across indoor,
 1459 outdoor, and tabletop scenes. For outdoor video sequences, the open-vocabulary detection model (Ren
 1460 et al., 2024; Cheng et al., 2024) uses text prompts with a confidence threshold of 0.3 for zero-shot
 1461 detection, projects 2D observations into 3D world coordinates to enforce spatial consistency, and
 1462 tracks objects via motion prediction with confirmation after at least ten consistent detections. Given
 1463 the difficulty of reliably detecting very small objects in outdoor scenes and to mitigate ID switching
 1464 and trajectory fragmentation under severe occlusions, scenes are prefiltered to those containing 2
 1465 to 10 objects with a minimum bounding-box size of 32 pixels. For tabletop scenarios, grounding
 1466 model (Ren et al., 2024; Liu et al., 2023b) and SAM2 (Ravi et al., 2024) are employed, where
 1467 open-vocabulary detection uses text and bounding box thresholds of 0.4, and mask propagation
 1468 applies IoU and center distance thresholds of 0.4 and 32 pixels, respectively, to distinguish instances.
 1469 Both methodologies output object categories and their corresponding counts for each video.

1470 B.3.4 TYPE: PLANNING



1487 Figure B12: Visualization of robotic manipulation planning. Fig.(a) visualizes the option for moving
 1488 the red box to the left of the upper box. Fig.(b) represents the key frame to carry out the manipulation.
 1489

1490 In robotic manipulation tasks, effective route planning is essential to ensuring smooth and accurate
 1491 object movement. The route planning pipeline proceeds as follows. First, depth information and
 1492 object detection are utilized to identify the category, position, shape, and size of all objects within the
 1493 image. Subsequently, an arbitrary object is selected as the manipulation source and another as the
 1494 target position, with the objective being to relocate the source object to a designated position (e.g.,
 1495 front, back, left, right, or above) relative to the target object. Based on this configuration, an LLM
 1496 generates corresponding manipulation instructions, such as *“What is the correct route of placing*
 1497 *the apple on the box”*. Next, the actual spatial positions of the objects are computed using both
 1498 intrinsic and extrinsic camera parameters. The Rapidly-exploring Random Tree (RRT) (LaValle,
 1499 1998; Xu, 2024) algorithm is then employed to plan a collision-free path, where the bounding boxes
 1500 of objects serve as obstacle constraints during path computation. Finally, two types of data are
 1501 generated from the planned path: 1) multiple paths are projected onto the camera plane, with the
 1502 correct trajectory serving as the ground truth answer, and 2) the coordinate variations along the path
 1503 are translated into natural language instructions via the LLM. For instance, when the x-coordinate of
 1504 the object decreases while the y-coordinate remains constant in the camera space, the LLM produces
 1505 the instruction *“move the object to the left.”* Fig. B12 demonstrates the visualization of robotic
 1506 manipulation under the option, showing the planned movement of the red box to the left of the upper
 1507 box. This figure highlights the spatial relationship and intended positioning within the manipulation
 1508 task.

1508 B.3.5 TYPE: RELATION

1509 In spatial relation analysis, we combine semantic information with 3D positional data through
 1510 an automatic reasoning process to ensure consistency in both semantic and spatial aspects. Our
 1511 analysis operates primarily at the semantic level. We first identify and extract common candidate

1512 relations, such as support, attach, insert, and surround. Based on the consistent 3D keypoint semantics
 1513 established earlier, we generate potential relation pairs that may exhibit these spatial relationships.
 1514 These candidate pairs are then evaluated for spatial plausibility by integrating 3D positional data
 1515 with the few-shot prompt through Chain-of-Thought (CoT) reasoning using the foundation model.
 1516 Finally, the validated pairs are processed by GPT for transformation and answer generation, ensuring
 1517 semantically and spatially consistent outputs.

1518

1519 B.3.6 DATA POST-PROCESSING

1520

1521 To address the cold-start challenge in SFT, we prioritize the acquisition of explicit “thinking process”
 1522 rationales—step-by-step explanations that clarify how answers are derived. For example, in object
 1523 counting, the model is prompted to articulate intermediate reasoning (e.g., “*there are 2 cups on the*
 1524 *table and 3 on the chair, totaling 5*”), enriching task understanding and facilitating more robust
 1525 generalization.

1526 Following common practice (Feng et al., 2025), we acquire high-quality rationales by distilling from
 1527 advanced open-source and proprietary large models. Specifically, we use Qwen2.5-VL-72B and
 1528 Gemini-2.5-Pro for complex tasks, and Qwen2.5-VL-32B for simpler ones, balancing reasoning
 1529 depth with efficiency. We then compare these generated rationales and their corresponding answers
 1530 with previously collected cases. When GPT answers are different from the answers from previous
 1531 workflows, we apply a confidence-based filtering strategy to curate the training set, retaining only
 1532 instances with consistent, well-supported reasoning. This pipeline generates a cleaner, rationale-
 1533 augmented dataset, mitigating SFT cold-start effects and enhancing downstream performance.

1534

1535 B.3.7 BENCHMARK CONSTRUCTION

1536

1537 Our benchmark comprises two components: **1) Measurement-Related.** For the scale-related portion
 1538 requiring precise scale annotations, we collect approximately 500 videos across diverse scenes using
 1539 the two methods described in Appendix B.2.7 and human annotation for other spatial tasks, covering
 1540 tiny, tabletop, and outdoor settings. For the indoor evaluation set, we instead selected suitable
 1541 data from ScanNet-based datasets (e.g., VSI-bench and SPAR-bench) and constructed a series of
 1542 scale-focused questions on top of these bases. **2) Non-Measurement.** For the non-measurement
 1543 questions, we manually annotate the data collected in the previous step to produce additional spatial
 1544 reasoning QA pairs. In total, we curate 3,000 fully human-annotated QA pairs for model evaluation.

1545

B.4 DATA STATISTICS

1546

1547 From a visual perspective, our dataset comprises wild scenes spanning scales from millimeters to
 1548 kilometers. Although the raw dataset contains over 100 million frames, we calculate unsupervised
 1549 annotations as intermediate information at both the pixel and semantic levels for a curated subset
 1550 of 10 million frames. These frames vary in resolution from 480p to 2.7K, with frame rates ranging
 1551 from 24 to 30 fps. During data processing, we preserve the original resolution whenever possible and
 1552 apply uniform sampling during training as needed.

1553 In terms of the QA component, we employ a combination of templated generation and GPT-based
 1554 methods to produce 1 million QA pairs with a theoretical duplication rate of only 0.0005%. These
 1555 pairs are structured into diverse answer formats, including free-form, multiple-choice, and regression-
 1556 based responses, catering to different analytical needs. Rigorous quality control measures are
 1557 implemented, with detailed analyses provided in Sec. B.4.7.

1558 In this section, we first conduct a diversity analysis of the visual scenes, examining their composition,
 1559 categories, and object size distributions (Sec. B.4.1–Sec. B.4.5). We then present a statistical overview
 1560 of the QA pairs, along with an evaluation of quality control mechanisms (Sec. F.3–Sec. B.4.7). And
 1561 also, at the beginning of the appendix, Fig. A6 illustrates the data composition for each scene task,
 1562 where bubble sizes indicate the relative data volume.

1563

B.4.1 TARGET CATEGORY DISTRIBUTION

1564

1565 The introduction of diverse scenarios, such as tabletop, indoor, and outdoor, aims to establish a more
 1566 inclusive object composition system. Due to the limited drone data, we incorporate drone-view data

1566 into the outdoor analysis. By approximating complex object distribution patterns to the real world,
 1567 this approach enhances the scene adaptation capabilities of visual reasoning models. To quantitatively
 1568 assess the impact of scene diversity on model generalization, we use the word cloud to compare object
 1569 distribution characteristics across different scenarios, as shown in Figs. B13–B18. The results reveal
 1570 that indoor scenes are predominantly composed of rigid objects such as furniture and electronics,
 1571 exhibiting a highly structured spatial layout. In contrast, outdoor scenes feature more scale-varying
 1572 objects like vehicles and natural landscapes, demonstrating spatial openness. Meanwhile, tabletop
 1573 scenes focus on manipulable items such as tools and daily necessities, reflecting precise spatial
 1574 arrangements. These cross-scene differences provide complementary training samples, effectively
 1575 mitigating the risk of overfitting to specific scenarios. Thus, the necessity of a multi-scenario strategy
 1576 to enhance cross-domain generalization is validated.

1577 Overall, each subset scenario differs significantly from the previous indoor-dominated setting, high-
 1578 lighting the diversity of our scenes.

1590 Figure B13: The word cloud of the previous
 1591 indoor spatial reasoning datasets.

1603 Figure B15: The word cloud of our outdoor sub-
 1604 set.

1616 Figure B17: The word cloud of our tiny tabletop
 1617 subset.

1577 Figure B14: The word cloud of our indoor sub-
 1578 set.

1603 Figure B16: The word cloud of our tabletop
 1604 subset.

1616 Figure B18: The word cloud of the self-collected
 1617 subset. Note: We use standard ISO 7046 to de-
 1618 note the models of the screw, which looks like
 1619 “m4*10”.

1620

B.4.2 SCALE DISTRIBUTION

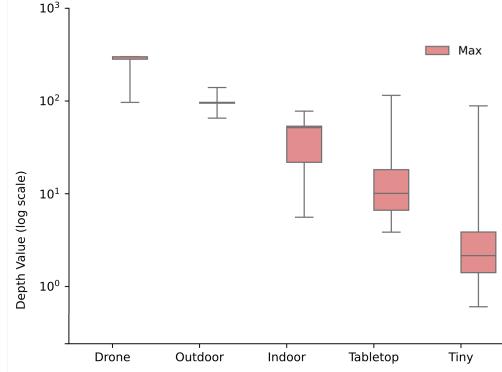
1621

1622 To evaluate the dynamic range of depth across different scenes, we statistically analyze the distributions of the maximum and minimum depth values in each scenario, with the results visualized in Fig. B19. This analysis reveals the variation in extreme depth ranges. Notably, the farthest depth point progressively decreases from the drone scene to the tiny tabletop scene, indicating a consistent reduction in the overall scene. While we can see some extreme values for tiny object scenes, it might be the small object around the window, and extreme depth represents the outside of the window view. It is not unavoidable for data construction and will not affect the overall quality.

1628

1629

1630



1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643 Figure B19: The distribution of the maximum
1644 depth value of our dataset. The maximum distance
1645 denotes the farthest point observed.

B.4.3 SUBSCENE TYPE DISTRIBUTION

1646

1647

1648

1649

1650

1651 While our dataset is largely derived from multiple existing sources, we perform a thorough analysis
1652 of its scene type diversity. As shown in Fig. B20, the dataset covers a broad range of real-world
1653 scenarios, enhancing its complexity and generalizability. To quantify this diversity, we utilize LLM
1654 for scene understanding, leveraging object-level annotations from the video data. However, certain
1655 subsets, such as partial tabletop scenes and most of the tiny tabletop data, are excluded from the
1656 analysis due to limited visual cues. As a result, these statistics primarily illustrate the dataset’s variety
1657 rather than providing an exact distribution for downstream tasks.

1658

1659

B.4.4 OBJECT SIZE DISTRIBUTION

1660

1661

1662

1663

1664

1665

1666 To enhance spatial understanding at design scales, we analyze the distribution of object sizes in
1667 the dataset. The results, shown in Fig. B21, reveal a relatively uniform distribution for objects
1668 smaller than 50m, while those exceeding 100m exhibit a certain tail distribution. This trend likely
1669 reflects real-world bias in object sizing, with high-rise buildings, common in urban environments,
1670 dominating the larger size categories. Consequently, the observed minor long-tail distribution aligns
1671 with real-world phenomena and is considered an acceptable characteristic of the dataset.

1672

1673

B.4.5 CAMERA TO OBJECT DISTRIBUTION

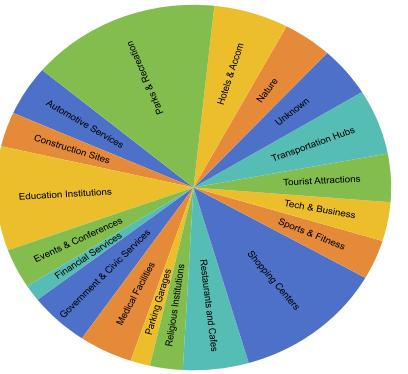
1674

1675

1676

1677

1678 To examine biases regarding camera positioning relative to the subject, we analyze the distance
1679 (depth) between the camera and the primary object, with the statistical results shown in Fig. B22. The
1680 distribution of object-camera distances follows a spindle-shaped pattern, with few instances where
1681 the object is positioned closer than 10 cm or farther than 500 m from the camera. This trend is largely
1682 influenced by the focusing limitations of most hardware, like lenses, which exhibit reduced sensitivity
1683 to objects at extreme distances. Notably, this distribution mirrors that of conventional optical devices
1684 in real-world settings and should not be interpreted as a dataset bias.



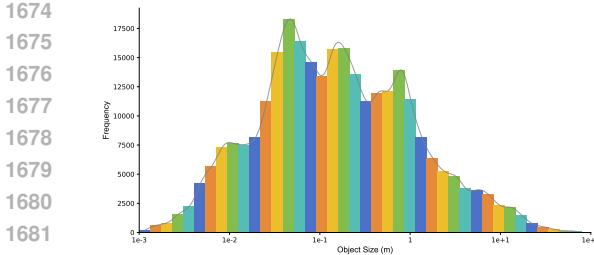


Figure B21: The distribution of the size of the existing objects.

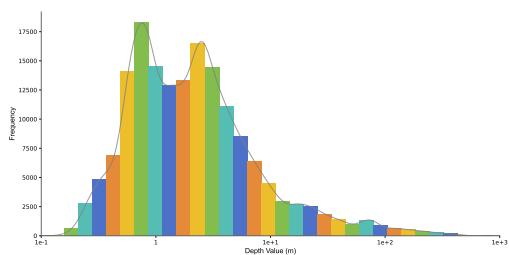


Figure B22: The distribution of the distance between the target object and the camera.

B.4.6 QA STATISTICS ACROSS SCENES

We also provide the overall statistics of SpaceVista-1M dataset in Tab. B9. The SpaceVista-1M dataset consists of approximately 1 million QA pairs, covering a wide range of tasks and scene types across all scales, from tiny tabletop objects to large-scale outdoor and drone-view scenarios, with scales ranging from 1 millimeter to 0.7 kilometers. Its diversity offers extensive challenges for model training and evaluation, enhancing the model’s adaptability and reasoning capabilities across different environments.

Table B9: Statistics of QA Pairs for different tasks in SpaceVista-1M.

Task Category Scale Distribution	Total 1mm-0.7km	Tiny Tabletop 2mm - 5cm	Tabletop 5cm-2m	Indoor 0.5m-20m	Wild Indoor 0.3m-50m	Outdoor 0.5m-500m	Drone-View 10m-0.7km
All Scenes	1,014K	79K	242K	162.5K	213.3K	284.3K	33.1K
<i>General Scenes Tasks</i>							
Position Comparison	70.5K	—	10K	22K	18K	20K	0.5K
Size Comparison	88K	—	8K	—	30K	40K	10K
Existence Estimation	82K	15K	25K	—	20K	20K	2K
Rotation Estimation	85.5K	18K	20K	—	22K	25K	0.5K
Relative Distance	81K	—	24K	11K	15K	30K	1K
Absolute Distance	99K	—	25K	26K	13K	34K	1K
Object Counting	21.3K	—	1K	11K	3.5K	5.5K	0.3K
Object Size	157K	15K	30K	33K	38K	34K	7K
Route Plan	2.5K	—	—	1K	1K	1K	0.5K
Appearance Order	27.3K	—	4K	15K	3K	4.5K	0.8K
Depth Estimation	102K	19K	32K	10K	15K	23K	3K
View Change Inference	51.7K	6K	27K	8K	4K	6.5K	0.2K
Object Matching	102K	3K	24K	12K	26K	32K	5K
Spatial Relation	19K	—	6K	—	4K	8K	1K
<i>Indoor Scenes Tasks</i>							
Room Size	15.3K	—	—	14.5K	0.8K	—	—
<i>Outdoor Scenes Tasks</i>							
Navigation	0.8K	—	—	—	—	0.8K	—
<i>Drone-View Scenes Tasks</i>							
Area Estimation	0.3K	—	—	—	—	—	0.3K
<i>Tabletop Scenes Tasks</i>							
Obstacles Location	3K	—	3K	—	—	—	—
Manipulation Planning	6K	3K	3K	—	—	—	—

B.4.7 DATA QUALITY CONTROL

During construction of our dataset, we distinguish between two notions of answer correctness: **1) strict correctness**, which requires that an answer conform to objective physical reality, and **2) perceptual correctness**, which requires that an answer align with typical human judgments. Since strict correctness is difficult to 1 for training data derived from in-the-wild videos (due to issues like missing calibration, occlusions, and limited metadata), we adopt the perceptual criterion. Specifically, during validation, we present annotators with both the question and a candidate answer and ask them to judge its acceptability. Consequently, the reported accuracy should be interpreted as agreement with human perception rather than strict fidelity to physical-world quantities or metric scale. For these statistics and the user study, we use MTurk³ for these statistics and the user study. Dataset tasks and corresponding human checking accuracies are shown in Fig. B10. It is important that perceptual

³<https://www.mturk.com/>

1728 correctness is only used in training data quality control, while model evaluation still follows strict
 1729 correctness.
 1730

1731 Table B10: Human checking accuracy over each task category. “~” means we observe unusual
 1732 variation for different annotators.
 1733

Task Categories					
Task	Position Comp.	Size Comp.	Existence Est.	Rotation Est.	Relative Dist.
Accuracy	95%	84%	94%	95%	82%
Task	Room Size	Object Count	Object Size	Route Plan	Appear. Order
Accuracy	84%	87%	81%	~65%	80%
Task	View Change	Object Match	Spatial Rel.	Navigation	Area Est.
Accuracy	96%	93%	95%	~63%	78%
Task	Manip. Plan	Absolute Dist.	Depth Est.	Obstacles	
Accuracy	73%	84%	95%	67%	

1747 B.4.8 LICENSE

1748 We conduct a systematic review of the open-source licenses for the datasets we use, with the results
 1749 summarized in Tab. B11. The analysis indicates that CC BY 4.0 and Apache License 2.0 are the most
 1750 widely adopted. After comprehensive consideration, our SpaceVista-1M dataset adopts the **Creative**
 1751 **Commons Attribution (CC BY) 4.0** or **Apache License 2.0** for different sources of data, which is
 1752 already used by most of the source data.
 1753

1754 Table B11: The licenses for the dataset and benchmark included in this paper.
 1755

Dataset	Type	License
<i>Benchmarks</i>		
VSI-Bench(Yang et al., 2025a)	Indoor	Apache License 2.0
STI-bench(Li et al., 2025e)	Indoor	Apache License 2.0
MMSI-Bench(Yang et al., 2025b)	Indoor	CC BY 4.0
STI-Bench(Li et al., 2025e)	Outdoor, Tabletop	Apache License 2.0
Spar-Bench(Zhang et al., 2025e)	Indoor	Apache License 2.0
SpaceVista-Bench (Ours)	Tiny, Tabletop, Indoor, Outdoor	Apache License License 2.0 & CC BY 4.0
<i>Training Datasets</i>		
uCO3D(Liu et al., 2025a)	Tiny, Tabletop	CC BY 4.0
SMOT(Park et al., 2020)	Tabletop	Unknown
WildRGBD(Xia et al., 2024)	Tabletop	None
SpaceR(Ouyang et al., 2025)	Indoor	CC BY-NC 4.0
Scannet Series(Yeshwanth et al., 2023)	Indoor	ScanNet Terms of Use
DL3DV(Ling et al., 2024)	Indoor, Outdoor, Drone	DL3DV-10K Terms of Use
SpaceVista-1M (Ours)	Tiny, Tabletop, Outdoor	Apache License License 2.0 & CC BY 4.0

1771 B.5 SUPPLEMENTARY CITATION

1772 Due to the page limit, we have omitted some citations in Tab. 1. Here, we provide a supplementary
 1773 table of citations.
 1774

1775 Table B12: Supplementary citation of Tab. 1
 1776

Dataset	Citation	Dataset	Citation
SpaceR	Ouyang et al. (2025)	All-Angles	Yeh et al. (2025)
SPAR-7M	Zhang et al. (2025e)	MV Bench	Li et al. (2024b)
Spatial-MLLM	Wu et al. (2025a)	VSI-Bench	Yang et al. (2025a)
InternSpatial	Deng et al. (2025b)	MMSI-Bench	Yang et al. (2025c)
Video-MME	Fu et al. (2024)	SPAR-Bench	Zhang et al. (2025e)
TempCompass	Liu et al. (2024b)	STI-Bench	Li et al. (2025e)

1782 **C MODEL DETAIL**
17831784 **C.1 PARAMETER SETTING**
1785

1786 **SFT.** The model architecture is based on Qwen2.5-VL-7B-Instruct, a 7-billion parameter vision-
1787 language model capable of processing both images (resized to 100,352 pixels) and videos (16,384
1788 pixels at 16/32 frames). In the ablation study, we use the 3B model for efficiency. For fine-tuning, we
1789 employ a selective freezing strategy: while the vision tower and multi-modal projector remain frozen
1790 to preserve pretrained visual representations, the language model is fully trainable. Training utilizes
1791 full parameter fine-tuning with a DeepSpeed⁴ ZeRO-2 configuration for memory optimization. The
1792 model is trained on our proposed dataset for spatial understanding in indoor environments, with
1793 samples truncated at 32,768 tokens. We implement a cosine learning rate schedule (initial LR=5e-7)
1794 with 10% warmup over 2 epochs. We maintain computational efficiency through mixed-precision
1795 bfloat16 training.

1796 **RL.** We conduct our experiments using the Qwen2.5-VL (Bai et al., 2025) on a custom spatial dataset.
1797 The training utilizes 7 GPUs with DeepSpeed acceleration and mixed-precision bf16 training with
1798 flash attention. Key hyperparameters include a batch size of 1 per device, gradient accumulation steps
1799 of 1, an initial learning rate of 1e-6 with cosine scheduling, and weight decay of 0.01. The model
1800 processes input sequences up to 16,384 tokens long while generating outputs up to 1,024 tokens.
1801 Training runs for 2 epochs with evaluation performed every 200 steps. For inference, we use vLLM
1802 on a separate GPU with temperature 1.0 and generate 8 samples per input.

1803 **Other Setting.** We set the number of experts M to 4 in most cases. We also add LoRA with the
1804 same default behavior as PEFT. Additionally, we apply expert scaling factors on a layer-wise basis
1805 rather than globally.

1806 **Ablation Setting.** Unless otherwise noted, we conduct all ablation experiments using the Qwen2.5-
1807 VL-3B model because of resource constraints; all other settings are identical to those described
1808 above.

1809 **C.2 PATCH LEVEL ENCODER ABLATION**
1810

1811 We evaluate several visual encoders with dense feature or geometry-aware representations, including
1812 VGGT-1B (Deng et al., 2025a)(the only publicly available model) and the generalDINOv3 ViT-
1813 Base, and perform ablations on the patch encoder. Tab. C13 reports the performance gains and
1814 computational costs associated with each model. Across encoders, DINOv3 achieves more favorable
1815 efficiency-accuracy trade-offs with a smaller parameter budget. We attribute this to its self-supervised
1816 pretraining, which is not constrained by labeled data and thus confers stronger generalization. In
1817 contrast, VGGT exhibits strong reconstruction capabilities but depends on annotations that lack rich
1818 semantic content and further relies on a large decoder to recover geometry. Consequently, compared
1819 to VGGT, DINOv3 features are more readily consumed by the fusion module, facilitating more
1820 effective mapping.

1821 Table C13: Ablation of the patch-level encoder across different sizes of models on the indoor set
1822 VSI-Bench based on the same SFT training settings.

1824 Model&Parameter	1825 Video-Only	1826 +VGGT	1827 +DINO v3	1828 +VGGT +DINO v3
1825 SpaceVista-3B (Ours)	41.9	43.3	43.5	43.3
1826 SpaceVista-3B (Ours) w/o. fusion module	-	42.0	44.8	44.7
1827 SpaceVista-7B (Ours)	45.0	45.7	46.3	46.0
1828 Extra Parameter	0	909M	303M	1,320M

1830
1831 **C.3 LoRA LIKE EXPERT ABLATION**
1832

1833 On top of the same 3B pretrained base model, we compare three training strategies: **1) Full-**
1834 **parameter Fine-tuning, 2) Vanilla LoRA, and 3) LoRA-like Expert**, with the results shown

1835 ⁴<https://github.com/deepspeedai/DeepSpeed>

1836
1837
1838 Table C14: Ablation of the LoRA-like expert in the SFT training stage.
1839
1840
1841
1842

Model	Benchmark	w/. Full-parameter Fine-tuning	w/. Vanilla LoRA Fine-tuning	w/. LoRA-like Expert (model-wise)	w/. LoRA-like Expert (layer-wise)
SpaceVista-3B	VSI-Bench	43.5	42.9	43.9	45.3
	SpaceVista-Bench	29.5	29.4	32.5	33.0
Trainable Parameters		3B	20M	80M+30M	80M+34M

1843
1844 in Fig. C14. We observe that vanilla SFT-based fine-tuning still suffers from latent cross-scale
1845 information conflicts. The difference between model-wise and layer-wise is that, for each input,
1846 the router is calculated and implemented to the whole model or to separate layers, respectively. In
1847 contrast, the model-wise LoRA-like Expert yields clear gains over both full-parameter fine-tuning
1848 and vanilla LoRA. Furthermore, scaling to a higher-capacity, layer-wise LoRA-like Expert delivers
1849 additional improvements.

1850
1851

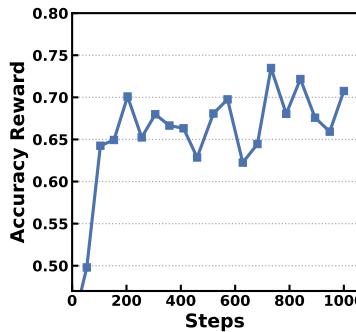
D OBSERVATION RESULTS

18521853

D.1 GRPO REWARD OBSERVATION

1854

1855 During reinforcement learning training, we observe a relatively stable increase in reward without
1856 evidence of reward hacking, as shown in Fig. D23. In most settings, the reward reliably converges
1857 within a few thousand environment steps, after which further training yields minimal additional
1858 improvements. This suggests that the learning dynamics are well-behaved under our setup and that
1859 extending training beyond the convergence point offers limited marginal benefit. Additionally, this
1860 may be also treated as the curve of data amount and its performance during post training.

1872
1873 Figure D23: Visualization of GRPO updated and normalized correctness reward chart. This figure
1874 visualizes how the reward grows during the RL training stage.
1875
18761877

D.2 EXPERT OBSERVATION

1878

1879 We select 10 samples from tiny and indoor scenes and visualize the expert scale distribution in
1880 Fig. D24. As shown, inputs from each scene type tend to activate the expert specialized for that
1881 scene. This demonstrates the model’s ability to distinguish scene-specific characteristics and allocate
1882 resources accordingly. By activating the most relevant expert, the model ensures efficient processing
1883 and enhanced performance in scene-specific tasks, highlighting its ability to focus on distinct features
1884 and patterns within each scene.

1885

D.3 REASONING VS MEMORIZING (OUT-OF-DISTRIBUTION PROBLEM)

1886

1887 In our experiments, we observe that models often exhibit a strong bias toward memorizing fixed sizes
1888 for certain objects—for instance, chairs are typically assumed to be 50-70 cm tall. Consequently, the
1889 network tends to rely on memorized size priors rather than reasoning about object scale. However,
this phenomenon presents a dual nature. On one hand, human perception of size and scale also

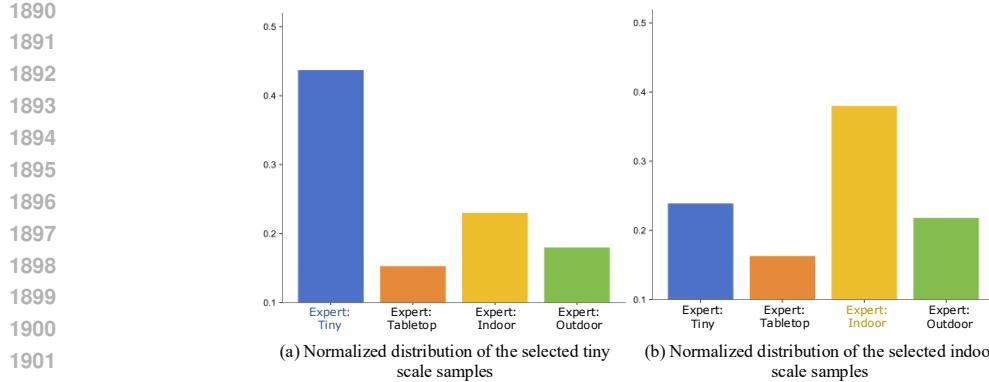


Figure D24: Visualization of the normalized scale of each expert with different selected samples. It reflects the model’s capacity to allocate resources according to the inherent properties of each scene.

depends on reference objects and familiar benchmarks, which are essential for intuitive understanding. On the other hand, since real-world spatial relationships can vary significantly, such biases may lead to erroneous judgments in atypical cases.

We argue there is two types of Out-of-Distribution (OOD) that should be discussed separately. 1) **OOD category with normal size** 2) **normal category with OOD size**.

For **OOD category with normal size**, to systematically evaluate the impact of this bias and its potential implications for advancing the field, we design three specialized subsets at the same scale:

- **Seen Set:** Common object categories from the training distribution (i.e., bicycle, table, chair).
- **Seen Set with Various Scales:** Objects of the same category (i.e., different sizes and shapes of screw).
- **Unseen Set:** Rare or culturally specific objects requiring contextual size reasoning (i.e., ethnic items with regional characteristics, such as a traditional food).

The Seen Set provides baseline performance metrics for familiar objects but may overlook biases due to training conformity. The Seen Set with scale variety directly probes size generalization for known categories, but it is limited to variations within seen objects. The Unseen Set evaluates robustness to novel, culturally diverse scenarios but risks introducing confounders beyond scale bias. Collectively, these subsets balance ecological validity with experimental control, offering a comprehensive framework to diagnose size-related biases. This structured approach enables us to analyze how size biases manifest under different conditions, combining ecological validity with controlled experimentation. As shown in Fig. D15, all-scale training benefits the overall reasoning model; however, the general models still tend to memorize the regular size of the target object.

Table D15: Reasoning VS memorizing analysis of different subsets.

Model	Seen Set	Seen Set	Unseen Set
	(Normal)	(Various Scales)	
Qwen2.5-VL-3B-Instruct	35.7	34.7	23.1
Qwen2.5-VL-7B-Instruct	37.0	38.9	28.0
SpaceVista-7B (Ours)	37.3	41.0	32.8

For **normal category with OOD size**, we need to develop a dataset with precise annotation. The Guinness World Records (GWR) is a globally recognized organization⁵ that catalogs uncommon objects and forms. We obtain precise size measurements along with the corresponding images/videos, and construct a series of QA pairs about object sizes as shown in Fig. D25. The GWR data comprises diverse scenes, including outdoor, indoor, and drone, with over 50 images and over 50 questions.

⁵<https://www.guinnessworldrecords.com/records/showcase>

Table D16: Performance comparison across GWR dataset.

Size-Related QA	Qwen2.5VL-7B	Qwen2.5VL-3B	SpaceVista-7B	SpaceVista-3B
SpaceVista-Bench	49.9	44.0	58.3	49.3
GWR set	27.8	23.1	31.1	27.3

Figure D25: The Guinness World Records (GWR) is a globally recognized organization that catalogs uncommon objects and forms. We scraped precise size measurements along with the corresponding images/videos, and constructed a series of QA pairs about object sizes.

As shown in Table D16, we evaluate the popular Qwen2.5-VL model and our SpaceVista-7B model. Because the GWR data contain only size-related questions, we select the size-related subset of SpaceVista-Bench to ensure a fair comparison. We find that these OOD data are challenging for both the general-purpose model and our specialist model. However, the OOD challenge does not produce a clear performance gap between Qwen2.5-VL and SpaceVista. Although our model is not designed for purely image-based tasks, this potential bias suggests a promising direction for future work in VLLMs.

Our analysis of potential bias has two parts:

1. **Depth Knowledge.** Current metric depth models estimate distance primarily based on accurate camera parameters, such as focal length. These parameters vary across different scales, which is why our model performs slightly better than a general model.
2. **Scale Prior.** Human distance estimation also strongly relies on reference objects (i.e., scale priors in question). When these references are unusual, humans also unavoidably exhibit bias. Thus, scale priors are a double-edged sword and cannot be simply described as good or bad.

D.4 DETAILED ANALYSIS ON EACH BENCHMARK

We conduct a comprehensive evaluation of SpaceVista-7B across multiple benchmarks, including STI-Bench (Li et al., 2025e), SPAR-Bench (Zhang et al., 2025e), MMSI-Bench (Yang et al., 2025b) and VSI-Bench (Yang et al., 2025a). In this section, we analyze SpaceVista-7B’s performance on each benchmark and compare it to other state-of-the-art models. The results from these benchmarks provide a thorough assessment of SpaceVista-7B’s spatial reasoning capabilities, highlighting its versatility and adaptability across diverse tasks.

1998 Table D17: Performance comparison of our SpaceVista-7B and other baselines on STI-Bench. We use
1999 **bold** and underlined text for the top two within open-source categories, while ranks are computed
2000 across all model categories. In Static Understanding, “Dim. Meas.” refers to Dimensional Measure-
2001 ment. In Dynamic Understanding, “Disp. & P.L.”, “Speed & Acc.”, “Ego Orient.”, “Traj. Desc.”,
2002 and “Pose Est.” represent Displacement and Path Length, Speed and Acceleration, Ego-Centric
2003 Orientation, Trajectory Description, and Pose Estimation, respectively. This table includes only
2004 the popular model for which the detailed scores are available. For average-score comparisons, see
2005 Table 2.

2006	Model/Method	Rank	Avg.	Static Understanding			Dynamic Understanding					
				Dim. Meas.	Spatial Relation	3D Video Grounding	Disp. & P.L.	Speed & Acc.	Ego Orient.	Traj. Desc.	Pose Est.	
				Closed-source Models								
2010	GPT-4o (Hurst et al., 2024)	8	34.8	27.1	51.8	29.0	23.2	35.4	33.7	32.0	53.6	
2011	Gemini-2.0-Flash (Deepmind, 2024)	3	38.7	31.9	50.0	31.8	27.7	32.1	10.8	38.5	61.3	
2012	Claude-3.7-Sonnet (Anthropic, 2025a)	2	40.5	29.8	45.5	35.7	28.9	38.8	40.0	47.4	62.6	
	Gemini-2.5-Pro (DeepMind, 2025)	1	41.4	38.7	53.8	36.9	33.9	33.1	52.5	47.4	50.4	
2013	Open-source Models											
2014	VideoLLaMA3-7B (Zhang et al., 2025a)	7	35.2	29.4	48.6	<u>36.1</u>	21.5	36.7	23.2	54.6	48.1	
2015	MiniCPM-V-2.6 (Yao et al., 2024)	10	26.9	27.7	44.5	<u>29.0</u>	19.0	25.7	7.0	30.8	35.6	
2016	VideoChat-R1 (Li et al., 2025d)	9	32.8	23.2	47.3	<u>31.5</u>	22.4	31.1	26.0	47.9	48.3	
2017	InternVL2.5-78B (Chen et al., 2024e)	4	38.5	29.9	52.8	31.6	<u>24.9</u>	<u>37.2</u>	49.2	43.6	53.6	
	VideoChat-Flash (Li et al., 2024c)	6	36.3	33.6	<u>51.4</u>	33.1	27.1	32.3	22.2	<u>54.2</u>	<u>51.4</u>	
	SpaceVista-7B (Ours)	5	38.2	<u>33.1</u>	47.2	37.6	23.6	37.3	<u>39.6</u>	43.1	51.2	

2019 Table D18: Performance comparison of our SpaceVista-7B and other baselines on SPAR-Bench. We
2020 use **bold** and underlined text for the top two within open-source categories, while ranks are computed
2021 across all model categories. OO, OC, and MV refer to object-object, object-camera, and multi-view,
2022 respectively. This table includes only the popular model for which the detailed scores are available.
2023 For average-score comparisons, see Table 2.

2024	Model/Method	Rank	Avg.	<i>Low</i>	<i>DynOO</i>	<i>DynPcOO-Mv</i>	<i>DynMvOO</i>	<i>DynPcMvOO-Mv</i>	<i>DynCOC</i>	<i>DynCOC-Mv</i>	<i>DynCOC-Mv</i>	Medium															
				<i>PostMatch</i>	<i>CanRecon</i>	<i>ViscObjf</i>	<i>High</i>	<i>DynOO</i>	<i>DynOO-Mv</i>	<i>ObjReOC-Mv</i>	<i>ObjReOC-Av</i>	<i>SynMg-OC-Mv</i>															
				Baseline																							
2027	Chance Level (Random)	-	-	-	-	-	-	-	-	22.65	24.50	-	25.09	23.82	22.02	31.25	25.27	22.16	25.81	24.42	24.17	26.89					
2028	Chance Level (Frequency)	5	32.74	31.19	43.09	<u>43.51</u>	17.38	13.05	41.90	30.99	27.40	32.17	38.25	29.01	26.75	59.00	32.29	52.94	50.60	28.25	26.92	26.59	26.34	26.74	26.49	25.77	
2029	SPAR-Bench(full)																										
2030	InternVL2-2B (Chen et al., 2024)	12	28.06	21.74	18.06	24.81	23.20	20.97	19.47	19.95	26.83	20.61	22.83	39.69	23.00	5.81	35.42	51.18	55.95	46.00	31.59	23.82	36.02	34.30	17.55	22.41	
2031	InternVL2-4B (Chen et al., 2024)	6	32.01	28.94	23.94	27.22	20.00	18.12	42.57	40.16	<u>31.28</u>	28.18	29.16	49.87	21.00	16.62	35.70	56.74	55.36	40.25	36.81	25.21	28.76	32.27	21.19	24.65	
2032	InternVL2-4B (Chen et al., 2024e)	4	33.02	26.83	25.75	30.88	20.76	<u>20.78</u>	39.00	36.19	19.15	22.19	36.49	63.36	28.00	18.11	37.37	64.77	54.46	42.75	37.36	26.32	34.14	31.10	20.84	24.65	
2033	InternVL2.5-4B (Chen et al., 2024e)	10	30.14	25.79	39.67	37.92	12.17	12.12	15.03	30.99	29.59	20.22	19.02	22.93	37.91	24.25	6.64	34.61	51.47	56.85	50.25	33.79	24.10	27.15	35.17	26.49	22.41
2034	InternVL2.5-8B (Chen et al., 2024e)	9	30.55	25.66	29.06	32.97	21.77	16.83	20.84	26.85	28.13	28.79	29.75	47.07	<u>33.25</u>	8.92	35.16	54.12	<u>58.93</u>	35.50	29.67	34.63	24.73	31.39	19.21	28.29	
2035	InternVL2.5-8B (Chen et al., 2024e)	2	36.28	29.46	25.78	29.31	<u>23.79</u>	18.76	46.82	42.68	22.62	25.89	31.88	61.32	28.00	6.32	<u>43.80</u>	59.71	56.85	<u>51.75</u>	44.23	41.55	36.56	41.57	22.52	<u>39.50</u>	
2036	LLaVA-Onevision-0.5B (Li et al., 2024a)	11	29.48	<u>30.14</u>	49.22	<u>42.72</u>	18.04	14.92	31.48	25.67	28.98	<u>30.10</u>	15.89	24.43	21.75	1.50	30.42	50.88	50.00	32.00	27.75	26.04	30.91	34.01	24.50	24.65	
2037	LLaVA-Onevision-0.5B (Li et al., 2024a)	7	31.20	21.79	30.33	26.94	18.58	13.87	10.45	13.64	31.24	29.29	26.13	38.68	30.25	9.47	40.14	56.47	55.06	37.25	48.63	38.23	30.38	33.72	26.49	35.01	
2038	Qwen2-VL-2B (Wang et al., 2024b)	13	24.60	19.44	38.03	40.63	18.84	14.09	7.81	7.07	17.88	11.14	27.55	26.21	24.55	31.20	28.28	51.42	49.11	21.75	25.27	12.47	23.92	27.62	24.83	14.85	
2039	Qwen2-VL-7B (Wang et al., 2024b)	8	30.74	27.58	35.97	35.22	20.83	12.88	28.86	28.45	20.44	37.35	20.25	5.69	37.03	59.71	52.38	30.25	38.46	<u>41.00</u>	22.04	28.49	22.52	38.38			
2040	Qwen2.5-VL-7B (Bai et al., 2025)	3	33.07	28.75	31.33	33.66	21.99	14.47	42.88	37.73	23.83	23.64	22.97	33.33	28.75	6.83	40.07	58.24	51.49	44.75	50.00	32.13	33.87	32.85	27.15	31.93	
2041	LLaVA-1.5-7b (Liu et al., 2023a)	14	23.65	10.85	5.17	12.53	17.37	11.34	7.25	5.26	18.73	9.12	26.50	24.43	26.75	<u>28.31</u>	34.09	51.18	52.38	34.25	24.18	26.87	34.68	29.94	22.52	30.81	
2042	LLaVA-1.6-7b (Liu et al., 2023a)	15	13.21	8.53	12.14	0.00	20.35	0.27	10.76	0.41	24.27	0.00	4.79	6.62	7.75	0.00	20.18	51.76	7.74	6.25	32.14	6.37	39.52	10.47	21.52	5.88	
2043	SpaceVista-7B (Ours)	1	41.68	42.51	57.78	51.94	24.44	20.22	57.02	51.12	42.62	34.98	<u>36.02</u>	31.04	41.00	0.00	46.82	66.76	63.10	56.5	50.00	41.55	<u>37.10</u>	<u>37.21</u>	27.15	42.02	

On **STI-Bench**, SpaceVista-7B ranks fifth overall and exhibits strong performance on 3D video grounding as well as speed and acceleration estimation. It achieves 37.6% on 3D video grounding and 37.3% on speed-related tasks. Gemini-2.5-Pro (DeepMind, 2025) attains the highest average score of 41.4%, followed by Claude-3.7-Sonnet (Anthropic, 2025a). In contrast, Ego-Centric Orientation, Trajectory Description, and Displacement and Path Length remain highly challenging, as they require accurate modeling of egocentric camera motion, long-range temporal integration, and stable 3D reasoning under viewpoint changes and occlusions. Dynamic, long-term spatiotemporal reasoning remains a challenge for current vision-language models. The evaluation results are presented in Tab. D17.

SpaceVista-7B attains the highest overall performance among all compared models on **SPAR-Bench**, with an average accuracy of 41.68% and rank 1. SPAR-Bench evaluates spatial compositional reasoning over object-object(OO), object-camera(OC), and multi-view(MV) relations under low, medium, and high difficulty settings. Across all difficulty levels, SpaceVista-7B consistently ranks within the top two, and on the most challenging OC and MV subsets it reaches up to 66.76%, indicating robust modeling of complex object-camera relations under large viewpoint changes, as summarized in Tab. D18. Meanwhile, most OO subsets remain highly challenging for all models,

and reasoning about fine-grained multi-object spatial relations in heavily occluded scenes with subtle depth and ordering differences is still problematic.

On **MMSI-Bench**, SpaceVista-7B achieves an average accuracy of 30.7% and ranks fifth overall, representing the strongest performance among all open-source models. It performs particularly well on positional-relationship tasks, such as camera–object reasoning with 45.3%, and maintains competitive results on attribute and motion categories, as summarized in Tab. D19, indicating a reasonably balanced multi-dimensional spatial understanding. Nevertheless, all models, including SpaceVista-7B, remain far below the human upper bound of 97.0%, and sub-tasks involving camera motion and the composite MSR metric are still notably difficult.

Finally, in the **VSI-Bench** evaluation, SpaceVista-7B outperforms all other models, excelling in object counting, appearance sequencing, and absolute distance tasks, achieving 62.9% in object counting and 36.0% in absolute distance, surpassing several open-source models, including LLaVA-Video-72B (Zhang et al., 2024c) and LLaVA-OneVision-72B (Li et al., 2024a). The results of this evaluation are shown in Tab. D20.

Table D19: Performance Comparison of our SpaceVista-7M and other baselines on MMSI-Bench. We use **bold** and underlined text for the top two within open-source categories, while ranks are computed across all model categories. Cam., Obj., Reg., Meas., and Appr. denote Camera, Object, Region, Measurement, and Appearance, respectively. This table includes only the popular model for which the detailed scores are available. For average-score comparisons, see Table 2.

Model/Method	Rank	Avg.	Positional Relationship						Attribute		Motion		MSR
			Cam.-Cam.	Obj.-Obj.	Reg.-Reg.	Cam.-Obj.	Obj.-Reg.	Cam.-Reg.	Meas.	Appr.	Cam.	Obj.	-
<i>Baseline</i>													
Blind GPT-4o	32	22.7	20.2	17.0	29.6	13.9	29.4	19.2	21.8	12.1	20.2	29.0	20.2
Random Guessing	29	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0
Human Level	1	97.2	95.7	98.9	97.5	94.2	98.8	96.4	95.3	98.5	98.6	98.7	97.0
<i>Closed-source Models</i>													
o3 (OpenAI, 2025b)	2	41.0	45.2	39.4	37.0	44.2	47.1	62.6	54.7	28.8	31.1	32.9	34.9
GPT-4.5 (OpenAI, 2025a)	3	40.3	34.4	29.8	39.5	51.2	47.1	55.4	39.1	33.3	41.9	40.8	36.4
GPT-4o (Hurst et al., 2024)	7	30.3	34.4	24.5	23.5	19.8	37.6	27.7	32.8	31.8	35.1	36.8	30.8
Gemini-2.5-Pro (DeepMind, 2025)	4	36.9	39.7	31.9	39.5	45.3	35.2	43.3	51.5	21.2	36.4	30.2	34.3
Claude-3.7-Sonnet (Anthropic, 2025a)	10	28.7	32.3	26.6	22.2	34.9	37.6	42.2	25.0	22.7	21.6	32.9	22.7
Seed1.5-VL (Guo et al., 2025b)	8	29.7	32.2	30.8	25.9	23.2	38.8	32.5	39.0	21.2	36.4	25.0	26.2
<i>Open-source Models</i>													
InternVL3-78B (Zhu et al., 2025)	12	28.5	34.4	23.4	32.1	12.8	37.6	26.5	37.5	19.7	28.4	31.6	29.3
InternVL2.5-78B (Chen et al., 2024e)	12	28.5	23.7	22.3	39.5	29.1	31.8	42.2	35.9	19.7	17.6	26.3	27.3
Qwen2.5-VL-72B (Bai et al., 2025)	5	30.7	25.8	34.0	34.6	23.3	34.1	36.1	45.3	27.3	27.0	30.3	27.3
LLaVA-OneVision-72B (Li et al., 2024a)	13	28.4	43.0	31.9	33.3	30.2	37.6	38.6	28.1	19.7	13.5	32.9	15.7
InternVL3-38B (Zhu et al., 2025)	23	26.3	21.5	20.2	33.3	23.3	35.3	25.3	39.1	21.2	16.2	31.6	25.8
InternVL2.5-38B (Chen et al., 2024e)	16	27.9	18.3	22.3	35.8	22.1	38.8	34.9	37.5	25.8	14.9	38.2	25.3
Qwen2.5-VL-32B (Bai et al., 2025)	17	27.7	24.7	26.6	29.6	22.1	32.9	31.3	31.2	24.2	18.9	35.5	27.8
InternVL2.5-26B (Chen et al., 2024e)	15	28.0	24.7	19.1	29.6	33.7	31.8	37.3	35.9	30.3	10.8	31.6	26.8
NVILA-15B (Liu et al., 2024c)	6	30.5	30.1	39.4	28.4	36.0	38.8	20.5	29.7	31.8	18.9	35.5	27.8
InternVL3-14B (Zhu et al., 2025)	20	26.8	19.4	24.5	24.7	23.3	37.6	24.1	31.2	22.7	24.3	31.6	29.3
Llama-3.2-11B-Vision (Grattafiori et al., 2024)	27	25.4	25.8	30.8	32.0	25.6	21.2	25.9	20.3	19.7	25.6	28.9	19.2
InternVL3-9B (Zhu et al., 2025)	21	26.7	18.3	25.5	32.1	29.1	31.8	22.9	29.7	24.2	16.2	38.2	26.8
InternVL3-8B (Zhu et al., 2025)	26	25.7	25.8	31.9	37.0	25.6	35.3	28.9	23.4	24.2	16.2	32.9	14.6
InternVL2.5-8B (Chen et al., 2024e)	10	28.7	32.3	27.7	29.6	32.6	24.7	32.5	26.6	27.3	16.2	31.6	30.3
NVILA-8B (Liu et al., 2024c)	14	28.1	17.2	29.8	24.7	30.2	22.4	34.9	34.4	25.8	25.7	34.2	29.8
Qwen2.5-VL-7B (Bai et al., 2025)	25	25.9	24.7	24.5	24.7	25.6	29.4	26.5	25.0	18.2	20.3	39.5	25.8
LLaVA-OneVision-7B (Li et al., 2024a)	30	24.5	20.4	33.0	29.6	29.1	25.9	30.1	29.7	25.8	18.9	34.2	11.6
InternVL2.5-4B (Chen et al., 2024e)	23	26.3	31.2	23.4	21.0	31.4	34.1	25.3	23.4	24.2	13.5	31.6	36.8
Qwen2.5-VL-3B (Bai et al., 2025)	22	26.5	26.9	27.7	30.9	29.1	28.2	34.9	31.2	16.7	17.6	27.6	23.2
InternVL3-2B (Zhu et al., 2025)	28	25.3	26.9	25.5	29.6	31.4	28.2	27.7	26.6	22.7	12.2	23.7	23.7
InternVL2.5-2B (Chen et al., 2024e)	9	29.0	28.0	27.7	24.7	37.2	29.4	36.1	43.8	15.2	21.6	31.6	26.8
InternVL3-1B (Zhu et al., 2025)	19	27.0	24.7	35.1	22.2	30.2	29.4	30.1	32.8	28.8	17.6	19.7	26.3
InternVL2.5-1B (Chen et al., 2024e)	24	26.1	23.7	26.6	24.7	25.6	31.8	25.3	31.2	30.3	17.6	25.0	26.3
DeepSeek-VL2 (Wu et al., 2024b)	18	27.1	23.7	31.9	22.2	36.0	30.6	22.9	28.1	15.2	28.4	26.3	28.3
DeepSeek-VL2-Small (Wu et al., 2024b)	11	28.6	24.7	28.7	18.5	33.7	38.8	27.7	28.1	33.3	24.3	25.0	29.8
DeepSeek-VL2-Tiny (Wu et al., 2024b)	31	24.0	29.0	27.7	21.0	23.3	17.6	31.3	14.1	24.2	14.9	25.0	27.3
SpaceVista-7B (Ours)	5	30.7	26.9	23.2	30.9	45.3	27.1	36.1	34.4	26.7	23.3	35.5	25.8

In general, breakthroughs in specialized domains tend to lead to a decline in general VLM capabilities. This phenomenon has been widely explored in mathematical reasoning, code reasoning, and spatial reasoning. To analyze general ability, we evaluate the performance of SpaceVista-7B on the widely accepted video benchmark Video-MME (Fu et al., 2025). Video-MME is a full-spectrum, multi-modal benchmark of MLLMs in general video analysis. The comparison is shown as Tab. D21.

Table D20: Performance comparison of our SpaceVista-7B and other baselines on VSI-Bench. We use **bold** and underlined text for the top two within open-source categories, while ranks are computed across all model categories. This table includes only the popular model for which the detailed scores are available. For average-score comparisons, see Table 2.

Model / Method	Rank	Avg.	Obj Appearance Order	Object Abs Distance	Object Counting	Object Rel Distance	Object Size Estimation	Room Size Estimation	Route Planning	Object Rel Direction
Proprietary Models(API)										
GPT-4o(Hurst et al., 2024)	10	34.0	28.5	5.3	46.2	37.0	43.8	38.2	31.5	41.3
Gemini-1.5 Flash (API)(Team et al., 2024)	3	42.1	37.8	30.8	49.8	37.7	53.5	54.4	31.5	41.0
Gemini-1.5 Pro (API)Team et al. (2024)	2	45.4	34.6	30.9	56.2	51.3	64.1	43.6	36.0	46.3
Open-source Models										
InternVL2-2B(Chen et al., 2024f)	16	26.5	6.3	24.0	25.7	32.1	20.0	29.2	30.4	44.1
InternVL2-8B(Chen et al., 2024f)	6	37.5	46.4	<u>29.0</u>	31.3	38.0	48.9	44.2	28.9	33.4
InternVL2-40B(Chen et al., 2024f)	7	37.0	44.7	26.2	41.3	47.6	48.2	27.5	27.8	32.7
LongVILA-8B(Chen et al., 2024d)	17	21.6	25.5	9.1	29.1	29.6	16.7	0.0	32.5	30.7
VILA-1.5-8B(Lin et al., 2023)	14	28.9	24.8	21.8	17.4	32.1	50.3	18.8	31.0	34.8
VILA-1.5-40B(Lin et al., 2023)	12	31.2	32.9	24.8	22.4	40.5	48.7	22.7	31.5	25.7
LongVA-7B(Zhang et al., 2024a)	13	29.2	15.7	16.6	38.0	33.1	38.9	22.2	25.4	43.3
LLaVA-Video-7B(Zhang et al., 2024c)	8	35.6	30.6	14.0	48.5	43.5	47.8	24.2	34.0	42.4
LLaVA-Video-72B(Zhang et al., 2024c)	4	40.9	<u>48.6</u>	22.8	<u>48.9</u>	42.4	57.4	35.3	<u>35.0</u>	36.7
LLaVA-NeXT-Video-7B(Zhang et al., 2024b)	8	35.6	30.6	14.0	48.5	43.5	47.8	24.2	34.0	42.4
LLaVA-NeXT-Video-72B(Zhang et al., 2024b)	4	40.9	<u>48.6</u>	22.8	<u>48.9</u>	42.4	57.4	35.3	<u>35.0</u>	36.7
LLaVA-OneVision-0.5B(Li et al., 2024a)	15	28.0	5.8	28.4	46.1	28.3	15.4	28.3	34.5	36.9
LLaVA-OneVision-7B(Li et al., 2024a)	11	32.4	24.4	20.2	47.7	42.5	47.4	12.3	29.4	35.2
LLaVA-OneVision-72B(Li et al., 2024a)	5	40.2	44.6	23.9	43.5	42.5	<u>57.6</u>	37.5	32.5	39.9
Qwen2.5-VL-7B (Bai et al., 2025)	9	34.4	32.7	17.5	34.0	35.8	51.9	36.6	29.4	37.7
SpaceVista-7B (Ours)	1	48.6	56.3	36.0	62.9	44.2	58.1	42.0	38.9	49.7

Table D21: General ability on popular video benchmark Video-MME

Model	Video-MME
VideoLLaMA2	47.9
LLaVA-OneVision-7B	58.2
Qwen2.5VL-7B	63.8
InternVL3-8B	65.3
VG-LLM-8B (Spatial Model)	59.3
Qwen2.5VL-7B (w/. 1/5 SpaceVista-1M)	59.1
SpaceVista-7B (Spatial Model)	59.6

Therefore, we consider our SpaceVista general ability comparable, and also don't believe it has "lost" general ability or merely follows a preset spatial template. It is still undeniable that specialist models are inspiring for future explorations of general MLLMs.

D.5 THE HARDEST SCENE

Table D22: Results analysis of different scenes. The model mentioned below is trained in a balanced subset of SpaceVista-1M for better control of experiment conditions.

Model	SpaceVista-Bench (Ours)			
	Indoor	Outdoor	Tabletop	Tabletop
Qwen2.5-VL-7B	30.34	18.31	23.79	19.37
w/. balance training	38.77	24.90	30.17	20.86

When testing scenes at varying scales, several critical questions arise: Which scenarios pose greater challenges, and to what extent is data complexity the primary bottleneck? To systematically investigate these issues, we design a controlled observational experiment.

We identify tasks that exhibit consistent properties across different scales, including object size, object comparison, absolute and relative distance, and depth estimation. For fairness in comparison, we train models using videos from diverse scenes while maintaining similar quantities of QA pairs and video samples. Under these controlled conditions, we evaluate and compared performance across different scale-dependent scenarios. In Tab.D22, it seems indoor data is the easiest task. We hypothesize that a human-scale estimation bias—arising because both humans and GPT focus on objects expressible in basic units like meters in pretraining corpora—leads to this preference.

D.6 WHY 2.5D>3D

Table D23: Comparison of the robustness of the model training of 3D and 2.5D. All the models are trained on 3D or 2.5D data along with the video. However, we vary the evaluation input of these models to see the robustness. “—” denotes experiments we consider unnecessary. “low” means using low resolution visual for 3D reconstruction. This table includes only the popular model for which a detailed score is available. For average-score comparisons, see Table 2. “(*n%*)” means the relative decrease compared to the original input.

Settings	Eval Input	VSI-bench	SpaceVista-Bench
Training with <i>w/. 3D</i>	visual <i>w/. 3D</i>	44.3	31.4
	visual <i>w/. 3D (low)</i>	38.1 (-14%)	—
	visual <i>w/o. 3D</i>	34.0 (-23%)	—
Training with <i>w/. 2.5D</i>	visual <i>w/. 2.5D</i>	45.6	33.0
	visual <i>w/. 2.5D (low)</i>	43.9 (-4%)	32.3 (-2%)
	visual <i>w/o. 2.5D</i>	40.7 (-10%)	29.1(-12%)

In addition to introducing VGGT(Wang et al., 2025a) and DINO v3(Siméoni et al., 2025) as extra signals, we conduct a series of targeted ablation studies. This suggests that representation formats like VGGT, when used in their native encoder output, are wonderful for capturing geometry information, but suboptimal for capturing semantic information or overall scenes, especially for low resolution and uncommon scenarios. In Tab.D23, we use “3D” to denote the pure geometric features from VGGT, and “2.5D” to denote the additional 12 viewing angles of the overall scene rendered by the decoder and the renderer. We use the special prompt and the image token to provide

As shown in Tab.D23, 2.5D is usually more robust in spatial reasoning. Rendering to 2.5D enables effective exploitation of pretrained image tokenizers, which in turn provides more reliable semantic information.

Below is the special prompt for 2.5D finetuning.

“Please think about this question as if you were a human pondering deeply. Consider detailed information from the video frames and coarse spatial information from the 3D point cloud image. Provide the model’s thought process and reasoning between the <think> </think> tags, and give your final answer between the <answer> </answer> tags. <video> The images below are obtained from the 3D point clouds based on the video frames above. The following point cloud images are randomly selected viewpoints; some may be completely unhelpful, while others may contain important information. Please discern carefully. <image> Provide your reasoning between the <think> </think> tags and your final answer between the <answer> </answer> tags.”

D.7 SCALING-UP ANALYSIS

We investigate prospective scaling behavior across three model sizes—3B, 7B, and 32B—to inform future model development. Our analysis is conducted using the same SpaceVista-1M dataset while holding all model settings nearly constant. However, there is a minor difference between different scale models. We use LoRA rather than full scale to finetune 32B model. Since using more experts will inevitably increase the inference time, we use fewer experts as the scale increases. However, we still hold the strong belief that it does not affect the overall scaling exploration of our SpaceVista-1M data and model.

2214 Table D24: Scaling model with SpaceVista-1M. “Qwen2.5-VL-*B” indicates that the SFT model
 2215 used for evaluation is trained on the corresponding base model.

Foundation Model	Qwen2.5-VL-3B	Qwen2.5-VL-7B	Qwen2.5-VL-32B
VSI-Bench	43.5	46.3	49.0
SpaceVista-Bench	29.5	34.5	36.3

220
 221 Table D25: The release time and model source of LLMs used

Model	Release Time	Source
GPT-5(OpenAI, 2025)	2025-08	https://openai.com/gpt-5/
GPT-4o(Hurst et al., 2024)	2024-05	https://gpt4o.ai/
Claude-Opus-4.1(Anthropic, 2025c)	2025-08	https://www.anthropic.com/news/clause-opus-4-1
Claude-Sonnet-4(Anthropic, 2025b)	2025-05	https://www.anthropic.com/clause/sonnet
Gemini-2.5-Pro(DeepMind, 2025)	2025-06	https://deepmind.google/technologies/gemini/pro/
Gemini-2.5-Flash(DeepMind, 2025)	2025-06	https://deepmind.google/models/gemini/flash/
Internvl3.5-38B (Wang et al., 2025c)	2025-08	https://huggingface.co/OpenGVLab/InternVL3_5-38B-Instruct
Internvl3.5-14B (Wang et al., 2025c)	2025-08	https://huggingface.co/OpenGVLab/InternVL3_5-14B-Instruct
Internvl3-78B (Zhu et al., 2025)	2025-04	https://huggingface.co/OpenGVLab/InternVL3-78B
Internvl3-38B (Zhu et al., 2025)	2025-04	https://huggingface.co/OpenGVLab/InternVL3-38B
GLM-4.5V (Team et al., 2025)	2025-08	https://www.glm45.com/glm45v
GLM-4.1V-Thinking (GLM et al., 2024)	2025-07	https://huggingface.co/zai-org/GLM-4.1V-9B-Thinking
Qwen2.5VL-72B (Bai et al., 2025)	2025-01	https://huggingface.co/Qwen/Qwen2.5-VL-72B-Instruct
Qwen2.5VL-32B (Bai et al., 2025)	2025-01	https://huggingface.co/Qwen/Qwen2.5-VL-32B-Instruct
LLAVA-Onevision-72B (Li et al., 2024a)	2024-08	https://huggingface.co/llava-hf/llava-onevision-qwen2-72b-ov-hf
LLAVA-Onevision-7B (Li et al., 2024a)	2024-08	https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov

2238 As summarized in Tab. D24, the dataset affords a certain degree of support for the 32B model’s capa-
 2239 bilities. Nevertheless, beyond this observation, the main results are achieved by the 7B configuration,
 2240 whereas ablation studies are primarily conducted with the 3B model.

D.8 LEADERBOARD DETAIL

2244 To assess the spatial reasoning ability of both closed-source and open-source models, we evaluate the
 2245 latest available versions. Tab. 5 presents their performance across the Tiny Tabletop, Tabletop, Indoor,
 2246 and Outdoor scenarios, whereas Tab. D25 provides an overview of their release dates and sources.
 2247 For closed-source models accessed via API and open-source models, the generation configurations
 2248 are summarized in Tab. D26 and D27, respectively.

E FAQ

E.1 ERROR ACCUMULATION

2253 Our data construction pipeline is primarily based on metric depth estimation and the corresponding
 2254 transformation to canonical view space. It should be noted that this approach may introduce potential
 2255 error accumulation, especially considering that current metric depth estimation models have not yet
 2256 achieved high performance at full scale.

2258 To address concerns regarding error accumulation, we justify our methodology from the following
 2259 perspectives: **1) data quality assurance:** To ensure alignment with human perception, we implement
 2260 a multi-tiered validation process. Specifically, we conduct manual verification on a subset of the
 2261 training set, perform full human annotation on the entire test set, and additionally collect real-world
 2262 measured data to construct a dedicated test subset. These measures effectively ensure that the
 2263 automatically generated data remains suitable for learning human perceptual models. We argue that
 2264 even if minor error accumulation exists, it does not compromise the overall quality and contribution
 2265 of the dataset. **2) forward-looking methodological contribution:** The proposed data construction
 2266 framework and model architecture will have a significant impact on the field of all-scale spatial
 2267 reasoning. Importantly, as more accurate all-scale inference methods emerge in the future, we will
 2268 continuously integrate higher-quality data to refine this work. This dynamic updating mechanism
 2269 ensures the long-term relevance and value of our research.

2268
2269
2270 Table D26: Generating parameters for Closed-Source LLMs.
2271
2272
2273
2274
2275
2276
2277
2278

Model	Generation Setup
GPT-5	{"model": "gpt-5", "temperature": 0, "max_tokens": 1024}
GPT-4o	{"model": "gpt-4o", "temperature": 0, "max_tokens": 1024}
Claude-Opus-4.1	{"model": "claude-opus-4.1", "temperature": 0, "max_tokens": 1024}
Claude-Sonnet-4	{"model": "claude-sonnet-4", "temperature": 0, "max_tokens": 1024}
Gemini-2.5-Pro	{"model": "gemini-2.5-pro", "temperature": 0, "max_tokens": 1024}
Gemini-2.5-Flash	{"model": "gemini-2.5-flash", "temperature": 0, "max_tokens": 1024}

2279
2280 E.2 ALL SCALE POSSIBILITIES
22812282
2283 Currently, our data coverage remains limited in addressing the full spectrum of spatial scales, de-
2284 spite the equal importance of spatial understanding across these domains. At fine scales, domains
2285 such as minimally invasive surgery call for millimeter-level models, while precision manufacturing—
2286 especially semiconductor production—pushes into the nanometer range. These capabilities
2287 underpin progress in healthcare and technology. In contrast, large-scale applications, including
2288 satellite remote sensing and cartography, typically work with resolutions of 10 kilometers or greater.
22892290 While spatial understanding is equally essential across these extremes, the imaging and 3D modeling
2291 techniques involved extend well beyond conventional real-world sensing methods. As a result,
2292 our current work does not fully address these diverse scales. Nevertheless, we aim to expand our
2293 capabilities in the future by integrating modeling across a broader range of dimensions, thereby
2294 bridging these gaps and enabling more unified spatial analysis.
22952296 E.3 DISCUSSION OF DATASET
22972298 We use the free-form subset of SPAR-7M(Zhang et al., 2025e), which consists of approximately 100K
2299 samples, about 1% of the original dataset. This part of the data is later processed and filtered with
2300 original Scannet (Dai et al., 2017), Scannet++ (Yeshwanth et al., 2023), and ARKitScenes (Baruch
2301 et al., 2021) to fit the requirements of our dataset. However, we do not consider our model to be
2302 trained on SPAR-7M, nor do we compare it against models trained on SPAR-7M in SparBench. We
2303 observe that SPAR-7M’s data design leads to over 200 QA pairs per scene on average, which can
2304 cause overfitting in indoor scenarios. Instead, we leverage SPAR-7M’s scan-based characteristics
2305 to construct our own CoT for cold-start purposes. It is important to note that neither SpaceR nor
2306 SPAR-7M includes CoT reasoning. We generate CoT following the method described in Sec. 3 and
2307 apply filtering and screening to ensure quality. These processed data sources, along with the wild
2308 video dataset, are integrated into SpaceVista-1M, while acknowledging the additional labeling and
23092310 Table D27: Generating parameters for Open-Source LLMs.
2311

Model	Generation Setup
Internvl3.5-38B	do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3.5-14B	do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3-38B	do_sample = False, temperature = 0, max_new_tokens = 512
Internvl3-78B	do_sample = False, temperature = 0, max_new_tokens = 512
GLM-4.5V	do_sample = False, temperature = 0, max_new_tokens = 1024
GLM-4.1V-Thinking	do_sample = False, temperature = 0, max_new_tokens = 1024
Qwen2.5VL-32B	do_sample = False, max_new_tokens = 1024
Qwen2.5VL-72B	do_sample = False, max_new_tokens = 1024
LLAVA-Onevision-7B	do_sample = False, temperature = 0, max_new_tokens = 1024
LLAVA-Onevision-72B	do_sample = False, temperature = 0, max_new_tokens = 1024

2322 filtering steps involved in our pipeline. Overall, these decisions support our position that our data
 2323 retains a meaningful degree of independence from SPAR-7M and SpaceR.
 2324

2325
 2326
 2327 **F PREVIEW**
 2328

2329
 2330 **F.1 SCENE PREVIEW**
 2331

2332
 2333 **Indoor Scenes.** Our indoor dataset consists of simple and clean room-scale environments such as
 2334 living rooms, meeting rooms, and classrooms. An overview of the data is provided in Fig. F26,
 2335 highlighting the simplicity and cleanliness of our indoor scenes compared to more complex wild
 2336 indoor environments. Living rooms feature sofas, coffee tables, and shelves arranged along walls
 2337 with open floor space. Meeting rooms include evenly spaced chairs around a central table, while
 2338 classrooms have rows of desks facing a blackboard or screen. These scenes show limited object
 2339 variety and limited scene complexity.

2340 **Wild Indoor Scenes.** Representative wild indoor scenes, captured via multi-view smartphone
 2341 recordings in complex and unconstrained environments such as shopping malls, banquet halls, and
 2342 art galleries, are illustrated in Fig. F27. These scenes exhibit diverse architectural layouts and high
 2343 object density. Like in shopping malls, elements such as escalators, display shelves, and glass facades
 2344 create multi-layered structures with frequent reflections and occlusions. Compared to previous indoor
 2345 scenes, wild indoor scenes have irregular layouts, dense furniture, diverse objects, and uneven lighting,
 2346 leading to more complex spatial arrangements. This contrast underscores the structured and clear
 2347 nature of our data, which supports controlled spatial reasoning evaluation.

2348 **Outdoor Scenes.** Our outdoor scenes include various environments such as parks, tourist landmarks,
 2349 and others, captured from both ground and aerial views, as shown in Fig. F28. Parks contain
 2350 irregularly shaped walking paths winding through dense clusters of trees, shrubs, and open lawns,
 2351 creating a mix of natural textures and spatial variations. These areas often include water features,
 2352 benches, and varied terrain elevations. Therefore, outdoor scene layouts usually involve plazas,
 2353 staircases, and structured open spaces that introduce rich geometric complexity.

2354 **Drone Scenes.** Fig. F29 shows examples from a drone’s perspective. Aerial, low-angle, and oblique
 2355 views offer detailed spatial structures that are not easily visible from the ground. Playgrounds exhibit
 2356 clear arrangements of play equipment and open spaces, while parking lots display orderly rows of
 2357 vehicles and marked boundaries. Parks show clusters of trees, pathways, and water bodies, revealing a
 2358 layered combination of natural and built elements. These diverse viewpoints provide a more complete
 2359 understanding of scene layout and environmental features, supporting improved spatial reasoning.

2360 **Tabletop Scenes.** Examples of tabletop scenes are illustrated in Fig. F30. These scenes capture
 2361 everyday objects such as keyboards, boxes, and fruits arranged on tabletops, characterized by natural
 2362 occlusions, varying object placements, and diverse background textures. The dataset employs
 2363 dynamic multi-view acquisition using mobile devices, enabling richer structural coverage compared
 2364 to traditional static indoor datasets. This approach captures subtle interactions between objects and
 2365 background elements, as well as changes in viewpoint and lighting conditions.

2366 **Tiny Tabletop Scenes.** The Fig. F31 shows the tiny tabletop scenes from our dataset. These data
 2367 are 360-degree turntable videos to capture objects from every angle, solving occlusion issues and
 2368 improving scene completeness.

2369 **Our Collected Scenes.** We use mobile devices to capture and collect data for some Tabletop and
 2370 Tiny Tabletop scenes. Our collected data, shown in Fig. F32, features diverse objects and detailed
 2371 multi-view coverage, enabling fine-grained spatial analysis. The data is similar to the previously
 2372 mentioned tabletop and tiny tabletop. Tabletop scenes have relatively large objects and rich and
 2373 diverse backgrounds, which are suitable for capturing diverse objects and natural environments in
 2374 daily life; while Tiny Tabletop scenes focus on smaller objects, emphasizing detail integrity and
 2375 multi-view coverage, which facilitates in-depth research on the subtle structure and morphology of
 these scenes.

2376
2377

F.2 TEMPLATE PREVIEW

2378
2379
2380

As shown in Tab. F28, we present three exemplar applications: point input for Object Counting, bounding box input for Object Distance, and original input for Spatial Relation. Other scenes and tasks are similar to the example template.

2381

F.3 QA PREVIEW

2382

We provide a comprehensive set of SpaceVista-1M QA pairs here for preview in Tab.F29-Tab.F47. Note that the RL-oriented multiple-choice and regression formats omit anchors like `<semantic>` and `<scale>`, since they can be easily injected during training from the meta information. Since if objects are referred to by a bounding box, the only changes needed are to change the object name into the corresponding object point/bbox/mask. Each question takes only one video with one form of referring. For example, “*Where is the toothbrush relative to the keyboard from the view of the start frame?*” → “*Where is the red mask referred object relative to the keyboard from the view of the start frame?*”. So, in this preview, we only provide the natural language questions for clarity.

2383
2391

Overall, these previews highlight the diversity of our all-scale reasoning SpaceVista-1M dataset.

2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

2430

2431

2432

2433

2434 Table F28: Multi-type template preview. Examples using the point input for Object Counting, the
2435 bounding-box input for Object Distance, and the original input for Spatial Relation.

2436

2437

2438

Point Input Template

2439

- Refer to the red point in the starting frame and count how many objects are of that type.
- Count the number of objects whose class is referred to by the red point in the first frame throughout the video.
- Using the red point in the first frame as reference, count how many objects of that class appear in the entire video.
- Count every object like the one highlighted by the red point in the video's first frame.
- Find all video objects that are of the same kind as the one identified by the red point.
- Identify the class from the red point in frame one and tally all instances of that class in the video.
- How many objects in the video resemble the one tagged with the red point in the first frame?
- Search for all items that belong to the same class as the one shown by the red point in frame one.
- Track all objects of the same category as the red-point one from the first frame and count them.
- Count the total number of objects in the video that correspond to the class defined by the red point in the first frame.
- Use the red point to find a class and count how many such instances are there in the video.
- Using the initial frame's red point as a guide, total up all objects of that class.
- From the first frame's red point, find that class and count its appearances across the video.
- Match the object under the red point to others in the video and count them.
- Take the red-pointed object as example and count all others like it in the video.

2450

2451

2452

Bounding Box Input Template

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

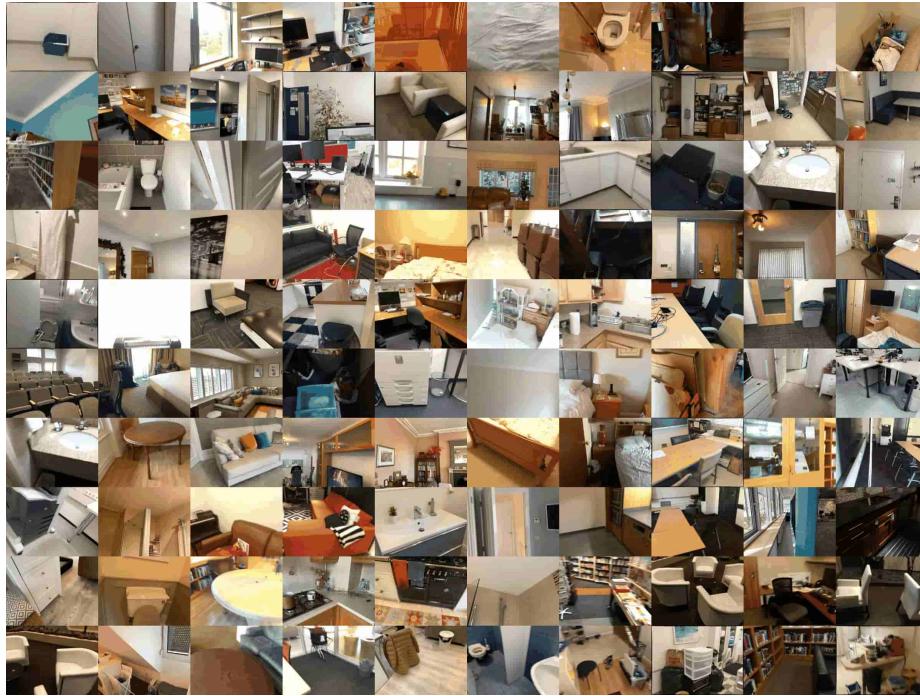
2482

2483

Original Input Template

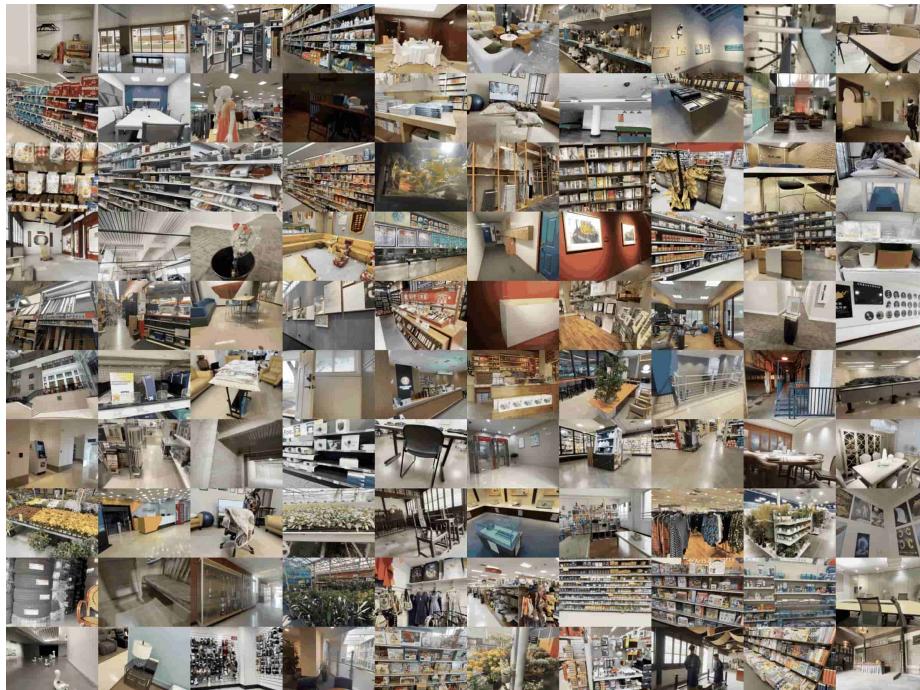
- Describe how desk and chair are spatially positioned relative to each other.
- What is the spatial relation type between desk and chair in the video?
- What type of spatial relationship exists between desk and chair in these frames?
- Estimate the spatial relation (such as support, stacking, adhesion, hanging, plug-in) between desk and chair in these frames.
- What is the most likely spatial relationship (support, stacking, adhesion, hanging, plug-in) between cabinet and book?
- Can you describe the spatial relationship type of awning and awning?
- Identify how picture and ceiling are spatially related in the video sequence.
- Between desk and chair, what spatial link exists?
- What spatial relation links tag to hat in the given frames?
- What spatial relation best fits cable and computer mouse in the video frames?
- Identify how cable and socket are spatially related in the video sequence.
- Describe the spatial relation (e.g., support, stacking, adhesion, hanging, plug-in) between fork and spoon.
- Explain the spatial relation between toy camera and building blocks in the video.
- How would you classify the spatial relation between sticky note and tumbler?
- What type of spatial relationship exists between toy block and toy train in these frames?.

2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508



2509 Figure F26: Indoor data are rather simple and clean scenes inside a room. The overall scene is not as
 2510 complex as the wild indoor scene.

2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533



2534 Figure F27: Wild indoor data includes more light changes, reflections, and transparency. The objects
 2535 included are more diverse.
 2536

2537

2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562

Figure F28: Outdoor data is jointly collected from ground views, incorporating street, park, building and so on.

2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587

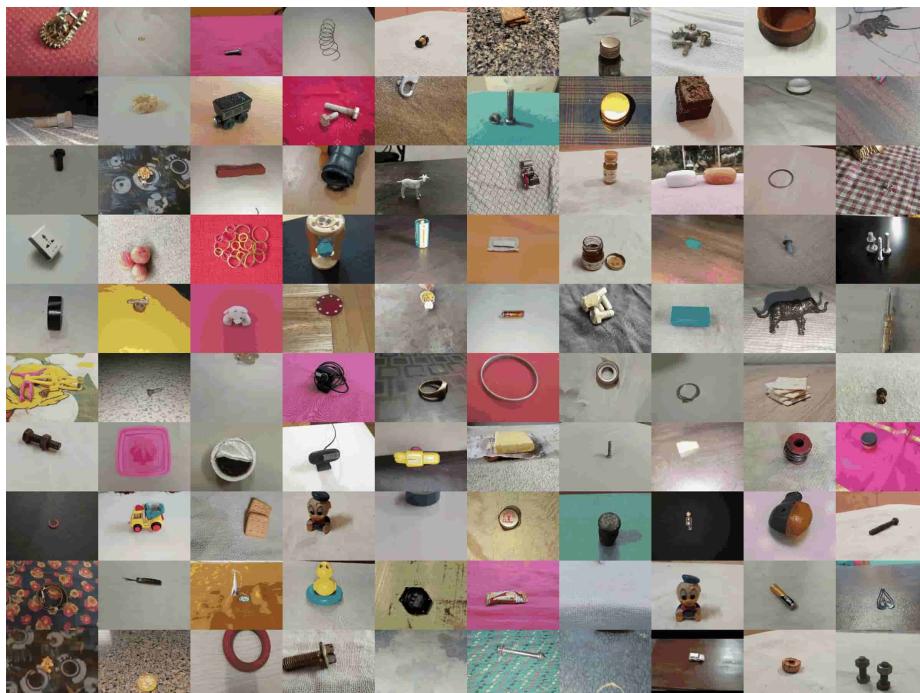
2588
 2589
 2590
 2591

Figure F29: Drone data captures ground objects from above at oblique angles, providing more complete structural coverage than traditional ground-based capture methods.

2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615

2616 Figure F30: In this tabletop scene, videos capture tabletop objects exhibiting rich background
 2617 variation and natural occlusions, delivering clearer structural coverage of the objects than
 2618 traditional static indoor datasets.
 2619

2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645



2643 Figure F31: Tiny tabletop objects captured with rich details for small objects, focusing on fine-scale
 2644 scenes, unlike typical large or complex indoor or outdoor datasets.
 2645

2700
2701
2702
2703
2704

Table F30: The camera moving task QA preview.

2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Camera Moving Task

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

What directional path did the camera follow in the video, ignoring rotation?

Options: A. Front B. Back C. Left D. Right E. Down

Bounding Box Input

Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>The images show a sequence of shots from the same scene, with each frame zooming in slightly more. This indicates that the camera is moving forward towards the structure, capturing more detailed parts of the scene as it progresses. The camera keeps moving forward.</think>

<answer>Front</answer>

RL GT

<think>*</think><answer>A</answer>

Table F31: The position comparison task QA preview.

2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Position Comparison Task

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Where is the toothbrush relative to the keyboard from the view of the start frame?

Options: A. Left B. Right C. Front D. Back

Bounding Box Input

Not applicable.

Point Input

[237, 9]

Mask Input

SFT GT

<think>The video starts with the toothbrush on the left side in the green cup. As the view rotates, its position shifts from left to right and then back to left. Before disappearing, it remains on the left side. So the toothbrush is on the left from the view of the start frame.</think>

RL GT

<think>*</think><answer>A</answer>

2754
2755
2756
2757
2758

Table F32: The size comparison task QA preview.

Size Comparison Task		
<p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>		
<p>Video: <video> Question: <text></p>		
<p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.</p>		
Text Input		
<p>Based on the height of the referred object shown in the video, which is taller: the red point object or the blue point object?</p>		
<p>Options: A. Streetlight B. Sign</p>		
Bounding Box Input		Point Input
<pre>[{"x1":17, "y1":110, "x2":94, "y2":248}, {"x1":126, "y1":74, "x2":163, "y2":220}]</pre>		<pre>[[185, 52], [101, 144]]</pre>
Mask Input		
SFT GT		
<p><think>By analyzing the position of the light source in the image, it's clear that the streetlight is situated above the sign. Additionally, due to its height and the relatively distant position, the streetlight has a broader light coverage, further suggesting it is taller than the sign.</think> <answer>Streetlight.</answer></p>		
RL GT		
<p><think>*</think><answer>A</answer></p>		

2783
2784

Table F33: The existence estimation task QA preview.

Existence Estimation Task		
<p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>		
<p>Video: <video> Question: <text></p>		
<p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.</p>		
Text Input		
<p>Determine which objects in the cabinet, printer, dishwasher, and trash bin are found in the footage.</p>		
<p>Options: A. Printer B. Cabinet C. Dishwasher D. Trash bin</p>		
Bounding Box Input		Point Input
<p>Not applicable.</p>		<p>Not applicable.</p>
Mask Input		<p>Not applicable.</p>
SFT GT		
<p><think>Based on the content in the images, I can see a clearly visible trash bin placed on the ground. Its presence is obvious in the scene, as it is clearly shown, and other objects in the image provide a reference for its position and shape. Therefore, it is reasonable to infer the existence of the trash bin.</think> <answer>Trash bin</answer></p>		
RL GT		
<p><think>*</think><answer>D</answer></p>		

2805
2806
2807

2808

2809

2810

2811

Table F34: The rotation estimation task QA preview.

2812

2813

Rotation Estimation Task

2814

2815

2816

2817

2818

2819

2820

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

2821

2822

Text Input

Calculate the rotation angle of the object in the red bounding box between the first and last frame.

2823

2824

Bounding Box Input

```
[{"x1": 911, "y1": 605, "x2": 1201, "y2": 853}]
```

Point Input

```
[[480, 989]]
```

Mask Input

2825

2826

2827

SFT GT

<think>By observing the change in the object's position between the frames, I estimate its rotation angle. Based on the relative rotation in the two images and using reference points, I approximate the object has rotated by about 136 degrees. The exact angle might vary slightly, but it's within this range.</think> <answer>136 degrees</answer>

RL GT

<think>*</think><answer>136</answer>

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

Relative Distance Task

2838

2839

2840

2841

2842

2843

2844

2845

2846

Please think about this question as if you were a human pondering deeply.

Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.

2847

2848

Text Input

How close does the red mask get to the blue mask in the frames (in centimeters)?

2849

2850

2851

2852

2853

Bounding Box Input

```
[{"x1": 194, "y1": 172, "x2": 299, "y2": 511}, {"x1": 393, "y1": 377, "x2": 479, "y2": 483}]
```

Point Input

```
[[351, 245], [428, 442]]
```

Mask Input**SFT GT**

<think>Based on the content of frames, the relative position of the red and blue objects changes minimally. The bottle seems 20 centimeters tall. Therefore, the relative distance between them in the frames is estimated to be approximately 7.8 centimeters. The contrast between their shapes and background positions helps in making this estimation.</think> <answer>8 centimeters</answer>

RL GT

<think>*</think><answer>7.8</answer>

2854

2855

2856

2857

2858

2859

2860

2861

2862
2863
2864
2865
2866

Table F36: The absolute distance task QA preview.

Absolute Distance Task		
Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.		
Video: <video>		
Question: <text>		
During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.		
Text Input		
What is the estimated distance between the red mask and the blue mask in the video (in meters)?		
Bounding Box Input		Point Input
<pre>[{"x1":250, "y1":228, "x2":307, "y2":314}, {"x1":402, "y1":229, "x2":479, "y2":300}]</pre>		[[270, 278], [264, 442]]
Mask Input		
SFT GT		
<think>The red and blue objects are two regular boxes of around 0.1m in size. Based on the position of the red and blue objects in the image, the estimated absolute distance between them is approximately 0.31 meters. This estimation is made based on the size and arrangement of the objects in the frame.</think> <answer>0.31 meters.</answer>		
RL GT		
<think>*</think><answer>0.31</answer>		

2891
2892

Table F37: The room size task QA preview.

Room Size Task		
Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.		
Video: <video>		
Question: <text>		
During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.		
Text Input		
Give an estimate of the room size based on the video (in square meters).		
Bounding Box Input		Point Input
Not applicable.		Not applicable.
Mask Input		
Not applicable.		
SFT GT		
<think>By observing the spatial layout in the image, I estimate the room's size. Based on the relative proportions and perspective of the table and sofa within the room, and considering typical room size proportions with normal table and sofa size, the area of the room is approximately 24.33 square meters. This estimation is derived from the visible space in the image.</think> <answer>24.33 square meters</answer>		
RL GT		
<think>*</think><answer>24.33</answer>		

2913
2914
2915

2916
2917
2918
2919
2920
2921
2922

Table F38: The object counting task QA preview.

Object Counting Task								
<p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>								
<p>Video: <video></p>								
<p>Question: <text></p>								
<p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.</p>								
<p>Text Input</p>								
<p>How many bowls can be seen throughout the video?</p>								
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; width: 33.33%;">Bounding Box Input</th> <th style="text-align: center; width: 33.33%;">Point Input</th> <th style="text-align: center; width: 33.33%;">Mask Input</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;"> <code>[{"x1": 81, "y1": 357, "x2": 408, "y2": 539}]</code> </td><td style="text-align: center;"> <code>[[439, 243]]</code> </td><td style="text-align: center;"> </td></tr> </tbody> </table>			Bounding Box Input	Point Input	Mask Input	<code>[{"x1": 81, "y1": 357, "x2": 408, "y2": 539}]</code>	<code>[[439, 243]]</code>	
Bounding Box Input	Point Input	Mask Input						
<code>[{"x1": 81, "y1": 357, "x2": 408, "y2": 539}]</code>	<code>[[439, 243]]</code>							
<p>SFT GT</p>								
<p><think>Based on the objects in the image, two bowls are clearly visible in different positions. Their number is easily identifiable in the frame. Therefore, it can be estimated that there are 2 bowls visible in the video.</think> <answer>2 bowls</answer></p>								
<p>RL GT</p>								
<p><think>*</think><answer>2</answer></p>								

2943
2944

Table F39: The object size task QA preview.

Object Size Task								
<p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>								
<p>Video: <video></p>								
<p>Question: <text></p>								
<p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.</p>								
<p>Text Input</p>								
<p>How wide is the toy in the first frame (in centimeters)?</p>								
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; width: 33.33%;">Bounding Box Input</th> <th style="text-align: center; width: 33.33%;">Point Input</th> <th style="text-align: center; width: 33.33%;">Mask Input</th> </tr> </thead> <tbody> <tr> <td style="text-align: center;"> <code>[{"x1": 112, "y1": 547, "x2": 717, "y2": 1089}]</code> </td><td style="text-align: center;"> <code>[[820, 437]]</code> </td><td style="text-align: center;"> </td></tr> </tbody> </table>			Bounding Box Input	Point Input	Mask Input	<code>[{"x1": 112, "y1": 547, "x2": 717, "y2": 1089}]</code>	<code>[[820, 437]]</code>	
Bounding Box Input	Point Input	Mask Input						
<code>[{"x1": 112, "y1": 547, "x2": 717, "y2": 1089}]</code>	<code>[[820, 437]]</code>							
<p>SFT GT</p>								
<p><think>By observing the size of the toy in the image and its relative proportion to surrounding objects, the width of the toy can be estimated. Based on the proportional reference in the frame, the toy's width is approximately 7.4 centimeters.</think> <answer>7.4 centimeters</answer></p>								
<p>RL GT</p>								
<p><think>*</think><answer>7.4</answer></p>								

2967
2968
2969

2970
2971
2972
2973
2974
2975

Table F40: The route plan task QA preview for evaluation.

2976

2977

Route Plan/Navigation Task

2978

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

2982

2983

Video: <video>

Question: <text>

2984

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

2985

Text Input

2986

2987

2988

2989

What actions should you take to navigate from the toilet, facing the bathtub, to the door, given the following steps: 1. [please fill in] 2. Go forward until the door. You have reached the final destination?

A. Turn left B. Turn right C. Turn back

2990

2991

Bounding Box Input

Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

2992

SFT GT

<think>Based on the layout in the image, assuming you start at the toilet, facing the bathtub, the first step is to turn right, then continue forward until you reach the door. This path is aligned with the relative positioning of the objects in the room.</think> <answer>Turn right</answer>

RL GT

<think>*</think><answer>B</answer>

2997

2998

Table F41: The appearance order task QA preview.

2999

3000

3001

Appearance Order Task

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Please provide the sequence in which these objects appear in the video: table, chair, blackboard.

Options: A. ["table", "blackboard", "chair"] B. ["chair", "table", "blackboard"] C. ["blackboard", "chair", "table"] D. ["table", "chair", "blackboard"]

3014

Bounding Box Input

Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>Based on the objects' sequence in the image, the table appears first, followed by the chair, and finally the blackboard. This order is determined by the relative positions of the objects in the frame.</think> <answer>Table, chair, blackboard.</answer>

RL GT

<think>*</think><answer>D</answer>

3024
3025
3026
3027
3028
3029
3030

Table F42: The depth estimation task QA preview.

Depth Estimation Task <p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>								
<p>Video: <video></p> <p>Question: <text></p> <p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.</p>								
<p>Text Input</p> <p>Please provide the depth value of the object labeled by the red mask in the initial frame (in meters).</p>								
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; padding: 5px;">Bounding Box Input</th> <th style="text-align: center; padding: 5px;">Point Input</th> <th style="text-align: center; padding: 5px;">Mask Input</th> </tr> </thead> <tbody> <tr> <td style="padding: 5px;">[{"x1": 466, "y1": 528, "x2": 620, "y2": 1043}]</td> <td style="padding: 5px;">[[733, 535]]</td> <td style="padding: 5px;"></td> </tr> </tbody> </table>			Bounding Box Input	Point Input	Mask Input	[{"x1": 466, "y1": 528, "x2": 620, "y2": 1043}]	[[733, 535]]	
Bounding Box Input	Point Input	Mask Input						
[{"x1": 466, "y1": 528, "x2": 620, "y2": 1043}]	[[733, 535]]							
<p>SFT GT</p> <p><think>Based on the position of the object labeled by the red mask in the image and considering the perspective and size of the object, the estimated depth of the object is 0.72 meters with the reference spoon's length of 0.17 meters.</think> <answer>0.72</answer></p> <p>RL GT</p> <p><think>*</think><answer>0.72</answer></p>								

Table F43: The view change inference task QA preview.

Area Estimation Task <p>Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.</p>								
<p>Video: <video></p> <p>Question: <text></p> <p>During RL: Please provide the thinking process within the <think> </think> tags. Please provide the numerical value (e.g., 42 or 3.14) within the <answer> </answer> tags.</p>								
<p>Text Input</p> <p>What is the area of the roof shown in the video (in square meters)?</p>								
<table style="width: 100%; border-collapse: collapse;"> <thead> <tr> <th style="text-align: center; padding: 5px;">Bounding Box Input</th> <th style="text-align: center; padding: 5px;">Point Input</th> <th style="text-align: center; padding: 5px;">Mask Input</th> </tr> </thead> <tbody> <tr> <td style="padding: 5px;">[{"x1": 161, "y1": 48, "x2": 312, "y2": 85}]</td> <td style="padding: 5px;">Not applicable.</td> <td style="padding: 5px;"></td> </tr> </tbody> </table>			Bounding Box Input	Point Input	Mask Input	[{"x1": 161, "y1": 48, "x2": 312, "y2": 85}]	Not applicable.	
Bounding Box Input	Point Input	Mask Input						
[{"x1": 161, "y1": 48, "x2": 312, "y2": 85}]	Not applicable.							
<p>SFT GT</p> <p><think>Based on the perspective in the image and the relative size of the objects, the area of the roof can be estimated. By considering the proportions of the objects and the background perspective, the area of the roof is approximately 146.0 square meters.</think> <answer>The area of the roof in the video is 146.0 square meters.</answer></p> <p>RL GT</p> <p><think>*</think><answer>146.0</answer></p>								

3078
3079
3080
3081
3082
3083

Table F44: The object matching task QA preview.

3084
3085

Object Matching Task

3086 Please think about this question as if you were a human pondering deeply.
3087 Engage in an internal dialogue using expressions such as 'let me think',
3088 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural
3089 language thought expressions. It's encouraged to include self-reflection.
3090 Video: <video>
3091 Question: <text>
3092 During RL: Please provide the thinking process within the <think> </think> tags. Please provide
3093 only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

3092
3093
3094
3095

Text Input

Which bounding box (green, blue, or yellow) in the last frame is the same object as the red bounding box in the first frame?
Options: A. Yellow B. Green

3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109

Bounding Box Input
[{"x1": 87, "y1": 382, "x2": 398, "y2": 493}]\n[{"x1": 122, "y1": 515, "x2": 237, "y2": 617}, {"x1": 62, "y1": 376, "x2": 381, "y2": 534}]

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>By analyzing the object positions and color contrasts in the image, the green bounding box matches the object of the red bounding box in the first frame. This conclusion is based on the relative positions and sizes of the objects in both frames.</think> <answer>The green box.</answer>

RL GT

<think>*</think><answer>B</answer>

3107
3108
3109

Table F45: The obstacles location task QA preview.

3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Obstacles Location Task

Please think about this question as if you were a human pondering deeply.
Engage in an internal dialogue using expressions such as 'let me think',
'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural
language thought expressions. It's encouraged to include self-reflection.
Video: <video>
Question: <text>
During RL: Please provide the thinking process within the <think> </think> tags. Please provide
only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

Which object will cause obstacles when moving the pliers to the left of the box? (Red point denotes the pliers, Blue point denotes the target position.)
Options: A. Pineapple B. Charging plug C. None

3121
3122

Bounding Box Input
Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>The red-handled pliers are on the right, and the target is on the left side of the box at the lower right. If the pliers are moved to the box's left side, the path crosses the pineapple in the center of the table, making it the main obstacle.</think> <answer>Pineapple.</answer>

RL GT

<think>*</think><answer>A</answer>

3132
3133
3134
3135
3136
3137
3138

Table F46: The manipulation planning task QA preview.

3139

Manipulation Planning Task

3141

Please think about this question as if you were a human pondering deeply. Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

How to move the box to the front of the apple from the viewpoint of the first frame? (Red point denotes the box, blue point denotes the target position.)

Options: A. Moving backward 43.6cm B. Moving left 10.2cm C. Moving up 45.7cm D. Moving backward 28.1cm

Bounding Box Input

Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>The red point denotes the current position of the box, and the blue point denotes the target. The task is to move the box in front of the apple by shifting it along the red-to-blue direction about 28.1cm.</think> <answer>Move the book backwards 28.1cm to put the box in front of the apple.</answer>

RL GT

<think>*</think><answer>D</answer>

Table F47: The area estimation task QA preview.

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

View Change Inference Task

Please think about this question as if you were a human pondering deeply.

Engage in an internal dialogue using expressions such as 'let me think', 'wait', 'hmm', 'oh, I see', 'let's break it down', etc, or other natural language thought expressions. It's encouraged to include self-reflection.

Video: <video>

Question: <text>

During RL: Please provide the thinking process within the <think> </think> tags. Please provide only the single option letter (e.g., A, B, C, D, etc.) within the <answer> </answer> tags.

Text Input

What is the view change between the input frames?

Options: A. Back B. Down C. Right D. Left E. Front

Bounding Box Input

Not applicable.

Point Input

Not applicable.

Mask Input

Not applicable.

SFT GT

<think>By analyzing the angle change between the frames, it's clear that the view shifts downward. This conclusion is drawn from comparing the position and angle of objects in the beginning frames.</think> <answer>Downward</answer>

RL GT

<think>*</think><answer>B</answer>