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Abstract

This paper rests on the premise that AI systems and models will not be able to com-1

ply with AI regulations at the necessary speed and scale unless their compliance is2

enforced through algorithms that run across the life cycle of the AI, dynamically3

steering it towards compliance in the face of variable conditions. Despite their4

inevitability, the research community has yet to specify exactly how these “compu-5

tational AI regulation compliance” algorithms should behave — or how we should6

measure their success. To fill this gap, we specify a set of design goals for such7

algorithms. In addition, we specify benchmarks that can be used to quantitatively8

measure how close they come to achieving those design goals. By delivering this9

blueprint, we hope to give shape to an important but uncrystallized new domain of10

research — and, in doing so, incite necessary investment in it.11

1 Introduction12

This paper rests on the provocative premise that the future of all legal compliance is computational.13

As every aspect of our lives becomes digitized, even if our laws are still printed in dust-gathering14

tomes and stenciled on road signs, compliance with those laws will be wholly managed by the15

architectures of — and algorithms inside — the digital systems that suffuse our world.16

The benefits of this computationally compliant future will be manifold. It will reduce the cost of17

compliance, removing a key barrier to entry in many markets and fostering competition [Klapper18

et al., 2006]. It will permit enforcement of regulations in real-time, with violations mitigated as soon19

as they occur — and, often, before any harm is done. What is more, by removing the potential for20

human error, computational compliance will also ensure better compliance, and a reality that hews21

closer to the letter of the laws that encode our societal values.22

As Artificial Intelligence Regulation (AIR) takes shape worldwide [Reuters, 2023], we arge that it23

can (and should) represent the turning point in this evolution. “Since AI is an algorithm,” argues24

one author, “then the method of its regulation should be the use of an algorithm comprising legal25

standards” [Szostek, 2021].26

In this paper, we sketch a blueprint for fulfilling that vision. In particular, we specify exactly how27

such an algorithm — one that runs across the life cycle of an AI system, dynamically steering it28

towards AIR compliance in the face of variable conditions (e.g., data drift, post-deployment human29

feedback, changing laws, and more) — should behave. That is to say, we specify design goals for30

Computational AIR Compliance (CAIRC). What is more, we specify how we can quantitatively31

measure our progress towards achieving those design goals using benchmarks.32

Above all, our hope is that this work brings structure and a set of lucid North Stars for future33

investment in this nascent but increasingly crucial field of research.34
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2 Why Computational AIR Compliance Is Inevitable35

In short, the expansiveness and expense of AI regulation is on a collision course with the complexity,36

scale, and dynamicism of AI in the modern era. In this new reality, the manual, analog compliance37

solutions of the past will prove unsustainable and CAIRC will emerge as the only viable path forward38

for AIR compliance.39

As mentioned, countries across the world are moving to regulate AI [Reuters, 2023] — often with40

very different outcomes [Benizri et al., 2023]. If the European Union’s Artificial Intelligence Act41

(EU AI Act) [European Union, 2024] (dubbed “the world’s first comprehensive AI law” [European42

Parliament, 2024]) is any indication, then these regulations will have an “expansive scope” [Addey,43

2023]: reaching deep into the details of AI systems and models (collectively, “AI”) to dictate “complex44

rules”[Zulehner, 2024] around everything from their training data [European Union, 2024, Art. 10],45

to their performance levels [European Union, 2024, Art. 15], logging practices [European Union,46

2024, Art. 12], and more. If the EU AI Act is any indication, complying with these regulations will47

also carry considerable expense for the regulated [Wu and Liu, 2023] — perhaps even cost-prohibitive48

in the case of small and -medium size enterprises and startups [Schneier and Sanders, 2023, Gikay,49

2024, Wu and Liu, 2023, Government, 2023, Haataja and Bryson, 2021, Sullivan, 2024, Reuel et al.,50

2024b, Koh et al., 2024, Bolda, 2024, Molnar, 2024]1.51

Meanwhile, on the other side of the equation is a “brave new world of AI” [Vithayathil and Nauroth,52

2023] that is more complex, dynamic, scaled-up, and global than ever before. The complexity of53

today’s AI [Zaharia et al., 2024] — as well as the development pipeline [Sadek et al., 2024] and54

supply chain behind it [Brown, 2023, Engler and Renda, 2022, Marino et al., 2024] — is at an55

all-time high. AI systems and models today often comprise dozens of datasets or other models, many56

externally sourced from third parties via API or community platforms like Hugging Face. [Amershi57

et al., 2019, Take et al., 2021, Chaudhuri et al., 2024, Renieris et al., 2023, Osborne et al., 2024, Jones58

et al., 2024, Ada Lovelace Institute, 2023, Liesenfeld and Dingemanse, 2024, Barclay et al., 2019].59

Meanwhile, the training datasets for some models are nearing “unimaginable scale” [Coders Stop,60

2025, Shen et al., 2025]; by 2028, they are expected to “approach[] the total effective stock of text in61

the indexed web” [Villalobos et al., 2024]. As we consider a near future where AI systems include62

“hundreds of agents” [Falconer, 2025], these issues could only exacerbate. Adding fuel to the fire is63

the fact that, “AI systems are constantly changing and evolving" [Nicenboim et al., 2022], the product64

of “continuous experimentation”[Martínez-Fernández et al., 2022] and “agile” software development65

processes that prize “rapid iteration[]” in response to changing “customer needs, technical changes,66

and market volatility” [Balayn and Gürses, 2024, Carlini, 2022, Xin et al., 2018, Guo et al., 2024,67

Piorkowski et al., 2022] — as well as “continual learning” methods [Wang et al., 2024] whereby68

production data is continually used to retrain and improve the AI. Last but not least, AI is increasingly69

marketed toward an international audience [Organization, 2024, Reuters, 2025], meaning that they70

must comply with the entire patchwork of AI regulations described before.71

The net takeaway is that AI — either today or, at least, in the near future — may simply be72

too complex, dynamic, large, and global for the traditional, human-driven models of regulatory73

compliance [O’Reilly, 2025, Krasadakis, 2023, Marino et al., 2024, Marino, 2024, Anderljung et al.,74

2023, Hacker et al., 2023, Reuters, 2024, Fiazza, 2021]. Human compliance experts will be unable to75

handle the task of understanding whether complicated and ever-changing AI of titanic scale comply76

with a protean patchwork of AIR. This will leave no choice but to shift to AIR compliance methods77

that are as scalable and dynamic as their AI subjects — i.e., computational.78

3 Deconstructing the problem79

“If you’re overwhelmed by the whole, break it down into pieces” — Chuck Close80

[Ward, 2007]81

When developing algorithms for CAIRC, what should our design goals be? And how do we82

quantitatively measure our progress toward them?83

1EU AI Act compliance costs for some types of AI systems, for example, are estimated to be as high as
e400,000 [Koh et al., 2024, 1872]
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To help answer these questions, we find it useful to deconstruct CAIRC into two sub-problems.84

Specifically, we posit that any CAIRC algorithm must necessarily contain two complimentary85

functions, which we deem the Inspector and the Mechanic:286

As depicted in Fig. 1 Inspector will diagnose — at any given point in time and in a fully automated87

manner — the AIR compliance level of an AI. When it finds that the AI is not compliant with one or88

more AIRs, it will communicate its diagnosis to the Mechanic, which will endeavor to remedy the89

non-compliance using various automated tools, ultimately calling on the Inspector to re-run its audit90

and determine if a compliance state has been achieved (or, perhaps, restored).91

In the sections that follow, we set design goals and benchmarking criteria for each of these two92

functions — as well as the broader CAIRC algorithm that necessarily unites and envelopes them.93

Inspector

Mechanic

Information
about AI

CAIRC
Algorithm

Compliant?
NoYesProcess

complete Diagnosis

Figure 1: CAIRC flowchart. As a first step, the overarching CAIRC algorithm submits information
about an AI to the Inspector (e.g., as a scheduled job). Next, the Inspector reaches a finding of either
compliance, in which case the process is complete, or non-compliance, in which case the Inspector
transmits its diagnosis to the Mechanic. Upon receiving it, the Mechanic uses its tools to try to repair
the diagnosed compliance defect(s). When finished, it calls the Inspector to re-run its analysis. This
loop repeats until the Inspector finds that compliance exists, in which case the process is complete.

4 The Inspector94

In this section, we lay out the design criteria that, we argue, a CAIRC algorithm’s Inspector function95

must satisfy. We also describe the methods of benchmarking the Inspector, to quantitatively measure96

whether those design criteria are being achieved.97

4.1 Design Criteria98

Our position is that an Inspector, in order to fulfill its function, must satisfy several key design criteria.99

These relate to the: (1) Input; (2) Output; (3) Function mapping input to output.100

Below, we describe these in detail. Where applicable, we refer to the state of the art (SOTA) as well as101

open research problems that must be solved before these design criteria can realistically be satisfied.102

4.1.1 Input103

In order to assess the AIR compliance level of a given AI, the Inspector requires, as its input,104

information about that AI. Importantly, this information — and therefore these inputs — must satisfy105

the following design criteria:106

Comprehensive : If an Inspector is to accurately and holistically assess the AIR compliance107

of an AI, then the information inputted into it must describe all aspects of the AI that bear (or108

could potentially bear) on that compliance. Failure to input all of the information relevant to AIR109

compliance carries great risk: specifically, of false positives (FP), whereby the Inspector incorrectly110

2Conveniently, the Inspector and Mechanic have independent, standalone value. Even in the absence of a
Mechanic to automatically repair the compliance defects it identifies, the Inspector can be used to alert human
compliance assessors or human “mechanics” to defects. Conversely, the mechanic can be used to cure defects
identified by humans.
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labels a non-compliant AI compliant because it is not privy to the factual information indicating111

otherwise. Because FPs like these could lead to penalties [European Union, 2024, Art. 99] and even112

harm (of the sort the AIR aims to prevent), they must be avoided. And the only way to do that is to113

ensure the Inspector inputs cover all aspects of the AI that bear on its AIR compliance.114

So, for example, information relevant to EU AI Act compliance might concern everything from an AI115

system’s data governance practices [European Union, 2024, Art. 10] and human oversight mecha-116

nisms [European Union, 2024, Art. 14], which are the direct subjects of EU AI Act requirements. But117

it will also necessarily include information about that AI system’s intended use, which determines the118

particular set of rules that apply to it [European Union, 2024, Art. 6], whether it is open source, which119

potentially exempts it from those rules [European Union, 2024, Art. 2]. The input to the Inspector120

must therefore include the super set of all this information — and any other information relevant to121

EU AI Act compliance.122

Importantly, this comprehensivness must be achieved for every AIR that the system is expected to123

comply with. Given the increasingly global nature of AI, this may mean dozens of AIR for a given AI124

system. In these cases, the super set of information relevant to each and every AIR must be inputted125

into the Inspector. No small feat.126

Attestable : Information that is relevant to an AI system’s AIR compliance may go beyond127

information about that particular system or model, to its ingredient models, datasets, and more. The128

EU AI Act, for example, regulates training data [European Union, 2024, Art. 10]. In today’s complex129

AI supply chain, this data may come from disparate sources, including non-trusted providers via130

API or online communities like Hugging Face [Marino et al., 2024]. In these cases, it will be crucial131

to verify, sometimes without direct access to the subject of the verification (i.e., through “remote132

attestation” [Brundage et al., 2020]) that the information about the data that is inputted into the133

Inspector is accurate [Marino, 2024, Reuel et al., 2024a]. At the moment, this type of attestation is134

considered an “open problem” [Reuel et al., 2024a], but various methods are being explored [Cen135

and Alur, 2024, South et al., 2024, Sun and Zhang, 2023, Hugging Face, 2024, Schnabl et al., 2025].136

Concurrent : To achieve true CAIRC, the input must reflect the current state of the AI system137

(or as close to it as possible). In other words, the Inspector must have up-to-date knowledge of all138

AIR-relevant facets of the system, including dynamic facets like logs, user feedback, cybersecurity139

attacks, and more. Information that is outdated — even by seconds — represents a grave FP risk.140

4.1.2 Output141

When the Inspector finds that AIR compliance exists, it need not output anything other than, perhaps, a142

void return. In all other cases, the key design criteria for the Inspector output is that it provide enough143

information for the Mechanic to fulfill its role of repairing any identified compliance deficiencies and144

achieving or restoring compliance to the AI (i.e., is “Mechanic-enabling”).145

Among other things, this means that the Inspector’s cannot simply return a binary class label of146

“non-compliant” or, differently, a single aggregate compliance score [Guldimann et al., 2024]. At147

a minimum, what is required are outputs that are granular (high fidelity) enough that the Mechanic148

knows what work to begin and where — without, in the interests of efficiency, needing to duplicate149

any of the compliance assessment work done by the Inspector. For example, in communicating a150

violation of Article 10 of the EU AI Act, the Inspector would probably need to include, in its output,151

a dataset identifier along with the particular section of Article 10 that was violated.152

Where an Inspector with deeper access to a system (e.g., individual data points in a training set)153

has surfaced more granular compliance violation information in performing its assessment, it may154

transmit this additional information (e.g., data point identifiers) to the Mechanic, to relieve it of the155

task of pinpointing the exact sources of non-compliance.3156

3Note that there may often be reason to keep some aspects of the AI out of the hands of the Inspector —
for example, if the Inspector is being operated by an arms-length auditor or a regulator (an arrangement would
could have benefits in terms of providing an external check on the AI). In these situations, the Inspector may not,
by design, have access to enough information about the AI to provide a granular output to the Mechanic.
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4.1.3 Function Mapping Input to Output157

The final cornerstone of the Inspector is some function that accurately maps its input onto its output;158

i.e., maps information about an AI onto a Mechanic-enabling AIR compliance diagnosis. The function159

could consist of an LLM [Sovrano et al., 2025, Makovec et al., 2024], rule-based algorithm [Marino160

et al., 2024], evaluation suites that run on AI assets [Sovrano and Vitali, 2023, Walke et al., 2023,161

Nolte et al., 2024, Bueno Momcilovic et al., 2024, Esiobu et al., 2023, Qin et al., 2023, Lin et al.,162

2022, Parrish et al., 2022, Guldimann et al., 2024, Chen et al., 2024], combinations of these, or163

anything else. The literature features a growing number of functions that perform some type of AIR164

compliance assessment task, though some are limited in scope (e.g., to portions of the EU AI Act)165

and not always public [Hugging Face, 2023, Future of Life Institute, 2023, trail, 2024, AI, 2024,166

Guldimann et al., 2024].167

Regardless of this mapping function’s exact contents, it must accurately map input onto outputs; i.e.,168

map information about AI systems and models onto compliance predictions. Because FPs (findings169

of compliance when an AI is, in fact, non-compliant) are especially costly, it must have a low FP rate;170

i.e., high precision.171

4.2 Benchmark172

To quantitatively measure our progress toward these design goals, we need to be able to benchmark173

the ability of proposed Inspector algorithms to successfully predict the AIR compliance level of a174

given AI system at a given point in time, in light of one or more AIR. A benchmark dataset that would175

fill this gap might consist of whole Inspector inputs — i.e., sets of information about AI systems,176

satisfying our input design criteria above — labeled by ground truth outputs — i.e., compliance177

diagnoses. Such a benchmark could be used to evaluate the accuracy with which candidate Inspector178

algorithms can predict the ground truth, as well as the speed and cost with which they do it (if it179

compares to the speed of manual compliance analyses, then this undermines the idea, put for in Sec.180

1, that CAIRC is inevitable).4181

Notably, despite growing interest in developing algorithms that, like our Inspector, automatically182

assess the AIR compliance of an AI (or, at least, aspects of it) [Sovrano et al., 2025, Makovec et al.,183

2024], no benchmark dataset for measuring the performance of these algorithms currently exists in184

the literature.185

5 The Mechanic186

In this section, we lay out design criteria for the Mechanic function. We also describe a method187

for benchmarking the Mechanic, to quantitatively measure whether those design criteria are being188

achieved.189

5.1 Design Criteria190

Our position is that a Mechanic, in order to fulfill its function, must satisfy several key design criteria.191

These relate to the: (1) Input; (2) Output; (3) Repair algorithm.192

Below, we describe these in more detail. Where applicable, we refer to the SOTA as well as any open193

research problems that must be solved before these design criteria can realistically be satisfied.194

5.1.1 Input195

The Mechanic must accept, as its input, the output of the Inspector (whose design criteria were196

described in Sec. 4.1.1). As previously discussed, the granularity of this input may influence the197

scope of the Mechanic’s internal algorithm or program (covered in 5.1.3).198

4The challenge of creating the ground truth for such a benchmark should not be underestimated. Compliance,
it has been said, is "hard to measure" and "not binary" [Wu and van Rooij, 2021]. In creating ground truth, it
will be important to account for “grey areas.”
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5.1.2 Output199

The Mechanic (or, more specifically, the Mechanic tools described below) are tasked with making200

repairs directly to the AI. This includes making changes to the AI’s assets: its code, data, models,201

documentation, and more. On one hand, the output of the Mechanic is these altered assets. More202

concretely, the Mechanic should also output a signal (e.g., a void function return) that indicates that its203

work, from its point of view, is complete. Upon receiving this signal, the algorithm that encompasses204

the Mechanic and the Inspector can call on the Inspector to check the Mechanic’s work (i.e., to verify205

whether compliance has in fact been achieved).206

5.1.3 Repair algorithm207

What lies between the input and the output of the Mechanic is a repair algorithm or program that208

must accomplish a few key tasks:209

Pinpoint the non-compliance (optional) : Depending on the particular AIR violation as well as210

the granularity of the Inspector output, the Mechanic may need to do some additional legwork to211

pinpoint the exact source of the non-compliance (e.g., identify the data points deemed to be causing212

unmitigated data poisoning in violation of European Union [2024, Art. 15]). Put differently, where213

the outputs of the Inspector are sparse, the Mechanic must have the ability to discretely scan the AI214

or otherwise map high-level compliance violation descriptions onto the atomic components of the215

system that must be repaired.216

Select the tool(s) to repair the non-compliance We define the Mechanic’s tools as those functions217

that the Mechanic will use to execute repairs to the AI’s sources of non-compliance and bring the218

AI back to a compliant state.5 Here, for example, is a non-complete list of sample tools a Mechanic219

might want to have at its disposal in order to repair various AIR deficiencies:220

• Where non-compliance stems from biased (and unmitigated) outputs of a generative AI221

model, the Mechanic may leverage a machine unlearning tool [Cao and Yang, 2015, Hine222

et al., 2024, Xu et al., 2024, Marino et al., 2025], a model editing [Gupta et al., 2024] tool,223

or a [Qi et al., 2023] tool, to try to suppress the biased outputs without the need for full224

retraining of the model.225

• Where non-compliance stems from model inaccuracy [European Union, 2024, Art. 15], the226

Mechanic may leverage tools for improving accuracy by acquiring (and then re-training227

on) more or better data from new sources; this, in turn, may require the ability to generate228

synthetic data [Bauer et al., 2024] or buy it on data marketplaces, label, filter, or other229

prepare that data for training, and, lastly, retrain and evaluate the model.230

• Where non-compliance stems from model leakage of personal data in the training set231

[European Union, 2024, Art. 14], the Mechanic may require access to a differential privacy232

tool [Bauer et al., 2024, Marino et al., 2025]) that it can apply before retraining in order to233

mitigate the risk of leakage in the model;234

These tools must have the ability to edit the AI system: e.g., filter training sets, retrain models, and235

more. The Mechanic, meanwhile, must possess the ability to map Inspector outputs onto the right236

tools (e.g., through rule-based methods or through embedding-driven mappings like the ones that237

LLMs use to call tools [Microsoft, 2024]) and to navigate trade-offs between different tool options238

based on things like cost, latency, and ability to cure the particular defect at hand.239

There is work to be done mapping out the full spectrum of tools required by the Mechanic to bring240

the AI system, under any scenario, back to a compliant state. Importantly, to achieve true CAIRC, the241

Mechanic algorithm must have access to a set of tools that, working together, can solve any arbitrary242

AIR compliance deficiency. At the outset, we should highlight the fact that we do not believe this full243

set of tools exist yet in the SOTA. In particular, we can assume that no tools yet exist wherever, in the244

5Tools is a popular term in the world of AI agents, where it refers to those utilities that help connect an LLM
to external resources like internet browsers [Wiesinger et al., 2025, Ruan et al., 2023, Woodside and Toner,
2024], and it re-use here is not purely coincidental. It is not hard to imagine an agentic implementation of
CAIRC where the Inspector and Mechanic are subagents and the Mechanic’s tools are agentic tools (or other
subagents).
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eyes of scholars, AIR calls for “technical capabilities or engineering solutions that do not currently245

exist” [Guha et al., 2023] or otherwise “rest on open issues in computer science” [Fiazza, 2021],246

including around transparency [Guha et al.], human oversight [Ebers et al., 2021], data quality [Ebers247

et al., 2021, Heikkilä, 2022, Microsoft, 2021, Fiazza, 2021, Microsoft, 2021, e Silva, 2024], and the248

robustness, explainability, and security of models [Fiazza, 2021, Guha et al., Heikkilä, 2022, Marino,249

2024, Morley et al., 2020, Marino, 2024].250

Orchestrate and manage the execution of those tools, through to some predicted state of251

completion Once it has selected the specific tool(s) that it will use to address the non-compliance,252

the Mechanic must orchestrate and manage the use of those tools to cure the particular deficiency.253

This includes the ability to monitor the progress and efficacy of these orchestrated tools – i.e., as well254

as make a preliminary prediction about whether the tool has resolved the non-compliance.255

5.2 Benchmark256

To quantitatively measure our progress toward these design goals, we need to be able to benchmark257

the ability of proposed Mechanic algorithms to effectively repair AIR compliance defects in an AI. A258

benchmark dataset would help. Such a benchmark dataset might consist of AI systems or models259

that are non-compliant with one or more AIR, ideally in different ways. The full suite of assets260

comprising each AI would be included in the dataset: that is to say, their complete training and261

evaluation datasets, their model weights, and their training, evaluation, and deployment code (i.e., full262

“snapshots”). In addition, each AI would be labeled with, essentially, an Inspector output (or other263

report card) that includes a diagnosis of the particular compliance issue. Mechanic algorithms should264

be fed the label and asked to operate on the AIs assets in order to repair the diagnosed compliance265

defect. Optionally, it could also be given the ability to call the an Inspector to evaluate its repairs.266

Mechanic algorithms could be evaluated for their success rate in being able to achieve a compliant267

state, as graded by the Inspector — as well as the number of calls to Inspector required to get there268

and the speed or computational cost in doing so.6269

6 Connecting the Inspector and Mechanic in a Closed-loop System270

The Inspector and Mechanic should ultimately be connected and encompassed in a single, unified271

system for CAIRC. This closed-loop system will need to manage the following:272

1. Run the Inspector routinely, perhaps as a scheduled job and ideally with enough frequency273

that AIR violations are detected and eliminated before harm is caused.274

2. Route non-void Inspector outputs (i.e., findings of non-compliance) to the Mechanic;275

3. When the Mechanic returns, re-run the Inspector;276

4. Repeat this loop until the Inspector returns void (indicating compliance has been restored);277

5. Optionally, if any changes made by the Mechanic have been made in a staging environment,278

push them to production;279

6. Resume running the Inspector routinely, perhaps on a scheduled job.280

It is important to note that this unified system could, in theory, be split across multiple organizations.281

For example, the Inspector and Mechanic could be owned by different entities; e.g., the Mechanic282

could be owned by an AI developer while the Inspector could belong to an auditing company or even283

law enforcement. This would permit an external check on the compliance levels of the AI — without284

given external entities access to certain parts of the AI system.285

The overarching algorithm must also have the ability to detect an endless loop between the Mechanic286

and the Inspector, possibly triggering more severe mitigations, such as a pause of the AI system.287

6Note that measuring speed and cost is important because it not only helps us compare Mechanic algorithms,
but helps us compare Mechanic algorithms with human-driven compliance protocols. This might, in turn, support
the hypothesis, put forth in Sec. 1, that CAIRC can lower costs compared to human-driven compliance efforts.

7



6.1 Benchmark288

Although benchmarking the Inspector and Mechanic algorithms independently is valuable, it will289

also be important to benchmark the close-loop CAIRC system that envelopes them. This will help290

us test the way they behave together, including how often they enter an endless loop and, working291

together, fail to cure a given AIR compliance deficiency. A benchmark dataset for testing the complete292

CAIRC system might consist, like the Inspector benchmark, of whole Inspector inputs — i.e., sets of293

information about AI systems, satisfying our input design criteria above — labeled by ground truth294

outputs — i.e., compliance diagnoses. After the CAIRC has run its course, and the Mechanic has295

made its changes to the AI, a SOTA LLM that has already proven to be effective at the Inspector296

task could be used, as a model-as-judge [Gu et al., 2025] to assess the AIR compliance level of the297

adjusted system. Separately, the rate of failures (where the the Inspector and Mechanic get caught in298

an endless loop) could be tracked.299

7 Challenges300

Computationality aside, AIR compliance is haunted by existential questions about its technical301

feasibility and measurability [Guha et al., 2024]. Critics argue that compliance with the EU AI302

Act, for example, rests on a number of open problems around explainability, human oversight,303

cybersecurity, and more [Guha et al., 2023, Fiazza, 2021, Guha et al., Ebers et al., 2021, Heikkilä,304

2022, Microsoft, 2021, Fiazza, 2021, Microsoft, 2021, e Silva, 2024, Heikkilä, 2022, Marino, 2024,305

Morley et al., 2020, Marino, 2024]. Differently, it has been said that EU AI Act compliance will306

be difficult or even impossible to measure [Almada and Petit, 2023] due to a lack of agreed-upon307

benchmarks for core concepts like bias [Committee on Standards in Public Life, 2020, Buyl and308

Bie, 2024, Dulka, 2023, Gornet, 2024] and interpretability [Guha et al., Hutson, 2023]. With309

LLMs in particular it has been said that it is “impossible to demonstrate compliance with a given310

regulatory specification” [Judge et al., 2024, Saeed and Omlin, 2023, Lee et al., 2024]. These critiques311

foreshadow potential hurdles en route to CAIRC, of course, because if researchers have not yet figure312

out how to measure or execute compliance in certain AIR scenarios, how can we expect our Inspector313

and Mechanic to do so?314

As a separate matter, when it comes to compliance, there are those that hold the viewpoint that315

“[h]uman oversight, nuanced judgment, ethical considerations, and strategic thinking cannot, and316

should not, be outsourced entirely to algorithms” [—, 2025]. This may stem from the notion that317

compliance, general, is “hard to measure” and “not binary” [Wu and van Rooij, 2021]. Needless to318

say, making AIR compliance computational (and especially benchmarking it) requires the opposite319

view: that compliance can successfully be encoded in digital systems that must make, in some cases,320

binary predictions — with their performance quantitatively measured using objective ground truth.321

If and when “grey areas” emerge in the application of AIR, this threatens the value and viability of322

CAIRC. Accordingly, it is a risk worth watching closing as we develop these algorithms.323

8 Conclusion324

Legal compliance, we argue, will ultimately be governed not by human oversight but by algorithms325

operating within digital systems — making it inherently computational. AI regulation (AIR) presents326

a timely opening to begin that transition. To move the field forward, we propose a set of design327

principles to steer the development of computational AIR compliance algorithms and, additionally,328

introduce benchmarks to quantitatively measure how faithfully those algorithms meet the design329

principles. Our intention in laying out this framework is to help crystallize a research area that is still330

being formed, while also sparking additional research investment in it.331
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