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Abstract

Al systems, we argue, will be unable to comply with Al regulation (AIR) at the
necessary speed and scale using traditional, analogue methods of compliance.
Rather, compliance with these regulations can only be achieved computationally,
via algorithms that run across the life cycle of the Al systems, automatically
steering them toward compliance in the face of dynamic conditions. Despite their
(we would argue) inevitability, the research community has yet to specify exactly
how these algorithms for computational AIR compliance should behave — or
how we should measure their success. To fill this gap, we specify a set of design
goals for such algorithms. In addition, we specify benchmarks for quantitatively
measuring whether they satisfy these design goals. By delivering this blueprint, we
hope to give shape to an important but uncrystallized new domain of research —
and, in doing so, incite necessary investment in it.

1 Introduction

This paper rests on the provocative premise that the future of all legal compliance is computational.

As every aspect of our lives becomes digitized, even if our laws are still printed in dust-gathering
tomes and stenciled on road signs, compliance with those laws will be wholly managed by the
architectures of — and algorithms inside — the digital systems that suffuse our world.

The benefits of this computationally compliant future will be manifold. It will reduce the cost of
compliance, removing a key barrier to market entry and thus fostering competition [Klapper et al.,
2006]]. It will permit “regulatory compliance in real time” [Bamidele| 2025]], with violations mitigated
as soon as they occur — and, often, before any harm is done. What is more, by removing the potential
for human error, computational compliance will ensure better compliance, and a reality that hews
closer to the letter of the laws that encode our societal values.

As Artificial Intelligence Regulation (AIR) takes shape worldwide [Alanoca et al., 2025, we arge that
it can (and should) represent the turning point in this evolution. “Since Al is an algorithm,” argues
one author, “then the method of its regulation should be the use of an algorithm comprising legal
standards” [Szostekl, [2021].

In this paper, we sketch a blueprint for fulfilling that vision. In particular, we specify exactly how such
an algorithm — one that runs across the life cycle of an Al system, dynamically steering it towards
AIR compliance in the face of variable conditions (e.g., data drift, post-deployment human feedback,
changing laws, and more) — should behave. That is to say, we specify design goals for computational
Al regulation compliance (CAIRC). What is more, we specify how we can quantitatively measure
our progress towards achieving those design goals using benchmarks.
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Above all, our hope is that this work brings structure and a set of lucid North Stars for future
investment in this nascent but increasingly crucial field of research.

2  Why Computational AIR Compliance Is Inevitable

In short, we believe the expansiveness and expense of Al regulation are on a collision course with the
complexity, scale, and dynamicism of Al in the modern era. In this new reality, the manual, analog
compliance solutions of the past will prove unsustainable and CAIRC will emerge as the only viable
method of complying with Al regulation.

As mentioned, countries across the world are moving to regulate Al — often with very different
outcomes [[Sloane and Wiillhorst, |2025, |Chun et al., 2024} |Alanoca et al., [2025]]. If the European
Union’s Artificial Intelligence Act (EU Al Act) [European Union, 2024] (dubbed “the world’s first
comprehensive Al law” [[European Parliament| 2024]]) is any indication, then these regulations will
have an “expansive scope” [Addey, |2023]]: reaching deep into the details of Al systems and models
(collectively, “AI”) to dictate “complex rules”[Zulehner, [2024] around everything from their training
data to their performance levels, logging practices, and more [European Union, 2024, Art. 10, 12,
15]. If the EU Al Act is any indication, complying with these regulations will also carry considerable
expense for the regulated [Wu and Liul [2023|] — perhaps even cost-prohibitive expense in the case of
small and -medium size enterprises [Schneier and Sanders| 2023| |Gikayl, 2024, [Wu and Liul 2023
Government, 2023, [Haataja and Bryson, 2021} [Sullivan, [2024} Reuel et al.| 2024b} |[Koh et al., 2024,
Bolda, [2024, Molnar, [2024)]

Meanwhile, on the other side of the equation is a “brave new world of AI” [Vithayathil and Nauroth,
2023|] that is more complex, dynamic, scaled-up, and global than ever before. The complexity of
today’s Al [Zaharia et al., [2024] — as well as the development pipeline [Sadek et al., [2024] and
supply chain behind it [Brown} 2023} [Engler and Renda} 2022, Marino et al.|[2024] — is at an all-time
high. Al systems and models today often comprise dozens of datasets and models, many externally
sourced from third parties via API or community platforms like Hugging Face. [|[Amershi et al.l 2019]
Take et al.| 2021, |(Chaudhuri et al.l [2024| Renieris et al.| 2023l |Osborne et al., 2024, Jones et al., 2024,
Ada Lovelace Institutel 2023, [Liesenfeld and Dingemansel, 2024, |Barclay et al., | 2019|]. Meanwhile,
the training datasets for some models are nearing “unimaginable scale” [Coders Stopl 2025| |Shen
et al., 2025]; by 2028, training sets are expected to “approach[] the total effective stock of text in
the indexed web” [Villalobos et al.,[2024]]. As we consider a near future where Al systems include
“hundreds of agents” [Falconer, 2025]], this complexity may only increase. Adding fuel to the fire is
the fact that “Al systems are constantly changing and evolving" [Nicenboim et al.,[2022]. Specifically,
they are the product of “continuous experimentation”[Martinez-Fernandez et al., 2022]] and “‘agile”
software development processes that prize “rapid iteration[]” in response to changing “customer
needs, technical changes, and market volatility” [Balayn and Gtirses}, 2024}, |Carlini, [2022} | Xin et al.,
2018} |Guo et al., 2024, [Piorkowski et al.,[2022]] — as well as “continual learning” methods [Wang
et al.| 2024]] whereby production data is continually used to retrain and improve the Al. Last but not
least, Al is increasingly marketed toward an international audience [Organization, 2024, Reuters|
2025], in which case they must comply with the entire patchwork of Al regulations described before.

The net takeaway is that Al — either today or, at least, in the near future — may simply be
too complex, dynamic, large, and global for the traditional, human-driven models of regulatory
compliance [O’Reilly} 2025| [Krasadakis| 2023, [Marino et al., 2024} Marino} 2024} |/Anderljung et al.|
2023|, [Hacker et al., 2023, |(Confinol 2024} |[Fiazza, [2021]]. That is, human compliance practitioners
will be unable to handle the task of determining whether complicated and ever-changing Al of titanic
scale comply with a protean patchwork of AIR — or, if they do not, determining how to bring them
back into a compliant state. This will leave no choice but to shift to AIR compliance methods that are
as scalable and dynamic as their Al subjects — i.e., computational.

3 Deconstructing the problem

“If you’re overwhelmed by the whole, break it down into pieces” — Chuck Close
[Ward, 2007]]

2EU AI Act compliance costs for some types of Al systems, for example, are estimated to be as high as
€400,000 [Koh et al.; 2024, 1872]



When developing algorithms for CAIRC, what should our design goals be? And how do we
quantitatively measure our progress toward them?

To help answer these questions, we find it useful to deconstruct CAIRC into two sub-problems.
Specifically, we posit that any CAIRC algorithm must necessarily contain two complimentary
functions, which we deem the Inspector and the Mechanicﬂ

As depicted in Fig.[I] the Inspector will diagnose — at any given point in time and in a fully automated
manner — the AIR compliance level of an AI. When it finds that the Al is not compliant with one or
more AIRs, it will communicate its diagnosis to the Mechanic, which will endeavor to remedy the
non-compliance using various automated tools, ultimately calling on the Inspector to re-run its audit
and determine if a compliance state has been achieved (or, perhaps, restored).

In the sections that follow, we set design goals and benchmarking criteria for each of these two
functions — as well as the broader CAIRC algorithm that necessarily unites and envelopes them.

CAIRC Information
Algorithm about Al Inspector ————ﬁ
Process No
complé;e Diagnosis Mechanic

Figure 1: CAIRC flowchart. As a first step, the overarching CAIRC algorithm submits information
about an Al to the Inspector (e.g., as a scheduled job). Next, the Inspector reaches a finding of either
compliance, in which case the process is complete, or non-compliance, in which case the Inspector
transmits its diagnosis to the Mechanic. Upon receiving it, the Mechanic uses its tools to try to repair
the diagnosed compliance defect(s). When finished, it calls the Inspector to re-run its analysis. This
loop repeats until the Inspector finds that compliance exists, in which case the process is completed (a
fact that is communicated back to the overarching CAIRC algorithm, so that it can adjust its schedule
accordingly).

4 The Inspector

In this section, we lay out the design criteria that, we argue, a CAIRC algorithm’s Inspector function
must satisfy. We also describe methods for benchmarking an Inspector, to quantitatively measure
whether those design criteria are satisfied.

4.1 Design Criteria

Our position is that an Inspector, in order to fulfill its purpose, must satisfy several key design criteria.
These relate to:

* The Inspector’s input;

* The Inspector’s output;

* The function that maps the former to the latter.
Below, we describe these design criteria in detail. Where applicable, we describe how close the

current state of the art (SOTA) comes to achieving these design goals and/or identify any open
research problems that must be solved before these design criteria can realistically be satisfied.

3Happily, the Inspector and Mechanic have independent, standalone value. Even in the absence of a Mechanic
to automatically repair the compliance defects it identifies, the Inspector can be used to alert human compliance
assessors or “human Mechanics” to compliance defects. Conversely, the Mechanic can be used to cure defects
identified by humans.



4.1.1 Input

In order to assess the AIR compliance level of a given Al, the Inspector requires, as its input,
information about that AL. Importantly, this information — and therefore the Inspector input — must
satisfy the following design criteria:

Comprehensiveness : If an Inspector is to accurately and holistically assess the AIR compliance
of an Al, then the information inputted into it must describe all aspects of the Al that bear (or
could potentially bear) on that compliance. Failure to input all of the information relevant to AIR
compliance carries great risk: specifically, of false positives (FP), whereby the Inspector incorrectly
labels a non-compliant AI compliant because it is not privy to the factual information indicating
otherwise. Because FPs like these could lead to penalties [European Union, 2024} Art. 99] and even
harm (of the sort the AIR aims to prevent), they must be avoided. And the only way to do that is to
ensure the Inspector inputs cover all aspects of the Al that bear on its AIR compliance.

So, for example, information relevant to EU Al Act compliance might concern everything from an Al
system’s data governance practices [European Union, 2024, Art. 10] and human oversight mecha-
nisms [European Union, 2024, Art. 14], which are the direct subjects of EU Al Act requirements. But
it will also necessarily include information about that Al system’s intended use, which determines
the particular set of rules that apply to it [European Union, 2024} Art. 6], and whether it is open
source, which potentially exempts it from those rules [European Union, 2024, Art. 2]. The input to
the Inspector must therefore include the super set of all this information — and any other information
relevant to EU AI Act compliance.

Importantly, this comprehensiveness must be achieved for every AIR that the system is expected to
comply with. Given the increasingly global nature of Al this may mean dozens of AIR for a given Al
system. In these cases, the super set of information relevant to each and every AIR must be inputted
into the Inspector.

Attestability : Information that is relevant to an Al system’s AIR compliance may go beyond
information about that particular system or model, to its ingredient models, datasets, and more. The
EU AI Act, for example, includes a number of requirements around training data [European Unionl
2024, Art. 10]. In today’s complex Al supply chain, this training data may come from disparate
sources, including non-trusted providers via API or online communities like Hugging Face [Marino
et al.,|2024]]. In these cases, it will be crucial to verify, sometimes without direct access to the subject
of the verification (i.e., through “remote attestation” [Brundage et al., |2020]]) that the information
about the training data that is inputted into the Inspector is accurate [Marino, [2024, Reuel et al.,
2024a]. At the moment, this type of attestation is considered an “open problem” [Reuel et al.| [2024a],
but various methods are being explored [Cen and Alur, |2024] South et al., 2024, |Sun and Zhang]
2023|,|[Hugging Facel 2024} |Schnabl et al.| 2025].

Concurrency : To achieve true CAIRC, the input must reflect the current state of the Al system. In
other words, the Inspector must have up-to-date knowledge of all AIR-relevant facets of the system,
including dynamic facets like logs, user feedback, cybersecurity attacks, and more. Information that
is outdated — even by seconds — represents a grave FP risk.

4.1.2 Output

When the Inspector finds that AIR compliance exists, it need not output anything other than, perhaps, a
void return. In all other cases, the key design criteria for the Inspector output is that it provide enough
information for the Mechanic to fulfill its role of repairing any identified compliance deficiencies and
achieving or restoring compliance to the Al (i.e., is “Mechanic-enabling”).

Among other things, this means that the Inspector’s cannot simply return a binary class label of
“non-compliant” or, differently, a single aggregate compliance score [Guldimann et al.| 2024]. At
a minimum, what is required are outputs that are granular (high fidelity) enough that the Mechanic
knows what work to begin and where — without, in the interests of efficiency, needing to duplicate
any of the compliance assessment work done by the Inspector. For example, in communicating a
violation of Article 10 of the EU Al Act, the Inspector would probably need to include, in its output,
a dataset identifier along with the particular section of Article 10 that was violated.



Where an Inspector with deeper access to a system (e.g., individual data points in a training set)
has surfaced more granular compliance violation information in performing its assessment, it may
transmit this additional information (e.g., data point identifiers) to the Mechanic, to relieve it of the
task of pinpointing the exact sources of non-compliance

4.1.3 Function Mapping Input to Output

The final cornerstone of the Inspector is some function that accurately maps its input onto its output;
i.e., maps information about an Al onto a Mechanic-enabling AIR compliance diagnosis. The function
could consist of an LLM [Sovrano et al., 2025} L1 et al., 2025, IMakovec et al., [2024]], rule-based
algorithm [Marino et al |2024]], evaluation suites that run on Al assets [Sovrano and Vitali, 2023
Walke et al., 2023, [Nolte et al., 2024} |IBueno Momcilovic et al., 2024} [Esiobu et al.| 2023 Qin et al.,
2023l [Lin et al., [2022} [Parrish et al.l |2022] |Guldimann et al.l 2024} |(Chen et al., 2024]], combinations
of these, or anything else.

Regardless of this mapping function’s exact contents, it must accurately map inputs onto outputs; i.e.,
map information about Al systems and models onto accurate compliance predictions. Because FPs
(findings of compliance when an Al is, in fact, non-compliant) are especially costly in this setting, it
must have a low FP rate; i.e., high precision.

4.2 Benchmark

To quantitatively measure our progress toward these design goals, we need to be able to benchmark
the ability of proposed Inspector algorithms to successfully predict the compliance level of a given
Al system at a given point in time, in light of one or more AIR. A benchmark dataset that would
fill this gap might consist of whole Inspector inputs — i.e., sets of information about Al systems,
satisfying our input design criteria above — labeled by ground truth outputs — i.e., compliance
diagnoses. Such a benchmark could be used to evaluate the accuracy with which candidate Inspector
algorithms predict the ground truth, as well as the speed and cost at which they do it (if it compares
to the speed of manual compliance analyses, then this undermines some of the benefits of CAIRC put
forth in Sec. E] Notably, despite the growing number of algorithms in the literature that, like our
proposed Inspector, automatically assess the AIR compliance of an Al (cataloged in Sec. [4.1.3)), only
one benchmark dataset for measuring the performance of these algorithms currently exists — and it
is strictly focused on LLM-based approaches [Marino et al., 2025al.

5 The Mechanic

In this section, we lay out design criteria for the Mechanic function. We also describe a method
for benchmarking the Mechanic, to quantitatively measure whether those design criteria are being
achieved.

5.1 Design Criteria

Our position is that a Mechanic, in order to fulfill its function, must satisfy several key design criteria.
These relate to:

* The Mechanic’s input;

* The Mechanics’s output;

* The repair algorithm(s) employed by the Mechanic.

Below, we describe these in more detail. Where applicable, we refer to the SOTA as well as any open
research problems that must be solved before these design criteria can realistically be satisfied.

“Note that there may often be reason to keep some aspects of the Al out of the hands of the Inspector —
for example, if the Inspector is being operated by an arms-length auditor or a regulator (an arrangement would
could have benefits in terms of providing an external check on the Al). In these situations, the Inspector may not,
by design, have access to enough information about the Al to provide a granular output to the Mechanic.

>The challenge of creating the ground truth for such a benchmark should not be underestimated. Compliance,
it has been said, is “hard to measure” and “not binary” [Wu and van Rooijl 2021]]. In creating ground truth, it
will be important to account for “grey areas.”



5.1.1 Input

The Mechanic must accept, as its input, the output of the Inspector (whose design criteria were
described in Sec. .1.T)). As previously discussed, the granularity of this input may influence the
scope of the Mechanic’s functionality and the details of its internal algorithm (covered in[5.1.3).

5.1.2 Output

The Mechanic (or, more specifically, its repair algorithm described below) are tasked with making
repairs directly to the Al This includes making changes to the AI’s assets: its code, data, models,
documentation, and more. On one hand, the output of the Mechanic is the altered version of these
assets (e.g., the data it has filered, the models it has re-trained, etc.). More concretely, the Mechanic
should also output a signal (e.g., a void function return) that indicates that its work, from its point
of view, is complete. Upon receiving this signal, the overarching algorithm that encompasses the
Mechanic and the Inspector can call on the Inspector again, to check the Mechanic’s work (i.e., to
verify whether compliance has in fact been achieved).

5.1.3 Repair algorithm

What lies between the input and the output of the Mechanic is a repair algorithm or program that
must accomplish a few key tasks:

Pinpoint the non-compliance (optional) : Depending on the particular AIR violation as well as the
granularity of the Inspector output, the Mechanic may need to do additional legwork to pinpoint the
exact source of the non-compliance (e.g., identify the data points deemed to be causing unmitigated
data poisoning in violation of [European Union|[2024, Art. 15]). Put differently, where the outputs of
the Inspector are sparse, the Mechanic must possess the functionality to discretely scan the Al for the
sources of non-compliance — or to otherwise map high-level compliance violation descriptions onto
the atomic components of the system that must be repaired.

Select the tool(s) to repair the non-compliance We define the Mechanic’s tools as those discrete
functions that the Mechanic’s repair algorithm will call upon in order to execute repairs to the AI’s
sources of non-compliance and bring the Al back to a compliant stateE] Here, for example, is a
non-complete list of sample tools a Mechanic might want to have at its disposal in order to repair
various AIR deficiencies:

* Where non-compliance stems from biased (and unmitigated) outputs of a generative Al
model [European Unionl 2024} Art. 9, 55], the Mechanic may leverage a machine unlearning
tool [Cao and Yang} 2015| [Hine et al., 2024} | Xu et al.| 2024}, Marino et al., 2025bf], a model
editing [Gupta et al., 2024] tool, or a [Q1 et al., [2023]] tool, to try to suppress the biased
outputs without the need for full retraining of the model.

* Where non-compliance stems from model inaccuracy [European Unionl 2024, Art. 15], the
Mechanic may leverage tools for improving accuracy by acquiring (and then re-training
on) more or better data from new sources; this, in turn, may require the ability to generate
synthetic data [Bauer et al.,[2024] or buy it on data marketplaces, to label, filter, or otherwise
prepare that data for training, and, lastly, to retrain and evaluate the downstream model.

* Where non-compliance stems from model leakage of personal data in the training set
[European Union, 2024} Art. 14], the Mechanic may require access to a differential privacy
(DP) tool [Bauer et al., 2024} Marino et al., [2025b])) that it can apply before retraining in
order to mitigate the risk of leakage in the model;

These tools must have the ability to edit the Al system: e.g., filter training sets, retrain models, and
more. The Mechanic, meanwhile, must possess the ability to map Inspector outputs onto the right
tools (e.g., through rule-based methods or by relying on an LLM to reason about which tools to

8Tools is a popular term in the world of Al agents, where it refers to those utilities that help connect an LLM
to external resources like internet browsers [Wiesinger et al.|[2025| Ruan et al.||2023} |Woodside and Toner 2024],
and it re-use here is not purely coincidental. This is because is not hard to imagine an agentic implementation of
CAIRC where the Inspector and Mechanic are subagents and the Mechanic’s tools are agentic tools (or perhaps
other subagents).



leverage [Microsoftl 2024]) and also to navigate trade-offs between different tool options based on
things like cost, latency, and ability to cure the particular defect at hand.

There is work to be done mapping out the full spectrum of tools required by the Mechanic to bring
the Al system, under any scenario, back to a compliant state. Importantly, to achieve true CAIRC, the
Mechanic algorithm must have access to a set of tools that, working together, can solve any arbitrary
AIR compliance deficiency. At the outset, we should highlight the fact that we do not believe this
full set of tools exist yet in the SOTA. In particular, we can assume that no tools yet exist wherever,
in the eyes of scholars, AIR calls for “technical capabilities or engineering solutions that do not
currently exist” [[Guha et al.| or otherwise “rest on open issues in computer science” [Fiazzal 2021],
including around transparency [|Guha et al.]], human oversight [Ebers et al., [2021]], data quality [Ebers
et al.l 2021} [Heikkildl 2022, Microsoft, {2021} [Fiazza, 2021} [Microsoft, 2021} le Silva, [2024]], and the
robustness, explainability, and security of models [Fiazza, 2021} |Guha et al., [Heikkilal 2022} Marinol,
2024, Morley et al., 2020, Marino), 2024]).

Orchestrate and manage the execution of those tools, through to some predicted state of
completion Once it has selected the specific tool(s) that it will use to address the non-compliance,
the Mechanic repair algorithm must orchestrate and manage the use of those tools to cure the particular
deficiency. This includes the ability to monitor the progress and efficacy of these orchestrated tools —
i.e., as well as make a preliminary prediction about whether the tool has resolved the non-compliance
(and, therefore, whether it is time to send an output message to the overarching algorithm that
encompasses the Mechanic and the Inspector).

5.2 Benchmark

To quantitatively measure our progress toward these design goals, we need to be able to benchmark
the ability of proposed Mechanic algorithms to effectively repair AIR compliance defects in an AL A
benchmark dataset would help. Such a benchmark dataset might consist of Al systems or models
that are non-compliant with one or more AIR, ideally in different ways. The full suite of assets
comprising each Al would be included in the dataset: that is to say, their complete training and
evaluation datasets, their model weights, and their training, evaluation, and deployment code (i.e., full
“snapshots™). In addition, each Al would be labeled with, essentially, an Inspector output (or other
report card) that includes a diagnosis of the particular compliance issue. Mechanic algorithms should
be fed the label and asked to operate on the Als assets in order to repair the diagnosed compliance
defect. Optionally, it could also be given the ability to call the an Inspector to evaluate its repairs.
Mechanic algorithms could be evaluated for their success rate in being able to achieve a compliant
state, as graded by the Inspector — as well as the number of calls to Inspector required to get there
and the speed or computational cost in doing so[]

6 Connecting the Inspector and Mechanic in a Closed-loop System

The Inspector and Mechanic should ultimately be connected and encompassed by an overarching
algorithm, creating a single, unified system for CAIRC. This closed-loop system will need to manage
the following:

1. Run the Inspector routinely, perhaps as a scheduled job and ideally with enough frequency
that AIR violations are detected and eliminated before harm is caused;

2. Route non-void Inspector outputs (i.e., findings of non-compliance) to the Mechanic;
3. When the Mechanic returns, re-run the Inspector;
4. Repeat this loop until the Inspector returns void (indicating compliance has been restored);

It is important to note that this unified system could, in theory, be split across multiple organizations.
For example, the Mechanic could be owned by an Al developer while the Inspector could belong
to an auditing company or even regulator. This would permit an external check on the compliance
levels of the Al — without given external entities access to certain parts of the Al system.

"Note that measuring speed and cost is important because it not only helps us compare Mechanic algorithms,
but helps us compare Mechanic algorithms with human-driven compliance protocols. This might, in turn, support
the hypothesis, put forth in Sec. E} that CAIRC can lower costs compared to human-driven compliance efforts.



The overarching algorithm must also have the ability to detect an endless loop between the Mechanic
and the Inspector, possibly triggering more severe mitigations, such as a pause of the Al system.

6.1 Benchmark

Although benchmarking the Inspector and Mechanic algorithms independently is valuable, it will
also be important to benchmark the close-loop CAIRC system that envelopes them. This will help
us test the way they behave together, including how often they enter an endless loop and, working
together, fail to cure a given AIR compliance deficiency. A benchmark dataset for testing the complete
CAIRC system might consist, like the Inspector benchmark, of whole Inspector inputs — i.e., sets
of information about Al systems, satisfying our input design criteria above — labeled by ground
truth outputs — i.e., compliance diagnoses. After the CAIRC has run its course, and the Mechanic
has made its changes to the AI, human experts could qualitatively check whether the resulting Al
is indeed compliant. Or, differently, a SOTA LLM that has already proven to be effective at the
Inspector task could be used, as a model-as-judge [Gu et al.} 2025]], to assess the AIR compliance
level of the resulting Al. Separately, the rate of failures (where the Inspector and Mechanic get caught
in an endless loop), as well as the speed and cost of the end-to-end system, could be tracked.

7 Challenges

Computationality aside, AIR compliance is haunted by existential questions about its technical
feasibility and measurability [Guha et al., 2024, (Guha et al.]]. Critics argue that compliance with
the EU AI Act, for example, rests on a number of open problems around explainability, human
oversight, cybersecurity, and more [Guha et al., 2024, |[Fiazza), |2021},|(Guha et al., |[Ebers et al., [2021],
Heikkildl 2022] Microsoft, 2021, [Fiazzal 2021} Microsoft, 2021} le Silva, [2024] [Heikkild), [2022,
Marino, 2024, [Morley et al., 2020, Marino, 2024]. Differently, it has been said that EU Al Act
compliance will be difficult or even impossible to measure [Almada and Petit, [2023]] due to a lack of
agreed-upon benchmarks for core concepts like bias [Committee on Standards in Public Life} 2020,
Buyl and Bie| 2024 |Dulka} 2023} |Gornet, 2024 and interpretability [|Guha et al., [Hutson| [2023]].
With LLMs in particular it has been said that it is “impossible to demonstrate compliance with a
given regulatory specification” [Judge et al.} 2024} Saeed and Omlin, 2023} Lee et al., [2024]]. These
critiques foreshadow potential hurdles en route to CAIRC, of course, because if researchers have not
yet figure out how to measure or execute compliance in certain AIR scenarios, how can we expect
our Inspector and Mechanic to do so?

As a separate matter, when it comes to compliance, there are those that hold the viewpoint that
“[hJuman oversight, nuanced judgment, ethical considerations, and strategic thinking cannot, and
should not, be outsourced entirely to algorithms” [[Compliance Podcast Networkl 2025]]. This may
stem from the notion that compliance, general, is “hard to measure” and “not binary” [Wu and van
Rooij, [2021]. Needless to say, making AIR compliance computational (and especially benchmarking
it) requires the opposite view: that compliance can successfully be encoded in digital systems that
must make, in some cases, binary predictions — with their performance quantitatively measured
using objective ground truth. If and when “grey areas” emerge in the application of AIR, this threatens
the value and viability of CAIRC. Accordingly, it is a risk worth monitoring closely as we develop
CAIRC algorithms.

8 Conclusion

Legal compliance, we argue, will ultimately be governed not by human oversight but by algorithms
operating within digital systems — making it inherently computational. Al regulation represents a
prime opportunity to begin that transition. To move the field forward, we propose a set of design
principles to steer the development of computational AIR compliance algorithms and, additionally,
introduce benchmarks to quantitatively measure how faithfully those algorithms meet the design
principles. Our intention in laying out this framework is to help crystallize a research area that is still
being formed, while also sparking additional research investment in it.
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