
The Best of Both Worlds: Bridging Quality and Diversity in
Data Selection with Bipartite Graph

Minghao Wu 1 Thuy-Trang Vu 1 Lizhen Qu 1 Gholamreza Haffari 1

Abstract
The performance of large language models
(LLMs) is strongly influenced by the quality and
diversity of data used during supervised fine-
tuning (SFT). However, current data selection
methods often prioritize one aspect over the other,
resulting in suboptimal training outcomes. To
address this, we formulate data selection as a
set cover problem and present GRAPHFILTER, a
novel approach that balances both quality and di-
versity in data selection. GRAPHFILTER models
the dataset as a bipartite graph connecting sen-
tences to their constituent n-grams, then employs
a priority function that combines quality and di-
versity metrics multiplicatively. GRAPHFILTER
iteratively selects sentences with the highest pri-
ority, removes covered n-grams from the bipar-
tite graph, and recomputes priorities to reflect the
changing data landscape. We validate GRAPH-
FILTER using three model backbones across six
widely-used benchmarks, demonstrating that it
outperforms nine existing baselines in both model
performance and computational efficiency. Fur-
ther analysis shows that our design choices lead
to more effective subset selection, underscores
the value of instruction diversity, and provides in-
sights into how quality and diversity interact with
different subset sizes.

1. Introduction
Large language models (LLMs) have significantly advanced
the field of natural language processing (NLP), enabling
models to generate coherent and contextually relevant text
across a variety of tasks (Ouyang et al., 2022; Sanh et al.,
2022; OpenAI, 2023; Touvron et al., 2023a;b; Anil et al.,
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2023; Mesnard et al., 2024; Yang et al., 2024). Central to
the success of these models is the quality and diversity of
the data used during supervised fine-tuning (SFT). Fine-
tuning on high-quality data ensures that the model learns
accurate language patterns and responds appropriately to
inputs (Wang et al., 2023; Zhou et al., 2023), while diversity
in the data allows the model to generalize across different
contexts and topics (Abbas et al., 2023; Maharana et al.,
2024). However, the vastness of available SFT data presents
a challenge: selecting a subset of data that balances both
quality and diversity to optimize model performance.

Recent methods for data selection often prioritize either
quality or diversity, rarely achieving an optimal balance
of both. Approaches that focus exclusively on quality may
overlook the variety of language patterns necessary for effec-
tive generalization (Marion et al., 2023; Ankner et al., 2024).
Conversely, methods emphasizing diversity might include
lower-quality data, which could negatively impact model
performance (Abbas et al., 2023; Lu et al., 2024). This
focus can result in models that either overfit to specific data
patterns or underperform due to the inclusion of irrelevant
or poor-quality data. Hence, it is crucial to develop a data
selection strategy that simultaneously maximizes both data
quality and diversity for effective supervised fine-tuning.

In response to this challenge, we formulate data selection as
a set cover problem and propose a novel method, GRAPH-
FILTER, which models both diversity and quality in data
selection. The set cover problem aims to select the smallest
collection of subsets to cover every element in a given uni-
versal set (Garey & Johnson, 1979). To achieve this in data
selection, GRAPHFILTER models the dataset as a bipartite
graph, where sentences and n-grams are represented as two
distinct sets of nodes, with edges indicating the presence of
n-grams in sentences. This bipartite structure allows us to
prioritize sentences that introduce unique n-grams, thereby
maximizing the diversity of the selected subset. In addi-
tion to diversity, GRAPHFILTER incorporates quality into
the selection process by re-ranking sentences based on a
quality metric. To balance these two aspects, we employ a
priority function that combines quality and diversity met-
rics multiplicatively. Concretely, we use SUPERFILTER (Li
et al., 2024a) as the quality metric. It measures the infor-
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mativeness of a response by comparing its perplexity when
conditioned on the instruction with its standalone perplexity.
Moreover, we leverage Term Frequency-Inverse Document
Frequency (TF-IDF) scores for n-grams within sentences as
the diversity metric. The priority function multiplies these
two measures, assigning higher priority to sentences that are
both informative (high-quality) and contribute substantially
to n-gram diversity. During selection, GRAPHFILTER itera-
tively chooses the sentence with the highest priority, updates
the bipartite graph by removing covered n-grams, and recal-
culates priorities based on the updated graph. By balancing
diversity and quality in this manner, GRAPHFILTER effec-
tively build a subset of examples that is both high-quality
and broadly representative of the entire dataset.

To demonstrate the effectiveness of GRAPHFILTER, we con-
ducted extensive experiments, comparing GRAPHFILTER
against nine baseline approaches using three model back-
bones across six widely-used benchmarks. Our empirical re-
sults indicate that GRAPHFILTER significantly outperforms
recent state-of-the-art baselines and achieves notably better
computational efficiency. Specifically, in terms of overall
performance, GRAPHFILTER substantially outperforms all
the baseline approaches across three model backbones, and
is significantly more efficient than most baselines without re-
quiring GPUs for computation. GRAPHFILTER outperforms
the baselines by up to +2.37 for GEMMA-2-2B, +3.02 for
MISTRAL-7B-V0.3, and +3.38 for LLAMA-3-8B, and is
significantly more efficient than these baselines without re-
quiring GPUs for computation. Furthermore, we perform an
in-depth analysis to validate the effectiveness of our design
choices in GRAPHFILTER, examine the characteristics of
the selected subsets and the importance of instruction di-
versity, and investigate the impacts of quality and diversity
under various data scales.

In summary, the contributions of this work are threefold:

• We frame data selection as a set cover problem and
introduce a novel approach, GRAPHFILTER, which
leverages a bipartite graph structure to balance both
diversity and quality. This bipartite graph connects
sentences to their constituent n-grams, enabling the
construction of a subset of examples that is not only
high-quality but also broadly representative of the en-
tire dataset (see Section 3).

• Through experiments using three model backbones
across six widely-used benchmarks, we demonstrate
that our method, GRAPHFILTER, surpasses existing
data selection strategies, achieving significantly better
computational efficiency (see Section 4).

• Our detailed analyses provide valuable insights into the
design choices of GRAPHFILTER, the characteristics of
the selected subset, and the importance of quality and
diversity in relation to the subset sizes (see Section 5).

2. Related Work
Data Engineering for Large Language Models The suc-
cess of recent large language models (LLMs) largely relies
on the data used during their training process (Zha et al.,
2023). State-of-the-art LLMs are generally trained on vast
corpora (OpenAI, 2023; Team et al., 2024; Dubey et al.,
2024). A significant area of research focuses on curating
high-quality corpora for pre-training these models (Raffel
et al., 2020; Computer, 2023; Soldaini et al., 2024; Penedo
et al., 2024). Furthermore, Wang et al. (2023) demonstrate
that LLMs are capable of synthesizing high-quality datasets
for supervised fine-tuning, which leads to a surge of research
on dataset synthesis (Xu et al., 2023; Li et al., 2023; Gu-
nasekar et al., 2023; Ding et al., 2023; Cui et al., 2023; Wu
et al., 2024; Chen et al., 2024a; Xu et al., 2024). These re-
search efforts facilitate the synthesis of large-scale datasets
containing billions of tokens for various purposes, resulting
in a significant demand for selecting valuable subsets.

Data Selection Data selection strategies aim to iden-
tify the most informative data subsets for training or fine-
tuning models by considering quality and diversity. Quality-
focused approaches prioritize metrics like complexity, diffi-
culty, or informativeness (Marion et al., 2023; Chen et al.,
2024b; Liu et al., 2024; Li et al., 2024b;a), but may ne-
glect the range of language patterns needed for generaliza-
tion. Conversely, diversity-focused methods capture a broad
spectrum of linguistic patterns and contexts, potentially
incorporating lower-quality data that could impair model
performance (Abbas et al., 2023; Lu et al., 2024).

Ours To overcome limitations in current data selection
methods, we propose GRAPHFILTER, a novel approach that
represents the dataset as a bipartite graph of sentences and
their n-grams. By balancing quality and diversity with a
priority function, our method improves model performance
across various downstream tasks.

3. Methodology
In this section, we first introduce the data selection problem
for supervised fine-tuning in Section 3.1. Subsequently, we
describe the modeling of the dataset as a bipartite graph in
Section 3.2. Finally, we explain the re-ranking of the graph
nodes using a priority function that integrates quality and
diversity metrics in data selection in Section 3.3.

3.1. Data Selection Problem

The data selection problem involves the challenge of iden-
tifying and selecting the most relevant and informative
subset of supervised instances from a larger dataset to
fine-tune large language models (LLMs). Formally, let
D = {(xi, yi)}Ni=1 be the supervised fine-tuning (SFT)
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Algorithm 1 GRAPHFILTER

1: Input: U = {ui}Ni=1, the set of sentence nodes; V =
{vj}Mj=1, the set of n-gram nodes; E ⊆ U × V , the set
of edges between sentence nodes and n-gram nodes; k,
the data selection budget; ϕ(u), the priority function for
each u ∈ U ;

2: Output: The selected subset S;
3: S = ∅
4: while |S| < k ∧ U ̸= ∅ do
5: u∗ ← argmaxu∈U ϕ(u) {Select

the sentence with the highest
priority}

6: Vu∗ ← {v ∈ V | (u∗, v) ∈ E} {Find n-gram
nodes connected to u∗}

7: S ← S ∪ {u∗} {Add u∗ to the selected
set}

8: U ← U \ {u∗} {Remove u∗ from the
remaining sentences}

9: E ← E \ {(u∗, v) | v ∈ Vu∗} {Remove edges
connected to u∗}

10: for all v ∈ Vu∗ do
11: E ← E \ {(u, v) | u ∈ U} {Remove edges

connecting to v}
12: end for
13: end while

dataset, where xi represents the instruction and yi its corre-
sponding response for the i-th training instance. Our aim is
to select a subset Sπ of size k from D, utilizing the data se-
lection strategy π, where k is the data selection budget. The
objective is to determine the optimal data selection strategy
π∗ that is capable of selecting a subset Sπ maximizing the
performance of the fine-tuned LLM fθ on the downstream
tasks Dtst. Therefore, the data selection problem can be
formally formulated as:

π∗ = argmax
π

R (fθ;Dtst) , subject to |Sπ| = k,

where θ = FineTune(F ,Sπ),
(1)

where Sπ is the subset of the training data selected by the
strategy π, θ = FineTune(F ,Sπ) denotes the parameters of
the model backbone F after fine-tuning on the selected data
subset Sπ , fθ is the fine-tuned model with parameters θ, and
R (fθ;Dtst) is the performance metric (e.g., accuracy) of
the fine-tuned model fθ evaluated on the test set Dtst.

3.2. Modeling Datasets as Bipartite Graphs

In our approach, we model the dataset as a bipartite graph
to effectively represent the relationships between sentences
and their constituent n-grams. A bipartite graph is a spe-
cial type of graph whose vertices can be divided into two

disjoint and independent sets such that every edge connects
a vertex from one set to a vertex from the other set. For-
mally, a bipartite graph G = (U ,V, E) consists of sentence
nodes (U = {ui}Ni=1), n-gram nodes (V = {vj}Mj=1), and
edges (E ⊆ U × V). This structure allows us to capture
the occurrence of n-grams within sentences, providing a
foundation for selecting sentences that maximize n-gram
coverage while adhering to specific priorities. We introduce
the details of the priority for re-ranking the sentences based
on both quality and diversity in Section 3.3.

GRAPHFILTER Our objective is to select a subset of sen-
tences, denoted as S, from the entire dataset, constrained
by a data selection budget k. The aim is to maximize the
coverage of unique n-grams while aligning with a priority
function ϕ(u) for each sentence u ∈ U . As illustrated in
Algorithm 1, our method, referred to as GRAPHFILTER,
operates iteratively by updating the graph structure to reflect
the n-gram coverage as sentences are selected. The pro-
cess begins with an empty set of selected sentences, S = ∅,
and a bipartite graph G that includes sentence nodes, n-gram
nodes, and connecting edges. In each iteration, we select the
sentence u∗ ∈ U that has the highest priority score ϕ(u∗),
add u∗ to S , and then remove u∗ from the set of remaining
sentences U . Next, we identify the n-grams covered by u∗,
denoted as Vu∗ . We then remove all edges that connect u∗

to the n-gram nodes in Vu∗ . Subsequently, all edges con-
necting to nodes in Vu∗ are eliminated from the graph. Note
that the priority of each sentence u ∈ U is computed based
on the most recent graph G during each iteration.

Set Cover Problem Our problem formulation is related to
the classical set cover NP-hard problem (Garey & Johnson,
1979). In the set cover problem, given a universe of elements
and a collection of sets whose union comprises the universe,
the objective is to identify the smallest number of sets whose
union still contains all elements in the universe. Similarly,
in a special case of our problem where the priority function
assigns the same score to all sentences (i.e., ϕ(u) = 1 for all
u ∈ U ), and the goal is to find the minimal set of sentences
that cover all n-grams, our task becomes analogous to the set
cover problem. In this scenario, the greedy approach used in
Algorithm 1 can be shown to have an approximation factor
of H(r) (Vazirani, 2001), where r is the maximum degree
of the sentence nodes in the graph (the largest number of n-
grams contained in any sentence), and H(r) =

∑r
k=1

1
k is

the r-th harmonic number. This relationship highlights the
theoretical foundations of our method and provides insight
into its performance guarantees in this special case.

A Minimalist Example Moreover, we present a minimal-
ist example in Figure 1. Initially, the bipartite graph is
displayed in Figure 1a. In Figure 1b, the sentence node u1

is selected as u∗ in Algorithm 1, along with its associated
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Figure 1: An example of a single iteration of GRAPHFILTER without the priority function. In this case, the degree of a
sentence node serves as the priority score. Sentence nodes are in blue and n-gram nodes in green. The selected sentence
node is yellow, while connected n-gram nodes are red. Removed n-gram nodes are white, with removed edges as dashed
lines. Node u1 is selected in the current iteration, and u4 will be the next.

n-gram nodes, Vu1 , which are highlighted in red. Figure 1c
demonstrates the removal of edges connected to u1 and Vu1 ,
as indicated by dashed lines. Finally, Figure 1d illustrates
the removal of isolated nodes, shown in white. The next se-
lected sentence node is u4. In this example, GRAPHFILTER
can cover all the n-grams by selecting only u1 and u4.

By modeling the dataset as a bipartite graph and employing
an iterative selection algorithm, GRAPHFILTER effectively
selects a subset of sentences that maximizes n-gram cover-
age while adhering to specified priorities. Note that each
SFT training instance comprises instructions and responses.
In this work, we apply GRAPHFILTER solely to the instruc-
tions of the SFT data.

Implementation In a brute-force implementation, the
computational complexity of our algorithm is O(N) per
iteration. This complexity results from the need to perform
operations such as selecting the highest-priority sentence
and removing edges, which involve scanning the sets of sen-
tences (U), n-grams (V), and edges (E). These sets are not
optimized for efficient access or modification. To enhance
computational efficiency, we employ a max-heap (or prior-
ity queue) to select the highest-priority sentence, allowing
this selection to be performed in O(logN) time per itera-
tion. This reduces the selection complexity from O(N) to
O(logN). Additionally, the max-heap data structure facili-
tates the localization of priority updates to affected nodes,
eliminating the need to enumerate all nodes and edges.

3.3. Balancing Quality and Diversity with Priority
Function

As illustrated in Algorithm 1, GRAPHFILTER naturally se-
lects a subset with maximal n-gram coverage, emphasizing
data diversity. However, the quality of the data is equally
important for effective language model training. To balance
both quality and diversity in our selection process, we de-
fine a priority function ϕ(u) for each sentence node u ∈ U ,
which is used to re-rank the sentence nodes during selection.

Quality Metric For quality, we employ the SUPERFILTER
as the quality measure (Li et al., 2024a;b). The SUPERFIL-
TER metric evaluates the informativeness of a response by
comparing the perplexity of the response conditioned on
the instruction with the perplexity of the response alone.
Formally, for a given sentence node u associated with the
instruction-response pair (x, y), the quality priority metric
is defined as:

QUALITY(u) = SUPERFILTER(x, y) =
PPL(y | x)

PPL(y)
,

where PPL(w) = exp

(
− 1

T

T∑
t=1

logP (wt | w<t)

)
,

(2)
where PPL(w) is the perplexity of the sentence w with a
length of T , PPL(y) is the perplexity of the response y, and
PPL(y | x) is the perplexity of the response y conditioned on
the instruction x. A higher SUPERFILTER value indicates
that the response is more relevant and informative given the
instruction, thus reflecting higher quality. It is important
to note that the choice of quality metric can be determined
based on specific user needs and the quality scores can be
precomputed prior to the selection process.

Diversity Metric For diversity, we use the Term
Frequency-Inverse Document Frequency (TF-IDF) as a
measure of the significance of each n-gram within the
dataset. The TF-IDF score of an n-gram v is calculated
as TF-IDF(v) = TF(v) × IDF(v), where TF(v) (Term
Frequency) is the number of times n-gram v appears in
the sentence, and IDF(v) (Inverse Document Frequency)
is defined as IDF(v) = log

(
N
dv

)
, with N being the total

number of sentences in the corpus, and dv being the number
of sentences containing n-gram v. Furthermore, we com-
pute the sum of TF-IDF scores of all n-grams (of varying
lengths) present in the sentence:

DIVERSITY(u) =
∑
v∈Vu

TF-IDF(v), (3)

4



The Best of Both Worlds: Bridging Quality and Diversity in Data Selection with Bipartite Graph

where Vu is the set of n-grams connected to sentence u in
the graph G. In our work, Vu includes unigrams (n = 1),
bigrams (n = 2), and trigrams (n = 3) present in sentence
u, capturing both word-level and phrase-level features.

Priority Function To effectively prioritize sentences
based on both quality and diversity, we combine the QUAL-
ITY score and the DIVERSITY score for the sentence node
u into a single priority function:

ϕ(u) = QUALITY(u)× DIVERSITY(u). (4)

This function assigns higher priority to sentences that are
both high-quality and contribute significantly to n-gram
diversity. By integrating both quality and diversity into the
priority function, our selection algorithm can effectively
choose a subset of examples that are both high-quality and
broadly representative of the entire dataset.

4. Experiments
In this section, we initially outline our experimental setup
in Section 4.1, followed by our main results in Section 4.2.

4.1. Experimental Setup

Training Dataset Xu et al. (2024) utilize state-of-the-
art open-source large language models (LLMs) to create
a high-quality dataset collection known as Magpie. In
our research, we employ the Magpie dataset, which is
generated by LLAMA-3-70B-INSTRUCT and comprises
300K training instances.1 For this study, we choose a subset
of 10K training instances using various selection methods
from the entire dataset, unless otherwise stated.

Baselines We compare our approach, GRAPHFILTER,
with a diverse array of baseline methods:

• Heuristic: (1) RANDOM randomly selects a subset
from the entire dataset; (2) LONGEST sorts the training
instances in descending order based on the length of
the instructions;

• Quality-based: (3) PERPLEXITY utilizes perplexity
values, where larger values typically indicate higher
difficulty and quality of training instances; (4) AR-
MORM is the state-of-the-art open-sourced reward
model presented by Wang et al. (2024); (5) ALPAGA-
SUS demonstrates that state-of-the-art LLMs can be di-
rectly prompted for estimating data quality (Chen et al.,
2024b); (6) DEITA leverages CHATGPT to synthesize
a quality estimation dataset and fine-tune LLMs for
data quality estimation (Liu et al., 2024); (7) SUPER-
FILTER indicates the Instruction-Following Difficulty

1https://huggingface.co/datasets/
Magpie-Align/Magpie-Pro-300K-Filtered

(IFD) metric computed by smaller language models.
Li et al. (2024b) introduce this method, while Li et al.
(2024a) demonstrate that smaller models can be used
for computing IFD scores.

• Diversity-based: (8) KMEANS clusters the training
instances with the state-of-the-art sentence embedding
model and selects the training instances that are closest
to their respective cluster centroids (Arthur & Vassilvit-
skii, 2007); (9) INSTAG is designed for analyzing the
SFT dataset by tagging the topics of training instances,
and can be used for selecting the subset with the most
diverse topics from the entire dataset (Lu et al., 2024).

We present more details of baselines in Section A.1. We
conduct experiments using three diverse model backbones,
including GEMMA-2-2B (Team et al., 2024), MISTRAL-7B-
V0.3 (Jiang et al., 2023), and LLAMA-3-8B (Dubey et al.,
2024). The optimization details are in Section A.2.

Evaluation We conduct evaluations on six popular bench-
marks, categorized into two groups:

• Standardized: We assess the LLMs using LM-
EVALUATION-HARNESS (Gao et al., 2024) on four
standardized benchmarks: MMLU (Hendrycks et al.,
2021), ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), and GSM8K (Cobbe et al., 2021). The
model performance on these benchmarks is measured
by accuracy. We use the macro-average accuracy
across four benchmarks as the overall performance
of this group, denoted as µBENCH.

• LLM-as-a-Judge: We evaluate LLMs using
AlpacaEval-2.0 (Dubois et al., 2024) and
MT-Bench (Zheng et al., 2023), with GPT-4O-
2024-05-13 as the judge. For AlpacaEval-2.0,
GPT-4-1106-PREVIEW generates reference answers,
and we report both the length-controlled win rate
(LC) and the original win rate (WR). For MT-Bench,
performance is denoted as µMT, the macro-average
across all categories. Overall performance of this
group, µLLM, is the macro-average of LC and µMT.

We define overall model performance, µALL, as the macro-
average of results from four standardized benchmarks, LC,
and µMT. In calculating µALL and µLLM, µMT is scaled by 10×
to align with a range of 1 to 100, matching other benchmarks.
Further evaluation details are in Section A.3.

4.2. Main Results

GRAPHFILTER surpasses all baseline approaches. As
shown in Table 1, GRAPHFILTER consistently outperforms
all baseline approaches across the three model backbones on
both standardized benchmarks and LLM-as-a-Judge bench-
marks. It achieves either the best or second-best results on
most individual benchmarks. Specifically, in terms of µALL,
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Table 1: Main results given by GEMMA-2-2B, MISTRAL-7B-V0.3, and LLAMA-3-8B on the standardized benchmarks
and LLM-as-a-Judge benchmarks. HS, G8K, and AE-2 correspond to HellaSwag, GSM8K, and AlpacaEval-2.0,
respectively. The best results are highlighted in bold, and the second-best results are highlighted in underline.

Standardized LLM-as-a-Judge
µALLMMLU ARC HS G8K

µBENCH
AE-2 MT-Bench

µLLM

Acc Acc Acc Acc LC WR µMT 1st 2nd

GEMMA-2-2B
RANDOM 25.25 47.52 58.27 9.10 35.03 10.77 13.73 4.73 5.44 4.01 29.01 33.03
LONGEST 25.50 47.06 56.43 8.79 34.45 10.40 13.10 4.79 5.54 4.05 29.17 32.69
PERPLEXITY 23.34 47.58 59.04 6.48 34.11 12.19 14.76 4.98 5.75 4.21 31.00 33.07
ARMORM 25.42 48.06 56.19 10.62 35.07 13.40 16.39 4.84 5.55 4.14 30.92 33.69
ALPAGASUS 26.56 47.18 58.69 10.57 35.75 13.12 15.76 4.89 5.68 4.11 31.03 34.18
DEITA 28.72 47.51 58.35 10.16 36.18 12.99 15.86 4.82 5.62 4.01 30.57 34.31
SUPERFILTER 28.82 47.20 59.18 9.33 36.13 12.87 15.55 4.88 5.49 4.26 30.81 34.36
KMEANS 28.39 46.96 56.59 10.31 35.56 12.19 14.76 4.98 5.74 4.23 31.00 34.04
INSTAG 27.60 47.75 59.98 9.86 36.29 12.75 15.47 4.79 5.45 4.13 30.31 34.30

GRAPHFILTER 29.06 47.92 59.38 10.71 36.77 13.14 15.99 5.01 5.77 4.25 31.64 35.06

MISTRAL-7B-V0.3
RANDOM 25.50 52.17 67.44 9.17 38.57 14.76 17.41 5.03 5.93 4.13 32.51 36.55
LONGEST 25.17 52.11 67.32 10.30 38.73 13.67 16.14 4.96 6.00 3.91 31.62 36.36
PERPLEXITY 30.64 52.42 69.31 4.62 39.25 13.60 16.18 4.98 6.01 3.95 31.70 36.73
ARMORM 28.84 50.85 68.85 9.63 39.54 15.56 18.89 5.13 5.93 4.34 33.43 37.51
ALPAGASUS 28.67 51.92 68.61 9.48 39.67 14.67 18.14 5.21 6.13 4.30 33.40 37.58
DEITA 29.86 50.82 67.99 10.60 39.82 14.08 16.49 5.03 5.93 4.13 32.18 37.27
SUPERFILTER 33.59 52.45 68.56 9.93 41.13 13.59 16.75 5.23 6.01 4.44 32.92 38.40
KMEANS 28.77 50.58 67.81 11.55 39.68 13.98 16.83 5.11 5.93 4.29 32.52 37.29
INSTAG 28.29 50.99 67.44 12.59 39.82 14.55 17.36 5.11 5.86 4.36 32.84 37.50

GRAPHFILTER 33.24 52.48 69.69 11.92 41.83 15.16 18.85 5.38 6.23 4.54 34.49 39.38

LLAMA-3-8B
RANDOM 49.55 52.00 67.30 22.14 47.75 22.17 25.05 5.99 6.95 5.03 41.04 45.51
LONGEST 44.52 50.56 67.99 24.56 46.91 20.17 22.67 5.97 6.82 5.13 39.96 44.59
PERPLEXITY 51.08 52.31 68.74 20.96 48.27 20.38 22.87 6.02 7.02 5.01 40.28 45.61
ARMORM 47.84 52.24 68.11 24.64 48.21 23.45 26.60 6.19 7.14 5.24 42.66 46.36
ALPAGASUS 49.90 51.63 68.40 25.89 48.96 22.90 25.94 6.09 7.05 5.13 41.90 46.60
DEITA 48.49 52.40 68.46 25.78 48.78 22.23 24.42 6.12 7.12 5.11 41.70 46.42
SUPERFILTER 50.16 51.10 67.70 27.45 49.10 22.54 24.68 6.13 7.23 5.03 41.91 46.70
KMEANS 51.98 51.35 67.15 25.12 48.90 22.06 24.80 6.14 7.03 5.25 41.72 46.51
INSTAG 53.16 52.85 67.86 25.85 49.93 22.10 24.64 6.13 7.05 5.21 41.72 47.19

GRAPHFILTER 53.73 52.92 67.76 27.81 50.55 22.95 26.71 6.26 7.21 5.31 42.79 47.97

GRAPHFILTER outperforms the baselines by up to +2.37
for GEMMA-2-2B, +3.02 for MISTRAL-7B-V0.3, and
+3.38 for LLAMA-3-8B, compared to LONGEST. These re-
sults demonstrates the superiority of GRAPHFILTER which
effectively combines the quality and diversity in selection.

Quality-based data selection approaches appear to
exhibit biases towards specific benchmarks. Quality-
based approaches often use neural models to estimate the
quality of each training instance. However, these mod-
els display biases that can significantly affect downstream
performance. As demonstrated in Table 1, models fine-
tuned on subsets chosen by ARMORM perform well on
AlpacaEval-2.0 but poorly on other benchmarks. Fur-
thermore, the PERPLEXITY-selected subset consistently re-

sults in the worst performance on GSM8K, highlighting the
risks of depending solely on neural models for selecting
high-quality data.

GRAPHFILTER is highly efficient, with its variant run-
ning quickly on a CPU. Recent baselines typically rely
on neural models for quality estimation, which generally re-
quire a GPU. We compare the runtimes of various baselines
on a system equipped with an A100 80G GPU and 20 CPU
cores, as shown in Table 2. As elaborated in Section 3.3,
GRAPHFILTER defaults to using a quality estimation model
for QUALITY(u). When utilizing SUPERFILTER, GRAPH-
FILTER completes its tasks in 2.48 hours, highlighting its
efficiency. Notably, without using the priority function ϕ(u)
for re-ranking, GRAPHFILTER becomes even faster, taking
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Table 2: Runtime (in hours) for selecting 10K training in-
stances. † indicate the CPU-only method.

Runtime (hrs)

PERPLEXITY 0.92
ARMORM 5.93
ALPAGASUS 32.34
DEITA 22.65
SUPERFILTER 1.95
KMEANS 2.26
INSTAG 25.48

GRAPHFILTER 2.48
w/o priority ϕ(u) 0.53†

Table 3: Ablation study for n-gram combination with
LLAMA-3-8B. ✓ indicates that various n-grams are used.

N-gram
µBENCH µLLM µALL

Unigram Bigram Trigram

✓ ✓ ✓ 50.55 42.79 47.97
✓ 49.02 41.41 46.48

✓ 49.09 41.70 46.63
✓ 49.84 41.78 47.15

only 0.53 hours on a CPU. This is up to 61× faster than
other baselines, compared to 32.34 hours by ALPAGASUS.

5. Analysis
Combining n-grams captures features at different lev-
els. We examine the effectiveness of n-gram combinations,
which are designed to capture both word-level and phrase-
level features. The results are presented in Table 3. Our ob-
servations suggest that the variant of GRAPHFILTER, which
integrates unigrams (n = 1), bigrams (n = 2), and trigrams
(n = 3), significantly outperforms other variations that do
not incorporate n-gram combinations. Different n-grams
capture features at varying levels, and merging them can
effectively consolidate this information.

Both QUALITY(u) and DIVERSITY(u) in priority func-
tion enhance the data selection. We provide empirical
evidence in Table 4 showcasing the effectiveness of our pro-
posed priority function. By incorporating the QUALITY(u)
metric (using SUPERFILTER) and the DIVERSITY(u) metric
(using TF-IDF) into GRAPHFILTER, we achieve superior
performance across all evaluation metrics. This demon-
strates that our combined priority function significantly en-
hances the model’s ability to select high-quality and diverse
training data. Omitting either the quality metric (✗ + TF-
IDF) or the diversity metric (SUPERFILTER + ✗) results in
noticeable performance declines. Furthermore, replacing
the SUPERFILTER metric with PERPLEXITY as the quality

Table 4: Ablation study for QUALITY(u) and
DIVERSITY(u) in the priority with LLAMA-3-8B. ✗
indicates the component is not used.

QUALITY(u) DIVERSITY(u) µBENCH µLLM µALL

RANDOM TF-IDF 47.75 41.04 45.51
SUPERFILTER TF-IDF 50.55 42.79 47.97
PERPLEXITY TF-IDF 49.21 40.85 46.43

ARMORM TF-IDF 49.01 41.85 46.61
DEITA TF-IDF 49.11 41.97 46.73

✗ TF-IDF 48.94 41.87 46.58
SUPERFILTER ✗ 49.52 41.28 46.78

✗ ✗ 48.27 40.28 45.61
SUPERFILTER MTLD 50.15 42.42 47.47
SKYWORKRM MTLD 49.51 42.01 46.93

Table 5: Ablation study for the choice of n-gram order with
LLAMA-3-8B. #nodes indicates the total number of nodes
in the bipartite graph. RT indicates the runtime in hours.

n-gram #nodes RT (hrs) µBENCH µLLM µALL

1 0.1M 2.12 49.02 41.41 46.48
2 1.0M 2.30 49.58 42.14 47.31
3 2.6M 2.48 50.55 42.79 47.97
4 4.8M 3.38 50.11 42.63 47.43
5 7.4M 4.58 50.44 42.81 47.95

measure leads to reduced performance, highlighting the im-
portance of using optimal metrics. These findings support
our decision to integrate quality and diversity in the priority.

GRAPHFILTER is compatible with various quality met-
rics. In this work, we leverage SUPERFILTER as the de-
fault quality metric due to its effectiveness and efficiency.
However, GRAPHFILTER is designed to be flexible and is
not limited to using SUPERFILTER alone. This flexibility
allows the method to adapt to different evaluation needs by
incorporating alternative quality metrics. As demonstrated
in Table 4, the QUALITY(u) component of the priority func-
tion ϕ(u) can be replaced with various quality metrics, such
as PERPLEXITY, ARMORM, and DEITA. This adaptability
highlights the robustness and versatility of GRAPHFILTER.

The choice of trigrams (n = 3) balances the model per-
formance and efficiency. We conduct experiments with
n-gram sizes from 1 to 5 using LLAMA-3-8B. As shown in
Table 5, our results indicate a significant performance im-
provement when moving from unigrams (n = 1) to trigrams
(n = 3). However, beyond n = 3, we observe diminish-
ing or even negative returns. Furthermore, the number of
n-gram nodes increases substantially with n (from 0.1M for
unigrams to 7.4M for 5-grams), as well as the runtime (from
2.12 hours to 4.58 hours). These findings demonstrate that
the trigrams (n = 3) is the optimal choice for balancing
performance and efficiency in our experiments.
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Figure 2: Figure 2a displays the quality-diversity relationships of subsets selected by different methods, with ↑ indicating a
preference for higher values. Figure 2b shows the semantic diversity in a t-SNE plot of subsets from GRAPHFILTER and
ARMORM, where green rectangles indicate data points chosen by GRAPHFILTER but not by ARMORM. Figure 2c depicts
the semantic diversity in a t-SNE plot comparing subsets from GRAPHFILTER and INSTAG.

Table 6: Applying GRAPHFILTER to instructions and re-
sponses with LLAMA-3-8B. The ✓ indicates that GRAPH-
FILTER is applied. Lexical diversity is measured by MTLD
(McCarthy & Jarvis, 2010), and quality is assessed using
ARMORM, scaled by 100×.

Content Type Benchmarks Lexical Diversity Quality
Inst. Resp. µBENCH µLLM µALL Inst. Resp.

✓ 50.55 42.79 47.97 102.43 71.74 81.54
✓ 47.16 39.71 44.68 90.22 73.57 81.52

✓ ✓ 48.03 41.20 45.76 90.13 72.60 81.52

GRAPHFILTER effectively balances quality and diversity
in its selected datasets. In this section, we analyze the
subsets selected by GRAPHFILTER and other methods, with
results shown in Figure 2. To confirm that GRAPHFILTER
maintains quality and diversity, we measure lexical diver-
sity using the MTLD metric (McCarthy & Jarvis, 2010)
and assess data quality with the advanced reward model,
SKYWORKRM (Liu & Zeng, 2024). As depicted in Fig-
ure 2a, GRAPHFILTER achieves the highest lexical diver-
sity and ranks second in data quality. We also visualize
GRAPHFILTER instructions compared with ARMORM and
INSTAG using the BGE-LARGE-EN-V1.5 model. It is evi-
dent that GRAPHFILTER selects instructions not chosen by
ARMORM, shown by green rectangles in Figure 2b. Further-
more, Figure 2c illustrates that GRAPHFILTER and INSTAG
exhibit similar semantic diversity. These results suggest that
GRAPHFILTER not only selects high-quality data but also
maximizes dataset diversity.

Prioritizing instruction diversity most effectively im-
proves model performance. Each SFT training instance
comprises an instruction and its response. This study evalu-

1K 5K 10K 50K 100K 200K
−0.5
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0.5

1
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2

2.5

Data selection budget

∆
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L
L

SUPERFILTER INSTAG GRAPHFILTER

Figure 3: Performance gap (∆ALL) with respect to µALL,
comparing SUPERFILTER, INSTAG, and GRAPHFILTER
against RANDOM, across various data selection budgets.

ates the impact of applying GRAPHFILTER to instructions,
responses, or both on model performance. As shown in
Table 6, applying GRAPHFILTER only to instructions pro-
duces the best benchmark results, greatly improving lexical
diversity in instructions with minimal effect on response
diversity compared to other methods. Notably, all three vari-
ations maintain similar quality with different performances,
underscoring the importance of instruction diversity.

The priority of quality and diversity varies with data se-
lection budgets, and GRAPHFILTER excels at balancing
these two factors effectively. After showcasing GRAPH-
FILTER’s superiority, an open question remains: When
should diversity be prioritized over quality, and vice versa?
We hypothesize that the data selection budget plays a crucial
role in determining the priority between quality and diver-
sity and present the results in Figure 3. Our results indicate
that the effectiveness of quality-based and diversity-based
strategies is budget-dependent. Specifically, the quality-
based SUPERFILTER excels with smaller budgets (1K and
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5K instances), but its advantage diminishes as the budget
increases. This suggests that quality-based methods with
neural models may exhibit biases toward certain linguistic
patterns, which limits model generalization when the budget
is sufficiently large. Conversely, the diversity-based INSTAG
performs poorly with small budgets but surpasses SUPER-
FILTER with larger ones. This observation demonstrates that
diversity-based methods are more prone to introducing low-
quality data with smaller budgets. Notably, GRAPHFILTER
consistently achieves significant performance gains com-
pared to RANDOM across all budget levels. These findings
show that the data selection budget influences the effective-
ness of different approaches, and GRAPHFILTER success-
fully integrates both quality and diversity.

6. Conclusion
In this work, we formulate data selection as a set cover
problem and introduce GRAPHFILTER, a novel method for
data selection that models the dataset as a bipartite graph
linking sentences to their constituent n-grams. To balance
quality and diversity, we use a priority function that com-
bines a quality metric with a diversity metric, allowing us to
select subsets that enhance n-gram diversity and maintain
high response quality. Our extensive experiments demon-
strate GRAPHFILTER’s effectiveness across three model
backbones and six benchmark datasets. Compared to nine
baseline methods, GRAPHFILTER consistently delivers supe-
rior model performance and computational efficiency. Our
analyses validate our design choices, assess the subsets cho-
sen by GRAPHFILTER and other methods, highlight the
importance of instruction diversity, and examine the role
of quality and diversity relative to subset sizes. We believe
GRAPHFILTER lays the groundwork for more effective data
selection strategies, encouraging further research in data
selection for LLMs.

Impact Statement
Our proposed method, GRAPHFILTER, aims to improve the
efficiency and effectiveness of LLM training by enabling the
selection of high-quality, diverse data subsets. This could
lead to more resource-efficient model training processes and
potentially better-performing models. While the primary
impact of our work is methodological, we acknowledge that
improvements in LLM training techniques could indirectly
contribute to the broader adoption and application of these
models across society. We believe the computational effi-
ciency benefits of our approach align with efforts to reduce
the environmental impact of training large models. As with
any advancement in AI capabilities, we encourage thought-
ful consideration of how improved language models might
be deployed and used in practice.
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Plucińska, H., Batra, H., Dhand, H., Nardini, I., Mein,
J., Zhou, J., Svensson, J., Stanway, J., Chan, J., Zhou,
J. P., Carrasqueira, J., Iljazi, J., Becker, J., Fernandez, J.,
van Amersfoort, J., Gordon, J., Lipschultz, J., Newlan, J.,
yeong Ji, J., Mohamed, K., Badola, K., Black, K., Milli-
can, K., McDonell, K., Nguyen, K., Sodhia, K., Greene,
K., Sjoesund, L. L., Usui, L., Sifre, L., Heuermann, L.,
Lago, L., McNealus, L., Soares, L. B., Kilpatrick, L.,
Dixon, L., Martins, L., Reid, M., Singh, M., Iverson,
M., Görner, M., Velloso, M., Wirth, M., Davidow, M.,

Miller, M., Rahtz, M., Watson, M., Risdal, M., Kazemi,
M., Moynihan, M., Zhang, M., Kahng, M., Park, M.,
Rahman, M., Khatwani, M., Dao, N., Bardoliwalla, N.,
Devanathan, N., Dumai, N., Chauhan, N., Wahltinez, O.,
Botarda, P., Barnes, P., Barham, P., Michel, P., Jin, P.,
Georgiev, P., Culliton, P., Kuppala, P., Comanescu, R.,
Merhej, R., Jana, R., Rokni, R. A., Agarwal, R., Mullins,
R., Saadat, S., Carthy, S. M., Perrin, S., Arnold, S. M. R.,
Krause, S., Dai, S., Garg, S., Sheth, S., Ronstrom, S.,
Chan, S., Jordan, T., Yu, T., Eccles, T., Hennigan, T.,
Kocisky, T., Doshi, T., Jain, V., Yadav, V., Meshram, V.,
Dharmadhikari, V., Barkley, W., Wei, W., Ye, W., Han, W.,
Kwon, W., Xu, X., Shen, Z., Gong, Z., Wei, Z., Cotruta,
V., Kirk, P., Rao, A., Giang, M., Peran, L., Warkentin,
T., Collins, E., Barral, J., Ghahramani, Z., Hadsell, R.,
Sculley, D., Banks, J., Dragan, A., Petrov, S., Vinyals,
O., Dean, J., Hassabis, D., Kavukcuoglu, K., Farabet,
C., Buchatskaya, E., Borgeaud, S., Fiedel, N., Joulin, A.,
Kenealy, K., Dadashi, R., and Andreev, A. Gemma 2:
Improving open language models at a practical size, 2024.
URL https://arxiv.org/abs/2408.00118.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and
Lample, G. Llama: Open and efficient foundation lan-
guage models. CoRR, abs/2302.13971, 2023a. doi:
10.48550/ARXIV.2302.13971. URL https://doi.
org/10.48550/arXiv.2302.13971.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Canton-Ferrer, C.,
Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu,
J., Fu, W., Fuller, B., Gao, C., Goswami, V., Goyal, N.,
Hartshorn, A., Hosseini, S., Hou, R., Inan, H., Kardas,
M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev, A.,
Koura, P. S., Lachaux, M., Lavril, T., Lee, J., Liskovich,
D., Lu, Y., Mao, Y., Martinet, X., Mihaylov, T., Mishra, P.,
Molybog, I., Nie, Y., Poulton, A., Reizenstein, J., Rungta,
R., Saladi, K., Schelten, A., Silva, R., Smith, E. M., Sub-
ramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams,
A., Kuan, J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan,
A., Kambadur, M., Narang, S., Rodriguez, A., Stojnic,
R., Edunov, S., and Scialom, T. Llama 2: Open founda-
tion and fine-tuned chat models. CoRR, abs/2307.09288,
2023b. doi: 10.48550/ARXIV.2307.09288. URL https:
//doi.org/10.48550/arXiv.2307.09288.

Vazirani, V. V. Approximation Algorithms. Springer-Verlag,
Berlin, Germany, 2001.

Wang, H., Xiong, W., Xie, T., Zhao, H., and Zhang, T.
Interpretable preferences via multi-objective reward mod-
eling and mixture-of-experts. CoRR, abs/2406.12845,

12

https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://arxiv.org/abs/2408.00118
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288


The Best of Both Worlds: Bridging Quality and Diversity in Data Selection with Bipartite Graph

2024. doi: 10.48550/ARXIV.2406.12845. URL https:
//doi.org/10.48550/arXiv.2406.12845.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Align-
ing language models with self-generated instructions. In
Rogers, A., Boyd-Graber, J., and Okazaki, N. (eds.), Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484–13508, Toronto, Canada, July 2023. Associ-
ation for Computational Linguistics. doi: 10.18653/v1/
2023.acl-long.754. URL https://aclanthology.
org/2023.acl-long.754.

Wu, M., Waheed, A., Zhang, C., Abdul-Mageed, M., and
Aji, A. F. LaMini-LM: A diverse herd of distilled
models from large-scale instructions. In Graham, Y.
and Purver, M. (eds.), Proceedings of the 18th Confer-
ence of the European Chapter of the Association for
Computational Linguistics (Volume 1: Long Papers),
pp. 944–964, St. Julian’s, Malta, March 2024. Asso-
ciation for Computational Linguistics. URL https:
//aclanthology.org/2024.eacl-long.57.

Xu, C., Sun, Q., Zheng, K., Geng, X., Zhao, P., Feng,
J., Tao, C., and Jiang, D. Wizardlm: Empowering
large language models to follow complex instructions.
CoRR, abs/2304.12244, 2023. doi: 10.48550/ARXIV.
2304.12244. URL https://doi.org/10.48550/
arXiv.2304.12244.

Xu, Z., Jiang, F., Niu, L., Deng, Y., Poovendran, R., Choi,
Y., and Lin, B. Y. Magpie: Alignment data synthesis
from scratch by prompting aligned llms with nothing.
CoRR, abs/2406.08464, 2024. doi: 10.48550/ARXIV.
2406.08464. URL https://doi.org/10.48550/
arXiv.2406.08464.

Yang, A., Yang, B., Hui, B., Zheng, B., Yu, B., Zhou, C.,
Li, C., Li, C., Liu, D., Huang, F., Dong, G., Wei, H., Lin,
H., Tang, J., Wang, J., Yang, J., Tu, J., Zhang, J., Ma, J.,
Yang, J., Xu, J., Zhou, J., Bai, J., He, J., Lin, J., Dang,
K., Lu, K., Chen, K., Yang, K., Li, M., Xue, M., Ni, N.,
Zhang, P., Wang, P., Peng, R., Men, R., Gao, R., Lin,
R., Wang, S., Bai, S., Tan, S., Zhu, T., Li, T., Liu, T.,
Ge, W., Deng, X., Zhou, X., Ren, X., Zhang, X., Wei,
X., Ren, X., Liu, X., Fan, Y., Yao, Y., Zhang, Y., Wan,
Y., Chu, Y., Liu, Y., Cui, Z., Zhang, Z., Guo, Z., and
Fan, Z. Qwen2 technical report. CoRR, abs/2407.10671,
2024. doi: 10.48550/ARXIV.2407.10671. URL https:
//doi.org/10.48550/arXiv.2407.10671.

Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., and Choi,
Y. HellaSwag: Can a machine really finish your sen-
tence? In Korhonen, A., Traum, D., and Màrquez,
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A. Experimental Setup
A.1. Baselines

In this work, we compare GRAPHFILTER against following
baselines:

• RANDOM selects a random subset of size k from the
entire dataset, where k is the designated data selection
budget.

• LONGEST chooses the top-k instances from the entire
dataset, ranking them in descending order based on the
number of words in each instruction.

• PERPLEXITY selects the top-k instances from the en-
tire dataset, sorted in descending order according to the
perplexity values of the instructions. For the perplexity
computation in this work, we utilize GPT2 (Radford
et al., 2019).2

• ARMORM represents one of the state-of-the-art re-
ward models (Wang et al., 2024). It evaluates multiple
rewards from diverse perspectives and integrates these
rewards using a gating network.

• ALPAGASUS employs GPT-3.5-TURBO to assess data
quality (Chen et al., 2024b). Given the improved
model performance and limited budget, we substitute
GEMMA-2-27B-IT in this work, using the prompt il-
lustrated in Figure 4. GEMMA-2-27B-IT is the state-
of-the-art open large language model (LLM) and sig-
nificantly surpasses GPT-3.5-TURBO according to the
Chatbot Arena Leaderboard.3

• DEITA utilizes CHATGPT to create a quality esti-
mation dataset and fine-tune large language models
(LLMs) for evaluating data quality (Liu et al., 2024).
We employ the official codes and models provided by
Liu et al. (2024) for data selection.4

• SUPERFILTER refers to the Instruction-Following Dif-
ficulty (IFD) metric, which is calculated using smaller
language models. Introduced by Li et al. (2024b), this
method is shown by Li et al. (2024a) to provide IFD
scores from smaller models that are as reliable as those
from larger models. In this study, GPT2 is used for
computing these scores (Radford et al., 2019).

• KMEANS involves clustering training instances using a
state-of-the-art sentence embedding model and select-
ing instances that are nearest to their respective cluster
centroids (Arthur & Vassilvitskii, 2007). In this work,
we begin by sampling 50K instances from the entire
dataset and encoding their instructions into sentence
embeddings using the BGE-LARGE-EN-V1.5 model.5

2https://huggingface.co/openai-community/
gpt2

3https://huggingface.co/spaces/lmsys/
chatbot-arena-leaderboard

4https://github.com/hkust-nlp/deita
5https://huggingface.co/BAAI/

### System:
We would like to request your feedback on the performance of

AI assistant in response to the instruction and the given
input displayed following.

↪→
↪→

###Instruction:
{instruction}

### Input:
{input}

### Response:
{output}

### USER:
Please rate according to the accuracy of the response to the

instruction and the input. Each assistant receives a score
on a scale of 0 to 5, where a higher score indicates
higher level of the accuracy. Please first output a single
line containing value indicating the scores. In the
subsequent line, please provide a comprehensive
explanation of your evaluation, avoiding any potential
bias.

↪→
↪→
↪→
↪→
↪→
↪→
↪→

Figure 4: The prompt used for ALPAGASUS annotation.

These embeddings are used for training the KMEANS
model with 10K clusters. Once the KMEANS model is
established, we cluster the sentence embeddings of in-
structions for the entire dataset and select the instances
closest to each cluster centroid.

• INSTAG is designed to analyze the SFT dataset by
tagging the topics of training instances. It can be used
to select a subset with the most diverse topics from the
entire dataset (Lu et al., 2024). We utilize the official
codes and models released by Lu et al. (2024) for data
selection.6

A.2. Optimization

Hyperparameters In this study, all experiments utilize
the same set of hyperparameters. Specifically, we employ
a batch size of 64, a learning rate of 2 × 10−5, a warmup
ratio of 0.05, and a linear learning rate schedule. All the
experiments run for 3 epochs.

Computation Infrastructure For this study, all methods
are trained using two A100 80GB GPUs, which are inter-
connected via PCIe.

A.3. Evaluation

In this work, we evaluate the approaches on six widely used
benchmarks:

• MMLU (Hendrycks et al., 2021) is a benchmark de-
signed to assess knowledge acquired during pretrain-
ing, by evaluating models exclusively in zero-shot and
few-shot settings. It covers 57 subjects across STEM,
the humanities, social sciences, and more, totaling ap-

bge-large-en-v1.5
6https://github.com/OFA-Sys/InsTag
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proximately 14,000 test examples.
• ARC (Clark et al., 2018) is a multiple-choice question-

answering dataset containing questions from science
exams for grades 3 to 9, amounting to approximately
4,000 test examples.

• HellaSwag (Zellers et al., 2019) is a challenging
dataset for evaluating commonsense natural language
inference, which is particularly difficult for state-of-the-
art models, though its questions are trivial for humans.
It contains approximately 10,000 test examples.

• GSM8K (Cobbe et al., 2021) comprises a collection
of diverse grade school math word problems created
by human problem writers, containing approximately
1,000 test examples.

• AlpacaEval-2.0 (Dubois et al., 2024) is an au-
tomated tool for evaluating instruction-following lan-
guage models. Its test set consists of 805 instructions
generated by large language models (LLMs). Models
are evaluated based on the winning rate against a refer-
ence answer, judged by a state-of-the-art LLM, such as
GPT-4. AlpacaEval-2.0 is an upgraded version of
the original AlpacaEval, featuring reduced length
bias for a fairer evaluation of responses of varying
lengths.

• MT-Bench (Zheng et al., 2023) is a multi-turn test set
containing 80 questions that cover 8 aspects: writing,
roleplay, reasoning, math, coding, extraction, STEM,
and humanities. A state-of-the-art LLM, such as GPT-
4, is used to score model outputs on a scale from 1 to
10.
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