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Abstract

On-policy reinforcement learning (RL) algorithms are typically characterized as algorithms
that perform policy updates using i.i.d. trajectories collected by the agent’s current policy.
However, after observing only a finite number of trajectories, such on-policy sampling may
produce data that fails to match the expected on-policy data distribution. This sampling
error leads to high-variance gradient estimates that yield data inefficient on-policy learning.
Recent work in the policy evaluation setting has shown that non-i.i.d., off-policy sampling
can produce data with lower sampling error w.r.t. the expected on-policy distribution than
on-policy sampling can produce (Zhong et al., 2022). Motivated by this observation, we
introduce an adaptive, off-policy sampling method to reduce sampling error during on-
policy policy gradient RL training. Our method, Proximal Robust On-Policy Sampling
(PROPS), reduces sampling error by collecting data with a behavior policy that increases
the probability of sampling actions that are under-sampled w.r.t. the current policy. We
empirically evaluate PROPS on both continuous-action MuJoCo benchmark tasks as well as
discrete-action tasks and demonstrate that (1) PROPS decreases sampling error throughout
training and (2) increases the data efficiency of on-policy policy gradient algorithms.

1 Introduction

One of the most widely used classes of reinforcement learning (RL) algorithms is the class of on-policy policy
gradient algorithms. These algorithms use gradient ascent on the parameters of a parameterized policy
to increase the probability of observed actions with high expected returns under the current policy. The
gradient is commonly estimated using the Monte Carlo estimator, an average computed over i.i.d. trajectories
sampled from the current policy. The Monte Carlo estimator is consistent and unbiased; as the number of
sampled trajectories increases, the empirical distribution of data converges to the expected distribution under
the current policy, and thus the estimated gradient converges to the true gradient. However, the expense
of environment interaction forces us to work with finite sample sizes. Thus, the empirical distribution of
data often differs from the desired on-policy data distribution, a mismatch we call sampling error. Sampling
error causes inaccurate gradient estimates, resulting in high-variance policy updates, slower learning, and
potentially convergence to suboptimal policies.

With i.i.d. on-policy sampling, the only way to reduce sampling error is to collect more data. Alternatively,
we can reduce sampling error more efficiently using adaptive, off-policy sampling. To illustrate this approach,
consider an MDP with two discrete actions A and B, and suppose the current policy π places equal probability
on both actions in some state s. When following π, after 10 visits to s, we will observe both actions 5 times
in expectation. Now suppose that after the first 9 visits to s, we actually observe A 4 times and B 5 times.
If we sample an action from π upon our next visit to s, we may sample B, and our data will not match the
expected on-policy distribution. Alternatively, if we select the under-sampled action A with probability 1,
we will observe each action 5 times, making the aggregate data match the on-policy distribution even though
this final action was sampled off-policy. The first scenario illustrates on-policy sampling with sampling error;
the second scenario uses adaptive, off-policy sampling to reduce sampling error.
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Figure 1: An overview of PROPS. Rather than collecting data D via on-policy sampling from the agent’s
current policy πθ, we collect data with a separate data collection policy πϕ that we continually adapt to
reduce sampling error in D with respect to the agent’s current policy.

Recently, Zhong et al. (2022) introduced an adaptive, off-policy sampling method (ROS) that can pro-
duce data that more closely matches the on-policy distribution than data acquired through i.i.d. on-policy
sampling. However, this work was limited to low-dimensional policy evaluation tasks. Moreover, ROS
required large batches of data to reduce sampling error—approximately 5000 samples on tasks like CartPole-
v1 (Brockman et al., 2016)—and struggled to reduce sampling error on tasks with continuous actions. To
make adaptive sampling practical for data-efficient RL, we need methods that can reduce sampling error
in high-dimensional continuous-action tasks while using the smaller batch sizes typically used in RL. These
observations raise the following question: Can reducing sampling error through adaptive sampling increase
the data-efficiency of on-policy policy gradient methods?

In this work, we address these challenges and show for the first time that on-policy policy gradient algorithms
are more data-efficient learners when they use adaptive, off-policy sampling to reduce sampling error w.r.t. the
on-policy distribution. Our method, Proximal Robust On-Policy Sampling (PROPS), adaptively corrects
sampling error in previously collected data by increasing the probability of sampling actions that are under-
sampled with respect to the current policy. Fig. 1 provides an overview of PROPS. We empirically evaluate
PROPS on continuous-action MuJoCo benchmark tasks and show that (1) PROPS reduces sampling error
throughout training and (2) increases the data efficiency of on-policy policy gradient algorithms. In summary,
our contributions are:

1. We introduce PROPS, a scalable adaptive sampling algorithm for on-policy policy gradient learning
that reduces sampling error w.r.t. the agent’s current policy.

2. We demonstrate empirically that PROPS reduces sampling error more efficiently than on-policy
sampling and ROS.

3. We demonstrate empirically that reducing sampling error via PROPS increases data efficiency in
on-policy policy gradient RL.

2 Related Work

Data Collection and Exploration. Our work focuses on data collection in RL. In RL, data collec-
tion is often framed as an exploration problem, focusing on how an agent should explore its environment
to efficiently learn an optimal policy. Prior works have proposed exploration-promoting methods such as
intrinsic motivation (Pathak et al., 2017; Sukhbaatar et al., 2018), count-based exploration (Tang et al.,
2017; Ostrovski et al., 2017), and Thompson sampling (Osband et al., 2013; Sutton & Barto, 2018). Rather
than adjusting the agent’s sampling distribution to promote exploration, our objective is to learn from the
on-policy data distribution; we use adaptive data collection to more efficiently obtain this data distribution.
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Adaptive Sampling for Sampling Error Reduction. Prior works have used adaptive off-policy sampling
to reduce sampling error in the policy evaluation subfield of RL. Most closely related is the work of Zhong
et al. (2022) who first proposed that adaptive off-policy sampling could produce data that more closely
matches the on-policy distribution than on-policy sampling could produce. Mukherjee et al. (2022) use a
deterministic sampling rule to take actions in a particular proportion. Other bandit works use a non-adaptive
exploration policy to collect additional data conditioned on previously collected data (Tucker & Joachims,
2022; Wan et al., 2022; Konyushova et al., 2021). Since these works only focus on policy evaluation, they do
not have to contend with a changing on-policy distribution as our work does for the control setting.

Importance Sampling for Sampling Error Reduction. Several prior works propose importance sam-
pling methods (Precup, 2000) to reduce sampling error without further data collection. In the RL setting,
Hanna et al. (2021) showed that reweighting off-policy data according to an estimated behavior policy can
correct sampling error and improve policy evaluation. Papini et al. (2024) focused on finding a behavior
policy that minimizes the variance of importance-weighted policy gradient estimates. Similar methods have
been studied for temporal difference learning (Pavse et al., 2020) and policy evaluation in the bandit set-
ting (Li et al., 2015; Narita et al., 2019). Conservative Data Sharing (Yu et al., 2021) reduces sampling
error by selectively integrating offline data from multiple tasks. While these works reduce sampling error by
reweighting existing data, our work focuses on whether we can reduce sampling error during data collection.

On-Policy Learning with Off-Policy Data. As we will discuss in Section 5, the method we introduce
permits data collected in one iteration of policy optimization to be re-used in future iterations rather than
discarded as typically done by on-policy algorithms. Prior work has attempted to avoid discarding data
by combining off-policy and on-policy updates with separate loss functions or by using alternative gradient
estimates (Wang et al., 2016; Gu et al., 2016; 2017; Fakoor et al., 2020; O’Donoghue et al., 2016; Queeney
et al., 2021). In contrast, our method modifies the sampling distribution at each iteration so that the entire
data set of past and newly collected data matches the expected distribution under the current policy.

3 Preliminaries

3.1 Reinforcement Learning

We formalize the RL environment as a finite horizon Markov decision process (MDP) (Puterman, 2014)
(S,A, p, r, d0, γ) with state space S, action space A, transition dynamics p : S × A × S → [0, 1], reward
function r : S × A → R, initial state distribution d0, and reward discount factor γ ∈ [0, 1). The state and
action spaces may be discrete or continuous. We consider stochastic policies πθ : S×A → [0, 1] parameterized
by θ, and we write πθ(a|s) to denote the probability of sampling action a in state s and πθ(·|s) to denote
the probability distribution over actions in state s. We additionally let dπθ

: S × A → [0, 1] denote the
state-action visitation distribution, the distribution over state-action pairs induced by following πθ. The RL
objective is to find a policy that maximizes the expected sum of discounted rewards, defined as:

J(θ) = Eτ∼πθ

[∑H

t=0
γtr(st, at)

]
, (1)

where the horizon H is the random variable representing the timestep when an episode ends. Throughout
this paper, we refer to the policy used for data collection as the behavior policy and the policy trained to
maximize its expected return as the target policy.

3.2 On-Policy Policy Gradient Algorithms

Policy gradient algorithms perform gradient ascent over policy parameters to maximize an agent’s expected
return J(θ). The gradient of J(θ) with respect to θ, or policy gradient, is often given as:

∇θJ(θ) = Es∼dπθ
,a∼πθ

[Aπθ (s, a)∇θ log πθ(a|s)] , (2)
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where Aπθ (s, a) is the advantage of choosing action a in state s and following πθ thereafter.1 In practice,
the expectation in Eq. 2 is approximated with Monte Carlo samples collected from πθ, and an estimate of
Aπθ used in place of the true advantages (Schulman et al., 2016). Since off-policy data will bias this gradient
estimator, on-policy algorithms discard historic off-policy data after each policy update and collect new data
with the updated policy.2

This foundational idea of policy learning via stochastic gradient ascent was first proposed by Williams (1992)
under the name reinforce. Since then, a large body of research has focused on developing more scalable
policy gradient methods (Kakade, 2001; Schulman et al., 2015; Mnih et al., 2016; Espeholt et al., 2018;
Lillicrap et al., 2015; Haarnoja et al., 2018). Currently, the most successful variant of on-policy learning is
proximal policy optimization (PPO) (Schulman et al., 2017), the algorithm of choice in several high-profile
success stories (Berner et al., 2019; Akkaya et al., 2019; Vinyals et al., 2019). PPO maximizes the clipped
surrogate objective

LPPO(s, a, θ, θold) = min(g(s, a, θ, θold)Aπθold (s, a),
clip(g(s, a, θ, θold), 1− ϵ, 1 + ϵ)Aπθold (s, a)),

(3)

where θold denotes the policy parameters prior to the update, g(s, a, θ, θold) is the policy ratio
g(s, a, θ, θold) = πθ(a|s)

πθold (a|s) , and the clip function with hyperparameter ϵ clips g(s, a, θ, θold) to the in-
terval [1 − ϵ, 1 + ϵ]. This objective disincentivizes large changes to πθ(a|s). While other policy gradient
algorithms perform a single gradient update per data sample to avoid destructively large policy updates,
PPO’s clipping mechanism permits multiple epochs of minibatch policy updates.

4 Correcting Sampling Error in Reinforcement Learning

In this section, we illustrate how sampling error can produce inaccurate policy gradient estimates and then
describe how adaptive, off-policy sampling can reduce sampling error. For exposition, we assume finite state
and action spaces. The policy gradient can then be written as:

∇θJ(θ) =
∑

(s,a)∈S×A
dπθ

(s, a) [Aπθ (s, a)∇θ log πθ(a|s)] . (4)

The policy gradient is thus a linear combination of the gradient for each (s, a) pair ∇θ log πθ(a|s) weighted
by dπθ

(s, a)Aπθ (s, a). Let D be a dataset of trajectories. It is straightforward to show that the Monte
Carlo estimate of the policy gradient can be written in a similar form as Equation 4 except with the true
state-action visitation distribution replaced with the empirical visitation distribution dD(s, a), denoting the
fraction of times (s, a) appears in D (Hanna et al., 2021):

∇θĴ(θ) =
∑

(s,a)∈S×A
dD(s, a) [Aπθ (s, a)∇θ log πθ(a|s)] . (5)

By comparing Eq. 4 and Eq. 5, we can understand how sampling error affects the Monte Carlo policy gradient
estimate. When (s, a) is over-sampled (i.e., dD(s, a) > dπθ

(s, a)), then ∇θ log πθ(a|s) contributes more to
the overall gradient than it should. Similarly, when (s, a) is under-sampled, ∇θ log πθ(a|s) contributes less
than it should. Below, we provide a concrete example illustrating how small amounts of sampling error can
cause the wrong actions to be reinforced.

1We note that Eq. 2 is a biased estimator of the policy gradient; the expectation is taken over the undiscounted state
distribution dπθ rather than the discounted state distribution dγ

πθ
, so Eq. 2 is not the gradient of the discounted objective

Eq. 1 (Nota & Thomas, 2019). Nevertheless, since many popular policy gradient algorithms estimate the policy gradient using
Eq. 2 (Schulman et al., 2017; Haarnoja et al., 2018; Mnih et al., 2016), we use dπθ rather than dγ

πθ
in this work.

2In practice, policy gradient algorithms have other sources of gradient bias, such as using λ-returns in place of Monte Carlo
returns (Sutton & Barto, 2018) and using dγ

πθ
in place of dπθ (Nota & Thomas, 2019).
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Example: Sampling error can cause incorrect policy updates

Let πθ be a policy for an MDP with two discrete actions a0 and a1, and suppose that in a particular
state s0, the advantage of each action w.r.t. πθ is Aπθ (s0, a0) = 20 and Aπθ (s0, a1) = 15. For simplic-
ity, suppose the policy has a direct parameterization πθ(a0|s) = θs, πθ(a1|s) = 1−θs and places equal
probability on both actions in s0 (θs0 = 0.5). Then, we have ∇θ log πθ(a0|s0) = −∇θ log πθ(a1|s0)
and dπθ

(s0, a0) = dπθ
(s0, a1) so that the expected gradient increases the probability of sampling a0,

the optimal action. With on-policy sampling, after 10 visits to s0, the agent will sample both actions
5 times in expectation. However, if the agent actually observes a0 4 times and a1 6 times, a Monte
Carlo estimate of the policy gradient then yields

4
10 · 20 · ∇θ log πθ(a0|s0) + 6

10 · 15 · ∇θ log πθ(a1|s0) = −∇θ log πθ(a0|s0)

which decreases the probability of sampling the optimal a0 action.

Sampling error in on-policy sampling vanishes as the size of the batch of data used to estimate the gradient
tends toward infinity. However, the preceding example suggests a simple strategy to eliminate sampling error
with finite data: have the agent adapt its probability on the next action it takes based on the actions it has
already sampled. Continuing with our example, suppose the agent has visited s0 9 times and sampled a0
4 times and a1 5 times. With on-policy sampling, the agent may observe a1 again upon the next visit to
s0. Alternatively, the agent could sample its next action from a distribution that puts probability 1 on a0
and consequently produce an aggregate batch of data that contains both actions in their expected frequency.
While this adaptive method uses off-policy sampling, it produces data that exactly matches the on-policy
distribution and thus produces a more accurate gradient.

This example suggests that we can heuristically reduce sampling error by selecting the most under-sampled
action at a given state. Under a strong assumption that the MDP has a DAG structure, Zhong et al.
(2022) proved that in a fixed-horizon MDP, this heuristic produces an empirical state-action distribution
that converges to dπθ

(s, a) and moreover converges at a faster rate than on-policy sampling. We remove this
limiting DAG assumption with the following result:
Proposition 1. Assume that data is collected with an adaptive behavior policy that always takes the most
under-sampled action in each state s w.r.t. π, i.e, a ← arg maxa′(π(a′|s) − πD(a′|s)), where πD is the
empirical policy after m state-action pairs have been collected. Assume that S and A are finite and that the
Markov chain induced by π is irreducible. Then we have that the empirical state visitation distribution, dm,
converges to the state distribution of π, dπ, with probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

We prove Proposition 1 in Appendix A. While adaptively sampling the most under-sampled action can
reduce sampling error, this heuristic is difficult to implement in practice; in tasks with continuous states
and actions, the arg max in Proposition 1 often has no closed-form solution, and the empirical policy πD
can be expensive to compute at every timestep. Building upon the concepts discussed in this section, the
following section presents a scalable adaptive sampling algorithm that reduces sampling error in on-policy
policy gradient learning.

5 Proximal Robust On-Policy Sampling for Policy Gradient Algorithms

Our goal is to develop an adaptive, off-policy sampling algorithm that reduces sampling error in on-policy
data collection for on-policy policy gradient algorithms. We outline a general framework for on-policy learning
with an adaptive behavior policy in Algorithm 1. The behavior policy collects a batch of m transitions, adds
the batch to a data buffer D, and then updates its weights such that the next batch it collects reduces
sampling error in D with respect to the target policy πθ (Lines 7-10). Every n steps (with n > m), the agent
updates its target policy with data from D (Line 11). We refer to m and n as the behavior update frequency
and the target batch size, respectively.
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Algorithm 1 On-policy policy gradient algo-
rithm with adaptive sampling

1: Inputs: Target batch size n, behavior update
frequency m, buffer size b.

2: Output: Target policy parameters θ.
3: Initialize target policy parameters θ.
4: Initialize behavior policy parameters ϕ← θ.
5: Initialize empty buffer D with capacity bn.
6: for target update i = 1, 2, . . . do
7: for behavior update j = 1, . . . , ⌊n/m⌋ do
8: Collect batch of data B by running πϕ.
9: Append B to buffer D.

10: Update πϕ with D using Algorithm 2.
11: Update πθ with D.
12: return θ

The behavior policy must continually adjust action prob-
abilities for new samples so that the aggregate data dis-
tribution of D matches the expected on-policy distribu-
tion of the current target policy (Line 10). A subtle im-
plication of this adaptive sampling is that it can correct
sampling error in any empirical data distribution—even
one generated by a different policy. Thus, rather than
discarding off-policy data from old policies—as is com-
monly done in on-policy learning—we let the data buffer
hold up to b target batches (bn transitions) and call b
the buffer size. If b > 1, then D will contain historic
off-policy data used in previous target policy updates.3
Implementing Line 10 is the core challenge we address
in the remainder of this section.

To ensure that the empirical distribution of D matches
the expected on-policy distribution, updates to πϕ should attempt to increase the probability of actions
which are currently under-sampled with respect to πθ. Zhong et al. (2022) recently developed a simple
method called Robust On-policy Sampling (ROS) for making such updates. In particular, the gradient
∇ϕL := −∇ϕ

∑
(s,a)∈D log πϕ(a|s) when evaluated at ϕ = θ provides a direction to change ϕ such that

under-sampled actions have their probabilities increased. Thus, ROS performs a single step of gradient ascent
at each timestep to increase the probability of under-sampled actions.4 In theory and in low-dimensional RL
policy evaluation tasks such as CartPole-v1 (Brockman et al., 2016), this update was shown to improve the
rate at which the empirical data distribution converges to the on-policy distribution—even when the empirical
data distribution contains off-policy data. Unfortunately, two main challenges render ROS unsuitable for
Line 10 in Algorithm 1.

Algorithm 2 PROPS Update
1: Inputs: Target policy parameters θ, buffer D, target

KL δPROPS, clipping coefficient ϵPROPS, regularizer
coefficient λ, n_epoch, n_minibatch.

2: Output: Behavior policy parameters ϕ.
3: ϕ← θ
4: for epoch i = 1, 2, . . . , n_epoch do
5: for minibatch j = 1, 2, . . . , n_minibatch do
6: Sample minibatch Dj ∼ D
7: Update ϕ with a step of gradient ascent on loss

1
|Dj |

∑
(s,a)∈Dj

LPROPS(s, a, ϕ, θ, ϵPROPS, λ)

8: if DKL(πθ||πϕ) > δPROPS then
9: return ϕ

10: return ϕ

Challenge 1: Destructively large policy
updates. Since D may contain data collected
by old target policies, some samples in D may
be very off-policy w.r.t. the current target pol-
icy such that log πϕ(a|s) is large and negative.
Since ∇ϕ log πϕ(a|s) increases in magnitude as
πϕ(a|s) approaches zero, those off-policy sam-
ples can produce destructively large updates.

Challenge 2: Improper handling of contin-
uous actions. In continuous-action tasks, ROS
may produce behavior policies that increase sam-
pling error. Continuous policies πθ(a|s) are typ-
ically parameterized as Gaussians N (µ(s), Σ(s))
with mean µ(s) and diagonal covariance matrix
Σ(s). Since actions in the tail of the Gaussian far
from the mean will generally be under-sampled,
the ROS update will continually push the com-
ponents of µ(s) towards ±∞ and the diagonal
components of Σ(s) towards 0 to increase the probability of sampling these actions. The result is a degener-
ate behavior policy that is so far from the target policy that sampling from it increases sampling error. We
illustrate this scenario with 1-dimensional continuous actions in Fig. 7 of Appendix C.

3The advantage estimates in historic data correspond to historic policies and are thus biased advantage estimates of the
current policy. In Section 7, we provide additional detail on how to mitigate this bias with GAE.

4To add further intuition for this update, note that it is the opposite of a gradient ascent step on the log likelihood of D.
When starting at ϕ← θ, gradient ascent on the data log likelihood will adjust ϕ to more closely match the distribution of D,
decreasing the probability of actions that are under-sampled relative to πθ . Hence, the ROS update changes ϕ in the opposite
direction to increase the probability of under-sampled actions.
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To address these challenges, we propose a new behavior policy update. To address Challenge 1, first observe
that the gradient of the ROS loss ∇ϕL = ∇ϕ log πϕ(a|s)|ϕ=θ is equivalent to the policy gradient (Eq. 2)
with Aπθ (s, a) = −1,∀(s, a). Since the clipped surrogate objective of PPO (Eq. 3) prevents destructively
large updates in on-policy policy gradient learning, we can use a similar clipped objective in place of the
ROS objective to prevent behavior policy destructive updates:

Lclip(s, a, ϕ, θ, ϵPROPS) = min
[
− πϕ(a|s)

πθ(a|s) ,−clip
(

πϕ(a|s)
πθ(a|s) , 1− ϵPROPS, 1 + ϵPROPS

) ]
. (6)

Table 1 in Appendix C summarizes the behavior of Lclip. Intuitively, this objective is equivalent to the PPO
objective (Eq. 3) with A(s, a) = −1,∀(s, a) and incentivizes the agent to decrease the probability of observed
actions by at most a factor of 1 − ϵPROPS. Let g(s, a, ϕ, θ) = πϕ(a|s)

πθ(a|s) . When g(s, a, ϕ, θ) < 1 − ϵPROPS,
this objective is clipped at −(1− ϵPROPS). The loss gradient ∇ϕLclip becomes zero, and the (s, a) pair has
no effect on the policy update. When g(s, a, ϕ, θ) > 1− ϵPROPS, clipping does not apply, and the gradient
∇ϕLclip points in a direction that decreases the probability of πϕ(a|s). As in the PPO update, this clipping
mechanism avoids destructively large policy updates and permits us to perform multiple epochs of minibatch
updates with the same batch of data.

To address the second challenge and prevent degenerate behavior policies, we introduce an auxiliary loss
that incentivizes the agent to minimize the KL divergence between the behavior policy and target policy at
states in the observed data. The full PROPS objective is then:

LPROPS(s, a, ϕ, θ, ϵPROPS, λ) = Lclip(s, a, ϕ, θ)− λDKL(πθ(·|s)||πϕ(·|s)) (7)

where λ is a regularization coefficient quantifying a trade-off between maximizing LPROPS and minimizing
Dkl. Algorithm 2 provides pseudocode for the PROPS update. Like ROS, we set the behavior policy
parameters ϕ equal to the target policy parameters at the start of each behavior update, and then make a
local adjustment to ϕ to increase the probabilities of under-sampled actions. We stop the PROPS update
early when DKL(πθ||πϕ) reaches a chosen threshold δPROPS. This technique further safeguards against large
policy updates and is used in widely adopted implementations of PPO (Raffin et al., 2021; Liang et al., 2018).
In Appendix B, we provide theoretical intuition for relationship between different PROPS hyperparameters.
PROPS enables us to efficiently learn a behavior policy that keeps the distribution of data in the buffer close
to the expected distribution of the target policy.

6 Experiments

The central goal of our work is to understand if reducing sampling error with adaptive, off-policy sampling
results in more data efficient on-policy policy gradient learning. Towards this goal, we design experiments
on continuous-state and continuous-action MuJoCo benchmark tasks (Brockman et al., 2016) and a tabular
5x5 GridWorld task (Fig. 2a) to answer the following questions:

Q1: Does PROPS achieve lower sampling error than on-policy sampling during RL training?

Q2: Does PROPS increase the data efficiency of on-policy policy gradient algorithms?

6.1 Correcting Sampling Error for a Fixed Target Policy

We first study how quickly PROPS decreases sampling error when the target policy is fixed. This setting is
similar to the policy evaluation setting considered by Zhong et al. (2022). As such, we provide two baselines
for comparison: on-policy sampling and ROS.

Sampling error metrics. In GridWorld, we compute sampling error as the total variation (TV) dis-
tance between the empirical state-action visitation dD(s, a) distribution—denoting the proportion of times
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(a) GridWorld (b) Sampling error (c) Gradient accuracy

Figure 2: (a) A GridWorld task in which the agent receives reward +1 upon reaching the bottom right
corner (the optimal goal), a reward of +0.5 upon reaching the top left corner (the suboptimal goal), and a
reward of −0.01. The agent always starts in the center of the grid. Under an initially uniform policy, the
agent visits both goals with equal probability, and thus the true policy gradient increases the probability
of reaching the optimal goal. However, sampling error can yield an empirical gradient that increases the
probability of reaching the suboptimal goal and cause agent to converge suboptimally. To converge optimally,
the agent must have low sampling error. (b, c) PROPS reduces sampling error and achieves more accurate
gradients faster than on-policy sampling. Solid curves denote means over 50 seeds. Shaded regions denote
95% bootstrap confidence belts.

Figure 3: Sampling error with a fixed, randomly initialized target policy. Solid curves denote the mean over
5 seeds. Shaded regions denote 95% confidence belts.

(s, a) appears in buffer D—and the true state-action visitation distribution under the agent’s policy:∑
(s,a)∈D |dD(s, a) − dπθ

(s, a)|. Since it is straightforward to compute the true policy gradient in the
GridWorld task, we additionally investigate how sampling error reduction affects gradient estimation by
measuring the cosine similarity between the empirical policy gradient ∇θĴ(θ) and the true policy gradient.
As the empirical gradient aligns more closely with the true gradient, the cosine similarity approaches 1. In
continuous MuJoCo tasks where it is difficult to compute dD(s, a), we follow Zhong et al. (2022) and measure
sampling error using the KL-divergence DKL(πD||πθ) between the empirical policy πD and the target policy
πθ. We estimate πD as the maximum likelihood estimate under data in the buffer via stochastic gradient
ascent. We provide details on computing πD in Appendix D and hyperparameter tuning in Appendix E.2.

Results. We collect 8192 samples with a randomly initialized policy and compute sampling error throughout
data collection. As shown in Fig. 2b and 2c, in GridWorld, PROPS decreases sampling error faster than on-
policy sampling, resulting in more accurate policy gradient estimates. PROPS and ROS perform similarly,
though this behavior is expected; in a tabular setting with a fixed target policy (i.e. there is no off-policy data
in the buffer), so we do not encounter Challenge 1 and 2 described in the previous section. In Appendix E.1,
we empirically demonstrate that PROPS is unbiased and lower variance than on-policy sampling.

8



Under review as submission to TMLR

(a) (b)

Figure 4: (a) Mean returns over 50 seeds. (b) Performance profiles over 50 seeds. Higher values correspond to
more reliable convergence to high-return policies. Shaded regions denote 95% bootstrap confidence intervals.

In continuous MuJoCo tasks where Challenge 2 arises, PROPS decreases sampling error faster than on-
policy sampling and ROS (Fig. 3). In fact, ROS shows no improvement over on-policy sampling in every
MuJoCo task. This limitation of ROS is unsurprising, as Zhong et al. (2022) showed that ROS struggled
to reduce sampling error even in low-dimensional continuous-action tasks. In Appendix E.2, we include
similar experiments with expert target policies as well as ablations on PROPS’s objective clipping and
regularization. Results with expert target policies are qualitatively similar to Fig. 3, and we observe that
clipping and regularization both individually help reduce sampling error.

6.2 Correcting Sampling Error During RL Training

We are ultimately interested in understanding how replacing on-policy sampling with PROPS affects the
data efficiency of on-policy learning. In the following experiments, we train RL agents with PROPS and
on-policy sampling to evaluate (1) the data efficiency of training, (2) the distribution of returns achieved at
the end of training, and (3) the sampling error throughout training. We use the same sampling error metrics
described in the previous section and measure data efficiency as the return achieved within a fixed training
budget. Since ROS is computationally expensive and fails to reduce sampling error in MuJoCo tasks even
with a fixed policy, we omit it from MuJoCo experiments.

Experimental setup. We use PPO (Schulman et al., 2017) to update the target policy and consider two
baseline methods for providing data to compute PPO updates: (1) vanilla PPO with on-policy sampling,
and PPO with on-policy sampling using a buffer of size b (PPO-Buffer). PPO-Buffer is a naive method for
improving data efficiency of on-policy algorithms by reusing off-policy data collected by old target policies as
if it were on-policy data. Although PPO-Buffer computes biased gradients, it has been successfully applied
in difficult learning tasks (Berner et al., 2019). Since PROPS and PPO-Buffer have access to the same
amount of data for each policy update, any performance difference between these two methods arises from
differences in how they sample actions during data collection.

In MuJoCo experiments, we set b = 2 such that agents retain each batch of data for one extra iteration
before discarding it. In GridWorld, we use b = 1 and discard all historic data. Since PROPS and PPO-Buffer
compute target policy updates with b times as much learning data as PPO, we integrate this extra data by
increasing the minibatch size for target and behavior policy updates by a factor of b. Further experimental
details including hyperparameter tuning are described in Appendix F. For MuJoCo tasks, we plot the mean
return throughout training as well as the distribution of returns achieved at the end of training (i.e., the
performance profile) (Agarwal et al., 2021). For GridWorld, we plot the fraction of times agents find the
optimal goal (i.e. the success rate).

9
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Figure 5: Sampling error throughout RL training. Solid curves denote the mean over 5 seeds. Shaded regions
denote 95% confidence belts.

Results. As shown in Fig. 6a, on-policy sampling has approximately a 77% success rate on GridWorld,
whereas PROPS and ROS achieve 100% success rate. In Fig. 4a, PROPS achieves higher return than both
PPO and PPO-Buffer throughout training in all MuJoCo tasks except Ant-v4 where PROPS dips slightly
below PPO’s return near the end of training. Moreover, in Fig. 4b, the performance profile of PROPS almost
always lies above the performance profiles of PPO and PPO-Buffer, indicating that any given run of PROPS
is more likely to obtain a higher return than PPO-Buffer. Thus, we affirmatively answer Q2 posed at the
start of this section: PROPS increases the fraction of training runs with high return and increases data
efficiency.

(a) Success rate. (b) Sampling error.

Figure 6: GridWorld RL experiments over 50 seeds.

Having established that PROPS improves data ef-
ficiency, we now investigate if PROPS is appropri-
ately adjusting the data distribution of the buffer
by comparing the sampling error achieved through-
out training with PROPS and PPO-Buffer. Train-
ing with PROPS produces a different sequence of
target policies than training with PPO-Buffer pro-
duces. To provide a fair comparison, we compute
sampling error for PPO-Buffer using the target pol-
icy sequence produced by PROPS. More concretely,
we fill a second buffer with on-policy samples col-
lected by the target policies produced while training
with PROPS and then compute the sampling error
using data in this buffer.

As shown in Fig. 6b, PROPS achieves lower sampling error than on-policy sampling throughout RL training
in 5 out of 6 tasks. In HalfCheetah-v4, PROPS decreases sampling error only in the first 400k timesteps,
but nevertheless improves data efficiency. This result likely reflects our hyperparameter tuning procedure
in which we selected hyperparameters yielding the largest return (Appendix F). Although lower sampling
error intuitively correlates with increased data efficiency, it is nevertheless possible to achieve high return
without reducing sampling error. Alternatively, the early reduction in sampling error itself may be sufficient
to explain the observed efficiency gains. In GridWorld, PROPS and ROS reduce sampling error in the first
300 steps and closely matches on-policy sampling afterwards. We use a batch size of 80 in these experiments,
and as the target policy becomes more deterministic, larger batch sizes are needed to observe differences
between PROPS and on-policy sampling.5

We ablate the effects of the clipping coefficient ϵPROPS, regularization coefficient λ, and buffer size b in
Appendix E.3. Without clipping or without regularization, PROPS often achieves greater sampling error
than on-policy sampling, indicating that both help to keep sampling error low. Moreover, data efficiency
generally decreases when we remove clipping or regularization, showing both are essential to PROPS. We find
that data efficiency may decrease with a larger buffer size. Intuitively, the more historic data kept around,
the more data that must be collected to impact the aggregate data distribution. Last, we show that PROPS
is robust to hyperparameter choices using a sensitivity analysis in Appendix G. Thus, we affirmatively answer

5As a policy becomes deterministic, sampling error approaches zero, so there is less sampling error for PROPS to correct.
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Q1 posed at the start of this section: PROPS achieves lower sampling error than on-policy sampling when
the target policy is fixed and during RL training.

7 Discussion

This work has shown that adaptive, off-policy sampling can reduce sampling error in data collected through-
out RL training and increase the data efficiency of on-policy policy gradient algorithms. In this section, we
discuss limitations of our work and present opportunities for future research.

Convergence of PROPS. PROPS builds upon the ROS algorithm of Zhong et al. (2022). While Zhong
et al. (2022) focused on theoretical analysis and policy evaluation in low-dimensional domains, we chose to
focus on empirical analysis with policy learning in standard RL benchmarks. An important direction for
future work would be theoretical analysis of PROPS, in particular whether PROPS also enjoys the same
faster convergence rate that was shown for ROS relative to on-policy sampling.

Advantage Estimates of Historic Data. While PROPS can reduce sampling error in off-policy historic
data, the advantage estimates associated with this data still correspond to historic policies and are thus
biased advantage estimates of the current policy. PPO computes advantages using GAE (Schulman et al.,
2016) with parameter λ ∈ [0, 1] controlling how much the advantage estimates weight multi-step Monte Carlo
returns versus value function predictions. In practice, PPO uses a relatively large λ, typically λ = 0.95, which
heavily weights Monte Carlo returns. Since these returns are from trajectories generated by a behavior policy
correcting sampling error w.r.t. a historic policy, the returns correspond to the historic policy, not the current
one. In other words, PROPS corrects the off-policyness of the (s, a) distribution but not that of the advantage
estimates. Empirically, this bias appears minor, as PROPS still improves data efficiency. Nevertheless, it
can be mitigated by decreasing λ so GAE places greater weight on value function predictions, which are
updated to reflect the current policy and will thus produce advantage estimates that better align with the
current policy.

Advantage-Weighted Sampling Error Correction. A limitation of PROPS is that the update in-
discriminately increases the probability of under-sampled actions without considering their importance in
gradient computation. For instance, if an under-sampled action has zero advantage, it has no impact on the
gradient and need not be sampled. An interesting direction for future work could be to prioritize correct-
ing sampling error for (s, a) that have the largest influence on the gradient estimate, i.e., large advantage
(positive or negative).

Sampling Error Correction for Off-Policy RL. Beyond these more immediate directions, our work
opens up other opportunities for future research. A less obvious feature of the PROPS behavior policy
update is that it can be used track the empirical data distribution of any desired policy, not only that of the
current policy. This feature means PROPS has the potential to be integrated into off-policy RL algorithms
and used so that the empirical distribution more closely matches a desired exploration distribution. Thus,
PROPS could be used to perform focused exploration without explicitly tracking state and action counts.

8 Conclusion

In this work, we ask if adaptive, off-policy action sampling can produce data that more closely matches the
expected on-policy data distribution and improve the data efficiency of on-policy policy gradient methods.
To answer this question, we introduce Proximal Robust On-policy Sampling (PROPS), a method that
periodically updates a data collection behavior policy to increase the probability of sampling actions that
are currently under-sampled with respect to the on-policy distribution. Furthermore, rather than discarding
collected data after every policy update, PROPS permits more data efficient on-policy learning by using data
collection to adjust the distribution of previously collected data to be approximately on-policy. We replace
on-policy sampling with PROPS to collect data for the popular PPO algorithm and empirically demonstrate
that PROPS produces data that more closely matches the expected on-policy distribution and yields more
data efficient learning compared to on-policy sampling.
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A Core Theoretical Results

In this section, we present the proof of Proposition 1. We use dm, πm, and pm as the empirical state
visitation distribution, empirical policy, and empirical transition probabilities after m state-action pairs
have been taken, respectively. That is, dm(s) is the proportion of the m states that are s, πm(a|s) is the
proportion of the time that action a was observed in state s, and pm(s′|s, a) is the proportion of the time
that the state changed to s′ after action a was taken in state s.
Proposition 2. Assume that data is collected with an adaptive behavior policy that always takes the most
under-sampled action in each state, s, with respect to policy π, i.e, a ← arg maxa′(π(a′|s) − πm(a′|s)). We
further assume that S and A are finite. Then we have that the empirical state visitation distribution, dm,
converges to the state distribution of π, dπ, with probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

Proof. The proof of this theorem builds upon Lemma 1 and 2 by Zhong et al. (2022). Note that these
lemmas superficially concern the ROS method whereas we are interested in data collection by taking the
most under-sampled action at each step. However, as stated in the proof by Zhong et al. (2022), these
methods are equivalent under an assumption they make about the step-size parameter of the ROS method.
Thus, we can immediately adopt these lemmas for this proof.

Under Lemma 1 of Zhong et al. (2022), we have that limm→∞ πm(a|s) = π(a|s) for any state s under this
adaptive data collection procedure. We then have the following ∀s:

lim
m→∞

dm(s) (a)= lim
m→∞

∑
s̃

∑
ã

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑

s̃

∑
ã

lim
m→∞

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑

s̃

∑
ã

lim
m→∞

pm(s|s̃, ã) lim
m→∞

πm(ã|s̃) lim
m→∞

dm(s̃)

(b)=
∑

s̃

∑
ã

p(s|s̃, ã)π(ã|s̃) lim
m→∞

dm(s̃).

Here, (a) follows from the fact that the empirical frequency of state s can be obtained by considering all
possible transitions that lead to s. The last line, (b), holds with probability 1 by the strong law of large
numbers and Lemma 2 of Zhong et al. (2022).

We now have a system of |S| variables and |S| linear equations. Define variables x(s) := limm→∞ dm(s) and
let x ∈ R|S| be the vector of these variables. We then have x = P πx where P π ∈ R|S|×|S| is the transition
matrix of the Markov chain induced by running policy π. Assuming that this Markov chain is irreducible,
dπ is the unique solution to this system of equations and hence limm→∞ dm(s) = dπ(s),∀s.

B Additional Theoretical Results

In this section, we provide additional theory to describe the relationship between different hyperparameters
in PROPS:

1. The amount of sampling error in previously collected data and the size of behavior policy updates.

2. The amount of historic data retained by an agent and the amount of additional data the behavior
policy must collect to reduce sampling error.

For simplicity, we first focus on a simple bandit setting and then extend to a tabular RL setting.
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Suppose we have already collected m state-action pairs and these have been observed with empirical dis-
tribution πm(a). From what distribution should we sample an additional k state-action pairs so that the
empirical distribution over the m + k samples is equal in expectation to πθ?
Proposition 3. Assume that m actions have been collected by running some policy πθ(a) and πm(a) is the
empirical distribution on this dataset. If we collect an additional k state-action pairs using the following
distribution, and if (m + k)πθ(a) ≥ m ·πm(a), then the aggregate empirical distribution over the m + k pairs
is equal to πθ(a) in expectation:

πb(a) := 1
Z

[
πθ(a) + m

k
(πθ(a)− πm(a))

]
where Z =

∑
a∈A

[
πθ(a) + m

k (πθ(a)− πm(a))
]

is a normalization coefficient.

Proof. Observe that (m + k)πθ(a) is the expected number of times a is sampled under πθ after m + k steps,
m ·πm(a) is the number of times each a was sampled thus far, and k ·πb(a) is the expected number of times
a is sampled under our behavior policy after k steps. We want to choose πb(a) such that (m + k)πθ(a) =
m · πm(a) + k · πb(a) in expectation.

(m + k)πθ(a) = k · πb(a) + m · πm(a)
−k · πb(a) = m · πm(a)− (m + k)πθ(a)

πb(a) = −m

k
πm(a) +

(m

k
+ 1

)
πθ(a)

= πθ(a) + m

k
(πθ(a)− πm( a))

Note that πb(a) will be a valid probability distribution after normalizing only if

πθ(a) + m

k
(πθ(a)− πm( a)) ≥ 0(m

k
+ 1

)
πθ(a) ≥ m

k
πm(a)

(m + k) πθ(a) ≥ m · πm(a).

If (m + k) πθ(a) < m · πm(a), then prior to collecting additional data with our behavior policy, a already
appears in our data more times than it would in expectation after m + k steps under πθ. In other words,
we would need to collect more than k additional samples to achieve zero sampling error (or discard some
previously collected samples).

When sampling error is large, behavior policy updates must also be large. Intuitively, the
difference πθ(a)− πm(a) is the mismatch between the true and empirical visitation distributions, so adding
this term to dπθ

adjusts dπθ
to reduce this mismatch. If πθ(a) − πm(a) < 0, then a is over-sampled w.r.t.

πθ, and πb will decrease the probability of sampling a. If πθ(a)−πm(a) > 0, then a is under-sampled w.r.t.
πθ, and πb will increase the probability of sampling a. When |πθ(a) − πm(a)| is small, the optimal πb(a)
requires only a small adjustment from πθ (i.e., a small update to the behavior policy is sufficient to reduce
sampling error). When |πθ(a)−πm(a)| is large, the optimal πb(a) requires a large adjustment from πθ (i.e.,
a large update to the behavior policy is needed to reduce sampling error). We can increase (or decrease) the
target KL cutoff δPROPS to allow for larger (or smaller) behavior updates.

When we retain large amounts of historic data, the behavior policy must collect a large amount
of additional data to reduce sampling error in the aggregate distribution. The m

k factor implies
that how much we adjust dπθ

depends on how much data we have already collected (m) and how much
additional data we will collect (k). If the k additional samples to collect represent a small fraction of the
aggregate m + k samples (i.e. k << m), then m

k is large, and the adjustment to dπθ
is large. This case

generally arises when we retain more and more historic data. If the k additional samples to collect represent
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g(s a, ϕ, θ) > 0 Is the objective clipped? Return value of min Gradient
g(s a, ϕ, θ) ∈ [1− ϵPROPS, 1 + ϵPROPS] No −g(s, a, ϕ, θ) ∇ϕLclip
g(s, a, ϕ, θ) > 1 + ϵPROPS No −g(s, a, ϕ, θ) ∇ϕLclip
g(s, a, ϕ, θ) < 1− ϵPROPS Yes −(1− ϵPROPS) 0

Table 1: Behavior of PROPS’s clipped surrogate objective (Eq. 6).

a large fraction of the aggregate m + k samples (i.e. k >> m), then m
k is small, and the adjustment to dπθ

is small. This case generally arises when we retain little to no historic data.

The next proposition extends this analysis to the tabular RL setting.
Proposition 4. Assume that m state-action pairs have been collected by running some policy and dm(s, a) is
the empirical distribution on this dataset. If we collect an additional k state-action pairs using the following
distribution, and if (m + k)dπθ

(s, a) ≥ m · dm(s, a), then the aggregate empirical distribution over the m + k
pairs is equal to dπθ

(s, a) in expectation:

db(s, a) := 1
Z

[
dπθ

(s, a) + m

k
(dπθ

(s, a)− dm(s, a))
]

where Z =
∑

(s,a)∈S×A
[
dπθ

(s, a) + m
k (dπθ

(s, a)− dm(s, a))
]

is a normalization coefficient.

Proof. The proof is identical to the proof of Proposition 3, replacing πθ(a), πm(a), and πb(a) with
dπθ

(s, a), dm(s, a), and db(s, a).

n practice, we cannot sample directly from the visitation distribution db(s, a) in Proposition 4 and in-
stead approximate sampling from this distribution by sampling from its corresponding policy πb(a|s) =
db(s, a)/

∑
(s′,a′)∈S×A db(s′, a′).

C PROPS Implementation Details

In this appendix, we describe two relevant implementation details for the PROPS update (Algorithm 2). We
additionally summarize the behavior of PROPS’s clipping mechanism in Table 1.

1. PROPS update: The PROPS update adapts the behavior policy to reduce sampling error in the
buffer D. When performing this update with a full buffer, we exclude the oldest batch of data
collected by the behavior policy (i.e., the m oldest transitions in D); this data will be evicted from
the buffer before the next behavior policy update and thus does not contribute to sampling error in
D.

2. Behavior policy class: We compute behavior policies from the same policy class used for target
policies. In particular, we consider Gaussian policies which output a mean µ(s) and a variance
σ2(s) and then sample actions a ∼ π(·|s) ≡ N (µ(s), σ2(s)). In principle, the target and behavior
policy classes can be different. However, using the same class for both policies allows us to easily
initialize the behavior policy equal to the target policy at the start of each update. This initialization
is necessary to ensure the PROPS update increases the probability of sampling actions that are
currently under-sampled with respect to the target policy.

D Computing Sampling Error

We claim that PROPS improves the data efficiency of on-policy learning by reducing sampling error in the
agent’s buffer D with respect to the agent’s current (target) policy. To measure sampling error, we use the

17



Under review as submission to TMLR

Figure 7: In this example, π(·|s) = N (0, 1). After several visits to s, all sampled actions (blue) satisfy
a > 0 so that actions a < 0 are under-sampled. Without regularization, PROPS will attempt to increase the
probabilities of under-sampled actions in the tail of target policy distribution (green). The regularization
term in the PROPS objective ensures the behavior policy remains close to target policy.

KL-divergence DKL(πD||πθ) between the empirical policy πD and the target policy πθ which is the primary
metric Zhong et al. (2022) used to show ROS reduces sampling error:

DKL(πD||πθ) = Es∼D,a∼πD(·|s)

[
log

(
πD(a|s)
πθ(a|s)

)]
. (8)

We compute a parametric estimate of πD by maximizing the log-likelihood of D over the same policy class
used for πθ. More concretely, we let θ′ be the parameters of neural network with the same architecture as
πθ train and then compute:

θMLE = arg max
θ′

∑
(s,a)∈D

log πθ′(a|s) (9)

using stochastic gradient ascent. After computing θMLE, we then estimate sampling error using the Monte
Carlo estimator:

DKL(πD||πθ) ≈
∑

(s,a)∈D

(log πθMLE(a|s)− log πθ(a|s)) . (10)
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(a) Sampling error bias (b) Sampling error variance

Figure 8: Sampling error bias and variance estimates of different sampling methods. Empirically, PROPS is
unbiased and lower variance than on-policy sampling.

E Additional Experiments

In this appendix, we include additional experiments and ablations.

E.1 Bias and Variance of PROPS

In Fig. 8, we investigate the bias and variance of the empirical state-action visitation distribution dD(s, a)
under PROPS, ROS, and on-policy sampling. We report the bias and variance averaged over all (s, a) ∈ S×A
computed as follows:

bias = 1
|S × A|

∑
(s,a)∈S×A

(
E

[
dD(s, a)

]
− dπθ

(s, a)
)

(11)

variance = 1
|S × A|

∑
(s,a)∈S×A

E
[(

dD(s, a)− dπθ
(s, a)

)2]
(12)

As shown in Fig. 8, the visitation distribution under PROPS and ROS empirical have near zero bias (note
that the vertical axis has scale 10−18) and have lower variance than on-policy sampling.
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Figure 9: Sampling error with a fixed, expert target policy. Solid curves denote the mean over 5 seeds.
Shaded regions denote 95% confidence belts.

Figure 10: Sampling error ablations with a fixed, random target policy. Here, “no clipping” refers to setting
ϵPROPS = ∞, and “no regularization” refers to setting λ = 0. Solid curves denote the mean over 10 seeds,
and shaded regions denote 95% bootstrap confidence intervals.

E.2 Correcting Sampling Error for a Fixed Target Policy

In this appendix, we expand upon results presented in Section 6.1 of the main paper and provide additional
experiments investigating the degree to which PROPS reduces sampling error with respect to a fixed, ran-
domly initialized target policy. We additionally include ablation studies investigating the effects of clipping
and regularization.

We tune PROPS and ROS using a hyperparameter sweep. For PROPS, we sweep over learning rates in
{10−3, 10−4} and fix the remaining PROPS hyperparameters: regularization coefficient λ = 0.1, target
KL δPROPS = 0.03, and clipping coefficient ϵPROPS = 0.3. For ROS, we sweep over learning rates in
{10−3, 10−4, 10−5}. We report results for hyperparameters yielding the lowest sampling error.

In Fig. 9, we see that PROPS achieves lower sampling error than both ROS and on-policy sampling across
all tasks. ROS shows little to no improvement over on-policy sampling, again highlighting the difficulty of
applying ROS to higher dimensional tasks with continuous actions.

Fig. 10 ablates the effects of PROPS’s clipping mechanism and regularization on sampling error reduction.
We ablate clipping by setting ϵPROPS = ∞, and we ablate regularization by setting λ = 0. We use a fixed
expert target policy and use the same tuning procedure described earlier in this appendix. In all tasks,
PROPS achieves higher sampling error without clipping nor regularization than it does with clipping and
regularization, though this method nevertheless outperforms on-policy sampling in all tasks. Only removing
clipping increases sampling error in most setups, and only removing regularization often increases sampling
error for smaller batches of data e.g., 1024 samples. These observations indicate that while regularization is
helpful, clipping has a stronger effect on sampling error reduction than regularization when the target policy
is fixed.
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Figure 11: Sampling error throughout RL training without clipping the PROPS objective. Solid curves
denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 12: Sampling error throughout RL training without regularizing the PROPS objective. Solid curves
denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

E.3 Correcting Sampling Error During RL Training

In this appendix, we include additional experiments investigating the degree to which PROPS reduces
sampling error during RL training, expanding upon results presented in Section 6.2 of the main paper. We
include sampling error curves for all six MuJoCo benchmark tasks and additionally provide ablation studies
investigating the effects of clipping and regularization on sampling error reduction and data efficiency in
the RL setting. We ablate clipping by tuningRL agents with ϵPROPS =∞, and we ablate regularization by
tuning RL agents with λ = 0. Fig. 11 and Fig. 12 show sampling error curves without clipping and without
regularization, respectively. Without clipping, PROPS achieves larger sampling than on-policy sampling in
all tasks except Humanoid. Without regularization, PROPS achieves larger sampling error in 3 out of 6
tasks. These observations indicate that while clipping and regularization both help reduce sampling during
RL training, clipping has a stronger effect on sampling error reduction. As shown in Fig. 13 PROPS data
efficiency generally decreases when we remove clipping or regularization.

Lastly, we consider training with larger buffer sizes b in Fig. 14. We find that data efficiency may decrease
with a larger buffer size. Intuitively, the more historic data kept around, the more data that must be collected
to impact the aggregate data distribution.

F Hyperparameter Tuning for RL Training

For all RL experiments in Section 6.2 and Appendix E.3, we tune PROPS, PPO-Buffer, and PPO separately
using a hyperparameter sweep over parameters listed in Table 2 and fix the hyperparameters in Table 5
across all experiments. Since we consider a wide range of hyperparameter values, we ran 10 independent
training runs for each hyperparameter setting. We then performed 50 independent training runs for the
hyperparameters settings yielding the largest returns at the end of RL training. We report results for these
hyperparameters in the main paper.
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Figure 13: Mean return over 50 seeds of PROPS with and without clipping or regularizing the PROPS
objective. Shaded regions denote 95% bootstrap confidence intervals.

Figure 14: Mean return over 50 seeds for PROPS with different buffer sizes. We exclude b = 8 for Humanoid-
v4 due to the expense of training and tuning. Shaded regions denote 95% bootstrap confidence intervals.
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PPO learning rate 10−3, 10−4, linearly annealed to 0 over training
PPO batch size n 1024, 2048, 4096, 8192
PROPS learning rate 10−3, 10−4 (and 10−5 for Swimmer)
PROPS behavior update frequency m 256, 512, 1024
PROPS KL cutoff δPROPS 0.03, 0.05, 0.1
PROPS regularizer coefficient λ 0.1, 0.3

Table 2: Hyperparameters used in our hyperparameter sweep for RL training.

Environment Batch Size Learning Rate
Swimmer-v4 4096 10−3

Hopper-v4 2048 10−3

HalfCheetah-v4 1024 10−4

Walker2d-v4 4096 10−4

Ant-v4 1024 10−3

Humanoid-v4 8192 10−4

Table 3: Tuned PPO hyperparameters

PPO PPO PROPS PROPS PROPS PROPS
Environment Batch Size Learning Rate Update Freq. Learning Rate KL Cutoff Regularization λ
Swimmer-v4 2048 10−3 1024 10−5 0.03 0.1
Hopper-v4 2048 10−3 256 10−3 0.05 0.3
HalfCheetah-v4 1024 10−4 512 10−3 0.05 0.3
Walker2d-v4 2048 10−3 256 10−3 0.1 0.3
Ant-v4 2048 10−4 256 10−3 0.03 0.1
Humanoid-v4 8192 10−4 256 10−4 0.1 0.1

Table 4: Hyperparameters selected from our hyperparameter sweep for RL training.

PPO number of update epochs 10
PROPS number of update epochs 16
Buffer size b 2 target batches (also 3, 4, and 8 in Fig. 14)
PPO minibatch size for PPO update bn/16
PROPS minibatch size for PROPS update bn/16
PPO and PROPS networks Multi-layer perceptron

with hidden layers (64,64)
PPO and PROPS optimizers Adam (Kingma & Ba, 2015)
PPO discount factor γ 0.99
PPO generalized advantage estimation (GAE) 0.95
PPO advantage normalization Yes
PPO loss clip coefficient 0.2
PPO entropy coefficient 0.01
PPO value function coefficient 0.5
PPO and PROPS gradient clipping (max gradient norm) 0.5
PPO KL cut-off 0.03
Evaluation frequency Every 10 target policy updates
Number of evaluation episodes 20

Table 5: Hyperparameters fixed across all experiments. We use the PPO implementation provided by
CleanRL (Huang et al., 2022).
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G Hyperparameter Sensitivity Analysis

To assess how sensitive PROPS is to hyperparameter selection, we follow Patterson et al. (2023) and plot
RL training performance aggregated over a large subset of runs from our hyperparameter sweep. Although
we include the PPO target learning rate and PPO target batch size in our hyperparameter sweep, we keep
them fixed at their tuned values in our violin plots. Including these hyperparameters would tell us about
the sensitivity of PPO, but we are only interested in understanding the sensitivity of PROPS. We run 10
seeds for each hyperparameter setting. Fig. 15 and Fig. 16 show training curves and performance profiles for
tuned PROPS and aggregated PROPS as well as our baselines. Across tasks, tuned PROPS achieves higher
returns than aggregated PROPS, demonstrating the benefit of careful hyperparameter tuning. Nevertheless,
aggregated PROPS still outperforms PPO and PPO-Buffer, suggesting that PROPS maintains a degree of
hyperparameter robustness.
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Figure 15: Mean return over 50 seeds. Shaded regions denote 95% confidence intervals.

Figure 16: Performance profiles over 50 seeds. Shaded regions denote 95% confidence intervals.
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