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ABSTRACT

Utilizing a large-scale dataset is essential for training high-performance deep
learning models, but it also comes with substantial computation and storage costs.
To overcome these challenges, dataset distillation has emerged as a promising
solution by compressing the large-scale dataset into a smaller synthetic dataset
that retains the essential information needed for training. This paper proposes
a novel parameterization framework for dataset distillation, coined Distilling
Dataset into Neural Field (DDiF), which leverages the neural field to store the
necessary information of the large-scale dataset. Due to the unique nature of the
neural field, which takes coordinates as input and output quantity, DDiF effec-
tively preserves the information and easily generates various shapes of data. We
theoretically confirm that DDiF exhibits greater expressiveness than some pre-
vious literature when the utilized budget for a single synthetic instance is the
same. Through extensive experiments, we demonstrate that DDiF achieves su-
perior performance on several benchmark datasets, extending beyond the im-
age domain to include video, audio, and 3D voxel. We release the code at
https://github.com/aailab-kaist/DDiF.

1 INTRODUCTION

High performances from recent deep learning models are mainly driven by scaling laws (Bengio
et al., 2007; Kaplan et al., 2020), which heavily rely on a large-scale dataset. However, utilizing the
large-scale dataset incurs significant computation and storage costs. Dataset distillation has been
proposed as a potential solution to address these challenges (Wang et al., 2018). The goal of dataset
distillation is to synthesize a small-scale synthetic dataset that encapsulates the essential information
needed to train a deep learning model on a large-scale dataset. Naturally, one of the research direc-
tions in dataset distillation is defining the essential information and developing efficient methods to
learn it (Zhao et al., 2020; Zhao & Bilen, 2023; Cazenavette et al., 2022).

In parallel, another crucial research direction is parameterizing the small-scale synthetic dataset un-
der the limited storage budget. The naive parameterization method constructs the synthetic instance
in the same structure as the original instance. Due to the limitations of scalability and redundancy in
this approach, various parameterization methods have been proposed to improve efficiency within
the limited storage budget. Generally speaking, parameterization methods commonly employ low-
dimensional codes and decoding functions that transform a code in reduced dimensions into a data
instance of the original input space. Conceptually, the decoding functions can be categorized into
1) static decoding (Kim et al., 2022; Shin et al., 2024); 2) parameterized decoding (Deng & Rus-
sakovsky, 2022; Sachdeva et al., 2023; Lee et al., 2022; Liu et al., 2022; Wei et al., 2024); and 3) deep
generative prior (Cazenavette et al., 2023; Su et al., 2024a;b; Zhong et al., 2024). Although these
methods have shown promising results, they still exhibit limitations in coding efficiency, expressive-
ness, and applicability to diverse data structures. Additionally, there has been limited exploration of
the theoretical foundations underlying these methods.

This paper introduces a new parameterization framework for dataset distillation that stores infor-
mation into synthetic neural fields under the limited storage budget, coined Distilling Dataset into
Neural Field (DDiF). A field is a function that takes a coordinate as an input and returns a corre-
sponding quantity, and a neural field parameterizes the field using a neural network. DDiF employs
the synthetic neural field as a container of distilled information that utilizes a small budget, and it
decodes a synthetic instance by inputting a set of coordinates corresponding to the original instance.
We emphasize that the neural field has a structural difference compared to conventional decoding
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functions in parameterization methods, which map a low-dimensional space to an instance-level
space. Thanks to the continuous and coordinate-oriented nature of the neural field, DDiF effectively
encodes information from high-dimensional data, which is a crucial challenge in dataset distillation.
Furthermore, due to the inherent flexibility of neural networks (Lu et al., 2017; Raghu et al., 2017),
the synthetic instance decoded by DDiF exhibits high expressiveness. In addition, DDiF is capable
of encoding grid-based data from various modalities and decoding a data instance of resolution that
was not encountered during the distillation process. We present a theoretical analysis of parameter-
ization methods by investigating the expressiveness of the decoded synthetic instance through the
feasible space view. Based on this theoretical understanding, we demonstrate that DDiF possesses a
larger feasible space compared to some previous literature under the same utilized budget for a sin-
gle synthetic instance. Across various evaluation scenarios, DDiF consistently exhibits performance
improvements, generalization, robustness, and adaptability on diverse modality datasets.

In summary, our contributions are as follows:

• We propose a new parameterization framework for dataset distillation, Distilling Dataset
into Neural Field (DDiF), which employs a neural field to parameterize a synthetic instance.

• We theoretically analyze the expressiveness of DDiF by investigating the feasible space
covered by its decoded synthetic instances. Furthermore, we confirm that DDiF exhibits
high expressiveness by comparing it with previous methods under the same utilized budget
for a single synthetic instance.

• Through extensive experiments, we demonstrate that DDiF consistently achieves high per-
formance on diverse grid-based data, including image, video, audio, and 3D voxel. More-
over, we present a new experimental design, cross-resolution generalization, capable of
measuring generalization performance on resolutions not encountered during training.

2 PRELIMINARY

2.1 PROBLEM FORMULATION

This paper focuses on dataset distillation for classification tasks. We define a given large dataset that
needs to be distilled as T := (XT , YT ) = {(xi, yi)}|T |

i=1, where XT := {xi}|T |
i=1 denotes a set of

D-dimensional input data xi ∈ X ⊆ RD, and YT := {yi}|T |
i=1 denotes a set of corresponding labels

among C-classes yi ∈ Y = {1, ..., C}. We assume that each data pair (xi, yi) is drawn i.i.d from
the distribution P . Let a classifier fθ : X → Y be a neural network parameterized by θ ∈ Θ. We
also define a loss function ℓ : Y × Y → R.

The main goal of dataset distillation is to synthesize a small dataset such that a model trained on
this synthetic dataset can generalize well to a large dataset. Formally, given a synthetic dataset
S := (XS , YS) = {(x̃j , ỹj)}|S|

j=1 where XS := {x̃j}|S|
j=1, YS := {ỹj}|S|

j=1, and |S| ≪ |T |, the
objective of dataset distillation is formulated as follows:

min
S

E(x,y)∼P
[
ℓ(fθS (x), y)

]
subject to θS = argmin

θ

1

|S|
∑

(x̃j ,ỹj)∈S

ℓ
(
fθ(x̃j), ỹj

)
(1)

Nonetheless, the optimization of Eq. (1) is both computationally intensive and lacks scalability, as it
entails a bi-level optimization problem for both θ and S (Zhao et al., 2020; Borsos et al., 2020). To
overcome these issues, several studies have suggested the surrogate objectives to effectively capture
essential information needed for training the neural network on T , such as matching gradient (Zhao
et al., 2020), distribution (Zhao & Bilen, 2023), and trajectory (Cazenavette et al., 2022). For the
sake of brevity, we denote these objectives as L(T ,S) throughout this paper.

2.2 PARAMETERIZATION OF DATASET DISTILLATION

Input-sized parameterization, which sets a synthetic instance in the same format as a real instance,
suffers from scalability as the dimension of a given instance increases. Also, input-sized parame-
terization does not utilize the storage budget efficiently because it contains redundant or irrelevant
information (Lei & Tao, 2023; Yu et al., 2023; Sachdeva & McAuley, 2023).

Addressing these concerns, several studies have proposed parameterization methods to enhance the
efficiency of synthetic dataset. In general, parameterization methods employ 1) codes Z := {zj}|Z|

j=1
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where zj ∈ RD′
and 2) decoding function gϕ : RD′ → RD to construct the synthetic dataset.1

Under this framework, a decoded synthetic instance is represented by a combination of code and
decoding function i.e. x̃j = gϕ(zj). Also, a set of decoded synthetic instances become XS =
{gϕ(z)|z ∈ Z}. Typically, parameterization methods use Z and/or ϕ as targets for optimization
and storage. Therefore, the storage budget for the parameterization is calculated based on the total
number of parameters comprising Z and/or gϕ, and it is adjusted to ensure the budget constraint.

Based on the structure of the decoding function, they can be broadly categorized into 1) static de-
coding, 2) parameterized decoding, and 3) deep generative prior. Static decoding employs a non-
parameterized decoding function g, such as resizing (Kim et al., 2022) and frequency transform
(Shin et al., 2024). These methods are fast, easy to apply, and do not require a budget for the decod-
ing function. However, since this decoding function is fixed, the structure of code z becomes limited
without the ability to adaptively transform g. Also, using a static decoding function inevitably re-
duces expressiveness from a generalization perspective, leading to information loss.

Parameterized decoding utilizes a linear combination with learnable coefficients (Deng & Rus-
sakovsky, 2022; Sachdeva et al., 2023), decoder (Lee et al., 2022; Zheng et al., 2023), autoencoder
(Liu et al., 2022; Duan et al., 2023), or transformer structure (Wei et al., 2024) as the decoding
function gϕ. Although flexible decoding functions are employed, the optimized parameters of the
decoding function also be stored within the limited budget, necessitating the use of a simple struc-
ture (i.e., linear combination) or a lightweight neural network. It results in limited flexibility and
presents challenges when extending to complex data types, such as video, 3D, and medical images.

Deep generative prior leverages a pretrained deep generative model without additional training, fo-
cusing only on optimizing the latent vector (Cazenavette et al., 2023; Su et al., 2024a;b; Zhong
et al., 2024). This framework encourages better generalization to unseen architecture and scale to
the high-dimensional dataset. However, it assumes easy access to a well-trained generative model,
which might restrict the range of applications. Also, since the deep generative model contains a
large number of parameters, the decoding process and backward update process take a long time.

2.3 NEURAL FIELD REPRESENTATION

In physics and mathematics, a field F is a function that takes a coordinate in space and outputs a
quantity (Xie et al., 2022). If we apply the concept of the field to data modeling, a single grid-based
data can be regarded as a field. For example, an RGB image is a function that maps from pixel
locations to pixel intensity. Similarly, a video datatype is a function that additionally takes time as
input, and a 3D datatype is a function that outputs occupancy value on the 3D coordinate system.

According to the universal approximation theorem (Cybenko, 1989), any field can be parameterized
by a neural network, which is referred to as a neural field Fψ . It implies that grid-based data can
be expressed as a neural network. Let C := {ci}i∈I be a set of coordinates of grid-based data and
Q := {qi}i∈I be a set of corresponding quantities. To encode a single grid-based data using a neural
field Fψ , we minimize a distortion measure, such as squared error, over all given coordinates as:

min
ψ

∑
i∈I
∥Fψ(ci)− qi∥22 (2)

Recently, the neural field has been adopted to many applications, such as representation learning
(Park et al., 2019; Mildenhall et al., 2021), generative modeling (Skorokhodov et al., 2021; Dupont
et al., 2021), medical imaging (Shen et al., 2022; Zang et al., 2021), and robotics (Li et al., 2022).

3 METHODOLOGY

This section proposes a new parameterization framework for dataset distillation that stores infor-
mation of a real dataset in synthetic neural fields under a limited storage budget, coined Distilling
Dataset into Neural Field (DDiF). The core idea of this paper is to store the distilled information
in the synthetic function. Although there are several candidates for the form of synthetic function,
we primarily focus on (neural) field. Figure 1 illustrates the overview of DDiF. In the following, we
begin by explaining the reasons for choosing neural field as the form of synthetic function. Then,
we introduce our framework, DDiF, which parameterizes a synthetic instance using a neural field.
Finally, we provide a theoretical analysis for a better understanding of parameterization and DDiF.

1Although some studies (Deng & Russakovsky, 2022; Moser et al., 2024) use both ỹ and z as inputs for gϕ,
we expressed it as gϕ(z) for the sake of uniformity.
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Figure 1: Overview of DDiF. Each decoded synthetic instance is constructed by the output of each
synthetic neural field Fψ by inputting coordinate set C (left). DDiF optimizes only the parameters
ψ, as coordinate set C does not require optimization or storage. Also, DDiF is capable of encoding
grid-based data from various modalities. In the evaluation stage (right), DDiF can decode the data
with sizes that were not encountered during the distillation stage by adjusting the input coordinates.

3.1 WHY NEURAL FIELD IN DATASET DISTILLATION?

Although the neural field is widely adopted, no research has yet been conducted on integrating
it into dataset distillation. Herein, we provide several properties, which are beneficial for dataset
distillation due to its unique structural characteristic.

𝑍
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(b) Neural field
Figure 2: Illustration of structural dif-
ference between conventional decod-
ing function and neural field.

Coding Efficiency. The neural field efficiently encodes
information of high-dimensional grid-based data. Distilling
the high-dimensional dataset remains a crucial challenge in
expanding the applicability of dataset distillation (Lei &
Tao, 2023). Input-sized parameterization typically scales
poorly with resolution due to the curse of discretization
(Mescheder, 2020). While employing the decoding func-
tion gϕ : RD′ → RD could improve scalability, its out-
put ultimately depends on the data dimension D. It implies
that as the data dimension D increases, a more complex de-
coding function gϕ is required, which becomes problematic
given a limited storage budget. In contrast, the neural field
stores information independently of the data dimension D.
Its input and output dimensions are determined by the di-
mensions of the coordinate space and the quantity space,
respectively, as depicted in Figure 2. For high-dimensional
data, the neural field only requires a larger set of input co-
ordinates. Moreover, we emphasize that the neural field can represent complex grid-based data,
such as videos and 3D voxels, which are not limited to the image domain. Since such data are typi-
cally high-dimensional, the high coding efficiency of the neural field is particularly advantageous for
complex grid-based dataset distillation. Therefore, the neural field provides a unified and efficient
representation of high-dimensional grid-based data.

Resolution Adaptiveness. The neural field is robust to diverse resolution. In the real world, it
is often necessary to resize data depending on downstream tasks (Wang et al., 2020b; Shorten &
Khoshgoftaar, 2019). Existing methods can only apply postprocessing on the optimized synthetic
dataset, leading to insufficient or distorted information. Meanwhile, the neural field easily obtains
various sizes of data by adjusting the set of input coordinates due to the continuous nature. Further-
more, since the neural field is a continuous function, it provides more accurate values for unseen
coordinates. Please refer to Section 4.1 for the empirical evidence of this claim by introducing a
new experiment design, coined cross-resolution generalization.
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3.2 DDIF: DISTILLING DATASET INTO NEURAL FIELD

In this section, we introduce a basic framework for integrating the neural field into dataset distilla-
tion. Specifically, DDiF parameterizes a single synthetic instance x̃j as a single neural field Fψj .
DDiF consists of two main components: 1) Coordinate set C and 2) Synthetic neural fields FΨ.

Coordinate Set C. To define the function, it is first necessary to define the input space of the
function. Fundamentally, a decoded synthetic instance by the parameterization method is the same
shape as the real instance. Therefore, our synthetic function must be defined in the space where
the information of the real instances is stored. Suppose that the given real instance x ∈ XT is
n-dimensional grid representation with resolution Nk, k = 1, ..., n, and each element contains m
values, i.e. m = 3 of RGB values. Formally, the real instance x is element in Rm×N1×···×Nn . Then,
the coordinate set C, where the values of x are stored, is defined by a bounded set of lattice points:

C :=
{(
i1, i2, ...in

)∣∣∣ik ∈ {
0, 1, · · · , Nk

}
, ∀k = 1, ..., n

}
Note that there are several properties of coordinate set C, which become advantages in dataset dis-
tillation. First, since every real instance x ∈ XT is defined on the same coordinate set C (the only
difference is the value on each coordinate), we do not need to consider the coordinate individually.
Also, C is easily obtained if only the shape of the decoded instance is defined, without any additional
information. For instance, assume that we want to get N × N -shaped data instances. Then, C is a
set of lattice points in [0, N ] × [0, N ]. Due to these static and bounded characteristics, DDiF does
not need to optimize or store the coordinate set C. Based on this property, DDiF is a decoder-only
parameterization framework that leverages a flexible decoding function gϕ without inferring codes
Z, which structurally differs from previous methods.

Synthetic Neural Fields FΨ. DDiF utilizes neural field Fψ : Rn → Rm to obtain the decoded
synthetic instance x̃ by inputting the coordinate set C.2 Specifically, given a coordinate set C, the de-
coded synthetic instance by DDiF is x̃ = Fψ(C) := [Fψ(c)]c∈C . In DDiF, since a decoded synthetic
instance x̃ and a synthetic neural field Fψ have one-to-one correspondence, obtaining K decoded
synthetic instances requires K synthetic neural fields. We denote the parameter set of synthetic
neural fields as Ψ := {ψj}|Ψ|

j=1 and the set of synthetic neural fields as FΨ := {Fψj}
|Ψ|
j=1. For the

structure of the synthetic neural field Fψ , we follow the tradition of the neural field (Mildenhall
et al., 2021; Tancik et al., 2020), which utilizes a simple L-layer neural network:

Fψ(c) =W (L)(h(L−1) ◦ · · · ◦ h(0))(c) + b(L), h(l)(c) = σ(l)(W (l)c+ b(l))

where W (l) ∈ Rdl×dl−1 , b(l) ∈ Rdl are weights and bias at layer l. σ(l) denotes a nonlinear
activation function. Under this formulation, ψ becomes

{
W (l), b(l)

}L
l=0

. To avoid the spectral bias
(Rahaman et al., 2019; Xu et al., 2019) that limits the expressiveness of neural fields, we employ a
sine activation function (Sitzmann et al., 2020) by default, which is widely used in neural fields.

Learning Framework. Given a coordinate set C and a parameter set of synthetic neural fields Ψ,
a set of decoded synthetic instances is represented by XS = {Fψj

(C)}|Ψ|
j=1. Under the arbitrary

dataset distillation loss L(T ,S), the overall optimization of DDiF is formulated as follows:

min
Ψ
L(T ,S) where S =

{
(Fψj

(C), ỹj)
}|Ψ|
j=1

(3)

DDiF has no limitations in applying an optimizable soft label (Sucholutsky & Schonlau, 2021; Cui
et al., 2023), but we utilize predefined one-hot labels to ensure consistency with previous parame-
terization i.e. ỹj = yj ∈ YT . Please refer to Appendix C.3 for the compatibility with soft label.
In practice, dataset distillation commonly utilizes randomly sampled real instance x ∈ XT as the
initialization of synthetic instance x̃. In the same context, we conduct the warm-up training for
synthetic neural fields FΨ. Concretely, we train FΨ using Eq. (2) with randomly selected |Ψ|/C
samples for each class. Appendix B.5 specifies training procedure and decoding process of DDiF.

2We defined C for dataset distillation training, but the domain of Fψ is the entire n-dimensional space Rn.
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Budget calculation. As Eq. (3) demonstrates, the optimization target of DDiF is Ψ = {ψj}|Ψ|
j=1.

In detail, each synthetic neural field Fψ utilize d0(n+1)+
∑L−1
l=1 dl(dl−1+1)+m(dL−1+1) =: b

parameters. We emphasize that b does not depend on the data dimension D, so high resolution does
not necessarily increase the budget of Fψ . When the storage budget is limited to B, we configure
the structure of Fψ , such as the width dl and the number of layers L, to satisfy |Ψ| × b ≤ B.

3.3 THEORETICAL ANALYSIS

Even though several parameterization methods for dataset distillation are proposed, there has been
little discussion regarding the theoretical understanding of their methods. In this section, we provide
a theoretical analysis of parameterization methods by investigating the expressiveness of the decoded
synthetic instance. Next, we analyze the expressiveness of DDiF when employing the sine activation
function. Lastly, we demonstrate that DDiF exhibits higher expressiveness than the previous work,
FreD (Shin et al., 2024), under the same utilized budget for a single synthetic instance.

We conjecture that the expressiveness of the decoded synthetic instance corresponds to the coverage
of its respective data space. Accordingly, the optimization feasibility of dataset distillation depends
on the coverage or feasible space of the decoded synthetic instance. Based on this conceptual idea,
Proposition 3.1 characterizes the relationship between the feasible space of decoded synthetic in-
stances and the optimal value of the dataset distillation objective, when the number of decoded
synthetic instances is the same. Herein, we assume only synthetic inputs XS as the optimization
variable. Consequently, dataset distillation loss L(T ,S) is simply expressed as a function ofXS i.e.
L(T ,S) is represented by L(XS).

Proposition 3.1. Consider two functions g1, g2 where gi : Zi → RD for i = 1, 2. Also, consider
two matrix variables Zi :=

[
zi1, ..., ziM

]
where their columns zij ∈ Zi for i = 1, 2 and j =

1, ...,M . We denotes ĝi(Zi) :=
[
gi(zi1), ..., gi(ziM )

]
for i = 1, 2. Set Gi := {g|g : Zi → RD} for

i = 1, 2. If g1(Z1) ⊆ g2(Z2) for any g1 ∈ G1 and g2 ∈ G2, then ming1∈G1,Z1∈ZM
1
L(ĝ1(Z1)) ≥

ming2∈G2,Z2∈ZM
2
L(ĝ2(Z2)).

Please refer to Appendix A.1 for proof. Proposition 3.1 demonstrates that the optimal value of
dataset distillation loss becomes lower as the feasible space of decoded synthetic instances becomes
larger, when the number of decoded synthetic instances is fixed. The previous experimental finding
supports Proposition 3.1 when G1 = G2: an increase in frequency dimension leads to improved
dataset distillation performance (Shin et al., 2024).

Now, we investigate the feasible space of DDiF. We consider a neural field Fψ : R → R with
two hidden layers, each having a width of d and employing a sine activation function. Extending the
result of (Novello, 2022) using trigonometric identities, the output space of DDiF, which corresponds
to the feasible space of the decoded synthetic instance, is represented as a sum of cosines:

Fψ(x) = b(2) +
∑
k∈Zd

d∑
i=1

Ak,i cos
(
ωkx+ φ′

k,i

)
where φ′

k,i = φk,i −
π

2
(4)

where ωk := ⟨k,W (0)⟩, φk,i := ⟨k, b(0)⟩ + b
(1)
i , αk :=

∑d
i=1Ak,i sin (φk,i) and βk :=∑d

i=1Ak,i cos (φk,i). Also, Ak,i := W
(2)
i

∏d
j=1 JkjW

(1)
ij where Jkj denotes Bessel function of

the first kind of order kj . Please refer to Appendix A.2 for derivation. According to Eq. (4), it
should be noted that the amplitudes Ak,i, frequencies ωk, phases φ′

k,i, and shift b(0) are tunable as

the combination of neural network parameters ψ =
{
W (l), b(l)

}L
l=0

in DDiF.

The feasible space of DDiF in Eq. (4) has a similar form of the feasible space of previous work,
FreD (Shin et al., 2024), one of the static parameterization method in dataset distillation. FreD
optimizes frequency coefficients, which are selected by the explained variance ratio. They basically
use the inverse discrete cosine transform (IDCT) to decode synthetic instances from the frequency
domain. Suppose that FreD utilizes IDCT with N equidistant locations on R. Also, when U ⊂
CN := {0, ..., N − 1} is the index set of selected frequency dimension; the optimized frequency
coefficients is denoted as Γ := {γu|u ∈ U}. Then, the feasible space of decoded synthetic instance
by FreD is expressed in the form of a function over CN :

g(x; Γ) =
∑
u∈U

γu cos
(πu
N
x+

πu

2N

)
where x ∈ CN (5)
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Now, we turn our attention to compare the feasible spaces of DDiF and FreD. Theorem 3.2 provides
the relationship between the feasible spaces of DDiF and FreD when the same budget is utilized.
Theorem 3.2. Consider the truncation of Eq. (4) over Kζ := {k|∥k∥∞ ≤ ζ} i.e. F̃ψ(x) :=

b(2) +
∑
k∈Kζ

∑d
i=1Ak,i cos

(
ωkx+ φ′

k,i

)
. Suppose that FreD and DDiF utilize the same number

of parameters, i.e., |U| and the number of parameters in ψ are fixed at a given value B. If B ≥ 6

and ζ ≥ 1
2

(
exp

( log(2B+1)

⌊
√
3+B−2⌋

)
− 1

)
, then g(x; Γ) ⊊ F̃ψ(x) for any x ∈ CN .

Please refer to Appendix A.3 for proof. Theorem 3.2 implies that the feasible space of decoded val-
ues in DDiF is larger than that in FreD when the parameters used for a single synthetic instance are
fixed. Consequently, according to Proposition 3.1, when the number of decoded synthetic instances
is equal, DDiF achieves a lower optimal value for the dataset distillation loss than FreD.
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Figure 3: Performance curve on (a) reconstruction task
and (b) dataset distillation under the same utilized bud-
get. Pearson correlation coefficient of reconstruction
error and test accuracy is −0.89.

To support Theorem 3.2, we investigate
the performance of the reconstruction task
by varying the utilized budget. We spec-
ulate that the low reconstruction error is
due to the large feasible space. For the re-
construction task, we utilize 10 randomly
selected images per class on ImageNet-
Subset (Cazenavette et al., 2022; 2023)
with 128 resolution. For the dataset distil-
lation task, we employ TM (Cazenavette
et al., 2022) under one image per class,
and the same dataset with the reconstruc-
tion task. As shown in Figure 3, DDiF
achieves higher performance than FreD in
both tasks, which indicates greater expres-
siveness under the same utilized budget.
Furthermore, we emphasize that DDiF maintains high performance even with a small budget,
whereas FreD shows significant performance degradation as the allocated budget for each instance
decreases. These experimental results provide further evidence that DDiF exhibits greater expres-
siveness. In addition, although we do not provide a theoretical comparison with IDC (Kim et al.,
2022), Figure 3 presents empirical evidence demonstrating that DDiF exhibits greater expressive-
ness than IDC. We believe that the proposed theoretical analysis will serve as a starting point for
future theoretical comparisons of parameterization methods in the dataset distillation domain.

4 EXPERIMENTS

This section presents various empirical results that validate the effectiveness of the proposed method,
DDiF. We primarily focus on high-resolution image datasets, such as ImageNet-Subset (Cazenavette
et al., 2022; 2023) with resolutions of 128 and 256, since high-dimensional dataset distillation re-
mains a challenging task. In addition, we conduct several experiments to verify the applicability of
DDiF on diverse modalities. We utilize miniUCF for video (Wang et al., 2024; Khurram, 2012),
Mini Speech Commands for audio (Kim et al., 2022; Warden, 2018), and ModelNet (Wu et al.,
2015), ShapeNet (Chang et al., 2015) for 3D. Specific details regarding the dataset, baselines, con-
figuration of DDiF, and experimental settings are in Appendix B.

4.1 PERFORMANCE COMPARISON

Main Results. Table 1 shows the overall performance for ImageNet-Subset with resolution 128
and 256 under IPC=1. We utilize trajectory matching (TM) for 128 resolution and distribution
matching (DM) for 256 resolution. DDiF achieves the best performances in all experimental set-
tings. We highlight that the performance improvement from Vanilla to DDiF is significant, sup-
porting the effectiveness of the proposed method (see the ∆ row in Table 1). In addition, DDiF
exhibits a substantial performance margin compared to the second-best performer: up to 4.1%p at
128 resolution, and from 8.4%p to 19.9%p at 256 resolution. Moreover, when a larger budget is
available, DDiF shows consistent improvement and highly competitive performance with baseline,
as shown in Table 2. These results demonstrate that neural field-based parameterization significantly
enhances the dataset distillation performance, particularly when the budget is very limited. Please
refer to Appendix C.1 for the additional experimental results such as low-resolution datasets.
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Table 1: Test accuracies (%) on ImageNet-Subset for parameterization methods under IPC=1. “IPC”
denotes instances per class, which implies the budget constraint. Bold and Underline mean the best
and second-best performance of each column, respectively. “†” indicates our implementation results.
“−” indicates no reported results. “∆” represents the performance improvement over Vanilla, which
denotes input-sized parameterization. The full table with standard deviations is in Appendix C.7.

Resolution 128× 128 256× 256

Subset Nette Woof Fruit Yellow Meow Squawk Nette Woof Fruit Yellow Meow Squawk

Input-sized Vanilla 51.4† 29.7† 28.8† 47.5† 33.3† 41.0† 32.1 20.0 19.5 33.4 21.2 27.6
FRePo 48.1 29.7 − − − − − − − − − −

Static IDC 61.4 34.5 38.0 56.5 39.5 50.2 53.7† 30.2† 33.1† 52.2† 34.6† 47.0†

FreD 66.8 38.3 43.7 63.2 43.2 57.0 54.2† 31.2† 32.5† 49.1† 34.0† 43.1†

Parameterized

HaBa 51.9 32.4 34.7 50.4 36.9 41.9 − − − − − −
SPEED 66.9 38.0 43.4 62.6 43.6 60.9 57.7 − − − − −
Vanilla+RTP 69.6† 38.8† 45.2† 66.4† 46.5† 63.2† − − − − − −
LatentDD − − − − − − 56.1 28.0 30.7 − 36.3 47.1
NSD 68.6 35.2 39.8 61.0 45.2 52.9 − − − − − −

DGM Prior GLaD 38.7 23.4 23.1 − 26.0 35.8 − − − − − −
H-GLaD 45.4 28.3 25.6 − 29.6 39.7 − − − − − −

Function DDiF 72.0 42.9 48.2 69.0 47.4 67.0 67.8 39.6 43.2 63.1 44.8 67.0
∆(%p) +20.6 +13.2 +19.4 +21.5 +14.1 +26.0 +35.7 +19.6 +23.7 +29.7 +23.6 +39.4

Entire dataset T 87.4 67.0 63.9 84.4 66.7 87.5 92.5 80.1 70.2 90.5 72.2 93.2

Table 2: Test accuracies (%) on ImageNet-Subset
(128× 128) under IPC=10.

Method Nette Woof Fruit Yellow Meow Squawk

TM 63.0 35.8 40.3 60.0 40.4 52.3
FRePo 66.5 42.2 − − − −
IDC 70.8 39.8 46.4 68.7 47.9 65.4
FreD 72.0 41.3 47.0 69.2 48.6 67.3
HaBa 64.7 38.6 42.5 63.0 42.9 56.8
SPEED 72.9 44.1 50.0 70.5 52.0 71.8
DDiF 74.6 44.9 49.8 70.5 50.6 72.3
Entire T 87.4 67.0 63.9 84.4 66.7 87.5

Table 3: Average test accuracies (%) on
ImageNet-Subset (128 × 128) across AlexNet,
VGG11, ResNet18, and ViT, under IPC=1.

Method Nette Woof Fruit Yellow Meow Squawk

TM 22.0 14.8 17.1 22.3 16.2 25.5
IDC 27.9 19.5 23.9 28.0 19.8 29.9
FreD 36.2 23.7 23.6 31.2 19.1 37.4
GLaD 30.4 17.1 21.1 − 19.6 28.2
H-GLaD 30.8 17.4 21.5 − 20.1 28.8
LD3M 32.0 19.9 21.4 − 22.1 30.4
DDiF 59.3 34.1 39.3 51.1 33.8 54.0

Cross-architecture Generalization. The network structure used for training with the distilled
dataset may differ from the one used for distillation. Accordingly, parameterization methods should
achieve consistent performance enhancements across various test network architectures. In this
study, we employ AlexNet (Krizhevsky et al., 2012), VGG11 (Simonyan & Zisserman, 2014),
ResNet18 (He et al., 2016), and ViT (Dosovitskiy, 2020) while ConvNetD5 is utilized in training.
Table 3 presents that DDiF consistently outperforms. Notably, DDiF achieves a remarkable per-
formance gap over the second-best performer from 10.4%p to 23.1%p. These results indicate that
DDiF effectively encodes important task-relevant information regardless of the training network.

Table 4: Test accuracies (%) on ImageNet-Subset
(128× 128) across DC and DM under IPC=1.

L Method Nette Woof Fruit Meow Squawk

DC

Vanilla 34.2 22.5 21.0 22.0 32.0
IDC 45.4 25.5 26.8 25.3 34.6
FreD 49.1 26.1 30.0 28.7 39.7
GLaD 35.4 22.3 20.7 22.6 33.8
H-GLaD 36.9 24.0 22.4 24.1 35.3
DDiF 61.2 35.2 37.8 39.1 54.3

DM

Vanilla 30.4 20.7 20.4 20.1 26.6
IDC 48.3 27.0 29.9 30.5 38.8
FreD 56.2 31.0 33.4 33.3 42.7
GLaD 32.2 21.2 21.8 22.3 27.6
H-GLaD 34.8 23.9 24.4 24.2 29.5
DDiF 69.2 42.0 45.3 45.8 64.6

Universality to Distillation Loss. Another
important evaluation criterion for parameteri-
zation is whether it constantly improves the
performance across various dataset distillation
losses. We examine the performance of DDiF
using gradient matching (DC) and distribution
matching (DM) to evaluate its steady improve-
ments. In Table 4, DDiF achieves the best per-
formances in both distillation losses. These re-
sults confirm the universality of DDiF to distil-
lation loss, representing its wide adaptiveness.

Various Modality. Conventional parameteri-
zation methods have primarily been developed
within the image domain, and their applicabil-
ity to other modalities has not been sufficiently explored. Since the neural field provides a general-
ized representation of diverse grid-based data structures, DDiF can be naturally applied to various
modalities beyond the image domain. We conduct experiments in the video, audio, and 3D voxel do-
mains to evaluate its efficacy. First, Figure 4 shows the test performances on the video domain with
regard to the required budget for running each method. SDD (Wang et al., 2024), which focuses on
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Figure 4: Test accuracies (%)
on Video domain. Each black
line denotes the same num-
ber of decoded instances per
class, 1 and 5, respectively.

Table 5: Test accuracies (%)
on Audio domain.

Spec. / class 10 20

Random 42.6 57.0
Herding 56.2 72.9
DSA 65.0 74.0
DM 69.1 77.2
IDC-I 73.3 83.0
IDC-I + HaBa 74.5 84.3
IDC 82.9 86.6
DDiF 90.5 92.7
Entire T 93.4

Table 6: Test accuracies (%) on 3D
voxel domain under IPC=1.

L Method ModelNet ShapeNet

− Random 60.9 68.5

DC

Vanilla 56.3 48.6
IDC 78.7 79.9
FreD 85.6 88.2
DDiF 87.1 89.6

DM

Vanilla 75.3 80.4
IDC 85.6 85.3
FreD 87.3 90.6
DDiF 88.4 93.1

Entire T 91.6 98.3

the video domain, achieves higher performance than coreset selections and DM; however, it still re-
quires a large storage budget. On the other hand, DDiF achieves competitive performance even with
a budget equivalent to only 1.7% of SDD. In addition, Tables 5 and 6 show the test performances
of the audio and 3D voxel domains, respectively. Both tables demonstrate that DDiF achieves the
highest performance. These results confirm the efficacy of DDiF across various modality datasets.
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Figure 5: (a) Test accuracies (%) with different image
resolutions. The original resolution is 128 × 128. (b)
Test accuracy gap (%) from original resolution. We use
bilinear interpolation for previous studies.

Cross-resolution Generalization. As
mentioned in Section 3.1, previous studies
can only perform postprocessing to resize
the optimized synthetic datasets, resulting
in information distortion. On the contrary,
DDiF can easily decode data of various
sizes by adjusting the coordinate set, due
to the continuous nature of the neural
field. We introduce a novel experiment
in the dataset distillation community that
assesses generalization performance when
the evaluation data size differs from that
used for distillation. We define this exper-
iment as a cross-resolution generalization.
We apply the interpolation techniques,
such as nearest, bilinear, and bicubic, for the previous parameterization methods.

Figure 5a shows test accuracies on each test resolution when utilizing the corresponding network
architecture, ConvNetD6 for 256 and ConvNetD7 for 512. DDiF shows the best performance over
all test resolutions. Figure 5b shows the percentage of decrease in test accuracy with the resolution
change i.e. (ACCorg−ACCtest)/ACCorg. DDiF shows the least decrease with regard to resolution
difference, being evidently robust to resolution change. Its robustness opens a new adaptability of
dataset distillation methods to more wide-range situations. Please refer to Appendix C.4 for the
experimental results on different resizing techniques and the same test architecture.

4.2 ADDITIONAL ANALYSIS AND ABLATION STUDY

Fixed Number of Decoded Instances. To further investigate the coding efficiency and expressive-
ness, we hold the number of decoded synthetic instances constant while varying the budget allocated
to each instance, and then evaluate performance. Under the IPC=1 setting, FreD, SPEED, and DDiF
decode 8, 15, and 51 synthetic instances per class at a resolution of 128, respectively. We consider
two settings in which the number of decoded synthetic instances is determined by either baselines
or DDiF. Table 7 shows that DDiF achieves strong performance while using less budget than the
baselines given the same number of decoded instances. It is also worth noting that, when using the
same budget, DDiF decodes more synthetic instances and achieves significantly higher performance.
These results support the high coding efficiency and expressiveness of DDiF, demonstrating that its
superiority arises from improvements in both quality and diversity.
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Table 7: Test accuracies (%) on ImageNet-Subset (128× 128) under
several DIPCs. “DIPC” indicates the number of decoded synthetic
instances per class. Note that the total number of budget parameters
for IPC=1 is 491.52k.

DIPC Method Utilized budget Nette Woof Fruit Yellow Meow Squawk

1 Vanilla 491.52k 51.4 29.7 28.8 47.5 33.3 41.0
DDiF 9.63k 49.1 29.4 27.3 44.8 31.9 39.0

8 FreD 491.52k 66.8 38.3 43.7 63.2 43.2 57.0
DDiF 77.04k 67.1 37.8 43.6 61.5 44.5 58.3

15 SPEED 491.52k 66.9 38.0 43.4 62.6 43.6 60.9
DDiF 144.45k 68.3 39.7 45.9 65.8 45.4 61.1

51 Vanilla 25067.52k 73.0 42.8 48.2 69.1 47.2 69.0
DDiF 491.52k 72.0 42.9 48.2 69.0 47.4 67.0
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Figure 6: Visualization of the
decoded synthetic instances
from DDiF on image (left)
and 3D voxel (right).

Qualitative Analysis. Figure 6 visualizes the decoded synthetic instances by DDiF on various
modalities. As shown in the first row in Figure 6, DDiF effectively encodes high-dimensional data
even with a very small budget, regardless of the modality. For instance, each synthetic neural field
utilizes a budget that is 1.96% of the original data size for images and 2.87% for 3D voxel. After
the distillation stage, each decoded synthetic instance involves class-discriminative features, even
with significant budget reductions (see the second row). Notably, since the synthetic neural field
is a continuous function, the quantity changes smoothly as the position changes. Please refer to
Appendix C.7 for additional visualizations of images, videos, and 3D voxels.
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Figure 7: Ablation studies on (a) layer L, (b) width d, and
(c) structure of neural field. The bottom black dashed line
indicates the performance of Vanilla (TM).

Ablation Studies. DDiF employs a
neural field, which is a neural net-
work, to store the distilled infor-
mation. We conduct several abla-
tion studies to investigate the effect
of different components of the neu-
ral network. Figures 7a and 7b
demonstrate that DDiF consistently
enhances performance, regardless of
changes in the number of layers or
network width. As the number of lay-
ers and the network width increase,
the number of decoded synthetic in-
stances decreases because the num-
ber of parameters in each synthetic neural field increases. By comparing the layer and width, the
width has fewer decoded synthetic instances, but it has a more gradual performance change than
the layer. To explain the rationale, as shown in Eq. (4), width d directly affects the number of basis
functions k, while layer L only affects other factors. Thus, increasing d leads to a modest change, as
the increase in expressiveness offsets the reduction in quantity. In contrast, increasing L results in
a relatively larger change, as the expressiveness remains similar while the quantity decreases. Even
when the structure of the neural field is changed as FFN (Tancik et al., 2020), DDiF consistently
shows performance improvement (see Figure 7c).

5 CONCLUSION

This paper introduces DDiF, a novel parameterization framework for dataset distillation that en-
codes information from the large-scale dataset into synthetic neural fields under a constrained stor-
age budget. By utilizing neural fields, DDiF efficiently encapsulates distilled information from
high-dimensional grid-based data and easily decodes data of various sizes. We theoretically analyze
the expressiveness of DDiF by investigating the feasible space of decoded synthetic instances and
demonstrate that DDiF possesses greater expressiveness than the previous method. Through exten-
sive experiments, we demonstrate that DDiF consistently exhibits performance improvements, high
generalization and robustness, and broad adaptability across diverse modality datasets.
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A PROOFS AND MORE ANALYSIS

A.1 PROOF OF PROPOSITION 3.1

Proposition 3.1. Consider two functions g1, g2 where gi : Zi → RD for i = 1, 2. Also, consider
two matrix variables Zi :=

[
zi1, ..., ziM

]
where their columns zij ∈ Zi for i = 1, 2 and j =

1, ...,M . We denotes ĝi(Zi) :=
[
gi(zi1), ..., gi(ziM )

]
for i = 1, 2. Set Gi := {g|g : Zi → RD} for

i = 1, 2. If g1(Z1) ⊆ g2(Z2) for any g1 ∈ G1 and g2 ∈ G2, then ming1∈G1,Z1∈ZM
1
L(ĝ1(Z1)) ≥

ming2∈G2,Z2∈ZM
2
L(ĝ2(Z2)).

Proof. For i = 1, 2, let g∗i , Z
∗
i = argmingi∈G,Zi∈ZM

i
L(ĝi(Zi)). Note that g∗1(z

∗
1j) ∈ g∗1(Z1) ⊆

g2(Z2) for j = 1, ...,M and any g2 ∈ G2. It implies that there exists some g2 ∈ G2, Z2 ∈ ZM2
such that ĝ2(Z2) = ĝ∗1(Z

∗
1 ). By the definition of g∗2 , Z

∗
2 , for any g2 ∈ G2, Z2 ∈ ZM2 , L(ĝ∗2(Z∗

2 )) ≤
L(ĝ2(Z2)). Therefore, L(ĝ∗2(Z∗

2 )) ≤ L(ĝ∗1(Z∗
1 )). In conclusion, ming1∈G1,Z1∈ZM

1
L(ĝ1(Z1)) ≥

ming2∈G2,Z2∈ZM
2
L(ĝ2(Z2)).

The following Corollary A.1 states that the relationship between the feasible space of synthetic in-
stances from input-sized parameterization and the optimal value of the dataset distillation objective,
when the number of synthetic instances is the same.

Corollary A.1. Let two matrix variablesX1 :=
[
x11, ..., x1M

]
andX2 :=

[
x21, ..., x2M

]
consisting

of columns xij ∈ Xi ⊆ RD for i = 1, 2 and j = 1, ...,M . If X1 ⊆ X2, then minX1∈XM
1
L(X1) ≥

minX2∈XM
2
L(X2).
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Figure 8: Test accuracies (%) of input-sized parame-
terization. We utilize TM on ImageNette (128 × 128)
under IPC=1.

To support Corollary A.1, we investi-
gate the performance changes of input-
sized parameterization while imposing
constraints on the feasible space of syn-
thetic instances under the fixed number of
synthetic instances. We consider two types
of constraints: 1) dimension masking and
2) value clipping. As shown in Figure 8,
when the feasible space becomes smaller
(i.e., as the restrictions are enforced more
strongly), the dataset distillation perfor-
mances decrease. These results serve as
direct evidence of Corollary A.1.

A.2 DERIVATION OF EQ. (4)

To derive the feasible space of DDiF, we begin with the theorem from Novello (2022), which we
state as follows:

Theorem A.2. (Novello, 2022) Consider a neural network Fψ : R→ R with two hidden layers and
width d. If Fψ utilizes a sine activation function, then Fψ represents a function which is the sum of
sines and cosines:

Fψ(x) = b(2) +
∑
k∈Zd

αk cos (ωkx) + βk sin (ωkx) (6)

where ωk := ⟨k,W (0)⟩, φk,i := ⟨k, b(0)⟩ + b
(1)
i , αk :=

∑d
i=1Ak,i sin (φk,i) and βk :=∑d

i=1Ak,i cos (φk,i). Also, Ak,i := W
(2)
i λk(W

(1)
i ) and λk(W

(1)
i ) :=

∏d
j=1 JkjW

(1)
ij where Jkj

denotes Bessel function of the first kind of order kj .

Then, by using trigonometric identity, Eq. (6) is represented by the sum of cosines as follows:

Fψ(x) = b(2) +
∑
k∈Zd

αk cos(ωkx) + βk sin(ωkx)
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= b(2) +
∑
k∈Zd

{
d∑
i=1

Ak,i sin(φk,i) cos(ωkx) +

d∑
i=1

Ak,i cos(φk,i) sin(ωkx)

}

= b(2) +
∑
k∈Zd

d∑
i=1

Ak,i sin
(
ωkx+ φk,i

)

= b(2) +
∑
k∈Zd

d∑
i=1

Ak,i cos
(
ωkx+ φ′

k,i

)
where φ′

k,i = φk,i −
π

2

A.3 PROOF OF THEOREM 3.2

Lemma A.3. For d ∈ Z+, there exists x ∈ R such that
∏d
j=1 Jkj (x) ̸= 0 where kj ∈ Z, j =

1, 2, ..., d and Jkj denotes the Bessel function of the first kind of order kj .

Proof. For j = 1, 2, ..., d, denote the zero set of Jkj on the real line by Z(Jkj ) := {x ∈ R|Jkj (x) =
0}. Note that Z(Jkj ) is discrete set, when kj is integer, so it is countable set (Watson, 1922;
Abramowitz & Stegun, 1948; Kerimov, 2014). Then,

⋃d
j=1 Z(Jkj ) is also countable set. Since R is

uncountable set, there exists some x ∈ R such that x /∈
⋃d
j=1 Z(Jkj ). Equivalently, Jkj (x) ̸= 0 for

every j = 1, 2, ..., d. Hence, for that choice of x,
∏d
j=1 Jkj (x) ̸= 0

Theorem 3.2. Consider the truncation of Eq. (4) over Kζ := {k|∥k∥∞ ≤ ζ} i.e. F̃ψ(x) :=

b(2) +
∑
k∈Kζ

∑d
i=1Ak,i cos

(
ωkx+ φ′

k,i

)
. Suppose that FreD and DDiF utilize the same number

of parameters, i.e., |U| and the number of parameters in ψ are fixed at a given value B. If B ≥ 6

and ζ ≥ 1
2

(
exp

( log(2B+1)

⌊
√
3+B−2⌋

)
− 1

)
, then g(x; Γ) ⊊ F̃ψ(x) for any x ∈ CN .

Proof. Since we consider F̃ψ : R→ R, the number of parameters of DDiF is d2+4d+1. For a given
budget constraintB, d = ⌊

√
3 +B−2⌋ is the maximum width of F̃ψ which satisfy d2+4d+1 ≤ B.

Since B ≥ 6, DDiF is able to construct a valid neural network, i.e., d ≥ 1. To prove g(x; Γ) ⊆
F̃ψ(x), it is sufficient to show that there exist neural network parameters ψ = {W (j), b(j)}2j=0 which
satisfy g(x; Γ) = F̃ψ(x) for any Γ and x ∈ CN = {0, ..., N − 1}. First, we decompose Eq. (4) into
a sum over K ⊆ Zd and the other terms:

F̃ψ(x) = b(2) +
∑
k∈Kζ

d∑
i=1

Ak,i cos
(
ωkx+ φk,i

)
= b(2) +

∑
k∈K

d∑
i=1

Ak,i cos
(
ωkx+ φk,i

)
+

∑
k∈Kζ\K

d∑
i=1

Ak,i cos
(
ωkx+ φk,i

)
Let K =

{
k ∈ Kζ |

∑d
i=1 ki = u, u ∈ U

}
and 1N = [1, 1, ..., 1]T ∈ RN is the

one-vector of size N . Set W (0) = π
N 1N , b(0) = π

2N 1N , b(1) = π
2 1N , and b(2) =

−
∑
k∈Zd\K

∑d
i=1Ak,i cos

(
ωkx+ φ′

k,i

)
. Note that the absolute value of the Bessel function of the

first kind has a finite upper bound |Jp(r)| <
(
|r|
2 )p

p! (Paris, 1984) for any p, r > 0. Also, by Lemma

A.3, W (1) and W (2) can be configured to satisfy
∑d
i=1Ak,i =

∑d
i=1W

(2)
i

∏d
j=1 Jkj (W

(1)
ij ) = γu

for a fixed u. Under these parameters, F̃ψ(x) is same as g(x; Γ):

F̃ψ(x) = b(2) +
∑
k∈K

d∑
i=1

Ak,i cos
(
ωkx+ φ′

k,i

)
+

∑
k∈Kζ\K

d∑
i=1

Ak,i cos
(
ωkx+ φ′

k,i

)
=

∑
u∈U

γu cos
(πu
N
x+

πu

2N

)
= g(x; Γ)
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Next, we prove that there is no Γ such that g(x; Γ) = F̃ψ(x) for some ψ and x ∈ CN . Note that F̃ψ
can represent up to (2ζ+1)d−1

2 (Novello, 2022). By recalling that d = ⌊
√
3 +B − 2⌋, we can show

the following equivalence from the inequality assumption of ζ:

ζ ≥ 1

2

(
exp

( log(2B + 1)

⌊
√
3 +B − 2⌋

)
− 1

)
⇔ log(2ζ + 1) ≥ log(2B + 1)

⌊
√
3 +B − 2⌋

⇔ (2ζ + 1)⌊
√
3+B−2⌋ − 1

2
≥ B

It implies that DDiF can cover more frequency than FreD. Consequently, it is possible to choose
k and W (0) which satisfy ωk = ⟨k,W (0)⟩ ≠ πu

N for any u ∈ U . Due to the orthogonality of
cosine functions having different frequencies, there is no Γ that represents cos

(
ωkx+ φ′

k,i

)
terms.

It implies g(x; Γ) cannot express Fψ(x) with some ψ parameters.

B EXPERIMENTAL DETAILS

B.1 DATASETS

Image Domain. We evaluate DDiF on various benchmark image datasets. 1) ImageNet-Subset
(Howard, 2019; Cazenavette et al., 2022) is a dataset consisting of a subset of similar characteristics
in the ImageNet. In the experiment, we consider various types of subsets by following Cazenavette
et al. (2022): ImageNette (various objects), ImageWoof (dog breeds), ImageFruit (fruit category),
ImageMeow (cats), ImageSquawk (birds), ImageYellow (yellowish objects). Each subset has 10
classes and more than 10,000 instances. We utilize two types of resolution: 128×128 and 256×256.
2) CIFAR-10 (Krizhevsky et al., 2009) consists of 60,000 RGB images in 10 classes. Each image
has a 32 × 32 size. Each class contains 5,000 images for training and 1,000 images for testing. 3)
CIFAR-100 (Krizhevsky et al., 2009) consists of 60,000 32 × 32 RGB images of 100 categories.
Each class is split into 500 for training and 100 for testing.

Video Domain. We utilize MiniUCF (Wang et al., 2024), a subset of UCF101 (Soomro, 2012)
which includes 50 classes. The videos are sampled to 16 frames, and the frames are cropped and
resized to 112× 112. Each data has 16× 3× 112× 112 size.

Audio Domain. We utilize Mini Speech Commands (Kim et al., 2022), a subset of the original
Speech Commands dataset (Warden, 2018). We follow the data processing of Kim et al. (2022).
The dataset consists of 8 classes, and each class has 875/125 data for training/testing, respectively.
Each data is 64× 64 log-scale magnitude spectrograms by short-time Fourier transform (STFT).

3D Domain. We utilize a core version of ModelNet-10 (Wu et al., 2015) and ShapeNet (Chang
et al., 2015), which are widely used in 3D. They include 10 classes and 16 classes, respectively.
Each 3D point cloud data is converted into 32× 32× 32 voxel.

B.2 NETWORK ARCHITECTURES.

ConvNet. By following previous studies, we leverage the ConvNetDn as a default network archi-
tecture for both distillation and evaluation of synthetic datasets. The ConvNetDn is a convolutional
neural network with n duplicate blocks. Each n blocks consist of a convolution layer with 3 × 3-
shape 128 filters, an instance normalization layer, ReLU, and an average pooling with 2 × 2 kernel
size with stride 2. Lastly, it contains a linear classifier, which outputs the logits. Depending on
the resolution of the real dataset, we utilize different depth n. Specifically, ConvNetD3 for 32× 32
CIFAR-10 and CIFAR-100, ConvNetD4 for 64×64 Audio spectrograms, ConvNetD5 for 128×128
ImageNet-Subset, ConvNetD6 for 256 × 256 ImageNet-Subset, and ConvNetD7 for 512 × 512
ImageNet-Subset.

AlexNet. AlexNet is a basic convolutional neural network architecture suggested in (Krizhevsky
et al., 2012). It consists of 5 convolution layers, 3 max-pooling layers, 2 Normalized layers, 2 fully
connected layers, and 1 SoftMax layer. In each convolution layer, the ReLU activation function is
utilized. We adopt this network to evaluate cross-architecture performance of DDiF.
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VGG11. VGG11 (Simonyan & Zisserman, 2014) is also applied for evaluation, which attributes
to 11 weighted layers. It consists of 8 convolution layers and 3 fully connected layers. Its design is
straightforward yet powerful, providing a balance between depth and computational efficiency. The
number of trainable parameters is around 132M, making it larger than earlier models but still suitable
for medium-scale tasks. We adopt this network to evaluate the cross-architecture performance of
DDiF.

ResNet18. ResNet18 (He et al., 2016) introduces residual connections, which help mitigate the
vanishing gradient problem in deep networks by allowing gradients to bypass certain layers. It
consists of 18 layers with 4 residual blocks, each composed of two convolutional layers followed by
activation and normalization with around 11M trainable parameters. We utilize ResNet18 as one of
the architecture for evaluating synthetic datasets.

ViT. Vision Transformer (Dosovitskiy, 2020) utilizes the transformer architecture, initially de-
signed for sequence modeling tasks in NLP. For image classification, it divides images into non-
overlapping patches and processes them as a sequence using self-attention mechanisms. ViT has
around 10M trainable parameters in its base form and offers a competitive alternative to CNNs,
demonstrating the effectiveness of transformers in vision tasks. We selected ViT as the final net-
work to evaluate synthetic image datasets.

Conv3DNet. For the 3D voxel domain, we utilize Conv3DNet (Shin et al., 2024), a 3D version of
ConvNet. Conv3DNet consists of three repeated blocks, each containing a 3× 3× 3 convolutional
layer with 64 filters, 3D instance normalization, ReLU activation, and 3D average pooling with a
2× 2× 2 filter, and a stride of 2. Lastly, it contains a linear classifier.

B.3 BASELINES.

Since our main focus lies on the parameterization of dataset distillation, we compare DDiF with 1)
static decoding, which are IDC (Kim et al., 2022) and FreD (Shin et al., 2024); 2) parameterized
decoding, which is RTP (Deng & Russakovsky, 2022), HaBa (Liu et al., 2022), SPEED (Wei et al.,
2024), LatentDD (Duan et al., 2023), and NSD (Yang et al., 2024); and 3) deep generative prior,
which include GLaD (Cazenavette et al., 2023), H-GLaD (Zhong et al., 2024), and LD3M (Moser
et al., 2024). We also demonstrate the performance improvement of DDiF compared to input-sized
parameterization, denoted as Vanilla.

B.4 IMPLEMENTATION SETTINGS.

Although any loss can be adapted to DDiF, we utilize TM (Cazenavette et al., 2022) for L as a
default unless specified. Following previous studies, we use DSA (Zhao & Bilen, 2021), which con-
sists of color jittering, cropping, cutout, flipping, scaling, and rotation. We adopt ZCA whitening on
CIFAR-10 (IPC=1, 10) and CIFAR-100 (IPC=1) with the Kornia (Riba et al., 2020) implementation.
We adopt SIREN (Sitzmann et al., 2020) for synthetic field Fψ as a default. SIREN is a multilayer
perceptron with a sinusoidal activation function, and it is widely used in the neural field area due to
its simple structure. We use the same width across all layers in a synthetic neural field i.e. dl = d
for all l. We utilize normalized coordinates defined on [−1, 1]n for n-dimension data to enhance
stability (Sitzmann et al., 2020), rather than using integer coordinates, which have a wide range. For
cross-resolution experiments, we utilize the coordinate setC, which consists of evenly spaced points
within the interval [−1, 1] according to the target resolution. We provide the detailed configuration
of the synthetic neural field, the resulting size of each neural field, the number of synthetic instances
per class, and the total number of neural fields in Table 8. We use Adam optimizer (Kingma & Ba,
2017) for all experiments. We fix the iteration number and learning rate for warm-up initialization
of synthetic neural field as 5,000 and 0.0005. Without any description to distillation loss, we gen-
erally use matching training trajectory (TM) objective for dataset distillation loss L. Following the
previous studies, we utilize two types of default TM hyperparameters same as SPEED (Wei et al.,
2024) and FreD (Shin et al., 2024). We run 15,000 iterations for TM and 20,000 iterations for DM.
We use a mixture of RTX 3090, L40S, and Tesla A100 to run our experiments. We follow the con-
ventional evaluation procedure of the previous studies: train 5 randomly initialized networks with
an optimized synthetic dataset and evaluate the classification performance. We provide the detailed
hyperparameters in Table 9.
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Table 8: Configuration of the synthetic neural field. In the case of Video, there is no increment of
decoded instances because we experimented with the fixed number of decoded instances.

Modality Dataset IPC n L d m size(ψ) Increment of
decoded instances

Image

CIFAR10
1 2 2 6 3 81 ×37

10 2 2 6 3 81 ×37.9
50 2 2 20 3 543 ×5.64

CIFAR100
1 2 2 10 3 173 ×17

10 2 2 15 3 333 ×9.2
50 2 2 30 3 1113 ×2.76

ImageNet-Subset (128× 128)
1 2 3 20 3 963 ×51

10 2 3 20 3 963 ×51
50 2 3 40 3 3523 ×13.94

ImageNet-Subset (256× 256) 1 2 3 40 3 3523 ×55

Video MiniUCF 1 3 6 40 3 8483 −
5 3 6 40 3 8483 −

Audio Mini Speech Commands 10 2 3 10 1 261 ×15.6
20 2 3 10 1 261 ×15.6

3D ModelNet 1 3 3 20 1 941 ×34

ShapeNet 1 3 3 20 1 941 ×34

Table 9: Configuration of hyperparameters for optimization.

(a) Gradient matching (DC)

Dataset IPC Synthetic
batch size

Learning rate
(Neural field)

ImageNet-Subset
(128× 128) 1 - 5× 10−5

Mini Speech Commands 10 64 10−5

20 64 10−4

ModelNet 1 - 10−4

ShapeNet 1 - 10−4

(b) Distribution matching (DM)

Dataset IPC Synthetic
batch size

Learning rate
(Neural field)

ImageNet-Subset
(128× 128) 1 - 5× 10−5

ImageNet-Subset
(256× 256) 1 - 10−5

MiniUCF 1 - 10−4

5 - 10−4

ModelNet 1 - 10−4

ShapeNet 1 - 10−4

(c) Trajectory matching (TM)

Dataset IPC Synthetic
steps

Expert
epochs

Max start
epoch

Synthetic
batch size

Learning rate
(Neural field)

Learning rate
(Step size)

Learning rate
(Teacher)

CIFAR-10
1 60 2 10 74 10−3 10−5 10−2

10 60 2 10 256 10−3 10−5 10−2

50 60 2 40 235 10−4 10−5 10−2

CIFAR-100
1 60 2 40 170 10−3 10−5 10−2

10 60 2 40 230 10−3 10−5 10−2

50 60 2 40 276 10−3 10−5 10−2

ImageNet-Subset
(128× 128)

1 20 2 10 102 10−4 10−6 10−2

10 40 2 20 30 10−4 10−5 10−2

50 40 2 20 30 10−4 10−5 10−2
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B.5 ALGORITHM OF DDIF

The main difference between DDiF and conventional parameterization methods is the decoding
process for synthetic instances. Basically, the neural field takes coordinates as input and output
quantities. To generate a single synthetic instance, each coordinate c ∈ C is input into the synthetic
neural field Fψ , and then the resulting value is assigned to the corresponding coordinate of the de-
coded synthetic instance x̃(c)j . Algorithms 1 and 2 specify a training procedure and decoding process
of DDiF, respectively. In Algorithm 2, we include a loop over coordinates for clarity. However, it
should be noted that in the actual implementation, the coordinate set is input to the neural network
in a full-batch manner.

Algorithm 1 Training procedure of DDiF

Input: Original real dataset T ; Dataset distillation
loss L; Initialized Ψ = {ψj}|Ψ|

j=1; Learning
rate η

Output: Parameterized synthetic dataset
{(ψj , ỹj)}|Ψ|

j=1
1: Initialize coordinate set C from x ∈ T
2: for j = 1 to |Ψ| do
3: Sample a real instance (x, y) ∼ T
4: ỹj ← y
5: Optimize ψj with Eq. (2)
6: end for
7: repeat
8: Sample a real mini-batch BT ∼ T
9: BS ← {Fψ(C) |ψ ∈ ΨB} from ΨB ∼ Ψ

10: Ψ← Ψ− η∇ΨL(BT ,BS)
11: until convergence

Algorithm 2 Decoding process of Synthetic in-
stances in DDiF
Input: Set of parameters of synthetic neural

fields Ψ; Coordinate set C
Output: Set of decoded synthetic instancesXS

1: Initialize XS ← ∅
2: for j = 1 to |Ψ| do
3: Initialize x̃j ∈ Rm×N1×···×Nn

4: for c ∈ C do
5: x̃

(c)
j ← Fψj

(c)
6: end for
7: XS ← XS ∪ x̃j
8: end for

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 PERFORMANCE COMPARISON ON LOW-DIMENSIONAL DATASETS

To verify the wide applicability of DDiF, we conduct experiments on low-dimensional datasets,
such as CIFAR-10 and CIFAR-100. In Table 10, DDiF exhibits highly competitive performances
with previous studies. These results demonstrate that DDiF is also properly applicable to low-
dimensional datasets, while DDiF shows significant performance improvement in high-dimensional
datasets.

Table 10: Test accuracies (%) on CIFAR-10 and CIFAR-100. Bold and Underline means best and
second-best performance of each column, respectively. “−” indicates no reported results.

Dataset CIFAR10 CIFAR100

IPC 1 10 50 1 10 50

Input-sized TM 46.3±0.8 65.3±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2

FRePo 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2

Static IDC 50.0±0.4 67.5±0.5 74.5±0.2 − − −
FreD 60.6±0.8 70.3±0.3 75.8±0.1 34.6±0.4 42.7±0.2 47.8±0.1

Parameterized

HaBa 48.3±0.8 69.9±0.4 74.0±0.2 − − 47.0±0.2

RTP 66.4±0.4 71.2±0.4 73.6±0.5 34.0±0.4 42.9±0.7 −
HMN 65.7±0.3 73.7±0.1 76.9±0.2 36.3±0.2 45.4±0.2 48.5±0.2

SPEED 63.2±0.1 73.5±0.2 77.7±0.4 40.4±0.4 45.9±0.3 49.1±0.2

NSD 68.5±0.8 73.4±0.2 75.2±0.6 36.5±0.3 46.1±0.2 −
Function DDiF 66.5±0.4 74.0±0.4 77.5±0.3 42.1±0.2 46.0±0.2 49.9±0.2

20



Published as a conference paper at ICLR 2025

C.2 ADDITIONAL PERFORMANCE COMPARISON ON HIGH-DIMENSIONAL DATASETS

Comparison under Large Budget (IPC=50). In general, high-dimensional dataset distillation
under a large budget is rarely addressed in previous studies due to their significant computational
cost. To demonstrate the efficacy of DDiF even in a large budget setting, we conducted experiments
on ImageNette (128 × 128) under IPC=50. DDiF with TM achieves 75.2%±1.3% while vanilla
with TM achieves 72.8%±0.8%. It means that DDiF effectively improves the dataset distillation
performance even with a larger storage budget for high resolution.

Fixed DIPC under 256 resolution. We further compare with input-sized parameterization on
ImageNet-Subset (256 × 256) under the fixed number of decoded synthetic instances. Under the
IPC=1 setting, DDiF can decode 55 synthetic instances per class on 256 resolution. Similar to the
main paper, we consider two settings: 1) varying the number of decoded synthetic instances from the
baselines, and 2) varying the number of decoded synthetic instances from DDiF. Table 11 presents
mixed performances on ImageNet-Subset (256 × 256). However, we emphasize that DDiF utilizes
a much smaller budget. Moreover, it is worth noting that DDiF achieves higher performance than
Vanilla in some cases. We believe that it is related to previous findings that input-sized parameteri-
zation includes superfluous or irrelevant information (Lei & Tao, 2023; Yu et al., 2023; Sachdeva &
McAuley, 2023). These experimental results support that DDiF involves sufficient representational
power while using a much smaller budget compared to the input-sized parameterization.

Table 11: Test accuracies (%) on ImageNet-Subset (256 × 256) with input-sized parameterization
(Vanilla) and DDiF. “DIPC” denotes the number of decoded instances per class.

DIPC Methods Utilized Budget Nette Woof Fruit Yellow Meow Squawk

1 Vanilla 1,966.08k 32.1 20.0 19.5 33.4 21.2 27.6
DDiF 79.53k 31.2±0.8 21.2±0.9 21.3±1.5 34.8±1.0 20.0±0.9 27.9±2.5

55 Vanilla 55 × 1,966.08k 70.1±1.0 37.5±1.2 41.3±0.8 64.2±1.6 47.1±0.5 64.3±1.2

DDiF 1,966.08k 67.8±1.0 39.6±1.6 43.2±1.7 63.1±0.8 44.8±1.1 67.0±0.9

C.3 COMPATIBILITY WITH SOFT LABEL

Table 12: Test accuracies (%) obtained by varying
the synthetic label under IPC=50 and ConvNet.

Method CIFAR-100 ImageNette
(128× 128)

Fixed one-hot label
RDED 33.5±0.2 57.8±1.2

DATM 50.8 −
DDiF 49.9±0.2 75.2±1.3

Soft label
RDED 57.0±0.1 83.8±0.2

DATM 55.0±0.2 −
DDiF 58.2±0.2 86.9±1.0

Recently, various previous literatures have
demonstrated that using soft labels instead of
one-hot labels leads to significant performance
improvements in dataset distillation (Cui et al.,
2023; Qin et al., 2024). As mentioned in the
main paper, DDiF can also utilize a soft label
technique, but we employ a fixed one-hot label
for a fair comparison with the previous param-
eterization methods. Therefore, we conduct ad-
ditional experiments to validate the compatibil-
ity of DDiF with soft label. We consider RDED
(Sun et al., 2024) and DATM (Guo et al., 2023) as our baselines since they employ the soft label
and exhibit state-of-the-art performances on CIFAR-10, CIFAR-100, and ImageNette (128 × 128).
To apply soft labels to DDiF, we utilize the region-level soft label technique from RDED on the de-
coded synthetic instances, which are already obtained through training with TM. Table 12 presents
the results as follows:

• RDED and DATM using soft label exhibit significant performance improvements compared
to their performance without soft labels, consistently demonstrating the previous findings.

• Applying RDED’s soft label technique to DDiF results in notable performance improve-
ment, consistent with previous studies.

• Under the soft label setting, DDiF achieves higher performance with a significant gap than
RDED and DATM, establishing a new state-of-the-art (SOTA).

In summary, we prioritize experiments under the fixed one-hot label setting to ensure a fair com-
parison with existing parameterization methods. However, our experiments confirm that DDiF can
effectively utilize soft label, achieving substantial performance improvements when applied.
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C.4 ADDITIONAL RESULTS ON CROSS-RESOLUTION GENERALIZATION
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Figure 9: (a) Test accuracies (%) with different image
resolutions. The original resolution is 128 × 128. (b)
Test accuracy gap (%) from original resolution. We
use bilinear interpolation for previous studies. We uti-
lize ConvNetD5, which is the same architecture in the
distillation stage.

Detailed experimental results. We ap-
ply the spatial-domain upsampling meth-
ods, such as nearest, bilinear, and bicubic,
for the optimized synthetic instances of
previous parameterization methods. Par-
ticularly, FreD can also utilize frequency-
domain upsampling since it stores masked
frequency coefficients. The most widely
used for frequency-domain upsampling
is zero-padding the frequency coeffi-
cients before inverse frequency transform,
which means assigning zeros to the high-
frequency components (Dugad & Ahuja,
2001). For example, in the case of DCT,
which is the default setting of FreD, the
process of upsampling an N -resolution
frequency coefficient F to an M(> N)-
resolution image can be described as

IDCT
([

λ× F 0M−N
0M−N 0M−N

])
where λ =

(
M
N

)2
is the scaling factor. We refer to this frequency-

domain upsampling as “zero-padding”. For DDiF, we constructed a coordinate set suitable for the
test resolution, and then input it into the optimized synthetic neural field to generate the upsampled
synthetic instance. We refer to this method as “coordinate interpolation”.

Table 13 presents the detailed experimental results. We observe that the previous parameterizations
show drastic performance degradation regardless of the interpolation method used. Whereas, DDiF
still achieves the highest cross-resolution generalization performance. Also, Figure 9 presents the
cross-resolution generalization performance under the same network architecture in the distillation
stage. As seen in Figure 5, DDiF achieves the best performance and shows the least performance
degradation over all resolutions. These extensive results consistently demonstrate that DDiF is ro-
bust to resolution change, and this robustness is largely driven by the continuous nature of the syn-
thetic neural field.

Comparison with Full dataset downsampling. The most intuitive and straightforward way to
reduce the budget of a dataset is by downsampling, which reduces the budget size of each instance.
It means that it is possible to downsample the full dataset to a specific resolution for storage and
then upsample it to the test resolution. One may doubt that this simple method can show high
cross-resolution generalization performance. To verify the superiority of DDiF on cross-resolution
generalization, we additionally conduct performance comparison with full dataset downsampling.

Table 14 shows the experiment results where the full dataset was downsampled and then upsampled
to the original resolution during the test phase. When the budget is similar (when the downsampled
resolution is 4×4), DDiF outperforms the full dataset downsampling method. We also experimented
when the downsampled resolution was the same as the resolution of the decoded synthetic instance.
In this case, the downsampled dataset achieved better performance, as expected. However, this set-
ting requires 1,289 times more budget than DDiF since the number of instances is not reduced. Such
a setup deviates from the core purpose of dataset distillation, which aims to optimize performance
under strict budget constraints.

Furthermore, we emphasize that the full dataset downsampling has two limitations on cross-
resolution generalization. First, it requires a slightly different assumption. Cross-resolution gen-
eralization experiment, which we proposed, is modeled to evaluate the dataset distillation ability
to generalize to higher resolution settings. It involves training on a low-resolution (128 × 128)
synthetic dataset and testing on high-resolution (256 × 256) data. However, full dataset downsam-
pling diverges from this cross-resolution setting since it assumes the availability of a high-resolution
dataset (256×256). Second, the training time during the evaluation stage increases since the number
of data points remains the same as the full dataset. While the memory budget may be comparable,
this increased time cost is undesirable, especially in scenarios where efficiency is critical.

22



Published as a conference paper at ICLR 2025

Table 13: Test accuracies (%) with different resolutions and networks. The original resolution
is 128 × 128. We denote the difference between ordinary and cross-resolution performance as
Diff(%) = ACCorg −ACCtest and relative ratio as Ratio =

ACCorg−ACCtest

ACCorg
.

Test resolution Test network Method Upsampling Accuracy (↑) Diff (↓) Ratio (↓)

256

ConvNetD5

Vanilla
nearest 29.5±1.6 21.9 0.43
bilinear 31.2±1.1 20.2 0.39
bicubic 30.7±2.0 20.7 0.40

IDC
nearest 54.8±1.2 6.6 0.11
bilinear 54.0±2.0 7.4 0.12
bicubic 55.0±1.6 6.4 0.10

SPEED
nearest 58.8±1.4 8.1 0.12
bilinear 57.7±0.8 9.2 0.14
bicubic 58.1±1.0 8.8 0.13

FreD

nearest 55.2±2.2 11.6 0.17
bilinear 55.0±2.6 11.8 0.16
bicubic 56.4±1.4 10.4 0.16

zero-padding 53.8±1.4 13.0 0.19

DDiF coord. interpolation 66.3±1.9 5.7 0.08

ConvNetD6

Vanilla
nearest 44.0±1.7 7.3 0.14
bilinear 43.2±1.1 8.2 0.16
bicubic 43.9±1.8 7.4 0.14

IDC
nearest 54.7±1.6 6.7 0.11
bilinear 54.5±1.6 6.9 0.11
bicubic 55.4±1.3 6.0 0.10

SPEED
nearest 62.0±1.0 4.9 0.07
bilinear 61.8±1.8 5.1 0.08
bicubic 62.6±1.1 4.3 0.06

FreD

nearest 60.9±0.8 5.9 0.09
bilinear 60.1±0.3 6.7 0.10
bicubic 61.4±0.8 5.8 0.09

zero-padding 61.8±1.0 5.0 0.07

DDiF coord. interpolation 70.6±1.2 1.4 0.02

512

ConvNetD5

Vanilla
nearest 27.4±1.4 24.0 0.47
bilinear 27.1±1.9 24.2 0.47
bicubic 27.1±1.0 24.3 0.47

IDC
nearest 38.6±2.7 22.8 0.37
bilinear 37.5±2.3 23.9 0.39
bicubic 39.5±2.1 21.9 0.36

SPEED
nearest 43.3±2.2 23.6 0.35
bilinear 45.0±1.5 21.9 0.33
bicubic 44.8±3.0 22.1 0.33

FreD

nearest 42.5±2.5 24.3 0.36
bilinear 41.4±1.5 25.4 0.38
bicubic 41.6±1.3 25.2 0.38

zero-padding 42.9±1.5 23.9 0.36

DDiF coord. interpolation 58.7±1.2 13.3 0.18

ConvNetD7

Vanilla
nearest 41.2±1.5 10.1 0.20
bilinear 40.6±2.6 10.7 0.21
bicubic 40.4±1.9 10.9 0.21

IDC
nearest 51.5±1.8 9.9 0.16
bilinear 50.7±2.1 10.7 0.17
bicubic 51.2±2.8 10.7 0.17

SPEED
nearest 59.6±2.0 7.3 0.11
bilinear 59.5±2.0 7.4 0.11
bicubic 60.1±1.7 6.8 0.10

FreD

nearest 55.1±1.2 11.7 0.18
bilinear 53.8±1.0 13.0 0.19
bicubic 54.4±0.9 12.4 0.19

zero-padding 56.3±0.8 10.5 0.16

DDiF coord. interpolation 69.0±1.0 3.0 0.04
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Table 14: Performance comparison when the test resolution is 256 × 256. We utilize bicubic inter-
polation for full dataset resizing. The relative budget ratio indicates the ratio of full dataset down-
sampling over DDiF.

Test network Method Original resolution Downsampled resolution Relative budget ratio Accuracy

256× 256 4×4 1.3 45.2± 2.3Downsample
256× 256 128× 128 1,289.4 91.3± 0.5ConvNetD5

DDiF 128× 128 − 1.0 66.3± 1.9

256× 256 4×4 1.3 44.7± 0.4Downsample
256× 256 128× 128 1,289.4 91.2± 0.0ConvNetD6

DDiF 128× 128 − 1.0 70.6± 1.2

C.5 ROBUSTNESS TO CORRUPTION

We further investigate the robustness against corruption of DDiF in the trained synthetic datasets by
evaluating on ImageNet-Subset-C. This subset is designed specifically to assess robustness across
varying corruption types and severity levels. We report the average test accuracies over 15 corruption
types, each evaluated across 5 levels of severity, for each class in ImageNet-Subset-C. Table 15 sum-
marizes the performance of DDiF and baseline models. The results in Table 15 clearly demonstrate
that DDiF has the same substantial robustness to resolution change and corruption.

Table 15: Test accuracies (%) on ImageNet-Subset-C under IPC=1. Accuracy on ImageSquawk-C
of TM is not reported in previous works.

Method ImageNette-C ImageWoof-C ImageFruit-C ImageYellow-C ImageMeow-C ImageSquawk-C

TM 38.0±1.6 23.8±1.0 22.7±1.1 35.6±1.7 23.2±1.1 -
IDC 34.5±0.6 18.7±0.4 28.5±0.9 36.8±1.4 22.2±1.2 26.8±0.5

FreD 51.2±0.6 31.0±0.9 32.3±1.4 48.2±1.0 30.3±0.3 45.9±0.6

DDiF 54.5±0.6 34.0±0.4 36.6±0.4 47.2±0.7 30.3±0.8 53.8±0.5

C.6 TIME COMPLEXITY

Table 16: Wall-clock time (ms) of
the decoding process for a single
synthetic instance. “ms” indicates
the millisecond.

128× 128 256× 256

Vanilla 0.31 0.31
IDC 0.40 2.83
FreD 0.46 1.20

HaBa 2.81 −
SPEED 2.20 −
GLaD 31.33 −
DDiF 2.49 3.25

As mentioned earlier, the neural field takes coordinates as
input and produces quantities as output. This distinct char-
acteristic of the neural field offers the advantage of being
resolution-invariant but may raise concerns regarding the de-
coding process time. We admit that the decoding time of DDiF
indeed increases as resolution grows due to the need to forward
a larger number of coordinates through the neural field. To ad-
dress this concern, we conducted an experiment measuring the
wall-clock time for decoding a single instance.

Table 16 shows the results with 128 image resolution demon-
strate that while the time cost of DDiF is larger than methods
relying on non-parameterized decoding functions, such as IDC
and FreD, it remains comparable to methods that use param-
eterized decoding functions, such as HaBa and SPEED, and
exhibits a lower time cost than methods that utilize pre-trained generative models, such as GLaD.
As the resolution increases to 256, the decoding time of DDiF also increases and it is slightly larger
than non-parameterized decoding functions. In conclusion, although the decoding process time of
DDiF increases as the resolution increases, it does not differ significantly from that of conventional
parameterization methods. We attribute this to 1) the use of a small neural network structure for the
synthetic neural field and 2) the full-batch forwarding of the coordinate set in the implementation.

C.7 FULL TABLE WITH STANDARD DEVIATION AND ADDITIONAL VISUALIZATION

For improved layout, we have positioned full tables with standard deviation and additional example
figures at the end of the paper. Please refer to Table 17 for ImageNet-Subset (128 × 128) under
IPC=1; Table 18 for ImageNet-Subset (256 × 256) under IPC=1; Table 19 for ImageNet-Subset
under (128× 128) IPC=10; Table 20 for cross-architecture; and Table 21 for robustness to the loss.
In addition, please refer to Figures 10 to 15 for Image domain; Figure 16 for 3D domain; and Figure
17 for video domain.
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D DISCUSSIONS

D.1 MORE COMPARISON WITH FRED

As seen in Eqs. (4) and (5), the functions represented by DDiF and FreD are similar, both being the
sum of cosine functions. Therefore, we can perform a term-by-term comparison of both equations.

• DDiF enables to change the amplitudes Ak,i, frequencies ωk, phases φ′
k,i, and shift b(0),

while FreD only allows the amplitudes. It indicates that DDiF has higher representation
ability than FreD.

• Although FreD is a finite sum of cosine functions with a fixed frequency, DDiF represents
an infinite sum of cosine functions with tunable frequency. It means that DDiF can cover
a wide range of frequencies from low to high by selecting various k. According to the
empirical findings in Wang et al. (2020a), it has been demonstrated that datasets with a
larger number of frequencies exhibit improved generalization performance.

• DDiF is a continuous function, whereas FreD is a discrete function. Due to this charac-
teristic, FreD cannot encode information for coordinates that were not provided during the
distillation stage. In contrast, since DDiF operates over a continuous domain, it inherently
stores information for coordinates that were not supplied during the distillation stage.

In summary, DDiF has a more flexible and expressive function than FreD.

D.2 DISCUSSION ABOUT THEORETICAL ANALYSIS

We provide the theoretical analysis to propose a framework for comparing parameterization meth-
ods, which have traditionally been evaluated solely based on performance, through expressiveness,
i.e. the size of the feasible space. Proposition 3.1 indicates that a larger feasible space for decoded
synthetic instances through parameterization methods results in lower dataset distillation loss. The-
orem 3.2 claims that DDiF has greater expressiveness than prior work (FreD) when the utilized
parameters for a single synthetic instance are the same. We believe that the proposed theoretical
analysis framework will serve as a cornerstone for future theoretical comparisons of parameteriza-
tion methods in dataset distillation areas.

However, this theoretical analysis still has room for further improvement. In the theoretical analysis,
we compare the expressiveness under the fixed number of decoded instances and/or the same uti-
lized parameters for a single synthetic instance, not the fixed entire storage budget. We empirically
demonstrate the superiority of DDiF in each of the aforementioned cases: 1) the fixed number of
decoded instances (see Table 7), 2) the same utilized parameters for a single synthetic instance (see
Figure 3), and 3) the fixed entire storage budget (see Table 1 and others). Even though the proposed
theoretical analysis in this paper is experimentally verified through extensive results, this framework
has the limitation of not primarily focusing on the fixed entire storage budget scenario, which is the
most basic setting in dataset distillation.

We believe that constructing a theoretical framework to compare the expressiveness of parameteriza-
tion methods under a fixed entire storage budget is necessary, and the proposed theoretical analysis
in this paper can serve as a foundational background for such efforts.

D.3 COMPARISON WITH DIM

As mentioned in Section 3, the synthetic function has several possible forms. DiM (Wang et al.,
2023) employs a probability density function as a synthetic function and utilizes a deep generative
model to parameterize it. Specifically, the decoded synthetic instance of DiM is the sampled output
of a deep generative model by inputting random noise:

min
ϕ
L(T ,S) where S = gϕ(Z), Z ∼ N (0, I)

DDiF and DiM have in common that they store the distilled information in the synthetic function and
only store the parameters of the function without any additional codes. However, there are several
structural differences.
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• The output of DiM still depends on the data dimension. As aforementioned, this type of
decoding function requires a more complicated structure and storage budget as the data
dimension grows larger. Actually, DiM has not been extensively tested on high-resolution
datasets. On the contrary, DDiF stores information regardless of data dimension, which
indicates broader applicability across various resolutions.

• The decoding process of DiM is stochastic. Due to the stochasticity, DiM can sample the
diverse decoded synthetic instances and save the redeployment cost. However, at the same
time, DiM carries the risk of generating less informative synthetic instances. Consequently,
it leads to instability in training on downstream tasks. Furthermore, DiM might suffer from
redundant sampling due to mode collapse, a well-known issue of the generative model.
Meanwhile, since the decoding process of DDiF is deterministic, DDiF has an advantage
in stability.

D.4 LIMITATION

Less efficiency on Low-dimensional datasets. One of the main ideas in parameterization is ex-
panding the trade-off curve between quantity and quality: reducing the utilized budget of each syn-
thetic instance, while maximally preserving the expressiveness of it. While DDiF has an extensive
feature coverage theoretically and shows competitive performances with previous studies experi-
mentally, it might be less efficient for some low-dimensional datasets due to the structural features
of the neural field. This is because, given the low-dimensional instance, it can be difficult to design
a neural field that is sufficiently expressive with fewer parameters. In spite of this issue, we repeat-
edly highlight that DDiF has a significant performance improvement on high-dimensional datasets.
Furthermore, we speculate that a deeper analysis of the neural field structure could be an interesting
direction for future research in dataset distillation.

Individual Parameterization. Several studies have claimed that storing intra- and inter-class in-
formation in a shared component is effective. From this perspective, our proposed method, which
has a one-to-one correspondence between synthetic instances and synthetic neural fields, does not
have a component to store shared information. We believe that it can be extended by adding modu-
lation or conditional code, and this paper may serve as a good starting point.
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Table 17: Test accuracies (%) on ImageNet-Subset (128 × 128) with regard to various parameteri-
zation methods under IPC=1.

Subset Nette Woof Fruit Yellow Meow Squawk

Input-sized TM 51.4±2.3 29.7±0.9 28.8±1.2 47.5±1.5 33.3±0.7 41.0±1.5

FRePo 48.1±0.7 29.7±0.6 - - - -

Static IDC 61.4±1.0 34.5±1.1 38.0±1.1 56.5±1.8 39.5±1.5 50.2±1.5

FreD 66.8±0.4 38.3±1.5 43.7±1.6 63.2±1.0 43.2±0.8 57.0±0.8

Parameterized
HaBa 51.9±1.7 32.4±0.7 34.7±1.1 50.4±1.6 36.9±0.9 41.9±1.4

SPEED 66.9±0.7 38.0±0.9 43.4±0.6 62.6±1.3 43.6±0.7 60.9±1.0

TM+RTP 69.6±0.4 38.8±1.1 45.2±1.7 66.4±0.5 46.5±1.8 63.2±1.0

NSD 68.6±0.8 35.2±0.4 39.8±0.2 61.0±0.5 45.2±0.1 52.9±0.7

DGM Prior GLaD 38.7±1.6 23.4±1.1 23.1±0.4 − 26.0±1.1 35.8±1.4

H-GLaD 45.4±1.1 28.3±0.2 25.6±0.7 − 29.6±1.0 39.7±0.8

Function DDiF 72.0±0.9 42.9±0.7 48.2±1.2 69.0±0.8 47.4±1.3 67.0±1.3

Table 18: Test accuracies (%) on ImageNet-Subset (256 × 256) with regard to various parameteri-
zaiton methods under IPC=1.

Subset Nette Woof Fruit Yellow Meow Squawk

Input-sized DM 32.1 20.0 19.5 33.4 21.2 27.6

Static IDC 53.7±1.2 30.2±1.5 33.1±1.5 52.2±1.4 34.6±1.8 47.0±1.5

FreD 54.2±1.1 31.2±0.9 32.5±1.9 49.1±0.4 34.0±1.2 43.1±1.5

Parameterized SPEED 57.7±0.9 − − − − −
DGM Prior LatentDM 56.1 28.0 30.7 − 36.3 47.1

Function DDiF 67.8±1.0 39.6±1.6 43.2±1.7 63.1±0.8 44.8±1.1 67.0±0.9

Table 19: Test accuracies (%) on ImageNet-Subset (128 × 128) with regard to various parameteri-
zation methods under IPC=10.

Subset Nette Woof Fruit Yellow Meow Squawk

Input-sized TM 63.0±1.3 35.8±1.8 40.3±1.3 60.0±1.5 40.4±2.2 52.3±1.0

FRePo 66.5±0.8 42.2±0.9 − − − −

Static IDC 70.8±0.5 39.8±0.9 46.4±1.4 68.7±0.8 47.9±1.4 65.4±1.2

FreD 72.0±0.8 41.3±1.2 47.0±1.1 69.2±0.6 48.6±0.4 67.3±0.8

Parameterized HaBa 64.7±1.6 38.6±1.3 42.5±1.6 63.0±1.6 42.9±0.9 56.8±1.0

SPEED 72.9±1.5 44.1±1.4 50.0±0.8 70.5±1.5 52.0±1.3 71.8±1.3

Function DDiF 74.6±0.7 44.9±0.5 49.8±0.8 70.5±1.8 50.6±1.1 72.3±1.3
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Table 20: Test accuracies (%) on cross Architecture networks with ImageNet Subsets (128 × 128)
under IPC=1

Test Net Method Nette Woof Fruit Yellow Meow Squawk

AlexNet

TM 13.2±0.6 10.0±0.0 10.0±0.0 11.0±0.2 9.8±0.0 −
IDC 17.4±0.9 16.5±0.7 17.9±0.7 20.6±0.9 16.8±0.5 20.7±1.0

FreD 35.7±0.4 23.9±0.7 15.8±0.7 19.8±1.2 14.4±0.5 36.3±0.3

DDiF 60.7±2.3 36.4±2.3 41.8±0.6 56.2±0.8 40.3±1.9 60.5±0.4

VGG11

TM 17.4±2.1 12.6±1.8 11.8±1.0 16.9±1.1 13.8±1.3 −
IDC 19.6±1.5 16.0±2.1 13.8±1.3 16.8±3.5 13.1±2.0 19.1±1.2

FreD 21.8±2.9 17.1±1.7 12.6±2.6 18.2±1.1 13.2±1.9 18.6±2.3

DDiF 53.6±1.5 29.9±1.9 33.8±1.9 44.2±1.7 32.0±1.8 37.9±1.5

ResNet18

TM 34.9±2.3 20.7±1.0 23.1±1.5 43.4±1.1 22.8±2.2 −
IDC 43.6±1.3 23.2±0.8 32.9±2.8 44.2±3.5 28.2±0.5 47.8±1.9

FreD 48.8±1.8 28.4±0.6 34.0±1.9 49.3±1.1 29.0±1.8 50.2±0.8

DDiF 63.8±1.8 37.5±1.9 42.0±1.9 55.9±1.0 35.8±1.8 62.6±1.5

ViT

TM 22.6±1.1 15.9±0.4 23.3±0.4 18.1±1.3 18.6±0.9 −
IDC 31.0±0.6 22.4±0.8 31.1±0.8 30.3±0.6 21.4±0.7 32.2±1.2

FreD 38.4±0.7 25.4±1.7 31.9±1.4 37.6±2.0 19.7±0.8 44.4±1.0

DDiF 59.0±0.4 32.8±0.8 39.4±0.8 47.9±0.6 27.0±0.6 54.8±1.1

Table 21: Compatibility on different dataset distillation loss with ImageNet Subsets (128 × 128)
under IPC=1

L Method Nette Woof Fruit Meow Squawk

DC

Vanilla 34.2±1.7 22.5±1.0 21.0±0.9 22.0±0.6 32.0±1.5

IDC 45.4±0.7 25.5±0.7 26.8±0.4 25.3±0.6 34.6±0.5

FreD 49.1±0.8 26.1±1.1 30.0±0.7 28.7±1.0 39.7±0.7

GLaD 35.4±1.2 22.3±1.1 20.7±1.1 22.6±0.8 33.8±0.9

H-GLaD 36.9±0.8 24.0±0.8 22.4±1.1 24.1±0.9 35.3±1.0

DDiF 61.2±1.0 35.2±1.7 37.8±1.1 39.1±1.3 54.3±1.0

DM

Vanilla 30.4±2.7 20.7±1.0 20.4±1.9 20.1±1.2 26.6±2.6

IDC 48.3±1.3 27.0±1.0 29.9±0.7 30.5±1.0 38.8±1.4

FreD 56.2±1.0 31.0±1.2 33.4±0.5 33.3±0.6 42.7±0.8

GLaD 32.2±1.7 21.2±1.5 21.8±1.8 22.3±1.6 27.6±1.9

H-GLaD 34.8±1.0 23.9±1.9 24.4±2.1 24.2±1.1 29.5±1.5

DDiF 69.2±1.0 42.0±0.4 45.3±1.8 45.8±1.1 64.6±1.1
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(a) Initialization (b) Synthesized

Figure 10: (a) Warm-up initialized images on ImageNette with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 11: (a) Warm-up initialized images on ImageWoof with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.
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(a) Initialization (b) Synthesized

Figure 12: (a) Warm-up initialized images on ImageFruit with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 13: (a) Warm-up initialized images on ImageYellow with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.
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(a) Initialization (b) Synthesized

Figure 14: (a) Warm-up initialized images on ImageMeow with DDiF, (b) Best-performed synthetic
dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51 images per
class under the same budget.

(a) Initialization (b) Synthesized

Figure 15: (a) Warm-up initialized images on ImageSquawk with DDiF, (b) Best-performed syn-
thetic dataset represented by DDiF. We visualize the first 10 images, while DDiF constructs 51
images per class under the same budget.
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(a) Initialization (b) Synthesized

Figure 16: (a) Warm-up initialization images and (b) Synthesized images of ModelNet-10. Start
reading labels from the top and continue to right: 1) bathtub, 2) bed, 3) chair, 4) desk, 5) dresser, 6)
monitor, 7) nightstand, 8) sofa, 9) table, 10) toilet

(a) Initialization

(b) Synthesized

Figure 17: (a) Warm-up initialization images and (b) Synthesized images of MiniUCF. Start reading
labels from the top: 1) FrisbeeCatch, 2) HammerThrow, 3) HulaHoop, 4) JumpingJack, 5) Parallel-
Bars
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