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ABSTRACT

In this paper, we study the angle testing problem in the context of similarity search in
high-dimensional Euclidean spaces and propose two projection-based probabilistic
kernel functions, one designed for angle comparison and the other for angle thresh-
olding. Unlike existing approaches that rely on random projection vectors drawn
from Gaussian distributions, our approach leverages reference angles and employs a
deterministic structure for the projection vectors. Notably, our kernel functions do
not require asymptotic assumptions, such as the number of projection vectors tending
to infinity, and can be both theoretically and experimentally shown to outperform
Gaussian-distribution-based kernel functions. We apply the proposed kernel function
to Approximate Nearest Neighbor Search (ANNS) and demonstrate that our ap-
proach achieves a 2.5X ∼ 3X higher query-per-second (QPS) throughput compared
to the widely-used graph-based search algorithm HNSW. Our code and data are avail-
able at: https://github.com/anonymous-iclr-2025-13063/KS.

1 INTRODUCTION

Vector-based similarity search is a core problem with broad applications in machine learning, data
mining, and information retrieval. It involves retrieving data points in a high-dimensional space
that are most similar to a given query vector based on a specific similarity measure. This task is
central to many downstream applications, including nearest neighbor classification, recommendation
systems, clustering, anomaly detection, and retrieval-augmented generation (RAG). However, the
high dimensionality of modern datasets makes efficient similarity search particularly challenging,
highlighting the need for fast and scalable vector computation techniques.

Among the various similarity measures for high-dimensional vectors, the ℓ2 norm, cosine distance,
and inner product are the most commonly used in practice. As discussed in Yan et al. (2018); Dai
et al. (2020); Lu et al. (2024), it is often possible to pre-compute and store the norms of vectors in
advance, allowing these measures to be reduced to the computation of the cosine of the angle between
two normalized vectors, thereby highlighting the central role of angle computation. On the other hand,
in many real-world scenarios, we are not concerned with the exact values of the angles but rather with
the outcome—which one is greater—of an angle comparison, which is referred to as the angle testing:
Given a query vector q and data vectors v1, v2, v on sphere Sd−1, typical operations include comparing
⟨q,v1⟩ and ⟨q,v2⟩, or determining whether ⟨q,v⟩ exceeds a certain threshold. These operations,
however, require computing exact cosines of angles, which have a cost ofO(d) per comparison and
become expensive in high dimensions. To address this, we aim to design a computation-efficient
probabilistic kernel functionK that can approximate these comparisons with reduced cost and high
success probability. More precisely, we focus on the following two problems:

Problem 1.1. (Probabilistic kernel function for comparison) Design a probabilistic kernel function
K: Sd−1 × Sd−1 → RV with computational cost o(d), whereRV denotes the set of random variables,
such that, for any data vectors v1, v2 ∈ Sd−1 and query q ∈ Sd−1 satisfying ⟨q, v1⟩ > ⟨q, v2⟩, we have
Pr[K(q, v1) > K(q, v2)] > 1− ϵ, where ϵ ≤ 0.5.

Problem 1.2. (Probabilistic kernel function for thresholding) Given a fixed angle threshold θ ∈ (0, π),
design a probabilistic kernel functionK: Sd−1 × Sd−1 → RV with computational cost o(d) such that
for any q, v1, v2 ∈ Sd−1 with angles ϕ1 < θ between q and v1, and ϕ2 > θ between q and v2, we have
Pr[K(q, v1) > cos θ] ≥ 1− ϵ1, and Pr[K(q, v2) > cos θ] < ϵ2, where ϵ1, ϵ2 ≤ 0.5.
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One of the main goals of this paper is to design appropriate K’s to solve the above two problems.
Before proceeding, we note that much work has focused on the estimation of ⟨q,v⟩, such as Johnson-
Lindenstrauss (JL) bound (Johnson et al., 1984) and quantization-based techniques (Jégou et al., 2011;
Ge et al., 2014; Martinez et al., 2018; Gao & Long, 2024; Guo et al., 2020). In contrast, the defined
problems focus on comparing ⟨q,v⟩ with another inner product or a threshold, necessitating a distinct
theoretical analysis centered on probabilistic decision-making. Beyond the theoretical perspective,
these two problems also give rise to a range of practical applications. The goal of Problem 1.1 aligns
with that of the random-projection-based technique CEOs (Pham, 2021) under cosine distance (we
postpone the general case of inner product to Sec. 6), allowing the designed kernel function to be
applied to tasks where CEOs is effective, such as Maximum Inner Product Search (MIPS) (Pham,
2021), filtering of NN candidates (Pham & Liu, 2022), DBSCAN (Xu & Pham, 2024), and more.
Notably, the goal of Problem 1.2 is similar to that of the graph-based ANNS approach PEOs (Lu et al.,
2024), making the corresponding kernel function well suited for probabilistic routing tests in similarity
graphs, which have demonstrated significant performance improvements over baseline graphs such as
HNSW (Malkov & Yashunin, 2020). In Sec. 6, we will further elaborate on the applications of these
two probabilistic kernel functions.

Despite addressing different tasks, all the techniques (Pham, 2021; Pham & Liu, 2022; Xu & Pham,
2024; Lu et al., 2024) mentioned above use Gaussian distribution to generate projection vectors and are
built upon a common statistical result, as follows.
Lemma 1.3. (Theorem 1 in Pham (2021)) Given two vectors v, q on Sd−1, andm random vectors
{ui}mi=1 ∼ N (0, Id), let umax = argmaxui

|q⊤ui|. Asm goes infinity, we have:

v⊤umax ∼ N (sgn(q⊤umax) · q⊤v
√
2 lnm, 1− (q⊤v)2). (1)

Lemma 1.3 builds the relationship between angles and corresponding projection vectors. Actually,
v⊤umax can be viewed as an indicator of the cosine angle q⊤v. More specifically, the larger v⊤umax is,
the more likely it is that q⊤v is large. On the other hand, v⊤umax can be computed beforehand during
the indexing phase and can be easily accessed during the query phase, makingK(q,v) = v⊤umax a
suitable kernel function for various angle testing problems, e.g., Problem 1.1.

However, Lemma 1.3 has a significant theoretical limitation: Relationship (1) relies on the assumption
that the number of projection vectorsm tends to infinity. Since the evaluation time of projection vectors
depends onm,m cannot be very large in practice. Moreover, since Pham & Liu (2022); Xu & Pham
(2024); Lu et al. (2024) all used Lemma 1.3 to derive their theoretical results, these results are also
affected by this limitation, and the impact ofm becomes even harder to predict in these applications.

The starting point of our research is to overcome this limitation, and we make the following two key
observations. (1) The Gaussian distribution used in Lemma 1.3 is not essential. Instead, the only factor
determining the estimation accuracy of q⊤v is the reference angle, that is, the angle between q and
umax. (2) By introducing a random rotation matrix, the reference angle becomes dependent on the
structure of the projection vectors and is predictable.

Based on these two observations, we design new probabilistic kernel functions to solve Problems 1.1
and 1.2. The contributions of this paper are summarized as follows.

(1) The proposed kernel functionsK1
S andK2

S (Eq. (2) and Eq. (3)) rely on a reference-angle-based
probabilistic relationship between angles in high-dimensional spaces and projected values. Compared
with Eq. (1), the new relationship (Relationship (4)) is deterministic without dependence on asymptotic
condition. By theoretical analysis, we show that the proposed kernel functions are effective solvers for
the Problems 1.1 and 1.2 (see Lemmas 4.2, 4.3 and 5.1).

(2) By Lemmas 4.2, 4.3, we find that, the smaller the reference angle is, the more accurate the kernel
functions are. To minimize the reference angle, we study the structure of the configuration of projection
vectors (Sec. 5). We propose two structures (Alg. 1 and Alg. 2) that perform better than purely random
projection (Alg. 3 in Appendix). We establish the relationship between the reference angle and the
proposed structures (Lemma B.1 and Fig. 4 in Appendix).

(3) Based onK1
S , we propose a random-projection technique KS1 which can be used for CEOs-based

tasks (Pham, 2021; Pham & Liu, 2022; Xu & Pham, 2024). Based onK2
S , we introduce a new routing

test called the KS2 test which can be used to accelerate the graph-based Approximate Nearest Neighbor
Search (ANNS) (Lu et al., 2024) (Sec. 6).
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(4) We experimentally show that KS1 provides a slight accuracy improvement (up to 0.8%) over CEOs.
For ANNS, we show that HNSW+KS2 improves the query-per-second (QPS) of the state-of-the-art
approach HNSW+PEOs (Lu et al., 2024) by 10% – 30%, along with a 5% reduction in index size.

2 RELATED WORK

Due to space limitations, we focus on random projection techniques that are closely related to this
work. An illustration comparing the proposed random projection technique with others can be found in
Sec. C.2 and Fig. 3 in Appendix. Since the proposed kernel function is also used in similarity graphs
for ANNS, a comprehensive discussion of ANNS solutions is provided in Appendix C.3.

In high-dimensional Euclidean spaces, the estimation of angles via random-projection techniques,
especially Locality Sensitive Hashing (LSH) (Indyk & Motwani, 1998; Andoni & Indyk; 2008), has a
relatively long history. A classical LSH technique is SimHash (Charikar, 2002), whose basic idea is to
generate multiple hyperplanes and partition the original space into many cells such that two vectors
falling into the same cell are likely to have a small angle between them. Andoni et al. (2015) proposed
a different LSH method called Falconn for angular distance, whose basic idea is to find the closest or
furthest projection vector to the data vector and record this projection vector as a hash value, leading to
better search performance than SimHash. Later, Pham (2021) employed Concomitants of Extreme
Order Statistics (CEOs) to identify the projection with the largest or smallest inner product with the
data vector, as shown in Lemma 1.3, and recorded the corresponding maximum or minimum projected
value to obtain a more accurate estimation than using a hash value alone (Pham & Liu, 2022).

Due to its ease of implementation, CEOs has been employed in several similarity search tasks (Pham,
2021; Andoni et al., 2015; Xu & Pham, 2024), as mentioned in Sec. 1. Additionally, CEOs has been
used to accelerate similarity graphs, which are among the leading structures for Approximate Nearest
Neighbor Search (ANNS). By swapping the roles of query and data vectors in CEOs, Lu et al. (2024)
introduced a space-partitioning technique and proposed the PEOs test, which can be used to compare the
objective angle with a fixed threshold under probabilistic guarantees. This test was incorporated into the
routing mechanisms of similarity graphs and achieved significant search performance improvements
over original graph structures like HNSW (Malkov & Yashunin, 2020) and NSSG (Fu et al., 2022).

3 TWO PROBABILISTIC KERNEL FUNCTIONS

In Sec. 3, we aim to propose probabilistic kernel functions for Problems 1.1 and 1.2. First, we introduce
some notation. Frequently used symbols in this paper are listed in Table 2 in Appendix. Let Rd
be the ambient vector space. Define H ∈ SO(d) ∈ Rd×d as a random rotation matrix1 and let
S = [u1,u2, . . . ,um] ∈ Rd×m be an arbitrary fixed set ofm points on the unit sphere Sd−1. For any
vector v ∈ Sd−1, define the reference vector of v with respect to S as ZS(v) = argmaxu∈S ⟨u,v⟩.
LetAS(v) denote the cosine of the reference angle with respect to v, that is,AS(v) = ⟨v, ZS(v)⟩ .
Next, we introduce two probabilistic kernel functionsK1

S(·, ·) andK2
S(·, ·) as follows, whereK1

S(·, ·)
corresponds to Problem 1.1 andK2

S(·, ·) corresponds to Problem 1.2.

K1
S(q,v) = ⟨v, ZHS(q)⟩ v, q ∈ Sd−1. (2)

K2
S(q,v) = ⟨Hq, ZS(Hv)⟩ /AS(Hv) v, q ∈ Sd−1. (3)

Remarks. (1) (Exploitation of reference angle) In the design of existing projection techniques
such as CEOs (Pham, 2021), Falconn (Andoni et al., 2015), Falconn++ (Pham & Liu, 2022), etc.,
only the reference vector ZS(·)) is utilized. In contrast, our kernel functions defined in Eq. (2) and
Eq. (3) incorporate not only the reference vectorZS(·)) but also the reference angle informationAS(·)
(although the reference angle is not explicitly shown in Eq. (2), its influence will become clear in
Lemma 4.2). In fact, the reference angle plays a central role, as it is the key factor controlling the
precision of angle estimation (see Lemma 4.2).

(2) (Generalizations of existing works) These two kernel functions can also be regarded as gener-
alizations of CEOs and PEOs respectively in a certain sense. Specifically, if S is taken as a point

1Note that the definition here differs from that in Andoni et al. (2015), where the so-called random rotation
matrix is actually a matrix with i.i.d. Gaussian entries)
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set generated via a Gaussian distribution and ZS(v) is replaced by the reference vector having the
maximum inner product with the query, then K1

S(q,v) equals the indicator v⊤umax used in CEOs.
Similarly, if we remove the termAS(Hv) and take S to be the same space-partitioned structure as that
of PEOs, K2

S(q,v) is similar to the indicator of PEOs. In addition, Eq. (3) reduces to the estimator
in Gao & Long (2024) when S is taken to be the hypercube with scalar quantization.

(3) (Configuration of projection vectors) Although we do not currently require any specific properties
of the configuration of S, it is clear that the configuration of S impacts bothK1

S(q,v) andK2
S(q,v).

We will discuss the structure of S in detail in Sec. 5. Notably, we will see that neither the hypercube
adopted in Gao & Long (2024) nor the Gaussian distribution adopted in Pham (2021); Lu et al. (2024)
provides the optimal configuration for projection vectors.

4 ANALYSIS OF PROBABILITY GUARANTEES

In Sec. 4, we show that the proposed probabilistic kernel functionsK1
S andK2

S satisfy the probability
guarantees of Problem 1.1 and Problem 1.2, respectively. Before proceeding, we first provide a
definition that will be used to establish a property ofK2

S .

Definition 4.1. Let ϕ1, ϕ2 ∈ (0, π) and let θ ∈ (0, π) be an arbitrary angle threshold. A probabilistic
kernel functionK(q,v) is called angle-sensitive when it satisfies the following two conditions:

(1) If cos θ ≤ cosϕ1 = ⟨q,v⟩, then P[K(q,v) ≥ cos θ] ≥ p1(ϕ1),

(2) If ⟨q,v⟩ = cosϕ2 < cos θ, then P[K(q,v) ≥ cos θ] < p2(ϕ2),

where p2(ϕ2) is a strictly decreasing function in ϕ2 and p1(ϕ1) > p2(ϕ2) when ϕ1 < ϕ2.

The definition of the angle-sensitive property is analogous to that of the locality-sensitive hashing
property. The key difference is that the approximation ratio c used in LSH is not introduced here, as the
angle threshold θ is explicitly defined, and only angles smaller than θ are considered valid.

We are now ready to present the following two lemmas forK1
S andK2

S , which demonstrate that they
serve as effective solutions to Problems 1.1 and 1.2, respectively.

Lemma 4.2. (1) Let d ≥ 3 and (q,v) be an arbitrary pair of normalized vectors with angle ϕ ∈ (0, π).
The conditional CDF ofK1

S(q,v) can be expressed as follows:

FK1
S(q,v)(x | AS(q) = cosψ) = It

(
d− 2

2
,
d− 2

2

)
, (4)

where ψ ∈ (0, π), t = 1
2 + x−cosϕ cosψ

2 sinϕ sinψ , It denotes the regularized incomplete Beta function and
x ∈ [cos(ϕ+ ψ), cos(ϕ− ψ)].

(2) Let q, v1 and v2 be three normalized vectors on Sd−1 such that ⟨q,v1⟩ > ⟨q,v2⟩. The probability
P[K1

S(q,v1) > K1
S(q,v2)|AS(q) = cosψ] increases as ψ decreases in (0, π). In particular, when

ψ ∈ (0, π/2),P [K1
S(q,v1) > K1

S(q,v2)|AS(q) = cosψ] > 0.5, that is,K1
S satisfies the probability

guarantee in Problem 1.1.

Lemma 4.3. Let ψ ∈ (0, π/2), that is, AS(v) = cosψ ∈ (0, 1), and d ≥ 3. Then K2
S is an angle-

sensitive function. Precisely,K2
S satisfies the probability guarantee in Problem 1.2, where ϵ1 = 0.5

and ϵ2 = It′(
d−2
2 , d−2

2 ) < 0.5, where t′ = 1
2 − cos θ−cosϕ

2 sinϕ tanψ .

Remarks. (1) (Discussion on boundary values) When ϕ = 0 or ϕ = π,K1
S andK2

S take fixed values
rather than being random variables, and whenψ = 0 orψ = π, the exact value of ⟨q,v⟩ can be directly
obtained. Therefore, probability analysis in these cases is meaningless. Additionally, in Lemma 4.3,
we adopt the following convention: p2(ϕ) = 0 if t′ < 0.

(2) (Deterministic relationship for angle testing) Lemma 4.2 establishes a relationship between
the objective angle ϕ and the value of the function K1

S . Notably, after computing ZS(·), the value
of reference angleAS(·) can be obtained automatically. Besides, as will be shown in Sec. 5, with a
reasonable choice of S, the assumptionAS(·) > 0 can always be ensured. Hence, Eq. (4) essentially
describes a deterministic relationship. In contrast to the asymptotic relationship of CEOs, Eq. (4)
provides an exact relationship without additional assumptions.

4
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Algorithm 1 Configuration of S via antipodal projections
Input: L is the level; d = Ld′ is the data dimension; m is the number of vectors in each level
Output: Ssym(m,L), which is represented by mL sub-vectors with dimension d′.

1 for l = 1 to L do
2 Generate m/2 points along with their antipodal points i.i.d. on Sd′−1

3 Scale the norm of all m points in this iteration to 1/
√
L, and collect the vectors after scaling

Algorithm 2 Configuration of S via multiple cross-polytopes
Input: L is the level; d = Ld′ is the data dimension; m = 2d′a+ b; R is the maximum number of iterations
Output: Spol(m,L), which is represented by mL sub-vectors with dimension d′

1 Generate N points randomly and independently on Sd−1, where N is a sufficiently large number
2 for r = 1 to R do
3 for t = 1 to a do
4 Generate a random rotation matrix H ∈ Rd′×d′ , and rotate 2d′ axes in Rd′ using H
5 Collect the 2d′ vectors of the cross-polytope after rotation

6 if b > 0 then
7 Repeat the above iteration and select b/2 antipodal pairs from the rotated cross-polytope

8 For the generated S ∈ Sd′−1, compute J̃(S,N) and maintain the largest S denoted by Smax

9 for l = 1 to L do
10 Generate a random rotation matrix H ∈ Rd′×d′ and rotate the configuration Smax using H

11 Scale the norm of all m points in this iteration to 1/
√
L and collect the vectors after scaling

(3) (Effectiveness of kernel functions) The above two lemmas show that, with a reasonable construc-
tion of S such that the reference angle is small with a high probability, K1

S and K2
S can effectively

address the corresponding angle testing problems. The smaller the reference angle is, the more effective
K1
S andK2

S become.

(4) (Gaussian distribution is suboptimal) The fact that a smaller reference angle is favorable justifies
the utilization of ZS(·) and also implies that the Gaussian distribution is not an optimal choice for
configuring S, since in this case, the selected reference vector with the largest inner product with the
query or data vector is not guaranteed to have the smallest reference angle.

5 IMPLEMENTATION AND COMPLEXITY ANALYSIS

We discuss how to configureS, and then analyze the complexity ofK1
S andK2

S . Based on the discussion
in Sec. 4, we observe that small reference angles are preferred. Thus, givenm, our goal is to construct a
set S ofm points on Sd−1, denoted by Sm, such that the reference angleASm

(·) is minimized. Due to
the effect of the random rotation matrixH , the optimal configurations denoted by S̄m and S∗

m, can be
obtained either in the sense of expectation or in the sense of the worst case, respectively:

S̄m = argmax
S={u1,...,um}⊂Sd−1

{Ev∈U(Sd−1)[AS(v)]}, (5)

S∗
m = argmax

S={u1,...,um}⊂Sd−1

min
v∈Sd−1

max
1≤i≤m

⟨ui,v⟩, (6)

whereU(Sd−1) denotes the uniform distribution on the sphere. By the definitions of S̄m and S∗
m, they

correspond to the configurations that achieve the smallest expected value and the smallest maximum
value ofAS(v), respectively. On the other hand, finding the exact solutions for S̄m and S∗

m is closely
related to the best covering problem, which is highly challenging and remains open in the general
case. To the best of the authors’ knowledge, the optimal configuration S∗

m is only known when
m ≤ d+ 3 (Borodachov et al., 2019). In light of this, we provide two configurations of S: one relies
on random antipodal projections (Alg. 1), and the other is built using multiple cross-polytopes (Alg. 2).
Each has its own advantages. Alg. 1 enables the estimation of reference angles, while Alg. 2 can
empirically produce slightly smaller reference angles and is more efficient for projection computation.

Before proceeding into the detail of algorithms, we introduce a quantity J(S) as follows.
J(S) = Ev∈U(Sd−1)[(AS(v))]. (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

By definition,J(S)denotes the expected value of the cosine of the reference angles w.r.tS. This quantity
is consistent with our theory, as a random rotation is applied to v or q in Eq. (2) and Eq. (3). Based on
the previous discussion, for a fixedm, J(S) is minimized when S = S̄m, which is hard to compute.
Thus, we takeN to be sufficiently large and let v1,N , . . . , vN,N be vectors drawn independently and
uniformly from U(Sd−1). Let J̃(S,N) = [ΣNi=1AS(vi,N )]/N . By the law of large number, we can
approximate J(S) by J̃(S,N) whenN is sufficiently large.

Now, we are ready to explain Alg. 1 and Alg. 2 as follows.

(1) (Utilization of antipodal pairs and cross-polytopes) We use the antipodal pair or the cross-
polytope as our building block for the following three reasons. (i) Since all the projection vectors are
antipodal pairs, the evaluation time of projection vectors can be halved. (ii) Both of two structures can
ensure that the assumptionAS(v) > 0 holds, such that the condition in Lemma 4.3 is always satisfied.
(iii) The result in Borodachov (2022) shows that, form = 2d, under mild conditions, the 2d vertices
of a cross-polytope can be proven to have the smallest covering radius, that is, the smallest reference
angle in the worst case. Although the results in the casem > 2d are unknown, we can rotate the fixed
cross-polytope in random directions to generate multiple cross-polytopes until we obtainm vectors,
which explains the steps from 3 to 7 in Alg. 2.

(2) (Selection from random configurations) We can generate suchm points in the above way many
times, which forms multiple S’s. By the discussion above, we can use J̃(S,N) to approximately
evaluate the performance of J(S), and thus, among the generated S’s, we select the configuration Spol

corresponding to the maximal J̃(S,N). This explains steps 2 and 8 in Alg. 2.

(3) (Accuracy boosting via multiple levels) Increasingm can lead to a smaller reference angle. The
analysis in Lu et al. (2024) shows that, for certain angle-thresholding problems requiring high accuracy,
an exponential increase inm, rather than a linear one, can be effective. Therefore, similar to Lu et al.
(2024), we use a product-quantization-like technique (Jégou et al., 2011) to partition the original
space intoL subspaces (levels), which is adopted in both algorithms. By concatenating equal-length
sub-vectors from theseL subspaces, we can virtually generatemL normalized projected vectors. As
will be shown in Lemma B.1, the introduction ofL can significantly decrease the reference angle.

(4) (Fast projection computation via multi-cross-polytypes) In Eq. (2) and Eq. (3), we need to
computeHSv in the indexing phase. If the projection time is a concern in practice, we can use the
Fast Johnson–Lindenstrauss transformation to accelerate this process. Specifically, we use Alg. 2 with
R = 1. When L = 1, the cost of computingHSv isO(max(d,m) log d). When L > 1, the cost of
computingHSv can be reduced toO(d log d+mL log(d/L)).

By Alg. 1 and Alg. 2, we obtain structures Ssym(m,L) and Spol(m,L) virtually containing mL

projection vectors. For Ssym(m,L), we can actually establish a deterministic relationship be-
tween J(Ssym(m,L)) and (m,L) (see Lemma B.1 in Appendix). On the other hand, in practice,
J(Spol(m,L)) is often slightly larger than J(Ssym(m,L)), as will be shown in Table 1.

With Ssym(m,L) and Spol(m,L), we are ready to present a complexity analysis of the two proposed
functions, showing that they satisfy the complexity requirement in Problem 1.1 and Problem 1.2.

Lemma 5.1. In the indexing phase, for a fixed dataset D of size n, the complexities ofK1
S andK2

S
are O(nmd) and O(nd log d + nmd), respectively. In the query phase, K1

S requires O(md)- time
for random projection, and for each v ∈ D, it spendsO(1)-time for computingK1

S(q, v), whileK2
S

spends O(d log d +md)-time for random projection and random rotation, and for each v ∈ D, it
spendsO(L)-time for computingK2

S(q, v), whereL≪ d. Particularly, if S = Spol(m,L) withR = 1,
the complexities of K1

S and K2
S in the indexing phase can be reduced to O(max(d,m)n log d) and

O(nd log d+ nmL log(d/L)), respectively, wherem is greater than d/L by user-specification.

6 APPLICATIONS TO SIMILARITY SEARCH

6.1 IMPROVEMENT ON CEOS-BASED TECHNIQUES

As forK1
S , we can use it to improve CEOs, which is used for MIPS and further applied to accelerate

LSH-based ANNS (Andoni et al., 2015) and DBSCAN (Xu & Pham, 2024). Since CEOs is originally
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designed for inner products, we generalizeK1
S toK1′

S as follows to align with CEOs:

K1′

S (q,v) = ∥v∥ · ⟨v, ZHS(q)⟩ v ∈ Rd, q ∈ Sd−1. (8)
It is easy to see that, with two minor modifications, that is, replacing v ∈ Sd−1 with v ∈ Rd, and
replacingxwith ∥v∥x in Eq. (4), Lemma 4.2 still holds. Therefore,K1′

S can be regarded as a reasonable
kernel function for inner products. Then, we can applyK1′

S to the algorithm in Pham (2021); Pham &
Liu (2022); Xu & Pham (2024). We only need to make the following modification. In these algorithms,
the random Gaussian matrix, which denotes the set of projection vectors, can be replaced by Ssym or
Spol, with the other parts unchanged. This substitution does not change the complexity of the original
algorithms. To distinguish this projection technique based onK1′

S from CEOs, we refer to it as KS1
(see Alg. 4 for the projection structure of KS1). In the experiments, we will demonstrate that KS1
yields a slight improvement in recall rates over CEOs, owing to a smaller reference angle.

6.2 A NEW PROBABILISTIC TEST IN SIMILARITY GRAPH

Lu et al. (2024) proposed probabilistic routing and used it in similarity graphs to accelerate ANNS. Let
dist(·, ·) be the distance function for ANNS. Each node in the similarity graph represents a data vector.
The definition of probabilistic routing is as follows.
Definition 6.1 (Probabilistic Routing (Lu et al., 2024)). Given a query vector q, a node v in the graph,
an error bound ϵ, and a distance threshold δ, for an arbitrary neighborw of v such that dist(w, q) < δ,
if a routing algorithm returns true for w with a probability of at least 1 − ϵ, then the algorithm is
deemed to be (δ, 1− ϵ)-routing.

Lu et al. (2024) proposed a (δ, 1− ϵ)-routing test called PEOs test. Based onK2
S , we propose a new

routing test for ℓ2 distance, called the KS2 test, as follows (see Sec. C.1 in Appendix for more detail).

ΣLi=1qi
⊤ui

e[i] ≥ AS(v) ·
∥w∥2/2− τ − v⊤q

∥e∥
. (9)

q ∈ Rd is the query, v is the visited graph node, w is the neighbor of v, and e = w − v. τ is
the threshold determined by the result list of graph. qi, ei denote the i-th sub-vectors of q and e,
respectively (1 ≤ i ≤ L). uij denotes the j-th element of the i-th sub-vector of u. ui

e[i] denotes the
reference vector of ei among all {ui

j}’s (1 ≤ j ≤ m). In our experiments, S was set to Ssym(256, L).

During the traversal of the similarity graph, we check the exact distance from graph node w to q
only when Ineq. (9) is satisfied; otherwise, we skip the computation ofw for efficiency. A complete
graph-based algorithm equipped with the KS2 test can be found in Alg. 6. By Lemma 4.3 and the same
analysis in Lu et al. (2024), we can easily obtain the following result.
Corollary 6.2. The graph-based search equipped with the KS2 test (9) is a (δ, 0.5)-routing test.

Comparison with PEOs. Since PEOs also uses a Gaussian distribution to generate projection vectors
in subspaces like CEOs, the estimation in Ineq. (9) is more accurate than that of the PEOs test, as
discussed earlier. In addition, the proposed test has two advantages: (1) Ineq. (9) is much simpler than
the testing inequality in the PEOs test, resulting in higher evaluation efficiency; (2) Ineq. (9) requires
fewer constants to be stored, leading to a smaller index size compared to that of PEOs.

Complexity analysis. For the time complexity, for every edge e, the computation of the LHS of
Ineq. (9) requires L lookups in the table and L − 1 additions, while the computation of the RHS of
Ineq. (9) requires two additions and one multiplication. By using SIMD, we can perform the KS2
test for 16 edges simultaneously. For the space complexity, for each edge, we need to store L bytes
to recover qi⊤ui

e[i], along with two scalars, that is,AS(v)∥w∥2/(2∥e∥) andAS(v)/∥e∥, which are
quantized using scalar quantization to enable fast computation of the RHS of Ineq. (9).

7 EXPERIMENTS

All experiments were conducted on a PC equipped with an Intel(R) Xeon(R) Gold 6258R CPU @
2.70GHz. KS1 and KS2 were implemented in C++. The ANNS experiments used 64 threads for
indexing and a single CPU for searching. We evaluated our methods on six high-dimensional real-world
datasets: Word, GloVe1M, GloVe2M, Tiny, GIST, and SIFT. Detailed statistics for these datasets
are provided in Appendix D.1. More experimental results can be found in Appendix D.
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Table 1: Comparison of recall rates (%) for k-MIPS, k = 10. The number of projection vectors is
2048. Top-5 projection vectors are probed. Probe@nmeans top-n points were probed on each probed
projection vector. Results are averaged over 10 runs to reduce the bias introduced by random projection.

Dataset & Method Probe@10 Probe@100 Probe@1K Probe@10K

Word
CEOs(2048) 34.106 71.471 90.203 98.182

KS1(Ssym(2048, 1)) 34.167 71.679 90.265 98.195
KS1(Spol(2048, 1)) 34.395 72.078 90.678 98.404

GloVe1M
CEOs(2048) 1.773 6.920 24.166 63.545

KS1(Ssym(2048, 1)) 1.792 7.015 24.456 64.041
KS1(Spol(2048, 1)) 1.808 7.071 24.556 64.355

GloVe2M
CEOs(2048) 2.070 6.904 21.082 54.916

KS1(Ssym(2048, 1)) 2.064 6.928 21.182 55.240
KS1(Spol(2048, 1)) 1.996 6.979 21.262 55.394

7.1 COMPARISON WITH CEOS

As demonstrated in Sec. 6.1, the results of CEOs are directly used to accelerate other similarity search
processes (Pham & Liu, 2022; Xu & Pham, 2024). In this context, we focus solely on the improvement
of CEOs itself. We show that KS1, equipped with the structuresSsym(m, 1) andSpol(m, 1), can slightly
outperform CEOs(m) on the original task of CEOs, that is, k-MIPS, where m denotes the number
of projection vectors and was set to 2048, following the standard configuration of the original CEOs.
Since the only difference among the compared approaches is the configuration of the projection vectors,
we use a unified algorithm (see construction of projection structure Alg. 4 and MIPS query processing
Alg. 5 in Appendix) with the configuration of projection vectors as an input to compare their recall
rates. From the results in Table. 1, we observe that: (1) in most cases, KS1 with the two proposed
structures achieves slightly better performance than CEOs, supporting our claim that a smaller reference
angle yields a more accurate estimation, and (2) Spol generally achieves a higher recall rate than Ssym,
verifying that a configuration closer to the best covering yields better performance.

7.2 ANNS PERFORMANCE

We chose ScaNN (Guo et al., 2020), HNSW (Malkov & Yashunin, 2020), and HNSW+PEOs (Lu
et al., 2024) as baselines, where ScaNN is a state-of-the-art quantization-based approach that performs
better than IVFPQFS, and HNSW+PEOs (Lu et al., 2024) is a state-of-the-art graph-based approach
that outperforms FINGER (Chen et al., 2023) and Glass (Zilliz, 2023). Like HNSW+PEOs, KS2
is implemented on HNSW, dubbed HNSW+KS2. DiskANN (Subramanya et al., 2019) is excluded
because it is orthogonal to KS2 and focuses on optimization for external storage. ADSampling (Gao &
Long, 2023) is excluded because it is designed for a non-SIMD environment. The parameter settings of
all compared approaches and Additional experimental results can be found in Appendix D.

(1) Index size and indexing time. Regarding indexing time, after constructing the HNSW graph, we
require an additional 42s, 164s, 165s, 188s, 366s, and 508s to align the edges and build the KS2 testing
structure on Word, GloVe1M, GIST, GloVe2M, SIFT, and Tiny, respectively. This overhead is less
than 25% of the graph construction time. In practice, users can reduce the parameter efc to shorten
indexing time while still preserving the superior search performance of HNSW+KS2. As for the index
size, it largely depends on the parameterL, which will be discussed later.

(2) Query performance. From the results in Fig. 1, we make the following observations. (i) Except
for Word, HNSW+KS2 achieves the best performance among all compared methods. In particular,
HNSW+KS2 accelerates HNSW by a factor of 2.5 to 3, and is 1.1 to 1.3 times faster than HNSW+PEOs,
demonstrating the superiority of KS2 over PEOs. (ii) Compared with ScaNN, the advantage of
HNSW+KS2 is especially evident in the recall region below 85%, highlighting the high efficiency
of the routing test. On the other hand, in the high-recall region for Word, ScaNN outperforms
HSNW+KS2 due to the connectivity issues of HNSW.

(3) Impact of L. The only tunable parameter in KS2 is L. Generally speaking, the larger L is, the
larger the index size is. On the other hand, a larger L can lead to a smaller reference angle and yield
better search performance. Hence, L can be used to achieve different trade-offs between index size
and search performance. In Fig. 2, we show the impact of L on index size and search performance.
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Figure 1: Recall-QPS evaluation of ANNS. k = 10.
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Figure 2: Impact ofL (See Appendix D.4 for other datasets). k = 10. The y-axis of the upper figures
denotes the additional index cost (%) of HNSW+PEOs compared to the original HNSW.

From the results, we have the following observations. (i) The index size of HNSW+KS2 is slightly
smaller than that of HNSW+PEOs due to the storage of fewer scalars. (ii) When d′ = d/L is around
16, HNSW+KS2 achieves the best search performance. This is because a largerL also leads to longer
testing time and d′ = 16 is sufficient to obtain a small enough reference angle.

8 CONCLUSIONS

In this paper, we studied two angle-testing problems in high-dimensional Euclidean spaces: angle
comparison and angle thresholding. To address these problems, we proposed two probabilistic kernel
functions that are based on reference angles and are easy to implement. To minimize the reference
angle, we further investigated the structure of the projection vectors and established a relationship
between the expected value of the reference angle and the proposed projection vector structure. Based
on these two functions, we introduced the KS1 projection and the KS2 test. In the experiments, we
showed that KS1 achieves a slight accuracy improvement over CEOs, and that HNSW+KS2 delivers
better search performance than the existing state-of-the-art ANNS approaches.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Alexandr Andoni and Daniel Beaglehole. Learning to hash robustly, guaranteed. In ICML, pp. 599–618,
2022.

Alexandr Andoni and Piotr Indyk. E2lsh manual. In http://web.mit.edu/andoni/www/LSH.

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
in high dimensions. Commun. ACM, 51(1):117–122, 2008.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt. Practical
and optimal LSH for angular distance. In NeurIPS, pp. 1225–1233, 2015.

Artem Babenko and Victor S. Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors.
In CVPR, pp. 2055–2063, 2016.

Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitsin, and Artem Babenko. Learning to route in
similarity graphs. In ICML, pp. 475–484, 2019.

Sergiy Borodachov. Optimal antipodal configuration of 2d points on a sphere in rd for coverings. In
arxiv, 2022.

Sergiy V. Borodachov, Douglas P. Hardin, and Edward B. Saff. Discrete Energy on Rectifiable Sets.
Springer Monographs in Mathematics. Springer, 2019.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In John H. Reif (ed.),
STOC, pp. 380–388. ACM, 2002.

Patrick H. Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui
Hsieh. FINGER: fast inference for graph-based approximate nearest neighbor search. In WWW, pp.
3225–3235. ACM, 2023.

Ryan R. Curtin, Parikshit Ram, and Alexander G. Gray. Fast exact max-kernel search. Statistical
Analysis and Data Mining, 7(1):1–9, February–December 2014.

Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jiu Liu, and James Cheng. Norm-explicit quantization:
Improving vector quantization for maximum inner product search. In AAAI, pp. 51–58, 2020.

Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with
the navigating spreading-out graph. PVLDB, 12(5):461–474, 2019.

Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity search with satellite system
graph: Efficiency, scalability, and unindexed query compatibility. IEEE Trans. Pattern Anal. Mach.
Intell., 44(8):4139–4150, 2022.

Jianyang Gao and Cheng Long. High-dimensional approximate nearest neighbor search: with reliable
and efficient distance comparison operations. Proc. ACM Manag. Data, 1(2):137:1–137:27, 2023.

Jianyang Gao and Cheng Long. Rabitq: Quantizing high-dimensional vectors with a theoretical error
bound for approximate nearest neighbor search. Proc. ACM Manag. Data, 2(3):167, 2024.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. IEEE Trans.
Pattern Anal. Mach. Intell, 36(4):744–755, 2014.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
Accelerating large-scale inference with anisotropic vector quantization. In ICML, pp. 3887–3896,
2020.

Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola. BLISS: A billion
scale index using iterative re-partitioning. In KDD, pp. 486–495. ACM, 2022.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In STOC, pp. 604–613, 1998.

William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
IEEE Trans. Pattern Anal. Mach. Intell, 33(1):117–128, 2011.

Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony Tung. Sublinear time nearest neighbor
search over generalized weighted space. In ICML, pp. 3773–3781, 2019.

Wuchao Li, Chao Feng, Defu Lian, Yuxin Xie, Haifeng Liu, Yong Ge, and Enhong Chen. Learning
balanced tree indexes for large-scale vector retrieval. In KDD, pp. 1353–1362. ACM, 2023.

Kejing Lu, Chuan Xiao, and Yoshiharu Ishikawa. Probabilistic routing for graph-based approximate
nearest neighbor search. In ICML, pp. 33177–33195, 2024.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE Trans. Pattern Anal. Mach. Intell, 42(4):824–836,
2020.

Julieta Martinez, hobhit Zakhmi, Holger H. Hoos, and James J. Little. Lsq++: Lower running time and
higher recall in multi-codebook quantization. In ECCV, pp. 508–523, 2018.

Javier Alvaro Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias, and Ricardo da Silva Torres.
Hierarchical clustering-based graphs for large scale approximate nearest neighbor search. Pattern
Recognit., 96, 2019.

Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approximate nearest
neighbor search in multi-dimensional databases. Proc. ACM Manag. Data, 1(1):54:1–54:27, 2023.

Ninh Pham. Simple yet efficient algorithms for maximum inner product search via extreme order
statistics. In KDD, pp. 1339–1347, 2021.

Ninh Pham and Tao Liu. Falconn++: A locality-sensitive filtering approach for approximate nearest
neighbor search. In NeurIPS, pp. 31186–31198, 2022.

Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, and
Rohan Kadekodi. Rand-nsg: Fast accurate billion-point nearest neighbor search on a single node. In
NeurIPS, pp. 13748–13758, 2019.

Jiadong Xie, Jeffrey Xu Yu, and Yingfan Liu. Graph based k-nearest neighbor search revisited. ACM
Trans. Database Syst., 50(4):14:1–14:30, 2025.

Haochuan Xu and Ninh Pham. Scalable DBSCAN with random projections. In NeurIPS, 2024.

Xiaoliang Xu, Mengzhao Wang, Yuxiang Wang, and Dingcheng Ma. Two-stage routing with optimized
guided search and greedy algorithm on proximity graph. Knowl. Based Syst., 229:107305, 2021.

Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. Norm-ranging LSH for maximum
inner product search. In NeurIPS, pp. 2956–2965, 2018.

Mingyu Yang, Wentao Li, Jiabao Jin, Xiaoyao Zhong, Xiangyu Wang, Zhitao Shen, Wei Jia, and Wei
Wang. Effective and general distance computation for approximate nearest neighbor search. In
ICDE, pp. 1098–1110, 2025.

Zilliz. Graph library for approximate similarity search. https://github.com/zilliztech/
pyglass, 2023.

11

https://github.com/zilliztech/pyglass
https://github.com/zilliztech/pyglass


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A NOTATIONS

Table 2 lists the main notations used in this paper.

Table 2: Frequently used notations.

Notation Explanation
D Dataset
n Size of Dataset
d Data dimension
v Data vector inD
Sd−1 d− 1 dimensional sphere
q Query
m The number of projection vectors
ϵ Error rate
S Fixed set of m points on Sd−1

H Random rotation matrix
ZS(v) argmaxu∈S ⟨u,v⟩
AS(v) ⟨v, ZS(v)⟩
L The number of space partitions
e Edge in similarity graph
w Neighbor vector of v, connected by edge e
∥e∥ Length of edge e
τ Threshold determined by the result list of graph
qi, ei i-th sub-vectors of q (1 ≤ i ≤ L), e, respectively
ui

j j-th element of the i-th sub-vector of u, where 1 ≤ i ≤ L and 1 ≤ j ≤ m
ui

e[i] Reference vector of ei among all {ui
j}’s (1 ≤ j ≤ m)

B PROOF OF LEMMAS

B.1 PROOF OF LEMMA 4.2

Proof: (1) For the first statement, due to the existence of random rotation matrixH and symmetry, we
only need to prove the following claim:

Claim: Let q and v be two vectors on Sd−1 such that the angle between q and v is ϕ. Let C be a
spherical cross-section defined as follows.

C = {u ∈ Sd−1 : ⟨u, q⟩ = cosψ}. (10)

Ifu is a vector randomly drawn fromC, the CDF of ⟨v,u⟩ is It(d−2
2 , d−2

2 ), where t = 1
2+

x−cosϕ cosψ
2 sinϕ sinψ .

Proof of Claim: Without loss of generality, we can rotate the coordinate system so that

q = (1, 0, · · · , 0) ∈ Rd. (11)

Then, by the definition of u, u can be written as follows

u = (cosψ, sinψ · ω) (12)

whereω ∈ Sd−2 ∈ Rd−1 is a unit vector in the subspace orthogonal to q. Similarly, v can be expressed
as follows.

v = (cosϕ, sinϕ · η) (13)
where η ∈ Sd−2 is fixed and corresponds to the projection of v onto the orthogonal subspace of q.
Then ⟨v,u⟩ can be written as follows.

X := ⟨v,u⟩ = cosϕ cosψ + sinϕ sinψ ·W (14)

where W = ⟨ω,η⟩ is a random variable. A well-known fact says that W is related to the Beta
distribution as follows.

T =
W + 1

2
∼ Beta

(
d− 2

2
,
d− 2

2

)
. (15)
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Therefore, we have

FX(x) = P(X ≤ x) = P(T ≤ 1

2
+
x− cosϕ cosψ

2 sinϕ sinψ
). (16)

Thus, FX(x) = It(
d−2
2 , d−2

2 ), where t = 1
2 + x−cosϕ cosψ

2 sinϕ sinψ .

(2) For the second statement, due to the existence of random rotation matrixH and symmetry, we only
need to prove the following claim.

Claim: Given three normalized vectors v1, v2 and q, let ⟨q,v1⟩ be larger than ⟨q,v2⟩. LetC be the
spherical cross-section defined in the proof of statement 1, and let u be a normalized vector drawn
randomly fromC. As ψ decreases, P[⟨u,v1⟩ > ⟨u,v2⟩] increases.

Proof of Claim: For u = cosψ · q + sinψ · ω′, where ω′ is a random normalized vector, taking u’s
inner products with v1 and v2, we obtain:

⟨v1,u⟩ = cosψ ⟨v1, q⟩+ sinψ ⟨v1,ω
′⟩ . (17)

⟨v2,u⟩ = cosψ ⟨v2, q⟩+ sinψ ⟨v2,ω
′⟩ . (18)

Then, we have
P[⟨u,v1⟩ > ⟨u,v2⟩] ⇔ P[⟨v1,ω

′⟩ − ⟨v2,ω
′⟩ > ∆q cotψ] (19)

where ∆q = ⟨v2, q⟩ − ⟨v1, q⟩ < 0 and the threshold ∆q cotψ is naturally set to 0 when ψ = π/2.
As ψ decreases, cotψ increases, making ∆q cotψ smaller. Since ⟨v1,ω

′⟩ − ⟨v2,ω
′⟩ is a random

variable due to the existence of ω′, the probability that it exceeds a given threshold increases as the
threshold decreases. Thus, as ψ decreases, the probability that the above inequality holds increases.

B.2 PROOF OF LEMMA 4.3

We consider the following four cases based on the value of cos ⟨q,v⟩.
Case 1: 0 < cos ⟨q, v⟩ < 1.

Let u be a random vector drawn randomly from a spherical cross-sectionC ′ defined as follows.

C ′ = {u ∈ Sd−1 : ⟨u,v⟩ = cosψ}. (20)

Next, we construct a simplex with verticesO,A,B,C as follows. We use
−→
OA to denote vectorv, where

O denotes the origin. Then we can build a unique hyperplaneH ′ through pointA and perpendicular to
v. we extend q and u along their respective directions to

−−→
OB and

−−→
OC such thatB andC are onH ′.

Then, we only need to prove the following claim.

Claim: LetO,A,B,C be four pointsRd.
−→
OA is perpendicular to

−−→
AB, and

−→
OA is perpendicular to

−→
AC.

The angle between
−→
OA and

−−→
OC isψ, and the angle between

−→
OA and

−−→
OB is ϕ. If the angle between

−−→
AB

and
−→
AC is α, then cosβ, where β denotes the angle between

−−→
OB and

−−→
OC, can be expressed as follows.

cosβ = cosϕ cosψ + sinϕ sinψ cosα. (21)

This claim can be easily proved by elementary transformations. Since
−−→
AB is fixed and

−→
AC follows the

uniform distribution of a sphere in Rd−1, cosα and cosβ are random variables. Therefore, we have the
following equalities.

P[K2
S(q,v) ≥ cos θ] = P[cosβ ≥ cos θ cosψ]

= P[cosα ≥ cos θ − cosϕ

sinϕ tanψ
]. (22)

We further consider the following two cases.

Case 1’: cosϕ ≥ cosθ.

P[K2
S(q,v) ≥ cos θ] ≥ P[cosα ≥ 0] = 1/2. (23)

Case 2’: cosϕ < cosθ.
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Algorithm 3 Configuration of S via random projection
Input: L is the level; d = Ld′ is the data dimension; m is the number of vectors in each level
Output: Sran(m,L), which is physically represented by mL sub-vectors with dimension d′

1 for l = 1 to L do
2 Generate m points randomly and independently on Sd′−1

3 Scale the norm of all m points in this iteration to 1/
√
L and collect the vectors after scaling

By the properties of Beta distribution discussed in the proof of Lemma 4.2 and the property of symmetry
of incomplete regularized Beta function, we have

P[K2
S(q,v) ≥ cos θ] = It′

(
d− 2

2
,
d− 2

2

)
(24)

where t′ = 1
2 − cos θ−cosϕ

2 sinϕ tanψ . Moreover, since tanψ is strictly increasing in ψ when ψ ∈ (0, π2 ),
P[K2

S(q,v) ≥ cos θ] is increasing in ψ. On the other hand, it is easy to see that P[K2
S(q,v) ≥ cos θ]

is strictly decreasing in ϕwhen ϕ ∈ (θ, π). Hence, Lemma 4.3 in Case 1 is proved.

Case 2: cos ⟨q, v⟩ = 0.

In this case, without loss of generality, we can define q,v,u as follows.

q = (0, 1, · · · , 0) ∈ Sd−1. (25)

v = (1, 0, · · · , 0) ∈ Sd−1. (26)

u = (cosψ, sinψ · ω) ∈ Sd−1 ω ∼ U(Sd−2). (27)
Therefore, we have

P[K2
S(q,v) ≥ cos θ] = P[cosα ≥ cos θ/ tanψ] (28)

which is consistent with ϕ = π/2 in Case 1. The following analysis is similar to that in Case 1.

Case 3: −1 < cos ⟨q, v⟩ < 0.

Instead of v and u, we consider −v and −u, and construct the simplex based on q, −v and −u as in
Case 1. Then, with the reverse of sign, we finally obtain an equation similar to Eq. (21), except with α
replaced by π − α. The following analysis is similar to that of Case 1.

Case 4: cos ⟨q, v⟩ = 1 or cos ⟨q, v⟩ = −1.

In this case, cos ⟨q,u⟩ = ± cosψ, and the conclusion is trivial.

B.3 ESTIMATION OF J(Ssym(m,L))

As discussed in Sec 5, for Ssym(m,L), we can establish a relationship between J(Ssym(m,L)) and
(m,L) as follows.

Lemma B.1. Suppose that d is divisible by L, and d = Ld′, where d′ ≥ 3. Let cd′ =
Γ
(

d′
2

)
√
π Γ

(
d′−1

2

) ,

f(y) = c′d(1− y2)
d′−3

2 and F (y) =
∫ y
−1
f(t) dt. We have

J(Ssym(m,L)) > m
√
L
Γ(d+L2L )Γ(d2 )

Γ( d2L )Γ(
d+1
2 )

∫ 1

−1

yF (y)m−1f(y) dy. (29)

The RHS of Ineq. (29) actually denotes J(Sran), where Sran is the configuration of purely random
projections (see Alg. 3 for more detail). A numerical computation of the RHS of Ineq. (29) is shown in
Fig. 4 in Appendix.

Proof: First, we introduce an auxiliary algorithm Alg. 3, which relies on purely random projection.
The structure S produced in Alg. 3 is denoted by Sran. We then present the following claim.

Claim: J(Ssym(m,L)) > J(Sran(m,L)).

To prove this claim, we introduce the following definition.
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Definition B.2. (Stochastic order) LetX and Y be two real-valued random variables. We say that
X <st Y , if for all t ∈ R, the CDFs ofX and Y satisfy FX(t) > FY (t).

LetL = 1 and fixm. We useX to denote the random variableASran(v), where v is drawn randomly
from Sd−1, and Y to denoteASsym(v). Clearly,X ∈ [−1, 1] and Y ∈ [0, 1]. We have the following:

P(Y > t) > P(X > t) t ∈ (0, 1). (30)

This can be easily proved, since when the angular radius is less than π/2, the two spherical caps
corresponding to the antipodal pair do not overlap. Therefore, we haveX <st Y and E[X] < E[Y ].
This completes the proof of the claim.

Then we only need to focus on J(Sran(m,L)) and prove that it is equal to the RHS of Ineq. (29). Let
v = [v1,v2, · · · ,vL] ∈ Rn be a vector drawn randomly from Sd−1, where d is assumed to be divisible
byL and d = Ld′. Let rL(v) be the regularized vector w.r.t. v. That is,

rL(v) = [
v1√
L∥v1∥

,
v2√
L∥v2∥

, . . . ,
vL√
L∥vL∥

]. (31)

Let T (d, L) = cos ⟨v, rL(v)⟩. For every i, letui = vi/∥vi∥ ∈ Sd′−1. Then we selectm vectors from
Sd′−1 randomly and independently. Suppose that, amongm generated vectors, w is the vector having
the smallest angle to ui, and we use T ′(d′, L) to denote cos ⟨w,ui⟩. Since the choice ofw for every
ui is independent to the value of cos ⟨v, rL(v)⟩, we have the following result:

E[AS(v)] = E[T (d, L)]× E[T ′(d′, L)]. (32)

For E[T (d, L)], since (∥v1∥2, ∥v2∥2, . . . , ∥vL∥2) follows a Dirichlet distribution with parameters
( d2L ,

d
2L , . . . ,

d
2L ), each ∥vi∥2 marginally follows a Beta distribution with parameters ( d2L ,

d(L−1)
2L ).

Then by the properties of Beta distribution, we have

E[T (d, L)] =
√
L
Γ(d+L2L )Γ(d2 )

Γ( d2L )Γ(
d+1
2 )

. (33)

Next, we consider E[T ′(d′, L)]. Because of the rotational symmetry of the sphere, the distribution of
the inner productZ = ⟨u, v⟩ (for fixed v and uniformly random u) depends only on the dimension d′.
It has the following density on [−1, 1]:

fZ(z) = cd′(1− z2)
d′−3

2 (34)

where cd′ is defined as follows.

cd′ =
Γ
(
d′

2

)
√
π Γ

(
d′−1
2

) . (35)

LetZ1, . . . , Zn be i.i.d. copies ofZ = ⟨u, v⟩. Then:

Y = max(Z1, . . . , Zm). (36)

The cumulative distribution function (CDF) ofZ is:

FZ(z) =

∫ z

−1

fZ(t) dt. (37)

Thus, the CDF of Y = Y (d′,m) is:

FY (y) = P(Y ≤ y) = FZ(y)
m, (38)

and the corresponding density is:

fY (y) =
d

dy
FZ(y)

m = mFZ(y)
m−1fZ(y). (39)

Therefore, we have the following result.

E[Y ] =

∫ 1

−1

yfY (y) dy = m

∫ 1

−1

yFZ(y)
m−1fZ(y) dy. (40)

Combining the previous results, we get the following result.

J(Sran(m,L)) = m
√
L
Γ(d+L2L )Γ(d2 )

Γ( d2L )Γ(
d+1
2 )

∫ 1

−1

yFZ(y)
m−1fZ(y) dy. (41)
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(c) KS1 (proposed one)

Figure 3: An illustration of Falconn, CEOs, and the proposed structure KS1.

C SUPPLEMENTARY MATERIALS

C.1 EXPLANATION OF ROUTING TEST IN INEQ. (9)

According to Ineq. (9), there are three core terms I, II, and III, where I = ΣLi=1qi
⊤ui

e[i], II = AS(v),

and III = ∥w∥2/2−τ−v⊤q
∥e∥ . Here, I/II is exactly the second designed functionK2

S ; the computation of I
depends on PQ Jégou et al. (2011). III denotes the threshold forK2

S and is explained in the original
paper of PEOs (see routing test Eq. (9) in Lu et al. (2024)).

C.2 ILLUSTRATION OF RANDOM PROJECTION TECHNIQUES FOR ANGLE ESTIMATION

An illustration is shown in Fig. 3. In this figure, q represents a query and v is a data vector. For Falconn,
if q and v are mapped to the same vector, they are considered close. For CEOs and KS1, the inner
product v⊤u, where u is the projection vector closest to q, is computed to obtain a more accurate
estimate of q⊤v. The key difference between CEOs and KS1 lies in the structure of the projection
vectors. While CEOs uses projection vectors sampled from a Gaussian distribution, KS1 employs a
more balanced structure in which all projection vectors lie on the surface of a sphere. By applying a
random rotation matrix and constructing a spherical cross-section centered at q, we can establish the
required statistical relationship between q⊤u and q⊤v.

C.3 ANNS AND SIMILARITY GRAPHS

As one of the most fundamental problems, approximate nearest neighbor search (ANNS) has seen a
surge of interest in recent years, leading to the development of numerous approaches across different
paradigms. These include tree-based methods (Curtin et al., 2014), hashing-based methods (Andoni &
Indyk, 2008; Lei et al., 2019; Andoni & Beaglehole, 2022; Andoni et al., 2015; Pham & Liu, 2022),
vector quantization (VQ)-based methods (Jégou et al., 2011; Ge et al., 2014; Babenko & Lempitsky,
2016; Guo et al., 2020), learning-based methods (Gupta et al., 2022; Li et al., 2023), and graph-based
methods (Malkov & Yashunin, 2020; Subramanya et al., 2019; Fu et al., 2019; 2022; Gao & Long,
2023; Peng et al., 2023; Xie et al., 2025; Yang et al., 2025).

Among these, graph-based methods are widely regarded as the state-of-the-art. Currently, three main
types of optimizations are used to enhance their search performance: (1) improved edge-selection
strategies, (2) more effective routing techniques, and (3) quantization of raw vectors. These approaches
are generally orthogonal to one another. Since the proposed structure, PEOs, belongs to the second
category, we briefly introduce several highly relevant works below. TOGG-KMC (Xu et al., 2021)
and HCNNG (Muñoz et al., 2019) use KD-trees to determine the direction of the query and restrict
the search to points in that direction. While this estimation is computationally efficient, it results in
relatively low query accuracy, limiting their improvements over HNSW (Malkov & Yashunin, 2020).
FINGER (Chen et al., 2023) examines all neighbors and estimates their distances to the query. For
each node, FINGER locally generates promising projection vectors to define a subspace, then uses
collision counting which is similar to SimHash to approximate distances within each visited subspace.
Learn-to-Route (Baranchuk et al., 2019) learns a routing function using auxiliary representations that
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Algorithm 4 Construction of the Projection Structure of KS1
Input: D is the dataset with cardinality n, and S is the configuration of m projection vectors (CEOs: m/2 random

Gaussian vectors along with their antipodal vectors; KS1: Ssym(m, 1) or Spol(m, 1))
Output: m projection vectors, each of which is associated with a n-sequence of data ID’s

1 For every xi ∈ D (1 ≤ i ≤ n) and each uj ∈ S (1 ≤ j ≤ m), compute ⟨xi,uj⟩
2 For each uj ∈ S, sort xi in descending order of ⟨xi,uj⟩ and obtain xj

[1], . . . x
j
[n]

Algorithm 5 Query Phase for MIPS
Input: q is the query;D is the dataset; I is the index structure returned by Alg. 4; k denotes the value of top-k; s0

is the number of scanned top projection vectors; and #probe denotes the number of probed points for each
projection vector

Output: Top-k MIP results of q
1 Among the m projection vectors, find the top-s0 projection vectors closest to q
2 For each projection vector ul in the top-s0 set (1 ≤ l ≤ s0), scan the top-#probe points in the sequence associated

with ul, and compute the exact inner products of these points with q
3 Maintain and return the top-k points among all scanned candidates

Algorithm 6 Graph-based ANNS with the KS2 test
Input :q is the query, k denotes the value of top-k, G is the similarity graph
Output :Top-k ANNS results of q

1 R← ∅ ; /* an ordered list of results, |R| ≤ efs */
2 P ← { entry node v0 ∈ G } ; /* a priority queue */
3 while P ̸= ∅ do
4 v ← P.pop() foreach unvisited neighbor w of v do
5 if |R| < efs then δ ←∞;
6 else v′ ← R[efs], δ ← dist(v′, q);
7 if KS2_Test(w,v, q, δ) = true (Ineq. (9)) then
8 if dist(w, q) < δ then
9 R.push(w), P.push(w)

10 return ({R[1], . . . , R[k] })

guide optimal navigation from the starting vertex to the nearest neighbor. Recently, Lu et al. (2024)
proposed PEOs, which leverages space partitioning and random projection techniques to estimate a
random variable representing the angle between each neighbor and the query vector. By aggregating
projection information from multiple subspaces, PEOs substantially reduces the variance of this
estimated distribution, significantly improving query accuracy.

C.4 ALGORITHMS RELATED TO KS1 AND KS2

Alg. 4 and Alg. 5 are used to compare the probing accuracies of CEOs and KS1, while Alg. 6 presents
the graph-based search equipped with the KS2 test.

C.5 NUMERICAL COMPUTATION OF REFERENCE ANGLE

Fig. 4 shows the numerical values of the lower bounds (the RHS of Ineq. (29)) under different pairs of
(m,L). From the results, we observe that increasingL significantly raises the cosine of the reference
angle, whereas a linear increase inm leads to only a slow growth in the cosine of the reference angle,
which explains why we need to introduce parameterL into our projection structure.

D ADDITIONAL EXPERIMENTS

D.1 DATASETS AND PARAMETER SETTINGS

The statistic of six datasets used in this paper is shown in Tab. 3. The parameter settings of all compared
methods are shown as follows.
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Table 3: Dataset statistics.

Dataset Data Size Query Size Dimension Type Metric

Word 1,000,000 1,000 300 Text ℓ2&inner product
GloVe1M 1,183,514 10,000 200 Text angular&inner product
GloVe2M 2,196,017 1,000 300 Text angular&inner product
SIFT 10,000,000 1,000 128 Image ℓ2
Tiny 5,000,000 1,000 384 Image ℓ2
GIST 1,000,000 1,000 960 Image ℓ2

(1) CEOs: The number of projection vectors, m, was set to 2048, following the standard setting in
Pham (2021).

(2) KS1: For KS1, Lwas fixed to 1, as multiple levels are not necessary for angle comparison. The
number of projection vectors, m, was also set to 2048, consistent with CEOs. We evaluated both
KS1(S = Ssym(2048, 1)) and KS1(S = Spol(2048, 1)).

(3) HNSW:M was set to 32. The parameter efc was set to 1000 for SIFT, Tiny, and GIST, and to
2000 for Word, GloVe1M, and GloVe2M.

(4) ScaNN: The Dimensions_per_block was set to 4 for Tiny and GIST, and to 2 for the other datasets.
num_leaves was set to 2000. The other user-specified parameters were tuned to achieve the best
trade-off curves.

(5) HNSW+PEOs: Following the suggestions in Lu et al. (2024), we set L to 8, 10, 15, 15, 16, and
20 for the six real datasets, sorted in ascending order of dimension. Additionally, ϵwas set to 0.2, and
m = 256 to ensure that each vector ID could be encoded with a single byte.

(6) HNSW+KS2: S was fixed to Ssym(m,L). The only tunable parameter isL, asmmust be fixed at
256 to ensure that each vector ID is encoded with a single byte. Since the parameterL in KS2 plays a
similar role to that in PEOs, we setL to the same value in HNSW+PEOs to eliminate the influence ofL
in the comparison.

D.2 KS1 VS. CEOS UNDER DIFFERENT SETTINGS

In Tab. 1, we compared the performance of CEOs and KS1 using the top-5 probed projection vectors.
Here, we varied the value of s0 in Alg. 5 from 5 to 2 and 10, and present the corresponding results in
Tab. 4 and Tab. 5, respectively. We observe that KS1(Spol) still achieves the highest probing accuracy in
most cases.

D.3 ANNS RESULTS UNDER DIFFERENT k’S

Fig. 5 and Fig. 6 show the comparison results of ANNS solvers under different values of k. When
k = 1, ScaNN performs very well on Word, GloVe1M, GloVe2M, and Tiny, which is partly due to
the connectivity issue of HNSW on these datasets. In the other cases, HNSW+KS2 achieves the best
performance.

D.4 THE IMPACT OF L ON THE OTHER DATASETS

Fig. 7 shows the impact ofL on GloVe1M, GloVe2M, and Tiny, which is largely consistent with the
results in Fig. 2.

D.5 RESULTS OF NSSG+KS2

We also implement KS2 on another state-of-the-art similarity graph, NSSG (Fu et al., 2022). The
parameter settings for NSSG are the same as those in Lu et al. (2024). From the results in Fig. 8, we
observe that NSSG+KS2 outperforms NSSG+PEOs on all datasets except for GIST, which indicates
that the superiority of KS2 is independent of the underlying graph structure.
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Table 4: Comparison of recall rates (%) for k-MIPS, k = 10. Top-2 projection vectors are probed.

Dataset & Method Probe@10 Probe@100 Probe@1K Probe@10K

Word
CEOs(2048) 17.255 46.348 68.893 84.366

KS1(Sran(2048, 1)) 17.334 46.740 69.232 84.548
KS1(Sact(2048, 1)) 17.440 46.843 69.392 85.026

GloVe1M
CEOs(2048) 0.839 3.404 12.694 38.607

KS1(Sran(2048, 1)) 0.849 3.464 12.890 39.109
KS1(Sact(2048, 1)) 0.866 3.503 12.916 39.170

GloVe2M
CEOs(2048) 0.934 3.407 11.621 34.917

KS1(Sran(2048, 1)) 0.939 3.451 11.775 35.462
KS1(Sact(2048, 1)) 0.917 3.401 11.748 35.159

Table 5: Comparison of recall rates (%) for k-MIPS, k = 10. Top-10 projection vectors are probed.

Dataset & Method Probe@10 Probe@100 Probe@1K Probe@10K

Word
CEOs(2048) 50.772 84.545 96.620 99.882

KS1(Sran(2048, 1)) 50.698 84.470 96.643 99.869
KS1(Sact(2048, 1)) 51.238 84.865 96.869 99.910

GloVe1M
CEOs(2048) 3.012 11.301 36.293 80.995

KS1(Sran(2048, 1)) 3.047 11.401 36.604 81.307
KS1(Sact(2048, 1)) 3.069 11.451 36.857 81.781

GloVe2M
CEOs(2048) 3.574 11.252 30.695 69.406

KS1(Sran(2048, 1)) 3.567 11.256 30.741 69.668
KS1(Sact(2048, 1)) 3.515 11.368 30.940 70.016
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(d) Dim=384, m = 256

3 6 9 12 15 18 21 24 27 30
L

0.20
0.25
0.30
0.35
0.40
0.45

Re
fe

re
nc

e 
An

gl
e

(e) Dim=960, m = 256

0 1000 2000 3000 4000
m

0.24

0.26

0.28

0.30

Re
fe

re
nc

e 
An

gl
e

(f) Dim=128, L = 1

Figure 4: Numerical computation under different m’s and d’s. The y-axis denotes the cosine of
reference angle.

STATEMENTS ON THE USE OF LARGE LANGUAGE MODELS

We used LLMs to polish writing only. We are responsible for all the materials presented in this work.
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Figure 5: Recall-QPS evaluation of ANNS. k = 100.
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Figure 6: Recall-QPS evaluation of ANNS. k = 1.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

3 6 9 12 15 18
L

20
40
60
80

100
120

Ad
di

tio
na

l C
os

t(%
)

HNSW+PEOs
HNSW+KS2

(a) GloVe1M-angular

0 4 8 12 16 20 24 28
L

20
40
60
80

100
120

Ad
di

tio
na

l C
os

t(%
)

HNSW+PEOs
HNSW+KS2

(b) GloVe2M-angular

0 4 8 12 16 20 24 28 32
L

10
20
30
40
50
60
70
80
90

Ad
di

tio
na

l C
os

t(%
)

HNSW+PEOs
HNSW+KS2

(c) Tiny-ℓ2

0.70 0.75 0.80 0.85 0.90 0.95
Recall@10

0
1000
2000
3000
4000
5000
6000
7000

QP
S

HNSW
KS2(L=1)
KS2(L=4)
KS2(L=10)
KS2(L=20)

(d) GloVe1M-angular

0.70 0.75 0.80 0.85 0.90 0.95
Recall@10

0
2000
4000
6000
8000

10000
QP

S
HNSW
KS2(L=1)
KS2(L=4)
KS2(L=10)
KS2(L=15)
KS2(L=30)

(e) GloVe2M-angular

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Recall@10

0
2000
4000
6000
8000

10000

QP
S

HNSW
KS2(L=1)
KS2(L=4)
KS2(L=8)
KS2(L=16)
KS2(L=32)

(f) Tiny-ℓ2

Figure 7: Impact ofL on index sizes and search performance. k = 10.
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Figure 8: Recall-QPS evaluation of ANNS, with NSSG+KS2. k = 10.
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