

PROBABILISTIC KERNEL FUNCTION FOR FAST ANGLE TESTING

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
PROBABILISTIC KERNEL FUNCTION FOR FAST ANGLE TESTING

ABSTRACT

In this paper, we study the angle testing problem in the context of similarity search in high-dimensional Euclidean spaces and propose two projection-based probabilistic kernel functions, one designed for angle comparison and the other for angle thresholding. Unlike existing approaches that rely on random projection vectors drawn from Gaussian distributions, our approach leverages reference angles and employs a deterministic structure for the projection vectors. Notably, our kernel functions do not require asymptotic assumptions, such as the number of projection vectors tending to infinity, and can be both theoretically and experimentally shown to outperform Gaussian-distribution-based kernel functions. We apply the proposed kernel function to Approximate Nearest Neighbor Search (ANNS) and demonstrate that our approach achieves a $2.5X \sim 3X$ higher query-per-second (QPS) throughput compared to the widely-used graph-based search algorithm HNSW. Our code and data are available at: <https://github.com/anonymous-iclr-2025-13063/KS>.

1 INTRODUCTION

Vector-based similarity search is a core problem with broad applications in machine learning, data mining, and information retrieval. It involves retrieving data points in a high-dimensional space that are most similar to a given query vector based on a specific similarity measure. This task is central to many downstream applications, including nearest neighbor classification, recommendation systems, clustering, anomaly detection, and retrieval-augmented generation (RAG). However, the high dimensionality of modern datasets makes efficient similarity search particularly challenging, highlighting the need for fast and scalable vector computation techniques.

Among the various similarity measures for high-dimensional vectors, the ℓ_2 norm, cosine distance, and inner product are the most commonly used in practice. As discussed in Yan et al. (2018); Dai et al. (2020); Lu et al. (2024), it is often possible to pre-compute and store the norms of vectors in advance, allowing these measures to be reduced to the computation of the cosine of the angle between two normalized vectors, thereby highlighting the central role of angle computation. On the other hand, in many real-world scenarios, we are not concerned with the exact values of the angles but rather with the outcome—which one is greater—of an angle comparison, which is referred to as the angle testing: Given a query vector q and data vectors v_1, v_2, v on sphere \mathbb{S}^{d-1} , typical operations include comparing $\langle q, v_1 \rangle$ and $\langle q, v_2 \rangle$, or determining whether $\langle q, v \rangle$ exceeds a certain threshold. These operations, however, require computing exact cosines of angles, which have a cost of $O(d)$ per comparison and become expensive in high dimensions. To address this, we aim to design a computation-efficient probabilistic kernel function K that can approximate these comparisons with reduced cost and high success probability. More precisely, we focus on the following two problems:

Problem 1.1. (Probabilistic kernel function for comparison) Design a probabilistic kernel function $K: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow RV$ with computational cost $o(d)$, where RV denotes the set of random variables, such that, for any data vectors $v_1, v_2 \in \mathbb{S}^{d-1}$ and query $q \in \mathbb{S}^{d-1}$ satisfying $\langle q, v_1 \rangle > \langle q, v_2 \rangle$, we have $\Pr[K(q, v_1) > K(q, v_2)] > 1 - \epsilon$, where $\epsilon \leq 0.5$.

Problem 1.2. (Probabilistic kernel function for thresholding) Given a fixed angle threshold $\theta \in (0, \pi)$, design a probabilistic kernel function $K: \mathbb{S}^{d-1} \times \mathbb{S}^{d-1} \rightarrow RV$ with computational cost $o(d)$ such that for any $q, v_1, v_2 \in \mathbb{S}^{d-1}$ with angles $\phi_1 < \theta$ between q and v_1 , and $\phi_2 > \theta$ between q and v_2 , we have $\Pr[K(q, v_1) > \cos \theta] \geq 1 - \epsilon_1$, and $\Pr[K(q, v_2) > \cos \theta] < \epsilon_2$, where $\epsilon_1, \epsilon_2 \leq 0.5$.

One of the main goals of this paper is to design appropriate K 's to solve the above two problems. Before proceeding, we note that much work has focused on the estimation of $\langle \mathbf{q}, \mathbf{v} \rangle$, such as Johnson-Lindenstrauss (JL) bound (Johnson et al., 1984) and quantization-based techniques (Jégou et al., 2011; Ge et al., 2014; Martinez et al., 2018; Gao & Long, 2024; Guo et al., 2020). In contrast, the defined problems focus on comparing $\langle \mathbf{q}, \mathbf{v} \rangle$ with another inner product or a threshold, necessitating a distinct theoretical analysis centered on probabilistic decision-making. Beyond the theoretical perspective, these two problems also give rise to a range of practical applications. The goal of Problem 1.1 aligns with that of the random-projection-based technique CEOs (Pham, 2021) under cosine distance (we postpone the general case of inner product to Sec. 6), allowing the designed kernel function to be applied to tasks where CEOs is effective, such as Maximum Inner Product Search (MIPS) (Pham, 2021), filtering of NN candidates (Pham & Liu, 2022), DBSCAN (Xu & Pham, 2024), and more. Notably, the goal of Problem 1.2 is similar to that of the graph-based ANNS approach PEOs (Lu et al., 2024), making the corresponding kernel function well suited for probabilistic routing tests in similarity graphs, which have demonstrated significant performance improvements over baseline graphs such as HNSW (Malkov & Yashunin, 2020). In Sec. 6, we will further elaborate on the applications of these two probabilistic kernel functions.

Despite addressing different tasks, all the techniques (Pham, 2021; Pham & Liu, 2022; Xu & Pham, 2024; Lu et al., 2024) mentioned above use Gaussian distribution to generate projection vectors and are built upon a common statistical result, as follows.

Lemma 1.3. *(Theorem 1 in Pham (2021)) Given two vectors \mathbf{v}, \mathbf{q} on \mathbb{S}^{d-1} , and m random vectors $\{\mathbf{u}_i\}_{i=1}^m \sim \mathcal{N}(0, I^d)$, let $\mathbf{u}_{\max} = \operatorname{argmax}_{\mathbf{u}_i} |\mathbf{q}^\top \mathbf{u}_i|$. As m goes infinity, we have:*

$$\mathbf{v}^\top \mathbf{u}_{\max} \sim \mathcal{N}(\operatorname{sgn}(\mathbf{q}^\top \mathbf{u}_{\max}) \cdot \mathbf{q}^\top \mathbf{v} \sqrt{2 \ln m}, 1 - (\mathbf{q}^\top \mathbf{v})^2). \quad (1)$$

Lemma 1.3 builds the relationship between angles and corresponding projection vectors. Actually, $\mathbf{v}^\top \mathbf{u}_{\max}$ can be viewed as an indicator of the cosine angle $\mathbf{q}^\top \mathbf{v}$. More specifically, the larger $\mathbf{v}^\top \mathbf{u}_{\max}$ is, the more likely it is that $\mathbf{q}^\top \mathbf{v}$ is large. On the other hand, all $\mathbf{v}^\top \mathbf{u}_i$'s can be computed beforehand during the indexing phase and $\mathbf{v}^\top \mathbf{u}_{\max}$ can be easily accessed during the query phase, making $K(\mathbf{q}, \mathbf{v}) = \mathbf{v}^\top \mathbf{u}_{\max}$ a suitable kernel function for various angle testing problems, e.g., Problem 1.1.

However, Lemma 1.3 has a significant theoretical limitation: Relationship (1) relies on the assumption that the number of projection vectors m tends to infinity. Since the evaluation time of projection vectors depends on m , m cannot be very large in practice. Moreover, since Pham & Liu (2022); Xu & Pham (2024); Lu et al. (2024) all used Lemma 1.3 to derive their theoretical results, these results are also affected by this limitation, and the impact of m becomes even harder to predict in these applications.

The starting point of our research is to overcome this limitation, and we make the following two key observations. (1) The Gaussian distribution used in Lemma 1.3 is not essential. Instead, the only factor determining the estimation accuracy of $\mathbf{q}^\top \mathbf{v}$ is the reference angle, that is, the angle between \mathbf{q} and \mathbf{u}_{\max} . (2) By introducing a random rotation matrix, the reference angle becomes dependent on the structure of the projection vectors and is predictable.

Based on these two observations, we design new probabilistic kernel functions to solve Problems 1.1 and 1.2. The contributions of this paper are summarized as follows.

(1) The proposed kernel functions K_S^1 and K_S^2 (Eq. (2) and Eq. (3)) rely on a reference-angle-based probabilistic relationship between angles in high-dimensional spaces and projected values. Compared with Eq. (1), the new relationship (Relationship (4)) is deterministic without dependence on asymptotic condition. By theoretical analysis, we show that the proposed kernel functions are effective solvers for the Problems 1.1 and 1.2 (see Lemmas 4.2, 4.3 and 5.1).

(2) By Lemmas 4.2, 4.3, we find that, the smaller the reference angle is, the more accurate the kernel functions are. To minimize the reference angle, we study the structure of the configuration of projection vectors (Sec. 5). We propose two structures (Alg. 1 and Alg. 2) that perform better than purely random projection (Alg. 3 in Appendix). We establish the relationship between the reference angle and the proposed structures (Lemma B.1 and Fig. 5 in Appendix).

(3) Based on K_S^1 , we propose a random-projection technique KS1 which can be used for CEOs-based tasks (Pham, 2021; Pham & Liu, 2022; Xu & Pham, 2024). Based on K_S^2 , we introduce a new routing test called the KS2 test which can be used to accelerate the graph-based Approximate Nearest Neighbor Search (ANNS) (Lu et al., 2024) (Sec. 6).

108 (4) We experimentally show that KS1 provides a slight accuracy improvement (up to 0.8%) over CEOs.
 109 For ANNS, we show that HNSW+KS2 improves the query-per-second (QPS) of the state-of-the-art
 110 approach HNSW+PEOs (Lu et al., 2024) by 10% – 30%, along with a 5% reduction in index size.
 111

112 2 RELATED WORK

113 Due to space limitations, we focus on random projection techniques that are closely related to this
 114 work. An illustration comparing the proposed random projection technique with others can be found in
 115 Sec. C.2 and Fig. 4 in Appendix. Since the proposed kernel function is also used in similarity graphs
 116 for ANNS, a comprehensive discussion of ANNS solutions is provided in Appendix C.3.
 117

118 In high-dimensional Euclidean spaces, the estimation of angles via random-projection techniques,
 119 especially Locality Sensitive Hashing (LSH) (Indyk & Motwani, 1998; Andoni & Indyk; 2008), has a
 120 relatively long history. A classical LSH technique is SimHash (Charikar, 2002), whose basic idea is to
 121 generate multiple hyperplanes and partition the original space into many cells such that two vectors
 122 falling into the same cell are likely to have a small angle between them. Andoni et al. (2015) proposed
 123 a different LSH method called Falconn for angular distance, whose basic idea is to find the closest or
 124 furthest projection vector to the data vector and record this projection vector as a hash value, leading to
 125 better search performance than SimHash. Later, Pham (2021) employed Concomitants of Extreme
 126 Order Statistics (CEOs) to identify the projection with the largest or smallest inner product with the
 127 data vector, as shown in Lemma 1.3, and recorded the corresponding maximum or minimum projected
 128 value to obtain a more accurate estimation than using a hash value alone (Pham & Liu, 2022).

129 Due to its ease of implementation, CEOs has been employed in several similarity search tasks (Pham,
 130 Andoni et al., 2015; Xu & Pham, 2024), as mentioned in Sec. 1. Additionally, CEOs has been
 131 used to accelerate similarity graphs, which are among the leading structures for Approximate Nearest
 132 Neighbor Search (ANNS). By swapping the roles of query and data vectors in CEOs, Lu et al. (2024)
 133 introduced a space-partitioning technique and proposed the PEOs test, which can be used to compare the
 134 objective angle with a fixed threshold under probabilistic guarantees. This test was incorporated into the
 135 routing mechanisms of similarity graphs and achieved significant search performance improvements
 136 over original graph structures like HNSW (Malkov & Yashunin, 2020) and NSSG (Fu et al., 2022).

137 3 TWO PROBABILISTIC KERNEL FUNCTIONS

138 In Sec. 3, we aim to propose probabilistic kernel functions for Problems 1.1 and 1.2. First, we introduce
 139 some notation. Frequently used symbols in this paper are listed in Table 2 in Appendix. Let \mathbb{R}^d
 140 be the ambient vector space. Define $H \in SO(d) \in \mathbb{R}^{d \times d}$ as a random rotation matrix¹ and let
 141 $S = [\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m] \in \mathbb{R}^{d \times m}$ be an arbitrary fixed set of m points on the unit sphere \mathbb{S}^{d-1} . For any
 142 vector $\mathbf{v} \in \mathbb{S}^{d-1}$, define the reference vector of \mathbf{v} with respect to S as $Z_S(\mathbf{v}) = \operatorname{argmax}_{\mathbf{u} \in S} \langle \mathbf{u}, \mathbf{v} \rangle$.
 143 Let $A_S(\mathbf{v})$ denote the cosine of the reference angle with respect to \mathbf{v} , that is, $A_S(\mathbf{v}) = \langle \mathbf{v}, Z_S(\mathbf{v}) \rangle$.
 144 Next, we introduce two probabilistic kernel functions $K_S^1(\cdot, \cdot)$ and $K_S^2(\cdot, \cdot)$ as follows, where $K_S^1(\cdot, \cdot)$
 145 corresponds to Problem 1.1 and $K_S^2(\cdot, \cdot)$ corresponds to Problem 1.2.
 146

$$147 K_S^1(\mathbf{q}, \mathbf{v}) = \langle \mathbf{v}, Z_{HS}(\mathbf{q}) \rangle \quad \mathbf{v}, \mathbf{q} \in \mathbb{S}^{d-1}. \quad (2)$$

$$148 K_S^2(\mathbf{q}, \mathbf{v}) = \langle H\mathbf{q}, Z_S(H\mathbf{v}) \rangle / A_S(H\mathbf{v}) \quad \mathbf{v}, \mathbf{q} \in \mathbb{S}^{d-1}. \quad (3)$$

149 Remarks. (1) **(Exploitation of reference angle)** In the design of existing projection techniques
 150 such as CEOs (Pham, 2021), Falconn (Andoni et al., 2015), Falconn++ (Pham & Liu, 2022), etc.,
 151 only the reference vector $Z_S(\cdot)$ is utilized. In contrast, our kernel functions defined in Eq. (2) and
 152 Eq. (3) incorporate not only the reference vector $Z_S(\cdot)$ but also the reference angle information $A_S(\cdot)$
 153 (although the reference angle is not explicitly shown in Eq. (2), its influence will become clear in
 154 Lemma 4.2). In fact, the reference angle plays a central role, as it is the key factor controlling the
 155 precision of angle estimation (see Lemma 4.2).
 156

157 (2) **(Generalizations of existing works)** These two kernel functions can also be regarded as gener-
 158 alizations of CEOs and PEOs respectively in a certain sense. Specifically, if S is taken as a point
 159

160 ¹Note that the definition here differs from that in Andoni et al. (2015), where the so-called random rotation
 161 matrix is actually a matrix with i.i.d. Gaussian entries.)

162 set generated via a Gaussian distribution and $Z_S(\mathbf{v})$ is replaced by the reference vector having the
 163 maximum inner product with the query, then $K_S^1(\mathbf{q}, \mathbf{v})$ equals the indicator $\mathbf{v}^\top \mathbf{u}_{\max}$ used in CEOs.
 164 Similarly, if we remove the term $A_S(H\mathbf{v})$ and take S to be the same space-partitioned structure as that
 165 of PEOs, $K_S^2(\mathbf{q}, \mathbf{v})$ is similar to the indicator of PEOs. In addition, Eq. (3) reduces to the estimator
 166 in Gao & Long (2024) when S is taken to be the hypercube with scalar quantization.

167 (3) **(Configuration of projection vectors)** Although we do not currently require any specific properties
 168 of the configuration of S , it is clear that the configuration of S impacts both $K_S^1(\mathbf{q}, \mathbf{v})$ and $K_S^2(\mathbf{q}, \mathbf{v})$.
 169 We will discuss the structure of S in detail in Sec. 5. Notably, we will see that neither the hypercube
 170 adopted in Gao & Long (2024) nor the Gaussian distribution adopted in Pham (2021); Lu et al. (2024)
 171 provides the optimal configuration for projection vectors.

173 4 ANALYSIS OF PROBABILITY GUARANTEES

175 In Sec. 4, we show that the proposed probabilistic kernel functions K_S^1 and K_S^2 satisfy the probability
 176 guarantees of Problem 1.1 and Problem 1.2, respectively. Before proceeding, we first provide a
 177 definition that will be used to establish a property of K_S^2 .

179 **Definition 4.1.** Let $\phi_1, \phi_2 \in (0, \pi)$ and let $\theta \in (0, \pi)$ be an arbitrary angle threshold. A probabilistic
 180 kernel function $K(\mathbf{q}, \mathbf{v})$ is called **angle-sensitive** when it satisfies the following two conditions:

181 (1) If $\cos \theta \leq \cos \phi_1 = \langle \mathbf{q}, \mathbf{v} \rangle$, then $\mathbb{P}[K(\mathbf{q}, \mathbf{v}) \geq \cos \theta] \geq p_1(\phi_1)$,
 182 (2) If $\langle \mathbf{q}, \mathbf{v} \rangle = \cos \phi_2 < \cos \theta$, then $\mathbb{P}[K(\mathbf{q}, \mathbf{v}) \geq \cos \theta] < p_2(\phi_2)$,
 184 where $p_2(\phi_2)$ is a strictly decreasing function in ϕ_2 and $p_1(\phi_1) > p_2(\phi_2)$ when $\phi_1 < \phi_2$.

185 The definition of the angle-sensitive property is analogous to that of the locality-sensitive hashing
 186 property. The key difference is that the approximation ratio c used in LSH is not introduced here, as the
 187 angle threshold θ is explicitly defined, and only angles smaller than θ are considered valid.

189 We are now ready to present the following two lemmas for K_S^1 and K_S^2 , which demonstrate that they
 190 serve as effective solutions to Problems 1.1 and 1.2, respectively.

191 **Lemma 4.2.** (1) Let $d \geq 3$ and (\mathbf{q}, \mathbf{v}) be an arbitrary pair of normalized vectors with angle $\phi \in (0, \pi)$.
 192 The conditional CDF of $K_S^1(\mathbf{q}, \mathbf{v})$ can be expressed as follows:

$$194 F_{K_S^1(\mathbf{q}, \mathbf{v})}(x \mid A_S(\mathbf{q}) = \cos \psi) = I_t \left(\frac{d-2}{2}, \frac{d-2}{2} \right), \quad (4)$$

196 where $\psi \in (0, \pi)$, $t = \frac{1}{2} + \frac{x - \cos \phi \cos \psi}{2 \sin \phi \sin \psi}$, I_t denotes the regularized incomplete Beta function and
 197 $x \in [\cos(\phi + \psi), \cos(\phi - \psi)]$.

199 (2) Let \mathbf{q}, \mathbf{v}_1 and \mathbf{v}_2 be three normalized vectors on \mathbb{S}^{d-1} such that $\langle \mathbf{q}, \mathbf{v}_1 \rangle > \langle \mathbf{q}, \mathbf{v}_2 \rangle$. The probability
 200 $\mathbb{P}[K_S^1(\mathbf{q}, \mathbf{v}_1) > K_S^1(\mathbf{q}, \mathbf{v}_2) \mid A_S(\mathbf{q}) = \cos \psi]$ increases as ψ decreases in $(0, \pi)$. In particular, when
 201 $\psi \in (0, \pi/2)$, $P[K_S^1(\mathbf{q}, \mathbf{v}_1) > K_S^1(\mathbf{q}, \mathbf{v}_2) \mid A_S(\mathbf{q}) = \cos \psi] > 0.5$, that is, K_S^1 satisfies the probability
 202 guarantee in Problem 1.1.

203 **Lemma 4.3.** Let $\psi \in (0, \pi/2)$, that is, $A_S(\mathbf{v}) = \cos \psi \in (0, 1)$, and $d \geq 3$. Then K_S^2 is an angle-
 204 sensitive function. Precisely, K_S^2 satisfies the probability guarantee in Problem 1.2, where $\epsilon_1 = 0.5$
 205 and $\epsilon_2 = I_{t'}(\frac{d-2}{2}, \frac{d-2}{2}) < 0.5$, where $t' = \frac{1}{2} - \frac{\cos \theta - \cos \phi}{2 \sin \phi \tan \psi}$.

207 Remarks. (1) **(Discussion on boundary values)** When $\phi = 0$ or $\phi = \pi$, K_S^1 and K_S^2 take fixed values
 208 rather than being random variables, and when $\psi = 0$ or $\psi = \pi$, the exact value of $\langle \mathbf{q}, \mathbf{v} \rangle$ can be directly
 209 obtained. Therefore, probability analysis in these cases is meaningless. Additionally, in Lemma 4.3,
 210 we adopt the following convention: $p_2(\phi) = 0$ if $t' < 0$.

211 (2) **(Deterministic relationship for angle testing)** Lemma 4.2 establishes a relationship between
 212 the objective angle ϕ and the value of the function K_S^1 . Notably, after computing $Z_S(\cdot)$, the value
 213 of reference angle $A_S(\cdot)$ can be obtained automatically. Besides, as will be shown in Sec. 5, with a
 214 reasonable choice of S , the assumption $A_S(\cdot) > 0$ can always be ensured. Hence, Eq. (4) essentially
 215 describes a deterministic relationship. In contrast to the asymptotic relationship of CEOs, Eq. (4)
 provides an exact relationship without additional assumptions.

216 **Algorithm 1** Configuration of S via antipodal projections

217 **Input:** L is the level; $d = Ld'$ is the data dimension; m is the number of vectors in each level

218 **Output:** $S_{\text{sym}}(m, L)$, which is represented by mL sub-vectors with dimension d' .

219 1 **for** $l = 1$ **to** L **do**

220 2 Generate $m/2$ points along with their antipodal points i.i.d. on $S^{d'-1}$

221 3 Scale the norm of all m points in this iteration to $1/\sqrt{L}$, and collect the vectors after scaling

223 **Algorithm 2** Configuration of S via multiple cross-polytopes

224 **Input:** L is the level; $d = Ld'$ is the data dimension; $m = 2d'a + b$; R is the maximum number of iterations

225 **Output:** $S_{\text{pol}}(m, L)$, which is represented by mL sub-vectors with dimension d'

226 1 Generate N points randomly and independently on \mathbb{S}^{d-1} , where N is a sufficiently large number

227 2 **for** $r = 1$ **to** R **do**

228 3 **for** $t = 1$ **to** a **do**

229 4 Generate a random rotation matrix $H \in \mathbb{R}^{d' \times d'}$, and rotate $2d'$ axes in $\mathbb{R}^{d'}$ using H

230 5 Collect the $2d'$ vectors of the cross-polytope after rotation

231 6 **if** $b > 0$ **then**

232 7 Repeat the above iteration and select $b/2$ antipodal pairs from the rotated cross-polytope

233 8 For the generated $S \in \mathbb{S}^{d'-1}$, compute $\tilde{J}(S, N)$ and maintain the largest S denoted by S_{max}

234 9 **for** $l = 1$ **to** L **do**

235 10 Generate a random rotation matrix $H \in \mathbb{R}^{d' \times d'}$ and rotate the configuration S_{max} using H

236 11 Scale the norm of all m points in this iteration to $1/\sqrt{L}$ and collect the vectors after scaling

239 (3) **(Effectiveness of kernel functions)** The above two lemmas show that, with a reasonable construction of S such that the reference angle is small with a high probability, K_S^1 and K_S^2 can effectively address the corresponding angle testing problems. The smaller the reference angle is, the more effective K_S^1 and K_S^2 become.

244 (4) **(Gaussian distribution is suboptimal)** The fact that a smaller reference angle is favorable justifies the utilization of $Z_S(\cdot)$ and also implies that the Gaussian distribution is not an optimal choice for 245 configuring S , since in this case, the selected reference vector with the largest inner product with the 246 query or data vector is not guaranteed to have the smallest reference angle.

248

249 5 IMPLEMENTATION AND COMPLEXITY ANALYSIS

250

251 We discuss how to configure S , and then analyze the complexity of K_S^1 and K_S^2 . Based on the discussion 252 in Sec. 4, we observe that small reference angles are preferred. Thus, given m , our goal is to construct a 253 set S of m points on \mathbb{S}^{d-1} , denoted by S_m , such that the reference angle $A_{S_m}(\cdot)$ is minimized. Due to 254 the effect of the random rotation matrix H , the optimal configurations denoted by \bar{S}_m and S_m^* , can be 255 obtained either in the sense of expectation or in the sense of the worst case, respectively:

$$256 \bar{S}_m = \underset{S=\{\mathbf{u}_1, \dots, \mathbf{u}_m\} \subset \mathbb{S}^{d-1}}{\text{argmax}} \{\mathbb{E}_{\mathbf{v} \in U(\mathbb{S}^{d-1})} [A_S(\mathbf{v})]\}, \quad (5)$$

$$258 S_m^* = \underset{S=\{\mathbf{u}_1, \dots, \mathbf{u}_m\} \subset \mathbb{S}^{d-1}}{\text{arg max}} \min_{\mathbf{v} \in \mathbb{S}^{d-1}} \max_{1 \leq i \leq m} \langle \mathbf{u}_i, \mathbf{v} \rangle, \quad (6)$$

260 where $U(\mathbb{S}^{d-1})$ denotes the uniform distribution on the sphere. By the definitions of \bar{S}_m and S_m^* , they 261 correspond to the configurations that achieve the smallest expected value and the smallest maximum 262 value of $A_S(\mathbf{v})$, respectively. On the other hand, finding the exact solutions for \bar{S}_m and S_m^* is closely 263 related to the best covering problem, which is highly challenging and remains open in the general 264 case. To the best of the authors' knowledge, the optimal configuration S_m^* is only known when 265 $m \leq d + 3$ (Borodachov et al., 2019). In light of this, we provide two configurations of S : one relies 266 on random antipodal projections (Alg. 1), and the other is built using multiple cross-polytopes (Alg. 2). 267 Each has its own advantages. Alg. 1 enables the estimation of reference angles, while Alg. 2 can 268 empirically produce slightly smaller reference angles and is more efficient for projection computation.

269

Before proceeding into the detail of algorithms, we introduce a quantity $J(S)$ as follows.

$$J(S) = \mathbb{E}_{\mathbf{v} \in U(\mathbb{S}^{d-1})} [(A_S(\mathbf{v}))]. \quad (7)$$

270 By definition, $J(S)$ denotes the expected value of the cosine of the reference angles w.r.t S . This quantity
 271 is consistent with our theory, as a random rotation is applied to \mathbf{v} or \mathbf{q} in Eq. (2) and Eq. (3). Based on
 272 the previous discussion, for a fixed m , $J(S)$ is minimized when $S = \bar{S}_m$, which is hard to compute.
 273 Thus, we take N to be sufficiently large and let $v_{1,N}, \dots, v_{N,N}$ be vectors drawn independently and
 274 uniformly from $U(\mathbb{S}^{d-1})$. Let $\tilde{J}(S, N) = [\sum_{i=1}^N A_S(\mathbf{v}_{i,N})]/N$. By the law of large number, we can
 275 approximate $J(S)$ by $\tilde{J}(S, N)$ when N is sufficiently large.
 276

277 Now, we are ready to explain Alg. 1 and Alg. 2 as follows.

278 (1) **(Utilization of antipodal pairs and cross-polytopes)** We use the antipodal pair or the cross-
 279 polytope as our building block for the following three reasons. (i) Since all the projection vectors are
 280 antipodal pairs, the evaluation time of projection vectors can be halved. (ii) Both of two structures can
 281 ensure that the assumption $A_S(\mathbf{v}) > 0$ holds, such that the condition in Lemma 4.3 is always satisfied.
 282 (iii) The result in Borodachov (2022) shows that, for $m = 2d$, under mild conditions, the $2d$ vertices
 283 of a cross-polytope can be proven to have the smallest covering radius, that is, the smallest reference
 284 angle in the worst case. Although the results in the case $m > 2d$ are unknown, we can rotate the fixed
 285 cross-polytope in random directions to generate multiple cross-polytopes until we obtain m vectors,
 286 which explains the steps from 3 to 7 in Alg. 2.

287 (2) **(Selection from random configurations)** We can generate such m points in the above way many
 288 times, which forms multiple S 's. By the discussion above, we can use $\tilde{J}(S, N)$ to approximately
 289 evaluate the performance of $J(S)$, and thus, among the generated S 's, we select the configuration S_{pol}
 290 corresponding to the maximal $\tilde{J}(S, N)$. This explains steps 2 and 8 in Alg. 2.

291 (3) **(Accuracy boosting via multiple levels)** Increasing m can lead to a smaller reference angle. The
 292 analysis in Lu et al. (2024) shows that, for certain angle-thresholding problems requiring high accuracy,
 293 an exponential increase in m , rather than a linear one, can be effective. **Therefore, similar to Lu et al.**
 294 **(2024), we use a product-quantization-like technique (Jégou et al., 2011)** to partition the original space
 295 into L subspaces (levels), which is adopted in Algs. 1 and 2. By concatenating equal-length sub-vectors
 296 from these L subspaces, we can virtually generate m^L normalized projected vectors. As will be shown
 297 in Lemma B.1, the introduction of L can significantly decrease the reference angle, and L can also
 298 control the trade-off between query accuracy and efficiency.

299 (4) **(Fast projection computation via multi-cross-polytopes)** In Eq. (2) and Eq. (3), we need to
 300 compute $HS\mathbf{v}$ in the indexing phase. If the projection time is a concern in practice, we can use the
 301 Fast Johnson–Lindenstrauss transformation to accelerate this process. Specifically, we use Alg. 2 with
 302 $R = 1$. When $L = 1$, the cost of computing $HS\mathbf{v}$ is $O(\max(d, m) \log d)$. When $L > 1$, the cost of
 303 computing $HS\mathbf{v}$ can be reduced to $O(d \log d + mL \log(d/L))$.

304 By Alg. 1 and Alg. 2, we obtain structures $S_{\text{sym}}(m, L)$ and $S_{\text{pol}}(m, L)$ virtually containing m^L
 305 projection vectors. For $S_{\text{sym}}(m, L)$, we can actually establish a deterministic relationship be-
 306 tween $J(S_{\text{sym}}(m, L))$ and (m, L) (see Lemma B.1 in Appendix). On the other hand, in practice,
 307 $J(S_{\text{pol}}(m, L))$ is often slightly larger than $J(S_{\text{sym}}(m, L))$, as will be shown in Table 1.

308 With $S_{\text{sym}}(m, L)$ and $S_{\text{pol}}(m, L)$, we are ready to present a complexity analysis of the two proposed
 309 functions, showing that they satisfy the complexity requirement in Problem 1.1 and Problem 1.2.

310 **Lemma 5.1.** *In the indexing phase, for a fixed dataset \mathcal{D} of size n , the complexities of K_S^1 and K_S^2
 311 are $O(nmd)$ and $O(nd \log d + nmd)$, respectively. In the query phase, K_S^1 requires $O(md)$ - time
 312 for random projection, and for each $\mathbf{v} \in \mathcal{D}$, it spends $O(1)$ -time for computing $K_S^1(\mathbf{q}, \mathbf{v})$, while K_S^2
 313 spends $O(d \log d + md)$ -time for random projection and random rotation, and for each $\mathbf{v} \in \mathcal{D}$, it
 314 spends $O(L)$ -time for computing $K_S^2(\mathbf{q}, \mathbf{v})$, where $L \ll d$. Particularly, if $S = S_{\text{pol}}(m, L)$ with $R = 1$,
 315 the complexities of K_S^1 and K_S^2 in the indexing phase can be reduced to $O(\max(d, m)n \log d)$ and
 316 $O(nd \log d + nmL \log(d/L))$, respectively, where m is greater than d/L by user-specification.*

318 6 APPLICATIONS TO SIMILARITY SEARCH

319 6.1 IMPROVEMENT ON CEOs-BASED TECHNIQUES

320 As for K_S^1 , we can use it to improve CEOs, which is used for MIPS and further applied to accelerate
 321 LSH-based ANNS (Andoni et al., 2015) and DBSCAN (Xu & Pham, 2024). Since CEOs is originally

324 designed for inner products, we generalize K_S^1 to $K_S^{1'}$ as follows to align with CEOs:
 325

$$326 \quad K_S^{1'}(\mathbf{q}, \mathbf{v}) = \|\mathbf{v}\| \cdot \langle \mathbf{v}, Z_{HS}(\mathbf{q}) \rangle \quad \mathbf{v} \in \mathbb{R}^d, \mathbf{q} \in \mathbb{S}^{d-1}. \quad (8)$$

327 It is easy to see that, with two minor modifications, that is, replacing $\mathbf{v} \in \mathbb{S}^{d-1}$ with $\mathbf{v} \in \mathbb{R}^d$, and
 328 replacing x with $\|\mathbf{v}\|x$ in Eq. (4), Lemma 4.2 still holds. Therefore, $K_S^{1'}$ can be regarded as a reasonable
 329 kernel function for inner products. Then, we can apply $K_S^{1'}$ to the algorithm in Pham (2021); Pham &
 330 Liu (2022); Xu & Pham (2024). We only need to make the following modification. In these algorithms,
 331 the random Gaussian matrix, which denotes the set of projection vectors, can be replaced by S_{sym} or
 332 S_{pol} , with the other parts unchanged. This substitution does not change the complexity of the original
 333 algorithms. To distinguish this projection technique based on $K_S^{1'}$ from CEOs, we refer to it as **KS1**
 334 (see Alg. 5 for the projection structure of KS1). In the experiments, we will demonstrate that KS1
 335 yields a slight improvement in recall rates over CEOs, owing to a smaller reference angle.
 336

337 6.2 A NEW PROBABILISTIC TEST IN SIMILARITY GRAPH

339 Lu et al. (2024) proposed probabilistic routing and used it in similarity graphs to accelerate ANNS. Let
 340 $dist(\cdot, \cdot)$ be the distance function for ANNS. Each node in the similarity graph represents a data vector.
 341 The definition of probabilistic routing is as follows.

342 **Definition 6.1** (Probabilistic Routing (Lu et al., 2024)). *Given a query vector \mathbf{q} , a node v in the graph,
 343 an error bound ϵ , and a distance threshold δ , for an arbitrary neighbor w of v such that $dist(w, \mathbf{q}) < \delta$,
 344 if a routing algorithm returns true for w with a probability of at least $1 - \epsilon$, then the algorithm is
 345 deemed to be $(\delta, 1 - \epsilon)$ -routing.*

346 Lu et al. (2024) proposed a $(\delta, 1 - \epsilon)$ -routing test called PEOs test. Based on K_S^2 , we propose a new
 347 routing test for ℓ_2 distance, called the **KS2 test**, as follows (see Sec. C.1 and Fig. 3 in Appendix for
 348 more details).

$$349 \quad \Sigma_{i=1}^L \mathbf{q}_i^\top \mathbf{u}_{e[i]}^i \geq A_S(e) \cdot \frac{\|\mathbf{w}\|^2/2 - \tau - \mathbf{v}^\top \mathbf{q}}{\|\mathbf{e}\|}. \quad (9)$$

351 $\mathbf{q} \in \mathbb{R}^d$ is the query, v is the visited graph node, w is the neighbor of v , and $\mathbf{e} = \mathbf{w} - \mathbf{v}$. τ is
 352 the threshold determined by the result list of graph. \mathbf{q}_i , \mathbf{e}_i denote the i -th sub-vectors of \mathbf{q} and \mathbf{e} ,
 353 respectively ($1 \leq i \leq L$). \mathbf{u}_j^i denotes the j -th element of the i -th sub-vector of \mathbf{u} . $\mathbf{u}_{e[i]}^i$ denotes the
 354 reference vector of \mathbf{e}_i among all $\{\mathbf{u}_j^i\}$'s ($1 \leq j \leq m$). In our experiments, S was set to $S_{\text{sym}}(256, L)$.
 355

356 During the traversal of the similarity graph, we check the exact distance from graph node w to q
 357 only when Ineq. (9) is satisfied; otherwise, we skip the computation of w for efficiency. A complete
 358 graph-based algorithm equipped with the KS2 test can be found in Alg. 7. By Lemma 4.3 and the same
 359 analysis in Lu et al. (2024), we can easily obtain the following result.

360 **Corollary 6.2.** *The graph-based search equipped with the KS2 test (9) is a $(\delta, 0.5)$ -routing test.*

361 **Comparison with PEOs.** Since PEOs also uses a Gaussian distribution to generate projection vectors
 362 in subspaces, as CEOs does, and does not make use of the reference-angle information, the estimation in
 363 Ineq. (9) is more accurate than that of the PEOs test. In addition, the proposed test has two advantages:
 364 (1) Ineq. (9) is much simpler than the testing inequality in the PEOs test, resulting in higher evaluation
 365 efficiency; (2) Ineq. (9) requires fewer constants to be stored, leading to a smaller index size compared
 366 to that of PEOs.

367 **Complexity analysis.** For the time complexity, for every edge e , the computation of the LHS of
 368 Ineq. (9) requires L lookups in the table and $L - 1$ additions, while the computation of the RHS of
 369 Ineq. (9) requires two additions and one multiplication. By using SIMD, we can perform the KS2
 370 test for 16 edges simultaneously. For the space complexity, for each edge, we need to store L bytes
 371 to recover $\mathbf{q}_i^\top \mathbf{u}_{e[i]}^i$, along with two scalars, that is, $A_S(e)\|\mathbf{w}\|^2/(2\|\mathbf{e}\|)$ and $A_S(e)/\|\mathbf{e}\|$, which are
 372 quantized using scalar quantization to enable fast computation of the RHS of Ineq. (9).

374 7 EXPERIMENTS

375 All experiments were conducted on a PC equipped with an Intel(R) Xeon(R) Gold 6258R CPU @
 376 2.70GHz. KS1 and KS2 were implemented in C++. The ANNS experiments used 64 threads for

378
 379 Table 1: Comparison of recall rates (%) for k -MIPS, $k = 10$. The number of projection vectors is
 380 2048. Top-5 projection vectors are probed. Probe@ n means top- n points were probed on each probed
 381 projection vector. Results are averaged over 10 runs to reduce the bias introduced by random projection.

Dataset & Method		Probe@10	Probe@100	Probe@1K	Probe@10K
Word	CEOs(2048)	34.106	71.471	90.203	98.182
	KS1($S_{\text{sym}}(2048, 1)$)	34.167	71.679	90.265	98.195
	KS1($S_{\text{pol}}(2048, 1)$)	34.395	72.078	90.678	98.404
GloVe1M	CEOs(2048)	1.773	6.920	24.166	63.545
	KS1($S_{\text{sym}}(2048, 1)$)	1.792	7.015	24.456	64.041
	KS1($S_{\text{pol}}(2048, 1)$)	1.808	7.071	24.556	64.355
GloVe2M	CEOs(2048)	2.070	6.904	21.082	54.916
	KS1($S_{\text{sym}}(2048, 1)$)	2.064	6.928	21.182	55.240
	KS1($S_{\text{pol}}(2048, 1)$)	1.996	6.979	21.262	55.394

392 indexing and a single CPU for searching. We evaluated our methods on six high-dimensional real-world
 393 datasets: **Word**, **GloVe1M**, **GloVe2M**, **Tiny**, **GIST**, and **SIFT**. Detailed statistics for these datasets
 394 are provided in Appendix D.1. More experimental results can be found in Appendix D.

396 7.1 COMPARISON WITH CEOs

398 As demonstrated in Sec. 6.1, the results of CEOs are directly used to accelerate other similarity search
 399 processes (Pham & Liu, 2022; Xu & Pham, 2024). In this context, we focus solely on the improvement
 400 of CEOs itself. We show that KS1, equipped with the structures $S_{\text{sym}}(m, 1)$ and $S_{\text{pol}}(m, 1)$, can slightly
 401 outperform CEOs(m) on the original task of CEOs, that is, k -MIPS, where m denotes the number
 402 of projection vectors and was set to 2048, following the standard configuration of the original CEOs.
 403 Since the only difference among the compared approaches is the configuration of the projection vectors,
 404 we use a unified algorithm (see construction of projection structure Alg. 5 and MIPS query processing
 405 Alg. 6 in Appendix) with the configuration of projection vectors as an input to compare their recall
 406 rates. From the results in Table. 1, we observe that: (1) in most cases, KS1 with the two proposed
 407 structures achieves slightly better performance than CEOs, supporting our claim that a smaller reference
 408 angle yields a more accurate estimation, and (2) S_{pol} generally achieves a higher recall rate than S_{sym} ,
 409 verifying that a configuration closer to the best covering yields better performance. **Since the gain of**
 410 **KS1 over CEOs originates from only one difference, that is, the distribution of the generated projected**
 411 **vectors (Gaussian vs. a more diverse distribution on the unit sphere), this result supports our claim that**
 412 **the Gaussian distribution is suboptimal.**

413 7.2 ANNS PERFORMANCE

415 We chose ScaNN (Guo et al., 2020), HNSW (Malkov & Yashunin, 2020), and HNSW+PEOs (Lu
 416 et al., 2024) as baselines, where ScaNN is a state-of-the-art quantization-based approach that performs
 417 better than IVFPQFS, and HNSW+PEOs (Lu et al., 2024) is a state-of-the-art graph-based approach
 418 that outperforms FINGER (Chen et al., 2023) and Glass (Zilliz, 2023). Like HNSW+PEOs, KS2
 419 is implemented on HNSW, dubbed HNSW+KS2. DiskANN (Subramanya et al., 2019) is excluded
 420 because it is orthogonal to KS2 and focuses on optimization for external storage. ADSampling (Gao &
 421 Long, 2023) is excluded because it is designed for a non-SIMD environment. The parameter settings of
 422 all compared approaches and additional experimental results can be found in Appendix D.

423 **(1) Index size and indexing time.** Regarding indexing time, after constructing the HNSW graph, we
 424 require an additional 42s, 164s, 165s, 188s, 366s, and 508s to align the edges and build the KS2 testing
 425 structure on **Word**, **GloVe1M**, **GIST**, **GloVe2M**, **SIFT**, and **Tiny**, respectively. This overhead is less
 426 than 25% of the graph construction time. In practice, users can reduce the parameter efc to shorten
 427 indexing time while still preserving the superior search performance of HNSW+KS2. As for the index
 428 size, it largely depends on the parameter L , which will be discussed later.

429 **(2) Query performance.** From the results in Fig. 1, we make the following observations. (i) Except
 430 for **Word**, HNSW+KS2 achieves the best performance among all compared methods. In particular,
 431 HNSW+KS2 accelerates HNSW by a factor of 2.5 to 3, and is 1.1 to 1.3 times faster than HNSW+PEOs,
 432 demonstrating the superiority of KS2 over PEOs. (ii) Compared with ScaNN, the advantage of

HNSW+KS2 is especially evident in the recall region below 85%, highlighting the high efficiency of the routing test. On the other hand, in the high-recall region for **Word**, ScaNN outperforms HNSW+KS2 due to the connectivity issues of HNSW.

(3) Impact of L . The only tunable parameter in KS2 is L . Generally speaking, the larger L is, the larger the index size is. On the other hand, a larger L can lead to a smaller reference angle and yield better search performance. Hence, L can be used to achieve different trade-offs between index size and search performance. In Fig. 2, we show the impact of L on index size and search performance. From the results, we have the following observations. (i) The index size of HNSW+KS2 is slightly smaller than that of HNSW+PEOs due to the storage of fewer scalars. (ii) When $d' = d/L$ is around 16, HNSW+KS2 achieves the best search performance. This is because a larger L also leads to longer testing time and $d' = 16$ is sufficient to obtain a small enough reference angle.

486 8 CONCLUSIONS
487

488 In this paper, we studied two angle-testing problems in high-dimensional Euclidean spaces: angle
489 comparison and angle thresholding. To address these problems, we proposed two probabilistic kernel
490 functions that are based on reference angles and are easy to implement. To minimize the reference
491 angle, we further investigated the structure of the projection vectors and established a relationship
492 between the expected value of the reference angle and the proposed projection vector structure. Based
493 on these two functions, we introduced the KS1 projection and the KS2 test. In the experiments, we
494 showed that KS1 achieves a slight accuracy improvement over CEOs, and that HNSW+KS2 delivers
495 better search performance than the existing state-of-the-art ANNS approaches.

496 REFERENCES
497

498 Alexandr Andoni and Daniel Beaglehole. Learning to hash robustly, guaranteed. In *ICML*, pp. 599–618,
499 2022.

500 Alexandr Andoni and Piotr Indyk. E2lsh manual. In <http://web.mit.edu/andoni/www/LSH>.

501 Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest neighbor
502 in high dimensions. *Commun. ACM*, 51(1):117–122, 2008.

503 Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt. Practical
504 and optimal LSH for angular distance. In *NeurIPS*, pp. 1225–1233, 2015.

505 Artem Babenko and Victor S. Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors.
506 In *CVPR*, pp. 2055–2063, 2016.

507 Dmitry Baranchuk, Dmitry Persiyanov, Anton Sinitin, and Artem Babenko. Learning to route in
508 similarity graphs. In *ICML*, pp. 475–484, 2019.

509 Sergiy Borodachov. Optimal antipodal configuration of 2d points on a sphere in rd for coverings. In
510 *arxiv*, 2022.

511 Sergiy V. Borodachov, Douglas P. Hardin, and Edward B. Saff. *Discrete Energy on Rectifiable Sets*.
512 Springer Monographs in Mathematics. Springer, 2019.

513 Moses Charikar. Similarity estimation techniques from rounding algorithms. In John H. Reif (ed.),
514 *STOC*, pp. 380–388. ACM, 2002.

515 Patrick H. Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui
516 Hsieh. FINGER: fast inference for graph-based approximate nearest neighbor search. In *WWW*, pp.
517 3225–3235. ACM, 2023.

518 Ryan R. Curtin, Parikshit Ram, and Alexander G. Gray. Fast exact max-kernel search. *Statistical
519 Analysis and Data Mining*, 7(1):1–9, February–December 2014.

520 Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jiu Liu, and James Cheng. Norm-explicit quantization:
521 Improving vector quantization for maximum inner product search. In *AAAI*, pp. 51–58, 2020.

522 Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. Fast approximate nearest neighbor search with
523 the navigating spreading-out graph. *PVLDB*, 12(5):461–474, 2019.

524 Cong Fu, Changxu Wang, and Deng Cai. High dimensional similarity search with satellite system
525 graph: Efficiency, scalability, and unindexed query compatibility. *IEEE Trans. Pattern Anal. Mach.
526 Intell.*, 44(8):4139–4150, 2022.

527 Jianyang Gao and Cheng Long. High-dimensional approximate nearest neighbor search: with reliable
528 and efficient distance comparison operations. *Proc. ACM Manag. Data*, 1(2):137:1–137:27, 2023.

529 Jianyang Gao and Cheng Long. Rabitq: Quantizing high-dimensional vectors with a theoretical error
530 bound for approximate nearest neighbor search. *Proc. ACM Manag. Data*, 2(3):167, 2024.

531 Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization. *IEEE Trans.
532 Pattern Anal. Mach. Intell.*, 36(4):744–755, 2014.

540 Yutong Gou, Jianyang Gao, Yuexuan Xu, and Cheng Long. Symphonyqg: Towards symphonious
 541 integration of quantization and graph for approximate nearest neighbor search. *Proc. ACM Manag.
 542 Data*, 3(1):80:1–80:26, 2025.

543 Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar.
 544 Accelerating large-scale inference with anisotropic vector quantization. In *ICML*, pp. 3887–3896,
 545 2020.

546 Gaurav Gupta, Tharun Medini, Anshumali Shrivastava, and Alexander J. Smola. BLISS: A billion
 547 scale index using iterative re-partitioning. In *KDD*, pp. 486–495. ACM, 2022.

548 Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the curse of
 549 dimensionality. In *STOC*, pp. 604–613, 1998.

550 William B Johnson, Joram Lindenstrauss, et al. Extensions of lipschitz mappings into a hilbert space.
 551 *Contemporary mathematics*, 26(189-206):1, 1984.

552 Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search.
 553 *IEEE Trans. Pattern Anal. Mach. Intell.*, 33(1):117–128, 2011.

554 Yifan Lei, Qiang Huang, Mohan Kankanhalli, and Anthony Tung. Sublinear time nearest neighbor
 555 search over generalized weighted space. In *ICML*, pp. 3773–3781, 2019.

556 Wuchao Li, Chao Feng, Defu Lian, Yuxin Xie, Haifeng Liu, Yong Ge, and Enhong Chen. Learning
 557 balanced tree indexes for large-scale vector retrieval. In *KDD*, pp. 1353–1362. ACM, 2023.

558 Kejing Lu, Chuan Xiao, and Yoshiharu Ishikawa. Probabilistic routing for graph-based approximate
 559 nearest neighbor search. In *ICML*, pp. 33177–33195, 2024.

560 Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor search using
 561 hierarchical navigable small world graphs. *IEEE Trans. Pattern Anal. Mach. Intell.*, 42(4):824–836,
 562 2020.

563 Julieta Martinez, hobbit Zakhmi, Holger H. Hoos, and James J. Little. Lsq++: Lower running time and
 564 higher recall in multi-codebook quantization. In *ECCV*, pp. 508–523, 2018.

565 Javier Alvaro Vargas Muñoz, Marcos André Gonçalves, Zanoni Dias, and Ricardo da Silva Torres.
 566 Hierarchical clustering-based graphs for large scale approximate nearest neighbor search. *Pattern
 567 Recognit.*, 96, 2019.

568 Yun Peng, Byron Choi, Tszi Nam Chan, Jianye Yang, and Jianliang Xu. Efficient approximate nearest
 569 neighbor search in multi-dimensional databases. *Proc. ACM Manag. Data*, 1(1):54:1–54:27, 2023.

570 Ninh Pham. Simple yet efficient algorithms for maximum inner product search via extreme order
 571 statistics. In *KDD*, pp. 1339–1347, 2021.

572 Ninh Pham and Tao Liu. Falconn++: A locality-sensitive filtering approach for approximate nearest
 573 neighbor search. In *NeurIPS*, pp. 31186–31198, 2022.

574 Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnaswamy, and
 575 Rohan Kadekodi. Rand-nsg: Fast accurate billion-point nearest neighbor search on a single node. In
 576 *NeurIPS*, pp. 13748–13758, 2019.

577 Jiadong Xie, Jeffrey Xu Yu, and Yingfan Liu. Graph based k-nearest neighbor search revisited. *ACM
 578 Trans. Database Syst.*, 50(4):14:1–14:30, 2025.

579 Haochuan Xu and Ninh Pham. Scalable DBSCAN with random projections. In *NeurIPS*, 2024.

580 Xiaoliang Xu, Mengzhao Wang, Yuxiang Wang, and Dingcheng Ma. Two-stage routing with optimized
 581 guided search and greedy algorithm on proximity graph. *Knowl. Based Syst.*, 229:107305, 2021.

582 Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. Norm-ranging LSH for maximum
 583 inner product search. In *NeurIPS*, pp. 2956–2965, 2018.

594 Mingyu Yang, Wentao Li, Jiabao Jin, Xiaoyao Zhong, Xiangyu Wang, Zhitao Shen, Wei Jia, and Wei
595 Wang. Effective and general distance computation for approximate nearest neighbor search. In
596 *ICDE*, pp. 1098–1110, 2025.
597
598 **Zilliz**. Graph library for approximate similarity search. <https://github.com/zilliztech/pyglass>, 2023.
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648
649 A NOTATIONS650 Table 2 lists the main notations used in this paper.
651652 Table 2: Frequently used notations.
653

Notation	Explanation
\mathcal{D}	Dataset
n	Size of Dataset
d	Data dimension
\mathbf{v}	Data vector in \mathcal{D}
\mathbb{S}^{d-1}	$d - 1$ dimensional sphere
\mathbf{q}	Query
m	The number of projection vectors
ϵ	Error rate
S	Fixed set of m points on \mathbb{S}^{d-1}
H	Random rotation matrix
$Z_S(\mathbf{v})$	$\operatorname{argmax}_{\mathbf{u} \in S} \langle \mathbf{u}, \mathbf{v} \rangle$
$A_S(\mathbf{v})$	$\langle \mathbf{v}, Z_S(\mathbf{v}) \rangle$
L	The number of space partitions
e	Edge in similarity graph
\mathbf{w}	Neighbor vector of \mathbf{v} , connected by edge e
$\ e\ $	Length of edge e
τ	Threshold determined by the result list of graph
$\mathbf{q}_i, \mathbf{e}_i$	i -th sub-vectors of \mathbf{q} ($1 \leq i \leq L$), e , respectively
\mathbf{u}_j^i	j -th element of the i -th sub-vector of \mathbf{u} , where $1 \leq i \leq L$ and $1 \leq j \leq m$
$\mathbf{u}_{e[i]}^i$	Reference vector of e_i among all $\{\mathbf{u}_j^i\}$'s ($1 \leq j \leq m$)

674 B PROOF OF LEMMAS
675676 B.1 PROOF OF LEMMA 4.2
677678 **Proof:** (1) For the first statement, due to the existence of random rotation matrix H and symmetry, we
679 only need to prove the following claim:680 **Claim:** Let \mathbf{q} and \mathbf{v} be two vectors on \mathbb{S}^{d-1} such that the angle between \mathbf{q} and \mathbf{v} is ϕ . Let C be a
681 spherical cross-section defined as follows.
682

683
$$C = \{\mathbf{u} \in \mathbb{S}^{d-1} : \langle \mathbf{u}, \mathbf{q} \rangle = \cos \psi\}. \quad (10)$$

684 If \mathbf{u} is a vector randomly drawn from C , the CDF of $\langle \mathbf{v}, \mathbf{u} \rangle$ is $I_t\left(\frac{d-2}{2}, \frac{d-2}{2}\right)$, where $t = \frac{1}{2} + \frac{x - \cos \phi \cos \psi}{2 \sin \phi \sin \psi}$.
685686 **Proof of Claim:** Without loss of generality, we can rotate the coordinate system so that
687

688
$$\mathbf{q} = (1, 0, \dots, 0) \in \mathbb{R}^d. \quad (11)$$

689 Then, by the definition of \mathbf{u} , \mathbf{u} can be written as follows
690

691
$$\mathbf{u} = (\cos \psi, \sin \psi \cdot \boldsymbol{\omega}) \quad (12)$$

692 where $\boldsymbol{\omega} \in \mathbb{S}^{d-2} \in \mathbb{R}^{d-1}$ is a unit vector in the subspace orthogonal to \mathbf{q} . Similarly, \mathbf{v} can be expressed
693 as follows.

694
$$\mathbf{v} = (\cos \phi, \sin \phi \cdot \boldsymbol{\eta}) \quad (13)$$

695 where $\boldsymbol{\eta} \in \mathbb{S}^{d-2}$ is fixed and corresponds to the projection of \mathbf{v} onto the orthogonal subspace of \mathbf{q} .
696 Then $\langle \mathbf{v}, \mathbf{u} \rangle$ can be written as follows.
697

698
$$X := \langle \mathbf{v}, \mathbf{u} \rangle = \cos \phi \cos \psi + \sin \phi \sin \psi \cdot W \quad (14)$$

699 where $W = \langle \boldsymbol{\omega}, \boldsymbol{\eta} \rangle$ is a random variable. A well-known fact says that W is related to the Beta
700 distribution as follows.

701
$$T = \frac{W+1}{2} \sim \text{Beta}\left(\frac{d-2}{2}, \frac{d-2}{2}\right). \quad (15)$$

702 Therefore, we have
 703

704
$$F_X(x) = \mathbb{P}(X \leq x) = \mathbb{P}(T \leq \frac{1}{2} + \frac{x - \cos \phi \cos \psi}{2 \sin \phi \sin \psi}). \quad (16)$$

 705

706 Thus, $F_X(x) = I_t(\frac{d-2}{2}, \frac{d-2}{2})$, where $t = \frac{1}{2} + \frac{x - \cos \phi \cos \psi}{2 \sin \phi \sin \psi}$.
 707

708 (2) For the second statement, due to the existence of random rotation matrix H and symmetry, we only
 709 need to prove the following claim.

710 **Claim:** Given three normalized vectors $\mathbf{v}_1, \mathbf{v}_2$ and \mathbf{q} , let $\langle \mathbf{q}, \mathbf{v}_1 \rangle$ be larger than $\langle \mathbf{q}, \mathbf{v}_2 \rangle$. Let C be the
 711 spherical cross-section defined in the proof of statement 1, and let \mathbf{u} be a normalized vector drawn
 712 randomly from C . As ψ decreases, $\mathbb{P}[\langle \mathbf{u}, \mathbf{v}_1 \rangle > \langle \mathbf{u}, \mathbf{v}_2 \rangle]$ increases.
 713

714 **Proof of Claim:** For $\mathbf{u} = \cos \psi \cdot \mathbf{q} + \sin \psi \cdot \mathbf{\omega}'$, where $\mathbf{\omega}'$ is a random normalized vector, taking \mathbf{u} 's
 715 inner products with \mathbf{v}_1 and \mathbf{v}_2 , we obtain:

716
$$\langle \mathbf{v}_1, \mathbf{u} \rangle = \cos \psi \langle \mathbf{v}_1, \mathbf{q} \rangle + \sin \psi \langle \mathbf{v}_1, \mathbf{\omega}' \rangle. \quad (17)$$

 717

718
$$\langle \mathbf{v}_2, \mathbf{u} \rangle = \cos \psi \langle \mathbf{v}_2, \mathbf{q} \rangle + \sin \psi \langle \mathbf{v}_2, \mathbf{\omega}' \rangle. \quad (18)$$

719 Then, we have
 720

721
$$\mathbb{P}[\langle \mathbf{u}, \mathbf{v}_1 \rangle > \langle \mathbf{u}, \mathbf{v}_2 \rangle] \Leftrightarrow \mathbb{P}[\langle \mathbf{v}_1, \mathbf{\omega}' \rangle - \langle \mathbf{v}_2, \mathbf{\omega}' \rangle > \Delta_q \cot \psi] \quad (19)$$

 722 where $\Delta_q = \langle \mathbf{v}_2, \mathbf{q} \rangle - \langle \mathbf{v}_1, \mathbf{q} \rangle < 0$ and the threshold $\Delta_q \cot \psi$ is naturally set to 0 when $\psi = \pi/2$.
 723 As ψ decreases, $\cot \psi$ increases, making $\Delta_q \cot \psi$ smaller. Since $\langle \mathbf{v}_1, \mathbf{\omega}' \rangle - \langle \mathbf{v}_2, \mathbf{\omega}' \rangle$ is a random
 724 variable due to the existence of $\mathbf{\omega}'$, the probability that it exceeds a given threshold increases as the
 725 threshold decreases. Thus, as ψ decreases, the probability that the above inequality holds increases.
 726

B.2 PROOF OF LEMMA 4.3

727 We consider the following four cases based on the value of $\cos \langle \mathbf{q}, \mathbf{v} \rangle$.
 728

729 **Case 1: $0 < \cos \langle \mathbf{q}, \mathbf{v} \rangle < 1$.**

730 Let \mathbf{u} be a random vector drawn randomly from a spherical cross-section C' defined as follows.
 731

732
$$C' = \{\mathbf{u} \in \mathbb{S}^{d-1} : \langle \mathbf{u}, \mathbf{v} \rangle = \cos \psi\}. \quad (20)$$

 733

734 Next, we construct a simplex with vertices O, A, B, C as follows. We use \overrightarrow{OA} to denote vector \mathbf{v} , where
 735 O denotes the origin. Then we can build a unique hyperplane H' through point A and perpendicular to
 736 \mathbf{v} . we extend \mathbf{q} and \mathbf{u} along their respective directions to \overrightarrow{OB} and \overrightarrow{OC} such that B and C are on H' .
 737 Then, we only need to prove the following claim.
 738

739 **Claim:** Let O, A, B, C be four points \mathbb{R}^d . \overrightarrow{OA} is perpendicular to \overrightarrow{AB} , and \overrightarrow{OA} is perpendicular to \overrightarrow{AC} .
 740 The angle between \overrightarrow{OA} and \overrightarrow{OC} is ψ , and the angle between \overrightarrow{OA} and \overrightarrow{OB} is ϕ . If the angle between \overrightarrow{AB}
 741 and \overrightarrow{AC} is α , then $\cos \beta$, where β denotes the angle between \overrightarrow{OB} and \overrightarrow{OC} , can be expressed as follows.
 742

743
$$\cos \beta = \cos \phi \cos \psi + \sin \phi \sin \psi \cos \alpha. \quad (21)$$

744 This claim can be easily proved by elementary transformations. Since \overrightarrow{AB} is fixed and \overrightarrow{AC} follows the
 745 uniform distribution of a sphere in \mathbb{R}^{d-1} , $\cos \alpha$ and $\cos \beta$ are random variables. Therefore, we have the
 746 following equalities.
 747

748
$$\begin{aligned} \mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta] &= \mathbb{P}[\cos \beta \geq \cos \theta \cos \psi] \\ 749 &= \mathbb{P}[\cos \alpha \geq \frac{\cos \theta - \cos \phi}{\sin \phi \tan \psi}]. \end{aligned} \quad (22)$$

 750

751 We further consider the following two cases.
 752

753 **Case 1': $\cos \phi \geq \cos \theta$.**

754
$$\mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta] \geq \mathbb{P}[\cos \alpha \geq 0] = 1/2. \quad (23)$$

 755

756 **Case 2': $\cos \phi < \cos \theta$.**

756 **Algorithm 3** Configuration of S via random projection

757 **Input:** L is the level; $d = Ld'$ is the data dimension; m is the number of vectors in each level
 758 **Output:** $S_{\text{ran}}(m, L)$, which is physically represented by mL sub-vectors with dimension d'
 759 1 **for** $l = 1$ **to** L **do**
 760 2 Generate m points randomly and independently on $S^{d'-1}$
 761 3 Scale the norm of all m points in this iteration to $1/\sqrt{L}$ and collect the vectors after scaling

764 By the properties of Beta distribution discussed in the proof of Lemma 4.2 and the property of symmetry
 765 of incomplete regularized Beta function, we have

766

$$\mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta] = I_{t'} \left(\frac{d-2}{2}, \frac{d-2}{2} \right) \quad (24)$$

767

768 where $t' = \frac{1}{2} - \frac{\cos \theta - \cos \phi}{2 \sin \phi \tan \psi}$. Moreover, since $\tan \psi$ is strictly increasing in ψ when $\psi \in (0, \frac{\pi}{2})$,
 769 $\mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta]$ is increasing in ψ . On the other hand, it is easy to see that $\mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta]$
 770 is strictly decreasing in ϕ when $\phi \in (\theta, \pi)$. Hence, Lemma 4.3 in Case 1 is proved.

771 **Case 2:** $\cos \langle \mathbf{q}, \mathbf{v} \rangle = 0$.

772 In this case, without loss of generality, we can define $\mathbf{q}, \mathbf{v}, \mathbf{u}$ as follows.

773

$$\mathbf{q} = (0, 1, \dots, 0) \in \mathbb{S}^{d-1}. \quad (25)$$

774

775

$$\mathbf{v} = (1, 0, \dots, 0) \in \mathbb{S}^{d-1}. \quad (26)$$

776

777

$$\mathbf{u} = (\cos \psi, \sin \psi \cdot \boldsymbol{\omega}) \in \mathbb{S}^{d-1} \quad \boldsymbol{\omega} \sim U(\mathbb{S}^{d-2}). \quad (27)$$

778

779 Therefore, we have

780

$$\mathbb{P}[K_S^2(\mathbf{q}, \mathbf{v}) \geq \cos \theta] = \mathbb{P}[\cos \alpha \geq \cos \theta / \tan \psi] \quad (28)$$

781

782 which is consistent with $\phi = \pi/2$ in Case 1. The following analysis is similar to that in Case 1.

783 **Case 3:** $-1 < \cos \langle \mathbf{q}, \mathbf{v} \rangle < 0$.

784 Instead of \mathbf{v} and \mathbf{u} , we consider $-\mathbf{v}$ and $-\mathbf{u}$, and construct the simplex based on $\mathbf{q}, -\mathbf{v}$ and $-\mathbf{u}$ as in
 785 Case 1. Then, with the reverse of sign, we finally obtain an equation similar to Eq. (21), except with α
 786 replaced by $\pi - \alpha$. The following analysis is similar to that of Case 1.

787 **Case 4:** $\cos \langle \mathbf{q}, \mathbf{v} \rangle = 1$ or $\cos \langle \mathbf{q}, \mathbf{v} \rangle = -1$.

788 In this case, $\cos \langle \mathbf{q}, \mathbf{u} \rangle = \pm \cos \psi$, and the conclusion is trivial.

789 **B.3 ESTIMATION OF $J(S_{\text{sym}}(m, L))$**

790 As discussed in Sec 5, for $S_{\text{sym}}(m, L)$, we can establish a relationship between $J(S_{\text{sym}}(m, L))$ and
 791 (m, L) as follows.

792 **Lemma B.1.** Suppose that d is divisible by L , and $d = Ld'$, where $d' \geq 3$. Let $c_{d'} = \frac{\Gamma(\frac{d'}{2})}{\sqrt{\pi} \Gamma(\frac{d'-1}{2})}$,

793 $f(y) = c_{d'}(1 - y^2)^{\frac{d'-3}{2}}$ and $F(y) = \int_{-1}^y f(t) dt$. We have

794

$$J(S_{\text{sym}}(m, L)) > m\sqrt{L} \frac{\Gamma(\frac{d+L}{2L}) \Gamma(\frac{d}{2})}{\Gamma(\frac{d}{2L}) \Gamma(\frac{d+1}{2})} \int_{-1}^1 y F(y)^{m-1} f(y) dy. \quad (29)$$

795

802 The RHS of Ineq. (29) actually denotes $J(S_{\text{ran}})$, where S_{ran} is the configuration of purely random
 803 projections (see Alg. 3 for more detail). A numerical computation of the RHS of Ineq. (29) is shown in
 804 Fig. 5 in Appendix.

805 **Proof:** First, we introduce an auxiliary algorithm Alg. 3, which relies on purely random projection.
 806 The structure S produced in Alg. 3 is denoted by S_{ran} . We then present the following claim.

807 **Claim:** $J(S_{\text{sym}}(m, L)) > J(S_{\text{ran}}(m, L))$.

808 To prove this claim, we introduce the following definition.

810 **Definition B.2.** (Stochastic order) Let X and Y be two real-valued random variables. We say that
 811 $X <_{st} Y$, if for all $t \in \mathbb{R}$, the CDFs of X and Y satisfy $F_X(t) > F_Y(t)$.
 812

813 Let $L = 1$ and fix m . We use X to denote the random variable $A_{S_{\text{ran}}}(\mathbf{v})$, where \mathbf{v} is drawn randomly
 814 from \mathbb{S}^{d-1} , and Y to denote $A_{S_{\text{sym}}}(\mathbf{v})$. Clearly, $X \in [-1, 1]$ and $Y \in [0, 1]$. We have the following:
 815

$$\mathbb{P}(Y > t) > \mathbb{P}(X > t) \quad t \in (0, 1). \quad (30)$$

816 This can be easily proved, since when the angular radius is less than $\pi/2$, the two spherical caps
 817 corresponding to the antipodal pair do not overlap. Therefore, we have $X <_{st} Y$ and $\mathbb{E}[X] < \mathbb{E}[Y]$.
 818 This completes the proof of the claim.
 819

820 Then we only need to focus on $J(S_{\text{ran}}(m, L))$ and prove that it is equal to the RHS of Ineq. (29). Let
 821 $\mathbf{v} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_L] \in \mathbb{R}^n$ be a vector drawn randomly from \mathbb{S}^{d-1} , where d is assumed to be divisible
 822 by L and $d = Ld'$. Let $r_L(\mathbf{v})$ be the regularized vector w.r.t. \mathbf{v} . That is,

$$823 \quad r_L(\mathbf{v}) = \left[\frac{\mathbf{v}_1}{\sqrt{L}\|\mathbf{v}_1\|}, \frac{\mathbf{v}_2}{\sqrt{L}\|\mathbf{v}_2\|}, \dots, \frac{\mathbf{v}_L}{\sqrt{L}\|\mathbf{v}_L\|} \right]. \quad (31)$$

825 Let $T(d, L) = \cos \langle \mathbf{v}, r_L(\mathbf{v}) \rangle$. For every i , let $\mathbf{u}_i = \mathbf{v}_i / \|\mathbf{v}_i\| \in \mathbb{S}^{d'-1}$. Then we select m vectors from
 826 $\mathbb{S}^{d'-1}$ randomly and independently. Suppose that, among m generated vectors, \mathbf{w} is the vector having
 827 the smallest angle to \mathbf{u}_i , and we use $T'(d', L)$ to denote $\cos \langle \mathbf{w}, \mathbf{u}_i \rangle$. Since the choice of \mathbf{w} for every
 828 \mathbf{u}_i is independent to the value of $\cos \langle \mathbf{v}, r_L(\mathbf{v}) \rangle$, we have the following result:
 829

$$830 \quad \mathbb{E}[A_S(\mathbf{v})] = \mathbb{E}[T(d, L)] \times \mathbb{E}[T'(d', L)]. \quad (32)$$

831 For $\mathbb{E}[T(d, L)]$, since $(\|\mathbf{v}_1\|^2, \|\mathbf{v}_2\|^2, \dots, \|\mathbf{v}_L\|^2)$ follows a Dirichlet distribution with parameters
 832 $(\frac{d}{2L}, \frac{d}{2L}, \dots, \frac{d}{2L})$, each $\|\mathbf{v}_i\|^2$ marginally follows a Beta distribution with parameters $(\frac{d}{2L}, \frac{d(L-1)}{2L})$.
 833 Then by the properties of Beta distribution, we have

$$834 \quad \mathbb{E}[T(d, L)] = \sqrt{L} \frac{\Gamma(\frac{d+L}{2L})\Gamma(\frac{d}{2})}{\Gamma(\frac{d}{2L})\Gamma(\frac{d+1}{2})}. \quad (33)$$

837 Next, we consider $\mathbb{E}[T'(d', L)]$. Because of the rotational symmetry of the sphere, the distribution of
 838 the inner product $Z = \langle \mathbf{u}, \mathbf{v} \rangle$ (for fixed \mathbf{v} and uniformly random \mathbf{u}) depends only on the dimension d' .
 839 It has the following density on $[-1, 1]$:

$$840 \quad f_Z(z) = c_{d'} (1 - z^2)^{\frac{d'-3}{2}} \quad (34)$$

841 where $c_{d'}$ is defined as follows.

$$843 \quad c_{d'} = \frac{\Gamma\left(\frac{d'}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{d'-1}{2}\right)}. \quad (35)$$

845 Let Z_1, \dots, Z_n be i.i.d. copies of $Z = \langle \mathbf{u}, \mathbf{v} \rangle$. Then:

$$847 \quad Y = \max(Z_1, \dots, Z_m). \quad (36)$$

848 The cumulative distribution function (CDF) of Z is:

$$849 \quad F_Z(z) = \int_{-1}^z f_Z(t) dt. \quad (37)$$

851 Thus, the CDF of $Y = Y(d', m)$ is:

$$853 \quad F_Y(y) = \mathbb{P}(Y \leq y) = F_Z(y)^m, \quad (38)$$

854 and the corresponding density is:

$$855 \quad f_Y(y) = \frac{d}{dy} F_Z(y)^m = m F_Z(y)^{m-1} f_Z(y). \quad (39)$$

857 Therefore, we have the following result.

$$859 \quad \mathbb{E}[Y] = \int_{-1}^1 y f_Y(y) dy = m \int_{-1}^1 y F_Z(y)^{m-1} f_Z(y) dy. \quad (40)$$

861 Combining the previous results, we get the following result.

$$863 \quad J(S_{\text{ran}}(m, L)) = m \sqrt{L} \frac{\Gamma(\frac{d+L}{2L})\Gamma(\frac{d}{2})}{\Gamma(\frac{d}{2L})\Gamma(\frac{d+1}{2})} \int_{-1}^1 y F_Z(y)^{m-1} f_Z(y) dy. \quad (41)$$

Figure 3: An illustration of the KS2 test.

Figure 4: An illustration of Falconn, CEOs, and the proposed structure KS1.

C SUPPLEMENTARY MATERIALS

C.1 EXPLANATION OF ROUTING TEST IN INEQ. (9)

According to Ineq. (9), there are three core terms I, II, and III, where $I = \sum_{i=1}^L \mathbf{q}_i^\top \mathbf{u}_{e[i]}^i$, $II = A_S(\mathbf{v})$, and $III = \frac{\|\mathbf{w}\|^2/2 - \tau - \mathbf{v}^\top \mathbf{q}}{\|\mathbf{e}\|}$. Here, I/II is exactly the second designed function K_S^2 ; the computation of I depends on PQ (Jégou et al., 2011). III denotes the threshold for K_S^2 and is explained in the original paper of PEOs (see routing test Eq. (9) in Lu et al. (2024)).

C.2 ILLUSTRATION OF RANDOM PROJECTION TECHNIQUES FOR ANGLE ESTIMATION

An illustration is shown in Fig. 4. In this figure, \mathbf{q} represents a query and \mathbf{v} is a data vector. For Falconn, if \mathbf{q} and \mathbf{v} are mapped to the same vector, they are considered close. For CEOs and KS1, the inner product $\mathbf{v}^\top \mathbf{u}$, where \mathbf{u} is the projection vector closest to \mathbf{q} , is computed to obtain a more accurate estimate of $\mathbf{q}^\top \mathbf{v}$. The key difference between CEOs and KS1 lies in the structure of the projection vectors. While CEOs uses projection vectors sampled from a Gaussian distribution, KS1 employs a more balanced structure in which all projection vectors lie on the surface of a sphere. By applying a random rotation matrix and constructing a spherical cross-section centered at \mathbf{q} , we can establish the required statistical relationship between $\mathbf{q}^\top \mathbf{u}$ and $\mathbf{q}^\top \mathbf{v}$.

C.3 ANNS AND SIMILARITY GRAPHS

As one of the most fundamental problems, approximate nearest neighbor search (ANNS) has seen a surge of interest in recent years, leading to the development of numerous approaches across different paradigms. These include tree-based methods (Curtin et al., 2014), hashing-based methods (Andoni & Indyk, 2008; Lei et al., 2019; Andoni & Beaglehole, 2022; Andoni et al., 2015; Pham & Liu, 2022), vector quantization (VQ)-based methods (Jégou et al., 2011; Ge et al., 2014; Babenko & Lempitsky, 2016; Guo et al., 2020), learning-based methods (Gupta et al., 2022; Li et al., 2023), and graph-based methods (Malkov & Yashunin, 2020; Subramanya et al., 2019; Fu et al., 2019; 2022; Gao & Long, 2023; Peng et al., 2023; Xie et al., 2025; Yang et al., 2025).

918 **Algorithm 4** Graph-based ANNS with routing

919 **Input:** Query q , # results K , graph index G

920 **Output:** K -NN of q

921 4 $R \leftarrow \emptyset$ // an ordered list of results, $|R| \leq efs$

922 5 $P \leftarrow \{ \text{entry node } v_0 \in G \}$ // a priority queue

923 6 **while** $P \neq \emptyset$ **do**

924 7 $v \leftarrow P.pop()$; **foreach** unvisited neighbor u of v **do**

925 8 **if** $|R| < efs$ **then** $\delta \leftarrow \infty$;

926 9 **else** $p \leftarrow R[efs]$, $\delta \leftarrow dist(p, q)$;

927 10 **if** RoutingTest(u, v, q, δ) = **true** **then**

928 11 **if** $dist(u, q) < \delta$ **then**

929 12 $R.push(u)$; $P.push(u)$;

930 13 **return** ($\{ R[1], \dots, R[K] \}$)

931

932

933 Among these, graph-based methods are widely regarded as the state-of-the-art. Currently, three main

934 types of optimizations are used to enhance their search performance: (1) improved edge-selection

935 strategies, (2) more effective routing techniques, and (3) quantization of raw vectors. These approaches

936 are generally orthogonal to one another. Since the proposed structure, PEOs, belongs to the second

937 category, we briefly introduce several highly relevant works below. TOGG-KMC (Xu et al., 2021)

938 and HCNNG (Muñoz et al., 2019) use KD-trees to determine the direction of the query and restrict

939 the search to points in that direction. While this estimation is computationally efficient, it results in

940 relatively low query accuracy, limiting their improvements over HNSW (Malkov & Yashunin, 2020).

941 FINGER (Chen et al., 2023) examines all neighbors and estimates their distances to the query. For

942 each node, FINGER locally generates promising projection vectors to define a subspace, then uses

943 collision counting which is similar to SimHash to approximate distances within each visited subspace.

944 Learn-to-Route (Baranchuk et al., 2019) learns a routing function using auxiliary representations that

945 guide optimal navigation from the starting vertex to the nearest neighbor. Recently, Lu et al. (2024)

946 proposed PEOs, which leverages space partitioning and random projection techniques to estimate a

947 random variable representing the angle between each neighbor and the query vector. By aggregating

948 projection information from multiple subspaces, PEOs substantially reduces the variance of this

949 estimated distribution, significantly improving query accuracy.

950 Recently, a related quantization method RaBitQ (Gao & Long, 2024) was proposed and used for the

951 acceleration of similarity graphs (Gou et al., 2025). Notably, RaBitQ can be viewed as a special case of

952 KS2: when $m = 2$ and $L = d$, RaBitQ has exactly the same projection structure as KS2. On the other

953 hand, Lu et al. (2024) shows that when L is very large, an additional error will increase significantly.

954 Thus, if the tradeoff between index size and search performance is taken into account, choosing $L = d$

955 may not be ideal. Meanwhile, when RaBitQ is applied to similarity graphs, the additional overhead to

956 accommodate the index is very large, consuming about 2–4 times the size of the dataset.

957 C.4 ALGORITHMS RELATED TO KS1 AND KS2

958 Alg. 5 and Alg. 6 are used to compare the probing accuracies of CEOs and KS1, while Alg. 7 presents

959 the graph-based search equipped with the KS2 test. Because Alg. 6 shares strong similarities with the

960 probabilistic routing mechanism in Lu et al. (2024), we provide further clarification through Alg. 7.

961 In Alg. 7, the list R serves as an ordered container of at most efs elements ($efs \geq K$). Using a graph

962 index $G = (V, E)$ constructed over the dataset, ANNS results are obtained by traversing this graph,

963 as summarized in Alg. 7. The search starts from an entry node $v_0 \in G$ and maintains R , which holds

964 the current best candidates, together with a priority queue P that stores nodes yet to be explored. A

965 neighbor of the current node is inserted into the priority queue whenever it is closer to q than the farthest

966 element in R , or whenever R has not reached its capacity. Nodes are repeatedly popped from the

967 priority queue to explore their neighbors, and the procedure terminates once the queue becomes empty.

968 In practice, additional optimizations—such as early stopping or pruning strategies—are commonly

969 adopted to further accelerate the process (Malkov & Yashunin, 2020).

970 A straightforward implementation would compute the exact distance between q and every encountered

971 neighbor. However, a routing test can be used to decide whether an exact distance evaluation is needed.

972

Algorithm 5 Construction of the Projection Structure of KS1

973

Input: \mathcal{D} is the dataset with cardinality n , and S is the configuration of m projection vectors (CEOs: $m/2$ random Gaussian vectors along with their antipodal vectors; KS1: $S_{\text{sym}}(m, 1)$ or $S_{\text{pol}}(m, 1)$)

974

Output: m projection vectors, each of which is associated with a n -sequence of data ID's

975

1 For every $x_i \in \mathcal{D}$ ($1 \leq i \leq n$) and each $u_j \in S$ ($1 \leq j \leq m$), compute $\langle \mathbf{x}_i, \mathbf{u}_j \rangle$

976

2 For each $u_j \in S$, sort x_i in descending order of $\langle \mathbf{x}_i, \mathbf{u}_j \rangle$ and obtain $x_{[1]}^j, \dots, x_{[n]}^j$

977

978

979

Algorithm 6 Query Phase for MIPS

980

Input: q is the query; \mathcal{D} is the dataset; \mathcal{I} is the index structure returned by Alg. 5; k denotes the value of top- k ; s_0 is the number of scanned top projection vectors; and $\#\text{probe}$ denotes the number of probed points for each projection vector

981

Output: Top- k MIP results of q

982

1 Among the m projection vectors, find the top- s_0 projection vectors closest to q

983

2 For each projection vector u_l in the top- s_0 set ($1 \leq l \leq s_0$), scan the top- $\#\text{probe}$ points in the sequence associated with u_l , and compute the exact inner products of these points with q

984

3 Maintain and return the top- k points among all scanned candidates

985

986

987

988

989

Algorithm 7 Graph-based ANNS with the KS2 test

990

Input : q is the query, k denotes the value of top- k , G is the similarity graph

991

Output : Top- k ANNS results of q

992

1 $R \leftarrow \emptyset$; /* an ordered list of results, $|R| \leq efs$ */

993

2 $P \leftarrow \{ \text{entry node } v_0 \in G \}$; /* a priority queue */

994

3 **while** $P \neq \emptyset$ **do**

995

4 $v \leftarrow P.pop()$ **foreach** unvisited neighbor w of v **do**

996

5 **if** $|R| < efs$ **then** $\delta \leftarrow \infty$;

997

6 **else** $v' \leftarrow R[efs]$, $\delta \leftarrow \text{dist}(v', q)$;

998

7 **if** $\text{KS2_Test}(w, v, q, \delta) = \text{true}$ (Ineq. (9)) **then**

999

8 **if** $\text{dist}(w, q) < \delta$ **then**

1000

9 $R.push(w)$, $P.push(w)$

1001

10 **return** ($\{ R[1], \dots, R[k] \}$)

1002

1003

1004

The probabilistic routing technique (Lu et al., 2024) is one such example. Meanwhile, the proposed function K_S^2 naturally leads to an alternative routing criterion, given by Ineq. (9), which can also be used to determine whether a neighbor should undergo exact distance calculation.

1005

1006

1007

1008

C.5 NUMERICAL COMPUTATION OF REFERENCE ANGLE

1009

1010

Fig. 5 shows the numerical values of the lower bounds (the RHS of Ineq. (29)) under different pairs of (m, L) . From the results, we observe that increasing L significantly raises the cosine of the reference angle, whereas a linear increase in m leads to only a slow growth in the cosine of the reference angle, which explains why we need to introduce parameter L into our projection structure.

1011

1012

1013

1014

1015

D ADDITIONAL EXPERIMENTS

1016

1017

D.1 DATASETS AND PARAMETER SETTINGS

1018

1019

1020

The statistic of six datasets used in this paper is shown in Tab. 3. The parameter settings of all compared methods are shown as follows.

1021

1022

1023

(1) **CEOs:** The number of projection vectors, m , was set to 2048, following the standard setting in Pham (2021).

1024

1025

(2) **KS1:** For KS1, L was fixed to 1, as multiple levels are not necessary for angle comparison. The number of projection vectors, m , was also set to 2048, consistent with CEOs. We evaluated both $\text{KS1}(S = S_{\text{sym}}(2048, 1))$ and $\text{KS1}(S = S_{\text{pol}}(2048, 1))$.

Table 3: Dataset statistics.

Dataset	Data Size	Query Size	Dimension	Type	Metric
Word	1,000,000	1,000	300	Text	ℓ_2 &inner product
GloVe1M	1,183,514	10,000	200	Text	angular&inner product
GloVe2M	2,196,017	1,000	300	Text	angular&inner product
SIFT	10,000,000	1,000	128	Image	ℓ_2
Tiny	5,000,000	1,000	384	Image	ℓ_2
GIST	1,000,000	1,000	960	Image	ℓ_2

(3) **HNSW**: M was set to 32. The parameter efc was set to 1000 for **SIFT**, **Tiny**, and **GIST**, and to 2000 for **Word**, **GloVe1M**, and **GloVe2M**.

(4) **ScaNN**: The `Dimensions_per_block` was set to 4 for **Tiny** and **GIST**, and to 2 for the other datasets. `num_leaves` was set to 2000. The other user-specified parameters were tuned to achieve the best trade-off curves.

(5) **HNSW+PEOs**: Following the suggestions in Lu et al. (2024), we set L to 8, 10, 15, 15, 16, and 20 for the six real datasets, sorted in ascending order of dimension. Additionally, ϵ was set to 0.2, and $m = 256$ to ensure that each vector ID could be encoded with a single byte.

(6) **HNSW+KS2**: S was fixed to $S_{\text{sym}}(m, L)$. The only tunable parameter is L , as m must be fixed at 256 to ensure that each vector ID is encoded with a single byte. Since the parameter L in KS2 plays a similar role to that in PEOs, we set L to the same value in HNSW+PEOs to eliminate the influence of L in the comparison.

D.2 KS1 VS. CEOs UNDER DIFFERENT SETTINGS

In Tab. 1, we compared the performance of CEOs and KS1 using the top-5 probed projection vectors. Here, we varied the value of s_0 in Alg. 6 from 5 to 2 and 10, and present the corresponding results in Tab. 4 and Tab. 5, respectively. We observe that KS1(S_{pol}) still achieves the highest probing accuracy in most cases.

D.3 ANNS RESULTS UNDER DIFFERENT k 'S

Fig. 6 and Fig. 7 show the comparison results of ANNS solvers under different values of k . When $k = 1$, ScaNN performs very well on **Word**, **GloVe1M**, **GloVe2M**, and **Tiny**, which is partly due to the connectivity issue of HNSW on these datasets. In the other cases, HNSW+KS2 achieves the best performance.

D.4 THE IMPACT OF L ON THE OTHER DATASETS

Fig. 8 shows the impact of L on **GloVe1M**, **GloVe2M**, and **Tiny**, which is largely consistent with the results in Fig. 2.

D.5 RESULTS OF NSSG+KS2

We also implement KS2 on another state-of-the-art similarity graph, NSSG (Fu et al., 2022). The parameter settings for NSSG are the same as those in Lu et al. (2024). From the results in Fig. 9, we observe that NSSG+KS2 outperforms NSSG+PEOs on all datasets except for **GIST**, which indicates that the superiority of KS2 is independent of the underlying graph structure.

STATEMENTS ON THE USE OF LARGE LANGUAGE MODELS

We used LLMs to polish writing only. We are responsible for all the materials presented in this work.

1080

1081

1082 Table 4: Comparison of recall rates (%) for k -MIPS, $k = 10$. Top-2 projection vectors are probed.

1083

Dataset & Method		Probe@10	Probe@100	Probe@1K	Probe@10K
Word	CEOs(2048)	17.255	46.348	68.893	84.366
	KS1($S_{\text{ran}}(2048, 1)$)	17.334	46.740	69.232	84.548
	KS1($S_{\text{act}}(2048, 1)$)	17.440	46.843	69.392	85.026
GloVe1M	CEOs(2048)	0.839	3.404	12.694	38.607
	KS1($S_{\text{ran}}(2048, 1)$)	0.849	3.464	12.890	39.109
	KS1($S_{\text{act}}(2048, 1)$)	0.866	3.503	12.916	39.170
GloVe2M	CEOs(2048)	0.934	3.407	11.621	34.917
	KS1($S_{\text{ran}}(2048, 1)$)	0.939	3.451	11.775	35.462
	KS1($S_{\text{act}}(2048, 1)$)	0.917	3.401	11.748	35.159

1093

1094

1095

1096

1097 Table 5: Comparison of recall rates (%) for k -MIPS, $k = 10$. Top-10 projection vectors are probed.

1098

Dataset & Method		Probe@10	Probe@100	Probe@1K	Probe@10K
Word	CEOs(2048)	50.772	84.545	96.620	99.882
	KS1($S_{\text{ran}}(2048, 1)$)	50.698	84.470	96.643	99.869
	KS1($S_{\text{act}}(2048, 1)$)	51.238	84.865	96.869	99.910
GloVe1M	CEOs(2048)	3.012	11.301	36.293	80.995
	KS1($S_{\text{ran}}(2048, 1)$)	3.047	11.401	36.604	81.307
	KS1($S_{\text{act}}(2048, 1)$)	3.069	11.451	36.857	81.781
GloVe2M	CEOs(2048)	3.574	11.252	30.695	69.406
	KS1($S_{\text{ran}}(2048, 1)$)	3.567	11.256	30.741	69.668
	KS1($S_{\text{act}}(2048, 1)$)	3.515	11.368	30.940	70.016

1109

1110

1111

1112

1113

1120

1121

1122 Figure 5: Numerical computation under different m 's and d 's. The y-axis denotes the cosine of
1123 reference angle.

1124

1125

1126

1127

1128

Figure 6: Recall-QPS evaluation of ANNS. $k = 100$.Figure 7: Recall-QPS evaluation of ANNS. $k = 1$.

Figure 8: Impact of L on index sizes and search performance. $k = 10$.Figure 9: Recall-QPS evaluation of ANNS, with NSSG+KS2. $k = 10$.