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Abstract

The study of Neural Tangent Kernels (NTKs)
has provided much needed insight into conver-
gence and generalization properties of neural net-
works in the over-parametrized (wide) limit by ap-
proximating the network using a first-order Tay-
lor expansion with respect to its weights in the
neighborhood of their initialization values. This
allows neural network training to be analyzed
from the perspective of reproducing kernel Hilbert
spaces (RKHS), which is informative in the over-
parametrized regime, but a poor approximation
for narrower networks as the weights change more
during training. Our goal is to extend beyond the
limits of NTK toward a more general theory. We
construct an exact power-series representation of
the neural network in a finite neighborhood of
the initial weights as an inner product of two fea-
ture maps, respectively from data and weight-step
space, to feature space, allowing neural network
training to be analyzed from the perspective of
reproducing kernel Banach space (RKBS). We
prove that, regardless of width, the training se-
quence produced by gradient descent can be ex-
actly replicated by regularized sequential learning
in RKBS. Using this, we present novel bound on
uniform convergence where the iterations count
and learning rate play a central role, giving new
theoretical insight into neural network training.

1. Introduction

The remarkable progress made in neural networks in recent
decades has led to an explosion in their adoption in a wide
swathe of applications. However this widespread success
has also left unanswered questions, the most obvious of

! Applied Artificial Intelligence Institute (A*I?), Deakin Uni-
versity, Geelong, Australia. Correspondence to: Alistair Shilton
<alistair.shilton @deakin.edu.au>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

which is why non-convex, massively over-parameterized
networks are able to perform so much better than predicted
by traditional machine learning theory.

Neural tangent kernels represent an attempt to answer this
question. As per (Jacot et al., 2018; Arora et al., 2019b), dur-
ing training, the evolution of an over-parameterized neural
network follows the kernel gradient of the functional cost
with respect to a neural tangent kernel (NTK). It was shown
that, for a sufficiently wide network with random weight ini-
tialization, the NTK is effectively fixed, and results from ma-
chine learning in reproducing kernel Hilbert space (RKHS)
can thus be brought to bear on the problem. This has led to
a plethora of results analysing the convergence (Du et al.,
2019b; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al.,
2020; Zou & Gu, 2019) and generalization (Arora et al.,
2019b;a; Cao & Gu, 2019) properties of neural networks.

Despite their successes, NTK models are not without prob-
lems. As noted in (Bai & Lee, 2019), the expressive power
of the linear approximation used by NTK is limited to that
of the corresponding, randomized feature space or RKHS,
as evidenced by the observed gap between NTK predictions
and actual performance. To break out of this regime, (Bai &
Lee, 2019) proposed using a second or higher-order approx-
imation of the network. Moreover it is natural to ask how
well a linear approximation of the behaviour, constructed
on the assumption of small weight-steps, will scale to larger
weight steps in narrower networks.

To overcome these difficulties we replace the Taylor approx-
imation used in NTK with an exact power series representa-
tion of the neural network in a finite neighbourhood around
the initial weights. We demonstrate that this leads to a rep-
resentation as an inner product between two feature maps,
from data and weight-step space, respectively. This struc-
ture underlies the construction of reproducing kernel Banach
spaces (RKBS, (Lin et al., 2022)), allowing us to go on to
show an equivalence between back-propagation and sequen-
tial learning in RKBS, which is similar to NTK but without
the constraints of linearity, allowing us to derive new bounds
on uniform convergence for networks of arbitrary width.
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2. Related Work

There has been a significant amount of work looking at uni-
form convergence behaviour of networks of different types
using variety of assumptions during training (Neyshabur
et al., 2015; 2018; 2019; 2017; Harvey et al., 2017; Bartlett
et al., 2017; Golowich et al., 2018; Arora et al., 2018; Allen-
Zhu et al., 2018; Drixler et al., 2018; Li & Liang, 2018; Na-
garajan & Kolter, 2019a;b; Zhou et al., 2019).

The study of the connection between kernel methods and
neural networks has a long history. (Neal, 1996) demon-
strated that, in the infinite-width limit, iid randomly initial-
ized single-layer networks converge to draws from a Gaus-
sian process. This was extended to multi-layered neural
networks in (Lee et al., 2018; Matthews et al., 2018) by as-
suming random weights up to (but not including) the output
layer. Other works deriving approximate kernels by assum-
ing random weights include (Rahimi & Benjamin, 2009;
Bach, 2014; 2017; Daniely et al., 2016; Daniely, 2017).

Neural tangent kernels (Jacot et al., 2018; Arora et al.,
2019b) are a more recent development. The basis of NTK
is to approximate the behaviour of neural network (for a
given input x) as the weights and biases vary about some
initial values using a first-order Taylor approximation. This
approximation is linear in the change in weights, and the co-
efficients of this approximation are functions of x and may
therefore be treated as a feature map, making the model
amenable to the kernel trick and subsequent analysis in
terms of RKHS theory. This approach may be generalized
to higher order approximations (Bai & Lee, 2019), but the
size of change in the weights that can be approximated re-
mains limited except in the over-parametrized limit, where
the variation of the weights becomes small.

Arc-cosine kernels (Cho & Saul, 2009) work on a similar
premise. For activation functions of the form (&) = (§)%.,
p € N, in the infinite-width limit, arc-cosine kernels cap-
ture the feature map of the network. Depth is achieved by
composition of kernels. However once again this approach
is restricted to networks of infinite width, whereas our ap-
proach works for arbitrary networks.

Finally there has been some very recent work (Bartolucci
et al., 2021; Sanders, 2020; Parhi & Nowak, 2021; Unser,
2021; 2019) in a similar vein to the current work, seeking
to connect neural networks to RKBS theory. However (Bar-
tolucci et al., 2021; Sanders, 2020; Parhi & Nowak, 2021;
Unser, 2021) consider only 1 and 2 layer networks (we con-
sider networks of arbitrary depth), and more generally no
equivalence is established between the weight-steps found
by back-propagation and those found by regularized learn-
ing in RKBS.

3. Notations

LetN={0,1,2,...},N,, ={0,1,...,n—1}. Vectors and
matrices are denoted a and A, respectively, with elements
a;, Ai 7, and columns A.; indexed by ¢,i’ € N. We define:

xllp = (3, [:lP) /7, | Allpg = MIAsilplillq
[1%[loo = max;{|z:]}, |[x[| oo = min{|a;|}

Vp, q € [—00,0) U (0, 00|, which are norms if p, g € [1, x].
The Frobenius norm and inner product are || - || = || - ||2,2,
(A,B), = Tr(ATB). The Kronecker and Hadamard
product are a ® b, a ® b. The Kronecker and Hadamard
powers are a%° = a® a® °times @ 3 2% = a©
a @ ctimes O a, The elementwise absolute and sign are
|al, sgn(a). Finally, for vectors a,b we let g(a,b) =
[ao(b®)T a;(b®)T ... ]T. diag(A) is a vector contain-
ing the diagonal elements of A, and conversely diag(a) is
a diagonal matrix with diagonal elements from a.

We study fully connected D-layer neural networks f : (X C
R™) — (Y C R™) with layer widths HU! (and H!=' = n)
trained on a training set { (x{*} y{k}) € X x Y : k € Ny}
We use index range conventions k € Ny, j € Np and
1j4+1 € Ny, and for clarity we write:

th

Relating to:  Training vector & Layer j The r"" derivative

N
PG

Variable name  Variable indices

so for example W7 is the weight matrix for layer j, xt#1U]
is the input (image) to layer j of the network given network
input x{*}, and f(?)(2) is the 2"¢ derivative of f(z). With
regard to training, X means “value of variable X before
iteration” and X A means “change in X due to iteration”.
Finally, where relevant, we use a superscript X ™ to indicate
that X relates to gradient descent (back-propagation), and
X* if X relates to RKBS regularized risk minimization.

4. Background
4.1. Reproducing Kernel Banach Space

A reproducing kernel Hilbert space (RKHS) (Aronszajn,
1950) is a Hilbert space H of functions f : X — Y for
which the point evaluation functionals dx(f) = f(x) are
continuous. Thus, applying the Riesz representor theorem,
there exists a kernel K such that:

f (X) = <f (')7K(X7 )>7—L

Subsequently K (x,x’) = (K(x,-), K(x/,-)) and, by the
Moore-Aronszajn theorem, K is uniquely defined by H and
vice-versa. K is called the reproducing kernel, and the cor-
responding RKHS is denoted H . RKHS based approaches

VfeH



Gradient Descent in Neural Networks as Sequential Learning in RKBS

Table 1: Summary of the construction of reproducing kernel Banach space as per (Lin et al., 2022).

| Notation in present Paper

| Notation used in (Lin et al., 2022) |

Data space: XCcR"

Q1 (input space)

Weight-step space:

=11 [5] [7]
Wo C HjEND RH xXHYD o RE

Q5 (weight space)

Data Feature map: Py X = Xp C ROX™ P =W
Weight-step feature map: Yo : Wo = Wp C R®X™ Dy 1 Qg = Wy
Data Banach space: Xo = span(Po (X)), | - lxo =1 - llF Wi with norm || - ||y,
Weight-step Banach space: | Wo = span(Wo(Wo)), || - llwe = || - [l7 | W2 withnorm || - ||,

Bilinear form:

(Q,5) vy o, = diag (QTE)

<', '>W1><W2 : Wl X W2 —Y

have gained popularity as they are well suited to many as-
pects of machine learning (Steinwart & Christman, 2008;
Shawe-Taylor & Cristianini, 2004). The inner product struc-
ture enables the kernel trick, and the kernel is readily under-
stood as a similarity measure. Furthermore, the structure of
RKHSs has led to a rich framework of complexity analysis
and generalization bounds (Steinwart & Christman, 2008;
Shawe-Taylor & Cristianini, 2004). More recently neural
tangent kernels were introduced (Jacot et al., 2018), allow-
ing RKHS theory to be applied to the neural network train-
ing in the over-parametrized regime.

In an effort to introduce a richer set of geometrical struc-
tures into RKHS theory, reproducing kernel Banach spaces
(RKBSs) generalize RKHSs by starting with a Banach space
of functions (Der & Lee, 2007; Zhang et al., 2009; Song
et al., 2013; Xu & Ye, 2014; Lin et al., 2022) etc. Precisely:

Definition 1 (Reproducing kernel Banach space (RKBS -
(Lin et al., 2022))). A reproducing kernel Banach space 5
on a set X is a Banach space of functions f : X — Y such
that every point evaluation dx : B — Y, x € X, on B is
continuous (so Vx € X 3Cx € Ry such that |0« (f)| =
()| < Cullflls VS € B).

There are several distinct approaches to RKBS construction.
In the present context however we find the approach of
(Lin et al., 2022, Theorem 2.1) most convenient. Given the
components outlined in Table 1, and assuming that ® ¢ (X)
is dense in Xp and that ¥ (W) is dense in Wy, we
define the reproducing kernel Banach space B» on X as:

Bo = {(20 (), D oo | 2 €Wo )
where ||<<I’o (-),Q>X0XwOHBO = 2y,

(1)

with reproducing Banach kernel:

Ko (x,Wa) =(®0 (%), %o (Wa)) xoxwe (2

5. Setup and Assumptions

We assume a fully-connected, D-layer feedforward neural
network f : (X C R") — (Y C R™) with layers of widths
HOL gOI - HIP=1 where HIP—1 = m and we define

H=1 = n. We assume layer j € Np (j € Np throughout)
contains only neurons with activation function 7! : R — R.
The network is defined recursively Vj € Np:

f(x) =xPl e RHP

xU+ = Ul (xll) e RHY!
01 AT T4 T H)
%l = Hmw[J] X[Jl] + alilpll e R
x =x e X c RETY (HI-U = p)

3)

where WUl € REYTIXHY anq blil € RHY are weights
and biases, which we summarise as W € W, and all e R4
are fixed. The set of functions of this form is denoted F.

We assume the goal of training is to take a training set and
find weights and biases to minimize the empirical risk:

W* = argmin R (W, D)
Wew

“)
Rp (W,D) =Y, E (x* y 1} fyy (x(5))

where fyw is a network of the form (3) with weights and
biases W, D = {(x{*} y{¥}) e X x Y : k € Ny}isa
training set (k € Ny throughout), and £/ : XxYxR™ — R
is an error function defining the purpose of the network.

‘We make the following technical assumptions:
1. Input space: X = [—1,1]".

2. Error function: £ : X x Y x R™ — RisC' and Lg-
Lipschitz in its third argument.

3. Activation functions: for all j € Np, R =
[—1,1] is bounded, C*°, and has a power-series repre-
sentations with region of convergence (ROC) at least
pll € R, around all z € R.

4. Weight non-triviality: for all j € Np, WUl =£ 0 at all
times during training."

"Networks that do not meet this requirement have a constant
output independent of input x. We do not consider this a restrictive
assumption as it is highly unlikely that a randomly initialized
network trained with a typical training set will ever reach this state.
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5. Weight initialization: we assume LeCun initialization,
soforall j € Np, WHL sl o Ar(0,1).

Gysti417 TG4l
6. Training: we assume training is gradient descent (back-
propagation) with learning rate n € R..

These assumptions are necessary to make our analysis pos-
sible. In practice we may extend our analysis to unbounded
activation functions by relaxing assumption 3 to 7/} : R —
[—M UL MUY, where MU exceeds the largest possible in-
put to neurons in layer j (for example assuming weights
are bounded in prior layers and using the maximum output
MU= of the previous layer). Note, however, that this will
restrict the size of weight step (due to one iteration of back-
propagation) that can be modelled by our method, which
will scale inversely with MUl - see appendix for full de-
tails. The continuity assumption in assumption 3 is more
difficult to overcome, as this is fundamental for our analy-
sis. Thus our method cannot be applied to e.g. ReLU (it
may be possible to overcome this restriction by using an (ar-
bitrarily accurate) polynomial approximation, but it is un-
clear whether this is mathematically reasonable, particularly
when a weight-step traverses the point of non-smoothness).

5.1. Back-Propagation Training

As stated above, we assume the network is trained us-
ing back-propagation (gradient descent) (Goodfellow et al.,
2016). This is an iterative approach. An iteration starts with
initial weights and biases W € W. A weight-step:

W2 == gw o B (xy " fw (x9)) |5 o,
is calculated, and weights and biases are updated as W =
Wo + W. Our notational convention for activations be-
fore an iteration, and the subsequent change due to a weight
step, are given in figure 1. The weight-step is (Goodfellow
et al., 2016) (see appendix B for a derivation):

ble  _ 7 5 4 L] x5!V
Acijp VHP T HP =2 HUH1 4 Oijy1 /HOI 5)
ble n Z'Y{k'}[j]o‘m

Atijyn VHD-1gD—2] [+ . Oijyr

forall j € Np, 4,41 where, recursively Vj € Np_:
Fli-1) (jgi}u—u)
i1 ’

NP =, (. 040) D100 (3001

=1 5

R
W (k] ]

Oijpr " Oty

Note that the change in bias bz] is proportional to a/l7].

6. Analysis of a Single Iteration

In the first phase of our analysis we consider the change in
neural network behaviour resulting from a small in weights

and biases (a weight-step). The overall training sequence is
readily extrapolated from this as per section 7. Our first goal
is to rewrite the neural network after a training iteration as:

f(x) =fo (x) + fa (x) (6)

where fo = fw, : (X C R") — (Y C R™) is the neural
network before the iteration and fa : (X C R") — R™ is
the change in network behaviour due to the change W =
Wo - W = Wy + Wa in weights and biases for this
iteration, as detailed in Figure 1, so that:

fa (x) = (®o (%), %0 (Wa)) vy xwo (7)
where:

Py : X > Xp = span (@o (X)) C Rooxm
Yo : Wo = Weo =span (Pp (Wp)) C Rex™

are feature maps determined entirely by the structure
of the network (number and width of layers, activation
functions) and the initial weights and biases W; and
(Z,9Q) v, xw, = diag (ETRQ) is a bilinear form. Sub-
sequently our second goal is to derive kernels and norms
from these feature maps to allow us to study their conver-
gence properties, and we finish by proving an equivalence
between the weight-step WX due to a single step of back-
propagation and the analogous weight-step W that mini-
mizes the (RKBS) regularized risk.

(®)

6.1. Contribution 1: Feature-Map Expansion

In this section we derive appropriate feature maps to express
the change in neural network behaviour for a finite weight-
step. Our approach is simple in principle but technical, so
details are reserved for appendix B. Roughly speaking how-
ever, we begin by noting that, for a smooth activation func-
tion 7l : R = R, z € R and finite-dimensional vectors
¢, ¢’ whose inner product lies in the radius of convergence
pVl (so that | (c,c)| < pll), the power-series representa-
tion of 71! about z can be written

U (z + (e, ) = 7V (2) + (e (8! (2) ,¢) o (1ex, @)
where:
o(a,d)= [a0d®1T a1d®?T q,d®3T | ]
g[a‘](z):[%ﬂﬂ(l)@) %T[j]@)(z) 3,1!7[1‘](3>(Z)
Given an input x, starting at layer 0 and working forward,

and with reference to Figure 1, we can write the change xg]

in the output of layer O due to the weight-step W a as:

X[AI] = |:<<I)[(g]:i1 (%), ‘I’Eg}:z‘l (WA)H

e

11
where:

] oy o] el
(I)Otil(x) =e g[O] (inl) » i, \/1§ X ©)
>qo 0O

54100
Wl (W) —p 1m0,k | Vo
on(Wa)=e | Lo iy Vawll




Gradient Descent in Neural Networks as Sequential Learning in RKBS

Before Iteration

Weight-step Change

After Iteration

fo (x) =x2) €Y f5 (x) = £ (x) — fo (x) f(x) = xP) e ¥

X3 = 1] (g4 | XU =l xl+1 = 7l (U]

[é] _ Hu Wg]T Ul 4 ol ]b[ j] 5([&] — gl _ i[é] %l — Il{[ﬂw[j]TX[j] + alilpld]
x —xex < =xeo, K= x e x

Figure 1: Definition of terms for neural network before and after an iteration.

where we note that both feature maps have a finite radius
of convergence. The feature maps are parameterised by the
(0]

scale factors j1; * € R whose role is mainly technical, inso-
far as they will allow us to show equivalence between RKBS
regularized risk minimization and back-propagation.? Their

exact value (beyond existence) is unimportant here.

The process is repeated for subsequent layers (see appendix
B for details). After working through all layers:
fa (x) = (®o (%), To (WA)) x xwe (10)

o5 w0 =¥V, and Vj € Np\{0}:

i [ %a[ﬂ
1 (5]

NTIRSC
5] 3] 1] g
By, (X)= Qg“]( Zm)wm [w

where & =

[4]
Oijyi —1
j \/ﬂ (% 17](X)

71+1 44

[ m [J 3 )]

VH O 1 i

- [ 1 ot
[\/ib 2 ]

]
Arijyq

‘7’[7]L i—1
—o|t | [l (W)
i e ;.
Wi J7 [7-1] ’
|: J] Wan \Ilé 7.1 (WA):|

”J

Y
recursively Vj € Np\{0} which are parameterised by scale
factors ME]']H € R, and shadow weights wm Z[j]z -
R, which play a role in the equivalence between RKBS
regularized risk minimization and back-propagation (other-

wise their exact values are unimportant).

6.2. Contribution 2: Induced Kernels and Norms

In the previous section we established that, as a result of a
single weight-step W A, we can write:

f(X) fo (x) +fa (x)
fa (x) = (®o (%), ¥o (Wa)) vy xwe

2See appendix for more discussion.

where f» : X — Y is the neural network pre-iteration and
the feature maps ® ¢, ¥ are feature maps (9-11). Using
these, we induce kernels on X, W using the kernel trick:

Kx, (x, X/) = <(I’O (%), ®o (X/)>Xo X Xo
=&} (x) Po (¥’
Kpwo (Wa, W,) = (¥o (Wa), ¥o (W,))
=5 (Wa) ¥o (Wh)

We call these kernels neural neighbourhood kernels (NNK)
as they describe the similarity structure in the finite neigh-
bourhood of the W (¢/f NTK, which is the behaviour
tangent to, or in the infinitesimal neighbourhood of, W ).
These matrix-valued kernels are symmetric and positive def-
inite by construction, and could potentially be used (trans-
fered) in support vector machines (SVMs) or similar kernel-
based methods, measuring similarity on X and W, respec-
tively. Similarly, we induce a Banach kernel:

Ko (X,WZ) = (QO (X) Po (W/A»Xo XWo
= diag (fa (x))

which is trivially the change in the network output fa (x)
under weight-step W A for input vector x, diagonalised.

Wo XWo

12)

The precise form of the neural neighbourhood kernels is
rather complicated (the derivation is straightforward but
resulting recursive equation is very long). The NNK is the
(un-approximated) analogue of the NTK. However while
neural networks evolve - to first order - in the RKHS defined
by the NTK, the same is not true of the NNK. Indeed, it is
not difficult to see that RKHS regularization using the NNK
will always result in a weight vector that is not the image
of a weight-step under ¥ » (i.e. RKHS theory is insufficient,
and we need RKBS theory to proceed). Thus, as the NNK is
not the main focus of our paper will not reproduce them in
the body of the paper - the interested reader can find them
in appendix C. Using these induced kernels we may obtain
expressions for the norms of the images of X and Wy in
feature space:

D-1]
|®0 (I3, = @5 H
=Tr(Kx, (x,%)
2 [D-1
1o (Wa)lly, = ||®8 " ( H
= TI‘ (KWO (WA,WA

(13)
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Once again, the precise form of these expressions is com-
plicated (the derivation is straightforward but the answer is
very long - details can be found in appendix C). The impor-
tance of these norms lies in deriving conditions on conver-
gence of the feature maps. Defining the helper function:

{£ (290 ()70 (5 0y
=1

50l (¢) =
7O = nax )

and the constants:

1 04 1 -1 L
gz — ) 202+ 5 e ifj =0
1. [5]2 gli—1l h .
salil2 4 Ho otherwise
2
{%ﬂf +2|wil, } ifj=0 (15
R = it
ij41 .
[ b[i]f+1 + HWA iyi1||,|  Otherwise

j+1

which are, loosely speaking, surrogates for, respectively, the
expansion/contraction (fanout) in width from layer j to layer
7 — 1 and the size of the weight-step at layer j; in appendix
C.6 we derive the following Lemmas (see corresponding
proofs of Theorems 5 and 6 in the appendix):

Lemma 1. Let eg] € (0,1) Vj € Np. For a given neural
network and initial weights W o define % =gll((1 -

eg] )V plil) Vi € Np. If the scale factors satisfy:

: = >0

12 v e
. iz O iz =1
1) J4) 1+H{J E“’J o 1%
(5 “4ripa (=)

) ifj=0
sl0]2
(1_6[;1) 0]

, 2 _
Vj € Np,ij.1 then H@Lg] (X)HF < ¢l vx € X.
Lemma 2. Let 6,[11{] € (0,1) Vj € Np. For a given neural
network and initial weights W o and weight-step W a, if:

N

t[ﬁ]{f < (1) ult?

g2 e el e, )< d)i

'3

7]
]16

V] € ND7ij/+1 then H'I’[(%](WA)HZ < o

61/)
Lemma 1 allows us to place bounds on the scale factors to
ensure that the feature map @g] : X' — X is finite (well
defined) for all x € X. Lemma 2 is similar, but rather than
bounding the scale factors it takes these as given (by Lemma
1) and places bounds on the size of the weight-step W A for
which the feature map is ¥ : W — W, is finite (well

defined). Taken together, therefore, they give some bound
on the size of weight-step that can be modelled for a give
neural network structure and initial weights W . However
they say nothing directly about the shadow weights. In
the next section we use these Lemmas to establish a link
between the weight-step generated by gradient descent and
learning in RKBS, as well as clarifying the size of weight-
step which we can model using our construct.

6.3. Contribution 3: Equivalence of Gradient Descent
and regularized Risk Minimization in RKBS

In our previous contributions we showed that the change
fA in neural network behaviour can be represented as by
the form (10) with feature maps (9,11), derived kernels
from these feature maps and gave bounds on the size of the
weight-step for which this representation is valid. In this
section we use these results to establish a link between gradi-
ent descent learning in neural networks and regularized risk
minimization in reproducing kernel Banach space (RKBS).

To begin, it is not difficult to see that the feature maps
Py X = Xoand ¥ : Wo — Wp define a RKBS By
imbued with || - |5, = || - || using (1) with the reproducing
Banach kernel (12) deriving from (2):3

o) (X, W/A) = <(§O (X) 5 ‘I’O (W/A)>Xo><Wo
= diag (fa (x))

in terms of which the change f in the network’s behaviour
due to a back-progation iteration may be written:

fX () = Ko (,W3)1
For a given neural network with initial weights W o, we as-
sume that the weight-step is chosen using gradient descent.*

An alternative approach might be to select a weight-step to
minimize the regularized risk in RKBS, specifically:

W4 = argmin Ry (Wa)
WaeWo (16)

Rx(Wa)=A[®o(Wa)lly, +Re(WatWo,D)

where we call )\ the trade-off coefficient. Larger trade-off co-
efficients favour smaller weight-steps, and vice-versa. The
advantage of this form over the back-propagation derived
weight-step is that we can directly apply complexity bounds
etc. from RKBS theory, and then extend to the complete
training process. This motivates us to ask:

For a given neural network with initial weights

3In the appendix we prove that these maps satisfy the relevant
density requirements.

“Note that the training set ID here is for this iteration only and
may be a random subset of a larger training set.
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and biases W o, let W be the back-propagation
weight-step (gradient descent with learning rate
1) defined by (5), and let W be a weight-step
solving the regularized risk minimization problem
(16). Given the gradient-descent derived weight-
step W, can we select scale factors, shadow
weights and trade-off parameter X (as a function
of W ) that would guarantee that W = W ?

If the answer is yes (which we demonstrate) then we can
gain understanding of back-propagation by analysing (16).
Now, the solution to (16) must satisfy first-order optimality
conditions (assuming differentiability for simplicity), so:

[To (W3) =5t Rp(WiA+Wo,D)

8WA ||WO >\ 8WA

Note that if the gradient of the regularization term satisfies:

BWA H‘I’O (WR) Hwo =vW3

for some v € Ry, and 1+ = nv, then W% = WYX. Thus
the question of whether there exists scaling factors, shadow
weights and )\ such that the regularized risk minimization
weight-step corresponds to the gradient-descent weight-step
for a specified learning rate 7 can be answered in the affirma-
tive by proving the existence of canonical scalings, which
we define as follows:

Definition 2 (Canonical Scaling). For a given neural net-

work, initial weights W and weight step W gener-

ated by back-propagation, we define a canonical scaling

to be a set of scaling factors and shadow weights for
: 9 _

which aw o (WR)]ly, = ¥WR forv € R, and

[Tol 1 Ro()] .y, < o Vx EX.

To prove the existence of canonical scaling and thus the key
connection between gradient descent (back-propagation)
and learning in RKBS, using (15), defining:

Qb[m“ 19 HW[O]I

[lm2 _ ) ifj =0
Al] - .
aa 2b[i]z.+21 +2 HW[J]. H otherwise

2
Vj € Np,i;41, in the appendix we prove the following key

result based on Lemmas 1 and 2:

Theorem 1. Let ¢, x € (0, 1). For a given neural network
with initial weights W o, let W be the weight-step for
this derived from back-propagation, assuming wlog that
alil e R is chosen such that Vj € Np_1-

Hw[JJrl]l

= x["
5 e ; 7]
Note that b Aijyy 1S proportional to aV’!, so we can always

increase tglifl to ensure the condition holds by adjusting all

$ID—1]2 —1]& |2 6
Letey =1— || 5, and:
\/ﬁ A o
g[j] —1— L _Fli-1
¢ V/pli]
B N e /L N PR
1—x || [1+1]@ 2 17XD—1—J€w‘
H[J+1 H [‘%tj+2 H HI]
]zmi); W[J+1 L+11® +H[J‘+1]
/ ‘ ti+2 H Aiijyg

Vj € Np_1, where e([z,Dfll

19212, < BUZ vj € Np, where:
(1-x)?
s[D—1]2

(1—e)y/ plP—1]

—)2(1—yDP—i-1, 17
W) yjepy 0P
sli2
(1765'1),/,,[11

then there exists of a canonical scaling:

= e. If the weight-step satisfies

ifj=D—1

BU2 =

_
GWA H\I/O (WA)HWO‘WA:W - A
4 (I—ey)(1=x)
puEr (0 -

[

oo

where ||®o(x)[3 < HPUGPI((1 — ¢)/plP-1)
Vx € Xand |[Wo(Wa)|} < HIP-122,

This is proven as corollary 10 in the appendix. This theo-
rem tells us that, for any set of initial weights W, for a
sufficiently small weight-step W% generated by back prop-
agation, there exists a canonical scaling - i.e. a set of scaling
factors and shadow weights such that the gradient-descent
weight-step is exactly equivalent to the step generated by
regularized RKBS learning using an appropriate trade-off
parameter \. Note that:

* The maximum step-size BU! in layer j (up to near-
identity scaling terms) is determined by the inverse
fanout 1/sV! (which scales roughly as HU!/Hi—1)
and the scaled radius of convergence (1 — [df])\/ﬁ
(which scales roughly inverse the the weight-step in
subsequent layers). This bound will tend to get smaller
as we move from the output layer back toward the
input, but so too will the weight-steps in many cases
due to the problem of vanishing gradients.

* The trade-off coefficient (degree of regularization) re-
quired by this canonical scaling is:

) 2
= 1 _ P12 1 Ht[i] oo
o 4n - BD-1

D—1|H
1607112

%The positivity of e, is due to the constraints on
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%)\ vs normalized gradient-descent step-size

as shown in figure 2. Note that (a) the degree of reg-
ularization required to generate an equivalent RKBS
weight-step is inversely proportional to the learning
rate used to generate the original back-propagation
weight-step and (b) larger gradient-descent weight-
steps are equivalent to less regularized RKBS weight-
steps, as might be expected.

7. Application - Rademacher Complexity

Having established an exact representation of neural net-
works in finite neighbourhoods of weights and biases, estab-
lished the link with RKBS theory and demonstrated that a
gradient descent step is equivalent to a regularized step in
RKBS by appropriate, a-posterior selection of scale factors
and shadow weights (canonical scaling), we now consider
an application of this framework to uniform convergence
analysis using Rademacher complexity. The Rademacher
complexity of a set G of real-valued functions is a mea-
sure of its capacity. Assuming training vectors X; ~
v and Rademacher random variables ¢; € {—1,1}, the
Rademacher complexity of G is (Mendelson, 2003):

7?rN (g) = ]Eu,e [SUPfeg ’%Zzezf (XZ)H

This may be used in uniform convergence analysis to bound
how quickly the empirical risk converges to the expected
risk, typically of the form:

|R(9) — Re (9)] < ¢Ry (G) + excess risk

The following theorem demonstrates how our framework
may be used to bound Rademacher complexity for a scalar-
output neural network:

Theorem 2. Let ¢, x € (0,1) and for a given neural net-
work with initial weights W o, and let W be the weight-
step for this derived from back-propagation satisfying the
conditions set out in corollary 10. Then f e F*, where

the Rademacher complexity of F* is bounded as:

Ry (F*) < a[D—u((ks) p[D—u) Ht[AD*”
N Bl

HID-] — D—1]2_Ht[AD—1]

2

oo

2

The proof of this theorem is a straightforward application
of theorem 1 (see proof of theorem 11 in the appendix for
details). Apart from the usual % scaling this theorem is very
different from typical bounds on Rademacher complexity,
as it directly bounds the complexity using the size of the
weight-step for a single iteration of gradient descent. To gain
more insight into this bound we take the following steps:

1. By the properties of Rademacher complexity (Bartlett
& Mendelson, 2002, Theorem 12) the complexity of
the trained neural network after 7 iterations may be
bounded by a simple summation of the bounds on each
step, so, assuming training is stopped at 7" iterations:

. 01 ((1—e)/plD-1]
R”éiﬂ<T\/ (] )

[D-1]@ ||?
[

HI N B[D—I]Z_Ht[ADfl] 2

oo

This supports the practice of using early-stopping to
prevent overfitting in neural networks.

2. The size of the back-propagation weight-step scales
proportionally with the learning rate, so for sufficiently
small learning rates we find, using (17):3

R (F*) <T\/1O'[D1]((1—e)\/’[)[Dl]) Ht[D_l]
A

S[Dil]

oo

HPAL = N (1=x)(1—e)y/plP-1]

However as the learning rate increases the bound will
increase at an accelerating rate.’ This supports the idea

that lower learning rates act as a form of regularization
in neural network training.

3. Assuming 7[P~1 is L -Lipchitz, recalling the form of
the back-propagation step (5) and using the assumption
that the error function is L g-Lipschitz, we see:

HIP-2]
H[D—l]

2
< 2L L2N?

H [D-1]®
A:ip

‘b[AD;;DH

< HL%L,?_NQO([D_HQ

and hence:
[D-1]2 D-1)2 . HIPZ2
S + HD=1]

2 2 7272 [D—1]2 , HP~2
S MLYLEN (2aP-12 4 225

= al

i

Thus, assuming % > max{l,a[D’m}, by (15):

"We suspect that a more careful analysis accounting for the

overlap between the RKBSs for each step may give sub-linear
dependence on 7', but this is beyond the scope of the present work.
8We use the approximation ars & for 0 <z < ahere.
“Eventually the bound will become meaningless as the step-
size exceeds the size we can model using an RKBS.
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. S0 ((1— D) B
Ry (F*) 27 (( Ve ) HD-2]
I:ZT\EDfll éT\/N (I—X)(l—e)\/p[D_l] nLELTNH[Dfl]

4. Finally, following standard practice and scaling the
learning rate as n = N\/%, 0 < s < 1, we obtain:

r (o< a7 0/
NWR N m0(-ay/pP 1

Thus the complexity bound scales approximately as

LpL.

O/ & []’i,*z] ) in the small learning rate limit. The impact of
layer widths preceding this and the depth of the network are
not apparent in the bound, which is perhaps unsurprising as
we may view these layers are essentially a feature map feed-
ing into the output layer, and hence, provided this map is
sufficiently complex ((Kidger & Lyons, 2020) would appear
to suggest that non-polynomial should suffice, but the ex-
tension to here is speculative), we would expect that the out-
put dimension of the feature map should play a pivotal role
compared to the internal details of the feature map itself.
It is possible that the widths of earlier layers and network
depth would be indirectly present as bounding the learning
rate (s in our assumptions) for which this analysis holds, as
may be glimpsed in theorem 1, but it is not clear how such
factors could be formally brought forward in our bound.

Finally, the role of the helper function 71”1 here depends
explicitly on the form of the activation function 7[°~1 in
the output layer. We finish by considering two special cases:

« Linear output neuron: if we let p[P~1l be sufficiently

large that it exceeds the output of the network for any
training input then the linear activation 7[°~1(¢) = ¢
satisfies our assumptions in the relaxed case discussed
in section 5.'° Moreover for this choice 7P~ (¢) = ¢
and L. = 1, and hence:

Rinn (F*) £ 5T/ 15 25 L (18)

D_l] =

« Tanh output neuron: if 7[°~1 = tanh then p!

5 and L. = 1. The form of O'LZTH is non-trivial (see

appendix F for details), but it is not difficult to see that
FlP-1 = a([)%*l] and, using the power-series about 0:

2
_ID— 00 22m (92m_ 1\ g, "
s (=X (( o ) ¢t

m=1

where Bs,,, are the Bernoulli numbers. Hence:

p-2 e ((1-e) /%

Riannn (F°) £ ST\/12X #l ‘d“}‘lge)\/%\/;) Lg

Note that the output layer of the network does not feed in to
subsequent layers, so the range of output from this layer can vary
arbitrarily without pushing the power-series expansion of neurons
in the subsequent layer outside of their ROC. Thus we can let the
input and output of linear output layer neuron be arbitrarily large
without compromising the requirements of our model.

We note that in general the Rademacher complexity bound
will simply be the bound for linear output neurons (18) mul-
tiplied by an activation-function dependent scaling factor.
Thus asymptotically these bounds are independent of the
output layer activation function.

8. Conclusions and Future Directions

In this paper we have established a connection between neu-
ral network training using gradient descent and regularized
learning in reproducing kernel Banach space. We have intro-
duced an exact representation of the behaviour of neural net-
works as the weights and biases are varied in a finite neigh-
bourhood of some initial weights and biases in terms of an
inner product of two feature maps, one from data space to
feature space, the other from weight-step space to feature
space. Using this, we showed that the change in neural net-
work behaviour due to a single iteration of back-propagation
lies in a reproducing kernel Banach space, and moreover
that the weight-step found by back-propagation can be ex-
actly replicated through regularized risk minimization in
RKBS. Subsequently we presented an upper bound on the
Rademacher complexity of neural networks applicable to
both the over- and under-parametrized regimes, and dis-
cussed how this bound depends on learning rate, dataset size,
network width and the number of training iterations used.

With regard to future work we foresee a number of useful
directions. First, the analysis should be extended to non-
smooth activation functions such as ReLLU, presumably by
modifying the feature map using a representation other than
a power series expansion. Second, the precise influence of
the learning rate needs to be further explicated, along with
other details of Theorem 1. With regard to the neural neigh-
bourhood kernels themselves, it would be helpful if these
could be reduced to closed form to allow them to be used in
practice.!! Finally, more work is needed to understand the
impact of the depth of the network on this theory.
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A. Derivations and Proofs.

Our goal in this supplement is to present all derivations and proofs relevant to our paper, and also any additional material
and description that may be useful.

We assume a fully-connected, D-layer feedforward neural network f : (X C R") — (Y C R™) with layers of widths
HOL O P where HIP—Y = m and we define H=) = n. We assume layer j € Np (we use the convention
j € Np throughout) is made up of neurons with the same activation function 719/ : R — R. The network is defined
recursively:

f(x) =xPl ¢ RE"T

xl+1 = 0] (x1)) e RHY

%l — flmw[j]Tf[j] + alilplil ¢ RHY
xl0 = x e X c RETY (HI-1 = p)

Vj € Np (19)

where Wl € REYxH 4nq bl € RE" are weights and biases, and alil € R is a constant we will use later. We
define the set of neural networks taking the form (19) as:

F ={f:R" = R™|f has form (19) given W € W} (20)
where W summarises the weights and biases in (19):

W = ((W[j],b[j])‘j c ND) eW= ] (RHu—ume « IR{H“])
Jj€ND

Typically, the goal in neural network training is to take a training set and find weights and biases to minimise some measure
of mismatch between the true training labels and the network’s predictions. For simplicity let us assume we wish to minimise:

f* = argmin y, E (x*}, y ¥} f (x{F})) 2D
feF
or, equivalently:
W* = argmin ), E (X{k}7 y M, fw (X{k})) (22)
Wew

where fyy is a network of the form (19) with weights and biases W, D = {(x*} y1#}) € X x Y : k € Ny} is a training
set (we use the convention k£ € Ny throughout), and E': X x Y x R™ — R is an error function defining the purpose of the
network.

We make the following assumptions:
1. Input space: we assume X = [—M =1 M=),
2. Error function: we assume the error function E : X x Y x R™ — R is C' and L g-Lipschitz in its third argument.

3. Activation functions: we assume the activation functions 7! : R — [~ MUI] are bounded and C>°, and that 7]
has a power-series representations with region of convergence (ROC) at least pl! e R, around z forall z € R, 7 € Np.

4. Weight non-triviality: we assume WU/ =£ 0 for all j € Np, at all times during training.'?

5. Weight initialization: we assume that initially W) BN (0,1) (LeCun initialization).

Tystj+10 D41
6. Training: we assume the network is trained using the back-propagation with learning rate n € R .

2Note that networks that do not meet this requirement have a constant output independent of input x. We do not consider this a
restrictive assumption as it is highly unlikely that a randomly initialised network trained with a typical training set will ever reach this state.
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A.1. Review of Back-propagation

We now give a brief review of back-propagation training, which is a systematic implementation of gradient descent on the
weights and biases W to solve (22). Let us consider a single training iteration, where we start with initial weights and biases
W € W and calculate a weight-step W so that, after this iteration, W = Wy + W, where:

W2 = 1 5o 2 B (x y ™ fw (x)) | _yy,

Denote the network activation prior to the iteration given input x as:

fo (x) = x}!

1] (]

X

W . OE]T W 4 qliibl] (23)
Xo = H[.ﬂw + al’bg

xg] =xcX

for all layers j € Np. The back-propagation iteration for layer D — 1 is a gradient descent step with learning rate 7, namely:

D—1]&
Wil o, = WWZ B (x U y ) fiy (x{R) ’W Wo
= 0, Vi <y (x40 Sy, ()| W = Wo
ipD—1:tD
k}[D
= 7772]@1’ V E( {k}vy{k}7fw (X{k})) OW[D 1] {/D}[ ) W:Wo
ip—1:tD
= 1Yy Vi B (< y 0 f (x(0)) 0D 1]( SR} D~ 1] 'W Wo
7D—1v7’D
= =02, Vi, B (xM, y 8y (x M) 7IP=10) ( P 11) P W = W
*D—1:*D
k}[D—1] {k}[D—1
’7\/72;@ <{91],; ]xél}lg[ . ]
where 7(") (2) = aar 7(z) and:
AP = 93, (80, y 1,y (x010)) 1000 (532107
Subsequently:
W[mD ]ND L= nmz E( {k} y{k} f {k} ’W Wo
k}[D—1 _{k}[D—1
=Y " 7({91}[ ]W%{b}[ W =W
'D—-2:*D—1
_ {k}HD-1]y1,[D-1] d D] _
- _nm Zk,ib,i571 Toi, WOib_pi’DawlT i W =Wy
'D—-2:*D—1
_ {k}HD-1]y1,[D-1] d -2] (7{k}[D-2] _
= _77\/% Zk,ib,i571 Toi, WOzD 1,ZDWT[D 2}( i ) W =Wy,
- _ 1 {k}[D Uy o=t p-2j) (zKD=21) o Z{k}D-2 _
UNE Zk,ib,i’D . WOZD ity T ( i, )BW”LD) T Ty W =Wp
— {k}[D72] a ~{k}[D 2] _
N s ok, Y Oify_y WA iy, W =Wy
*D—1

(K}[D—2] {K}[D—2
__UWZIC’YOZD[ 1 ] O’LD[ 2 !

where: R A o I

7{ HD=2] =3 ’y{ HD =1y AR D=1][D-2](1) (jé‘}[ - ])

Oip_1 ip 'Oip Oip_1,ip T ip—1

and so on through all layers. Summarising, for all j € Np (and using the MATLAB notation A ; for column ¢ of matrix A):

wbl®  _ 1 (R} _ 1 {k3}I)
Atijyr -n HID-1 gD-2]  _[HlL+1] Zk ,yOszrl VHUI X0 (24)
puld 1 S {k}1] [J]
Atijyg n HD—1gD—2] gL+ k Ol]‘+1
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where, recursively:
k}j—1 k ”r j e ~q{k}[j—-1
7({913[] = Zij+l 7({91331] O[Jgﬂ.;“ﬂj e (xéli[j ]) (25)
k}D— _ ~{k}[D—
'YO{ 7:33[ = Vi, E (x{k},y{k}, f (x{k})) 7L-1M) (xél}D[ 1])

B. Dual Form of a Neural Network Step

Our first goal is to rewrite the neural network after a training iteration as:
f(x) = fo (x) +fa (%)

where fo : (X C R™) — (Y C R™) is the neural network before the iteration and fa : (X C R™) — R™ is the change in
network behaviour due to the change Wa € W in weights and biases for this iteration, so that:

fa (%) = (Po (%), %o (WA)) x, xwe

where:

Py : X = Xo = span (Pp (X)) C Rox™

Uo :Wo = Wo = span (‘I’@ (Wo)) C Reoxm
are feature maps;

Wo c I (RH[j—leH[.ﬂ % RH[J‘])
jE€END

and (-, )y, o * X0 X Wo — R™ is the bilinear form:
(B, Q) vy xw,, = diag (ETQ)
Moreover we aim to show that the feature maps are entirely defined by:

1. The structure of the network - that is, the number of layers, their widths and activation functions.

2. The weights and biases W € W before the iteration.

We will then use this to construct appropriate norms for the weight feature space VW and data feature space X, which will
allow us to prove that fa lies in a reproducing kernel Banach space, and analyse the complexity and convergence of the
neural network.

B.1. Preliminary: Power Series Notation

The approach taken here is direct - we construct a power series expansion of the network without truncation and rearrange
the terms to separate the resulting summation into the desired form. To make the process easier we define:

noting that this is linear in the elementwise (Hadamard) product, so:
e(ad)og(a,d)=¢ava,dod)

Using this notation it is straightforward to obtain the following useful shorthand for the multi-dimensional Taylor expansion
(using the smoothness assumption) of 77/ : R — R about z € R for ¢, ¢’ € R?, |(c,c')| < pli:

T (2 + (e, ) = 700 (2) + (e (g7 (2) . ) , o (1ec, ) ,) (26)

where the derivatives of 7] at z are encoded as:

L6 (
‘ 11512 (2)
g’ (2) = | Tt (.
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B.2. Feature Maps for Neural Networks

We represent the operation before and after the iteration, as well as the change due to the iteration, as:

Before Iteration Weight-step Change After Iteration
fo (x) =x5 €Y £ (%) = £ () — fo (x) f(x)=x ey
X1 = 7l (ig}) P I V(A o N IR R Tm U]
x[é] _ 1—11m Wg]Tx%] + a[j}b[é’] X[J] = xll — X[J] ,"{[2] = %l + qlilpl]
x[(g]:xeX X[AO]:XGOn [0 = X
XKH} — U (i[j] Jr5([1'] ) ig]
ig] (X[J] i X[J]) i Iim WED]TX[X] + ambg]
27

Our goal is to write fo : X — R™ as
fa (x) = (®o (%), ¥o (Wa)) x xwe

where ¢ : X — Xp and ¥ : Wo — Wp are feature maps and (=, 2) XoxWeo = diag(ETQ) is a bilinear form.

Starting with the first layer of the network, it is not difficult to see that:

z, = JIO“ + Tay,
203, = 7 Wou, xo + oGy,
~[A0]zl - bl[[o] W[X]};X + a[ ]b[AO]u
= () LO{LO] ] g [ fbAO’ 1 >
mvsXo |l | vawld iy
where ug?] € R, are parameters we call scale factors, and A.; for column [ of matrix A. The scale factors will always

cancel out in our representation of f, but will be important later when we place norms on feature space. Using a power
series expansion as per (26), if ||5'<[A0] lloo < pl9:

L [T[OJ (x[?]ﬂ [ [0]( RN )} .

/ 1)
_ o (79 ) 0| B L V20,
=Xo t KQ <g (wo) iy [ X0 D,9<1 "o [\fw of
\/H[]\/i 1 Aty i1

and hence:
< = [(@Gl, (0.2, (Wa))]
where:
o0 e (e 68 | )
(0] i N
‘I’[g]“ (Wa) =0 1s %o] [ fvi);A]l“ ]
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Moving to the second layer, we see that:

~1 ~1

1 1
OZQ = \/7 O: 12 [ ] + [1] b[ ]iz
- _

1 1T 1T 1 1
AZ2 - vVH A 12 [(9] + vVH (W[A]Zg + W[ ] ) X[ ] + a[l]b[A]ZQ
11T _[1 1 1 0 0 1
LWy s (WAL W) (@8, 60, 9, (Wa) + el
1
[ zall vkl ]
1

(1]

i
N A 0 W[%lw
= w 1 ~
B <“ [ i tonn el (x) ] | [ e, (W) | >
11,2 [ 1 W[Al . [O]
Wi [0] 1 2 W
|: Hl[l] QO:il (X) ]il I: 11 O:iq ( A) .

where ,u[ Ve R are scale factors and w[ } 1[1]12 € R are shadow weights (note that both the shadow weights and scale

factors cancel in the inner product). Takmg the Taylor expansion and using the properties of g we see that, provided
1% [loe < pl1:

= (@l (0, %, (Wa))]

i2
where: 1,01
\/15 (1]
[ [ 1] Ll@xo ]
wou, 09 = e |8 (7L ) i | [ i iimsasl],
i1,i i1

(1]
Wiy (0]
{ H (I)O:il (X) } .

i1
1
N ]

1
1 W[%]n.g
1 ~
‘I,[O]zz (WA) =0 1007 ﬁ |: wl[1]12 w][- 1] ‘Il%]h (WA) ] )
2 11

|: W[Alll ig \IIEQ] (WA) :|
w i1

11 i1

Continuing, it is not difficult to see that, for any j € Np, if:

<8 = [(28) ), w8 (Wa))|

then, with scale factors M[J I "€ R, and shadow weights w[ 2 B I o ERY
7l R (4]
o T Ot b B
i _ j j 13l
Oijr1 = Vo v Oiij 1 X0 a[J]bOin
=[] __1 [j]T (5] 1 41T 1T (5] 17191
Taijn = \/WWAW'J'HXO + H[J‘J (WAi Wi WO iy +1) XA+ a[]]bm'jﬂ

j]T j—1 j—1 i12.[d
fll[j] W_[i]:ij+1x[(fj)] \/7 Zz] ( ([QJZ]JzJJrl W[AJJJHJA) <§5ng] (X) ’ ‘Il[(f]):ij] (WA)> + Oémbg_]ij+1

1 1]
2a[]}‘ \/ﬁbiij+l
1 X[CJ)] j
vV HL]

(4]
[J]W[J] B ~[4 i—1
| | el | | | (Wa) | >

Aiij+1
ol H] O:i
tioti+1

[J]
Yii _gli—1
[ V HUI (I)(’j):ij (X) ]

25

I
—

v

[ W[A}] 1J+1 ‘I,[J 1] (Wa) :|

i .
L J J J
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s0, provided chg] oo < pl!, we have:

B = (@, 0,98, (Wa))]

where:

Y i Wy ij,ij j—1
<I>o:z',-+1 (x) =0 gl (xg]’ijJrl) ,,u%]ﬂ aml ’ ,/70 G = q’g:u] ()

RACES! ij

— T [] —
[ Vol ]

p)

Oijia

~[7] 1 [7—1]
(Wa) = o | 1o, 2 [%;”1@é%cwm}
i

i

W[7l
|: A ][7]J+1 \I,[J 1] (WA) :|

L i i
Thus, by induction, so long as ||X[]]||OO < pbl vy
f(x) =fo (x) + fa (x) (28)
fa (x) = (®o (%), Yo (Wa)) xoxwo
where: b
®o (x) =P (x)
Vo (Wa) =5 (Wa)
and, working recursively:
r RPN ]
N
1 L]
| VgmXo
Ul (U1 4] 1 wilwg] 1 A li—1] e
] e|e” (35,.) ik a6, () | if5>0
O:iiyq (X) = o 1] K
J+ Wijj [jfl]
H @O:ij (X) i;
1,0 I
0 <g[°} ( o ) ! l V2 ifj=0
) VHD \/E © )
l V2 b]mm 1
i
i) WA[”“]
[ 1
ol 1., ﬁ [ Wi?,iﬁl H\IIJ (Wa) ] ifj >0
‘Il[é]lwrl (Wa) = " whl [i—1] ’
[ wj[}_]ﬁl Vo, (Wa) ]
Ve R
ol 1. [10] l ifj=0
< fWAfll
(29)

[J] . € Ry and shadow weights w[ ] oY) e R,,Vj e Np.

ZZ+1

Vj € Np, with scale factors s,

To summarise, we have decomposed the neural network into the desired form (28) with the following components:
* A term fo (x) which is the network prior to the iteration evaluated on x.
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* A feature map @ : X = Xp = span(Pp (X)) C R**™ from data input space to data feature space that is dependent
only on the structure of the network (number of layers, their widths and the neuron types) and the weights and biases
‘W prior to the iteration.

o A feature map ¥ : Wo — We = span(¥op(Wp)) C R*™ from weight-step input space to weight-step feature
space that is dependent only on the structure of the network (number of layers and their widths).

B.3. Density of Feature Maps

In this section we prove a key property of the feature maps that will be required to prove that £ lies in the reproducing
kernel Banach space. As a preliminary we show a consequence of the non-triviality assumption, namely:

Lemma 3. Let fo € F be a neural network satisfying the non-triviality assumption. Then fa (x) varies non-trivially with x
(that is, it is non-constant).

Proof. Recall that:

38 = LWl L (WH W) < ol
— UIT (L] (4] UIT L] 11 1]
= \/ﬁWi (xé +xi) + \/ﬁWé x3' + al/lbY
we want to know the conditions under which i[ADfl] (and hence f (x)) is a constant, independent of x. Considering instead
5([&], the only component in the above expression that depends on x is x[i], S0 )Nc[i] is constant if either W[i] = —Wg] or
x[i] is constant independent of x. So, recursing, we find that i[AD_l] is constant (independent of x) iff W[i] = —Wg] for

some j € Np. However, recall that our non-triviality assumption explicitly rules out this case (which corresponds to trivial
neural network post iteration), so WK] #* —Wg] for all j € Np, which suffices to demonstrate the desired result. O

Having addressed this preliminary, we now move to the main result for this section:'3
Lemma 4 (Density of Feature Maps). The linear span of ®o(X) is dense in Xo with respect to (-,-) y_ .y, and the

linear span of ¥ o(Wo) is dense in Wo with respect 1o (-, )\, x,» Where (4, 8) o v, = (B, Q);@ “Wo

Proof. By definition (Lin et al., 2022), the linear span span(® o (X)) of ®0(X) is dense in Xo with respect to (-, ) x .,
if for any QA € Wo, the statement:

(0 (%), 20) 10w =0 Vx €X

implies that QA = 0. By definition Wp = span(¥o(Wp)) so that Qa = >, &{Z}Wg} for some &%, all}, ... e R,
W{AO}, W{Al}7 ... € Wo, and hence:

(®o (%) 7QA>XO><W@ =3 ath <‘I>O (x),Po (W{Al})>xoxwo =>4 d{l}fg} (x)

where we denote by fg} the change in f due to weight-step W{Al}. By our preliminary this is O for all x € X iff
at%t = attt = ... =0, s0 Qa = 0, which proves the required density property. Similarly, span(¥o(Wp)) is dense in
We with respect to (-, '>Wo «xp if forany Ea € Xo, the observation that:

(Ba, o (Wa)) xy sy =0 YWa €W

implies Eo = 0. By definition Xp = span(®o(X)) so that 2o = ), B Xt for some g0, g1 .. e R,
x{0} x{1} . € X and hence:

(Ba, Yo (WA)) xpxwe = 2 B (Bo (x11), Wo (WA)>XO><WO =3, Bl (x11)

But again, by our preliminary, this is 0 for all W € W iff {0 = {1} = ... = 0, s0 2o = 0, completing the proof. [

3See (Lin et al., 2022) for discussion of density used here.
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Remark 1. An objection may be raised that the non-triviality assumption is arbitrary and in any case not guaranteed to
hold, bringing the above result into doubt. However, considering that neural networks are usually initialised with non-trivial
weights and biases (or, to be precise, the chance that any one layer has all zero weights and biases drawn from e,g. a uniform
or normal distribution is 0), and that training data is usually non-trivial itself (that is, the targets vary and not just the inputs,
so that the trivial case has no special significance in terms of potential optimality giving a fixed output), it seems highly
unlikely that the weights and biases would return to a trivial (all weights and biases 0 in at least one layer) state over any finite
number of back-propagation iterations - indeed we conjecture that a result saying that the probability of encountering trivial
networks weights and biases during training is precisely 0 given random weight initialization and noise-affected data drawn
from a distribution should exist, but unfortunately we have been unable to obtain a proof, so this remains speculative for now.

C. Induced Kernels and Induced Norms

In the previous section we established that, as a result of a single iteration (step-change in weights and biases), the operation
of the neural network can be written:

f(x) =fo (x) + fa (x)

where fo : X — Y is the neural network before the iteration and fa : X — Y is the change in network behaviour due to
the change Wa € W in weights and biases for this iteration. Moreover we showed that:

fa (x) = (0 (%), ¥o (Wa)) xp xwo

where:
Py :X — Xo =span(Pp (X)) CRo*™
To : Wo = Weo =span (Pp (Wp)) C RO*™

are feature maps, and (-, ) v, v, * X0 X Wo — R™ is the bilinear form:
(Z,9) 1, xw,, = diag (E7Q)

In this section we will place (induce) kernels and norms on X and W, which will in turn allow us to constrain the space
of changes in neural network behaviour:

Fo ={fa : X = Yp|fa as above}
using Holder’s inequality:
12 ), < [P0 (%)l 2, 1o (Wa)lly,
C.1. Induced Kernels
We begin by using the feature maps and the kernel trick to induce kernels on X and W, specifically:

K, (x,%) = (®0 (%), Po (X)) vy x 10

Kwo (Wa, Wh) = (%o (Wa), o (WH))woxwe

where we define the bilinear forms:

The matrix-valued kernels K x,, and Ky, are positive-definite (Mercer) by construction. Apart from their theoretical use,
these could potentially be used (transfered) for support vector machines (SVMs), Gaussian Processes (GP) or similar kernel-
based methods, measuring similarity on X and W, respectively.

For all layers j € Np we define:

K, (ex) = (@ (o), @8 (x))

. . ) o xXo
i, (Wa, W) = (2 (Wa), w8 (W)

>Wo><Wo
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Recalling (29) we see that, for all j € Np\{0}:

K§L¢j+1,i3+( x') = ZQZ( (m )@gm< [l]Hl),...

z[a]m ’ |
1
o ]me(% O Xy
wi], éij,ij+1wc}7l7 i 1 1
.u7[13]+1'u'[]]+1 l J@[ﬂv S (I’[éif]( )o B, ]( )
ijrij4 ijvi§+1 g
wi? [i—1] 1]
i ‘I)(%:ij (X)Gq)é:ij (x) ij

K1[/]\/]‘oij+1,i3+l (WAv WIA) = Z o1 <1ooa cee

_ , -
2bi]mle[]3T
(4] /]]

WA 1j+1 ®W J +1
w[ﬂ ) w[.ﬂ
1 Tty ijyilo g i— i
PO —E e (W) 0 BT (W)
R oY i i
BV 1
[ EA waz T \Il[j 1] (W ) ® ‘I,[J 1 (W/A)

and:

0 o o
K iy (x:X) = 2 <g[0] (#5,) 08 (362 ) il [ .

[0] /(0]
?O?Athi’l 0] ])
/
oWl o Wi,

0
K)[/V]on i} (WA’W/A) ZQZ < ﬁ
i

i

Subsequently Vj € Np\{0}:

R, 0= S 0790 (38,.) 90 (78], ) (L (20 5 (<) .

2yl 5] []]2 l
1 ‘g ol O A1) Kli-1] /
Z SO G0 HU) Kxoij,ij (x,x') + Z T xm‘j,ij (x,x')
75 Tjij41 i, 77+1 7,]

. o0 1[4 107
K\[/j\}]oij+1,i;+l (WA’W/A) = Z [J] ! [j < (26[1]1 +1bA[j'L] <W[i]7, +17WA[]:]Z';.+1>) t.

=1 j+1 il i1
whl ) 1
oY 1 Adjuijer’ Aigit 1
2 Z[j]”“wz[z]l j+1 w[l] K%OZ]JWJ (Wa, Wi) + E w2 — K1[/j\/oz]1,u (WA7W/A)>>
ZJ ¥ 14 ij
and:
[0] W -[0] /(0] 0] [0] o o\
Kxoin i, (x,x') = l; (Tlr) W ( ) R (xoyl) (/iz‘l iz (%0‘[012 + 55 < X0 X0 >>>
N !
0 — 0 1[0
K (Wa W) = 3 ( o (20,58, 42 (W, W A[g,)))
= iy Mt
We define: .
0(¢Q)=>¢ =1 YCe(-1,1)
0oy & | (30)
o, () = 3 (2) 710 (2) 7010 (1) ¢!
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Vj € Np, z € R, noting that:

071 (0) = 15z V(e (1,00) 31)

Note that aij ]Z, are derived from the power-series representation of the activation functions about z in such a manner that the

constant term is removed, and, if z = 2/, so too are all signs, making 0[] L an increasing function.'* Using this definition and
observation, provided the argument remains in the ROC of all relevant series, we see that:

Ku, (x,x) = K[D 1 (x,x")

32
Koo (Wa, W) = K91 (W, Wi) 2
where, recursively Vj € Np:
(4] "N o
KXoiHl,i;H (x,x') =
(%amz + Fm <xg],xlo[j]> +...
i i Wg} RS ([’jl
o, 1] MZLME] Y GO T, 4 ifj >0
FOij b0 it ij ijriga1 il
5 gl :
: H[j] K)?oij,ij (X,X )
0 0 0 o
0-3[5[1)] /10 (/~‘£1] i ( all? 4 3 <X£9]’X([9]>>) ifj=0
Qi1 o]
0 (33)
J 1y —
KWoij+1,'L;+1 (Wﬂva) — e
(] /1] (] [5]
(268, 08+ (Wl WL )+
~b ~l] I /4] )
0| oo %: (wwj'+1wim3-+1 T Wais iy Waigir,, ) -+ ifj >0
Hi]+1f 1/+ K1[/Jvolz]J ](WA7WA)
: w2
ij
/0 0 1o o
0| ot (26,00 +2<W[Alil,WA[}i,l>)> ifj =0
“1

C.2. Induced Kernel Gradients

Later in the paper we will require the gradients of induced kernels. Recalling (32), (33) and applying the chain rule we see
that:

[T o [D—1] ’
!/ . .
VXKXO (X7 X ) = L 8$7‘,’1’ VXK‘XO”+171;+1 (X,X ) il
L ! i+15T541
r F) [D—1] ( !
— Wa, Wj)
Vo Kwo (Wa, Wi) = | [ awl]), " Woidy, L& THA (34)
A |t 3+ Gt L +1
- ’ 7
[ (Wa, W/
—— a, Wh)
ng’lKWo (Wa,W/,) = ab[A’l],,/+1 Woiji1:if 1
L J
L it i.7‘+17i}+1

14 As an aside, we note that the power series representations of the activation functions 711 about any z represent the same underlying
function, minus 77 (0), and so in principle we can start with a single such representation and use analytic continuation and reconstruct
7l everywhere. Unfortunately the same is not true of a[]] ,, which is perhaps unfortunate in this context.
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where, recursively Vj € Np:

6] (5] A
81:1-/1/ Xotji1,4) 1 (X7X ) -
4 U
(%amQ + 1[J] <x£9],x([9j]>) + ...
N 0]
[51(1) (5] [J] Gttt Odgi
OG5 ) iy oy v 20| o) +1
Oijy1 odl it ij R R e
J J]z o1 lfj >0 (35)
Wiy J
. Ul H[J Kon (X X)
wyl J [4]2
[4] [J] Oijrij41 " Oijif ij 9 [1—-1] ’
s M By i Z FON + 1) # Dy Xoij i (x,x')
i ijrign iy
[0](1) [0] [ (02 4 1_1 ’ [0] 0] 1 o1 e
aig]ﬁ;g}‘]’ My My (502 + 30 (X)) ) g, 1y i or0i, it 3T ifj=0
‘1
9 (4] WA . W) =
8W[A] /]/ 17 Woij+1’i./7'+1( A A)
v /’1 41
4] /151 4] 1141
(208, 05+ (Wl WL )+
~[] ~l] 4] 7141
0 | L7 %: (wij’iﬁlwiwi}ﬂ—i_wmj’ij+1 ANijyifi )"
ity K\[f\};gll] (Wa, W)
Jtg . . .
Mo ifj > j
1 ~[] ~l] 4] /[J]
’ /tgj,]HHEJ/‘] ; (wif’if“ ijvi3+1+WAiﬂ'7ii+1 Aijyifia )"
7 Jt+1
1 o K[]*l] W W/
'wl[ij aW[Aji’/]/ B Woi ,zj( A, Wi)
S (36)
5] /(5] 7] 115
(2%”11)&, + (W W) + e
~lil ~l] (7] 114]
0(1) £l 1 £ ) %: ( 1550541 7:_]'77:;+1+WA'L.j7'L.j+1 Aij,i;Jrl
Pij i, -1 oo .
gl K{/Jv@z] Z(WA,WA) ifj=4>0
[J]
i—-1]
L L4 oy (W ) —
- 5 e q
M[/l EJ/] RARRES! wB;Q A iy
1 j
(1) 1 [0] /(0] [0] 1[0] 1 1[0] e
0 o o7\ 20n0, 080 +2( Wau,» Was o1 o1 Oir i 2WA1" it ifj=j"=0
By [Li,l 1 1 Itillllj‘i/l
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d 4] /Py
8172;]” KWoij+1,i_’7.+l (WAv WA) -
341 [ ] /[j] []] /[j]
J
(zbmmbm <WA » H,WA%H» L
~14] ~[7] [4] 114]
o) ﬁ zz w“’l’“w%ﬂ +WAij,ij+1WAij=i}+1
it ’ KoL (WaWh)
Woijih 8T A
W2 ifj >4
1 ~17] ~17] 5] 114 1
. W ; (wijviﬁlwij»igﬂ—" AijvinWAij’i}H) wg]z o
i1 Y j
lé) i—1]
: ab[]] KV]Voij,ij(WAvw/A)
A’L”,
o 37
[4] /(7] [7] 119]
( bAlg+1bAz <WA ) WA:i;+1 >) + ...
~lil (7] 4] 114]
0 | %: (wij’ij“wi-fvi}+1+WAia‘via‘+lWA% Zm) .
“ij+1#i;+1 Kl (911] Z(WA’WA) 1fj — j/ >0
MEE
L i
i A,
YiH1 Y41
(0] /(0] [0] 1[0] 1 ,[0] o,
0(1) <M ( bAz bAz’ + 2 <WA 11 7WA7,’1>>> /—‘[0] [0 511 11 2b lfj — ]/ — O
1 11 1L/1/ 1
C.3. Induced Norms

We now consider the norms induced by the feature maps. Precisely, we wish to impose norms on Xp C R**"™ and
Weo C R*™ and calculate | ® o (X)]| x0» |0 (Wa)llw, from this, which will subsequently provide the induced norms
we will require when constructing the reproducing kernel Banach space for fA. In principle we could apply an arbitrary
norm to these spaces. However, recall that:

fa (x) = (o (%), o (Wa)) vy xwo

and hence:
[fa (%), = (Po (%), ¥o (Wa))p

so a natural choice is a pair of dual norms - that is, a pair of norms || - || x,, and || - |y, such that:
1Bl x, = S {E )y, <1}

and hence by Holder’s inequality:
12 ), < [P0 (%)l 2, 1o (Wa)lly,

In the present context we find it convenient to use the Frobenius (elementwise Euclidean) norms:

II”IIX@—H IIF ip IIHlelz
120By, = 1207 =32, 192515

and so:

[®o (x )HX = Tr (K, (x,%))
%o (Wa)llpy, =Tr (Ko (Wa, Wa))
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Before proceeding we define:

g2 ) 0P+ % ] ifj=0
% b2 4 H I Mli-12 otherwise
2
G2 _ & tlz],
Al 1712 1) .
[2bm T HWA:i]»+1 ) otherwise

where, roughly speaking, tU—112 represents the magnitude of the weight-step for layer j and sl/12 represents the upper bound
on the image of a vector x € X at the input to layer j. Using this notation:

2
2 [D-1
I®0 ()1, =, @5, ()|

2
D
190 (Wa)ly, = ZiD el W)

)+

(38)

where, recursively Vj € Np:

(;amz + 2 ‘ x]

. 2 q[é]] - 5] /iz]fl w2 L2 ) 9 ifj >0
IS S £ (1 S ) G o) o
- 2 titi+1 - 2
0 0]2 oo
a;[]o] ol (NL] <2a[o]2 11 ’ H >) ifj=0 (39
Qi1 Oiq

2 2 |8 (WA)H .
O o (e e, ) )
H\IJ[J], (WA)H = “J+1 ij
2

OZZJ‘+1 [ ]

i1

C.4. Induced Norm Gradients

Later in the paper we will require the gradients of induced norms. Recalling (38), (39) and applying the chain rule we see that:

[ 2
Val®o (), = s, | 52 H@EZ;W i

(D-1] 2
sz'l Po (WA)Hivo =2ip aw[ H‘IIO iD (WA)Hz ]

Al i, _ (40)
L +1 , 74;/”1;/,_'_1
2 o] [D—1]
ng/] H\Ilo (WA)HWO = Zip abzl.],, H‘I,O:ip (WA)H2 ]
- v i./i/’+1
where, recursively Vj € Np:
) 2
o 4] _
oz ‘Qozij+1 (X)H2 e
1
_ <§a[ﬂ? + b x[é] t...
[J[](] ) 24 412 w2 )
& B 2j41 Oisis 1]
ij41°04541 AR AAe R N | H@J H iy s
E( i ) os; (M, >0 @1)
2 [112 . 2
712 Wou, i o ||gli-1]
ol ;( a71’" H 4 1) HT o “I’o:ij (X)H2
J tioti+1
0](1 0]2 2 e
Ua[i[]()g )%[0] (,U‘q[,l] (2 [0]2 2 H[O ||X|| )) :uzl] 1 511,zlx11 lf] = 0
0i oy
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s o0
7 Oz]+1 L=
v 1 ~[4]2 )2 Y5, (Wa >H
" (#Wil ( Biga ¥ Z ( i, ”+1+WA":‘»%‘+1> oW .
NP o | 5 = 2 £y>3
R Z( z],z]+1+WAij,¢,-+1> G ] H‘I’ 014, (Wa
ijy1 i ij Al il
A o !
-1 2 42)
5] ~[4]2 [4]2 e wa
6 (u[-’%Q (tiijJrl + Z (wiivij+1+WA]ij,ij+l) ;Up R
i1 i ij
ey
, o) 2 1 ==t
J
i 5if+1*i3+12 1+ w[Jp : WAi},ijﬂ
pEs) i
0 0 .
6(1)(u1 t[A]> i i WL 4, ifj=j"=0
t1 7’1
) (5] 2
S TR .
(A
1 [4] [412 (WA)
g )<M <tm A +Z( bt ij,ijﬂ)
N [5] [4] [ 2 ity >
1 J]2 Jl2 1 o) J—1]
(@ +WA) wWWH‘I’ I
i1 i ij NI
341
o ovs ] w
] 1
1 sl [4]2 ; (Wa)
0( )<H 2 <tA’L]+1 + Z ( lJ 7,J+1 WAij,i_7‘+1) [J.]2 e L .
RAR i ] ifj=35">0
.. T{%Q 5z‘j+1,i;+14bi¢j+1
Yit1
oW (el ) s, o apld ifi=i =0
#7[_212 Ady | 012 i1,17 TV, ny=yj =
1

C.5. Properties of 6 and o

Here we present an important preliminary property of the § and and o .- functions. Recall that:

90 =S¢ =1 ¥Ce (L)
oL (€)= 22 ()" 7O (2) 70 (1) ¢
=1
where:

0= (¢) = 5%
0(1) (C) = E}ECF
1)—1 _ —

o1 (¢) = Y&

We note that, for z € R, j € Np:

. O'Z % (—v/plil, \/plil) — R is, in general, unbounded, smooth and non-Lipchitz.

e oY ]z :10,4/pll) — Ry is, in general, unbounded, smooth, strictly increasing and non-Lipschitz.

* 0:(—1,1) — R is unbounded, smooth and non-Lipchitz.
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* §:]0,1) — [0, 00) is unbounded, smooth, strictly increasing and non-Lipschitz.
e 071 :]0,00) — [0, 1) is bounded, smooth, strictly increasing and Lipschitz.
+ M . [0,1) — [1,00) is unbounded, smooth, strictly increasing and non-Lipschitz.

o 9(M=1:[1,00) — [0, 1) is bounded, smooth, strictly increasing and Lipschitz.

The unbounded, non-Lipschitz nature of a,[zj ]z and 6 function is problematic when analysing the convergence properties of

our feature maps. However if we restrict the domains of 0[7 L and 0 by defining EL)] Eg] € (0,1) Vj € Np and:

Q)= max {olL(O]

zeR L U{0}

then:

e b0, (1 - e([g])\/ pll] — [0, fl[j] ] € Ry is bounded, smooth, strictly increasing and L[j |_Lipschitz, where:

o — 5l ((1 — ey, /pm)

8 = vl ((1 _ E[g’l)) pm)

4]

and we note that < — 0.

J] —>ooase

« g1 o, l‘fl[[i] ] —10,(1— 65]%/ pli] is bounded, smooth and strictly increasing.

°*6:00,1— eEZ]] — [0, 113[[?] ] € R, is bounded, smooth, strictly increasing and L[ I Lipschitz, where:
7] 5] 1765’.]
o =0 (1 —€ ) =-o

W= 20 (1-d) =,

4]

and we note that ] — 00 as €, — 0.

« 67110, %] —[0,1— 65]} is bounded, smooth and strictly increasing.

This restriction in domain will be used in the following section when we analyse the convergence and finiteness of our
induced norms. We also find it useful to define the related functions:

1 (C) 2¢+1—-+/4¢+1

2¢
THO = g (0) = B
A =2

y
where we note that:
k:]0,1) — [0, 00) is strictly increasing.
e k71 :[0,00) — [0,1) is strictly increasing.
* X:(0,1] — [0,00) is strictly decreasing.

e A1 :[0,00) — (0,1] is strictly decreasing.
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C.6. Convergence Conditions

We finish this section by considering the issue of the convergence of the induced norms, noting that these results also apply
to the induced kernels as:

det (K, (x,%)) < (T<Km(>>)’" . (<<I><><I><>>>’” ; (I%<x>u»«o l@o<x’>|xo>m

- m
m

det (Ko (Wa, W) < (Tf(KWo(n\ivA,W/A))>m . (<\IIO(WA),::O(W/A)>F <.

<|‘I’O(WA)|WO [eo(Wi)ll,,, )’”

m

and using the positive definiteness of the induced kernels. Whereas for the feature representation of f it sufficed to ensure

that ||5<£] oo < p[j] for all 4,11, j, we cannot use this directly here as we the feature map ® does not have access to W a
(which is indeterminant in this context in any case), and likewise the feature map ¥ does not have access to x.

Recall our definition:

—1]

Sz _ ] 20 [012+% T M2 =0
% H I Mli-12 otherwise
2
[Qb[ﬁ]f +2“W£1i1 2] ifj=0 Vj € Np,iji1
g2 _ .
Aiger (12 ) .
[Qbm T “WA5iy’+l , otherwise

Using this notation, the following theorems present conditions for the convergence (finiteness) of the induced norms for all
x € X and given weight-step Wa:

Theorem 5. Let eg] € (0,1) V4 € Np and for a given neural network and initial weights W o define:

,‘f,f]:ﬁ”((lfey) pm) Vj € Np

If the scale factors satisfy:

[0]2 1 .
My S " Viy
s[0]2
(175g§)1)\/p[01
(412 1 . .
Hiji < wlil2 ol —1] Vj € Np\ {O}alj—kl
51912 1 [4]2 Oijijyn g —1]
e —t 7 >, Wi +1 -
. 7] [ ag ¥ [ ]2 -
(1= )Vpll T ( S ) (1= )Vl

. 2 )

then H@Lg](x)HF < ¢l vx € X, j € Np.

Proof. Recalling (38), (39), we have that:

[j] 2
o2, o[ - ..
- } I S W, Ny
J[[]J]J =[] (Mgll ((ab]? + H2[.7‘1 ‘X[(%]H ) +Zij HT (Oném + 1) HQJ 1] )H )) ifj>0

O’L +1’$Oz +1 2 wl 41 2

2
o (9% (a0 s 80 it =0

0i1 P01,
where as discussed in section C.5 on the restricted range a[] L [0, (1 — eg]) plil] = [0, ¢V1] is bounded, increasing and
Lipschitz for all z € R. By our assumptions we have that:

Qo2 H [0] H < gloj2

abl2 4 me[é]HQSSW vj € Np\ {0}
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and hence:
[J] 12 W (WEP, Li—1] 2 e
[] 2 (/”LZ i+1 (S[J]z + Z H[J] < a[‘j]% = + 1) H(I) X)H >> lf] > 0
H‘I’é.i. (X)H < ot g 2
i 2 o0 ( [0]2)
g0 o) iy

Toi oy

We will construct sufficient conditions for convergence by bounding this bound. Starting with the input layer, the convergence

of ||'I>£g]“( )||3 is assured if the argument of ol []0 oy lies in the restricted ROC, i.e.:
ToiToiy

M[O]Q 0]2 < (1 _ 6[0]) /p[O] iy (44)
and moreover if this condition is met then:
2
0 [0] .
H‘I’Eo]n‘l (X)H2 < 1(3[01 Vi (45)
For layer j € Np\{0}, convergence of H‘I’[c])]z L (x x)||3 is assured if the argument of a[] ] ;) lies in the restricted
g (97, 1 ’$Oz
ROC: e
2 wi® (WP, 1] f)
[T (s[7]2 +2 (w”ém + 1) H‘I’ oy H ) (1 —e; ) Vol Vi (46)
Yioti+1
and moreover if this condition is met then:
] 2 1s) )
ol 0l < 2 i
Assuming layers j' < j satisfy (44), (46) then convergence of H‘I’g]:in (x)||3 is assured if:
[4]2 2 “’[]]2 8, -1
i j+1 (S[J] + Z H[J] < ~[J]; L + 1) Hli— 1]) (1 —¢ ) \% p[j VZJ+1
vioti+1
or, sufficiently:
12 (=) Ve : :
Pijoy = wil. - Vj € Np\ {0}, 441
. il2 15 J—
s by 5, @) ( G +1) icER
g4
which completes the proof. O

Theorem 6. Let eg] € (0,1) V4 € Np and for a given neural network and initial weights W o define:

pl ) _ L=<
1 —9(1—%) = 6,#

For a weight-step W p, if:

8 < (1)t v
\I,[J'*ll](

. oWl e . N s . .
Y & 2 l, (wg{w +Wg}j,im) < (1 - 651) ud i e Np\ {0}, ij4

i

) 2
then H\Ilg](WA)H <l farallj € Np.

Proof. Recalling (38), (39), we have that:

. 2
Josl, owa[ —
412 1 ([ ]2 [i—1] 2 e
0 (NE3+1 (tmjﬂ + Zz] wg;m ( igiga T WAij,z‘Hl) H‘I’o;ij (WA)H2>) iftj >0
0]2 P
0 <u[%’1]2t[A]“> ifj =0
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where as discussed in section C.5 on the restricted range 6 : [0, (1 — e,[lZ])] — [0,%1]] is bounded, increasing and —-
€

Lipschitz. Starting at layer 0 we see that if:

Then:

Moreover for layer j, if:

s IS .
<£M+z ol g ewhe, V) <1od v

Hi ti+1 ‘j

Then:

— HU

1 ©) )
o o < 5
which gives our sufficient conditions in the general case:

[0]2

t .
E?p 2 ) A;foJ iy
b2 o 1 (2 [#6 Wl /e ]2 : .
/’Lzz+1 2 176[{1])] <tiij+1 + Zij J]2 (WL‘Z,L]+1 + WA‘y’i_j,i_7’+1) vj 6 ND\ {0} ) Zj+1
which completes the proof. O

Note that this theorem may be equivalently stated using a bound on the scale factors:

[0]2 1oz
Wiy 2 - ortai, Vi

512
ul‘z+1 2 1—1ej ( Adjy + Z

P

T (Wa) )
M (@ + Wil )) vj € Np\ {0} 4511

rather than as a bound on the weight-step. Thus theorems 5 and 6 give some insight into the role of the scale factors in our
scheme. Loosely speaking, the scale factors must be chosen as a tradeoff between the convergence of the feature maps ®o
and W, and these theorems how this trade-off may be tuned, and to what extent. In particular:

* The upper bounds on the scale factors given in theorem 5 get larger (less strict) as the “size” of X and and the range
of outputs of all layers of the network, as measured by sl/l, gets smaller, diverging to oo (unbounded) in the limit
slil — 0T Of course the factors sl are determined by the structure of the network, the range of the dataset X and our
choice of «, so in a practice this upper bound on the scale factors is fixed.

* The lower bounds on the scale factors given in theorem 6 get smaller (less strict) as the size of the weight-step, plus a
factor dependent on w[] ] , gets smaller, decreasing to 0 (unbounded) as these go to zero. Thus we see that the scale
factors are effectively bojunded below by the convergence conditions on the feature map ¥, with the bound being
determined by the size of the weight-step. Unlike the upper bound given in theorem 5, we can make the lower bound
arbitrarily small by requiring that the weight-step and offset be sufficiently small.

The interaction of these two observations - the upper and lower bounds on the scale factors - determines what weight-steps
we can model over the set of all inputs X. Furthermore, the presence of the scale factors in the lower bounds in theorem 6,
gives an indication of how they may be chosen. To be precise, for the bounds to make sense we need that:

* The shadow weights wl[] ]1 . must be of the same (or lower) order (scale) as the weight-step to ensure that, for a

sufficiently small welght step, the lower bound on the scale factors becomes lower than the upper bound on the scale
factors.
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g:j] (W A)|I3 to cancel out its

7] must be of the same (or greater) order (scale) as the norm || ¥

* The shadow weights sz
influence on the lower bound on the scale factors.

‘We make this intuition concrete by combining these theorems to obtain sufficient conditions on the size of the weight-step,

the shadow weights and the scale factors to ensure that both ®» and ¥ are convergent for all x € X
(0,1) V5 € Np and for a given neural network and initial weights W o define

Theorem 7. Let e, 6([;]761/, €
1 1—55+11 H JJ++12H ifi<D—1
4= et WIS sl H H”H] H =P
- H‘J' ¢>JA 2,00 _ 1— [74+1] 42 42 .
GEZ] — HUFI HI] (1—5&?*1])\/p[j+1] +(1 a( € ) ’ [J;EQH V] € Np
€y otherwise
recursively, and subsequently:
Wy, ; .
ol =gl ((1 _ e[gl) /U] .
A ORI A ] vj €Np
HU] P ol
Wi _ (g et l=al”
. 7 = 1 — € 2 - .
Equivalently: HU! il oli) ||wg+11||jm H IJLIQH Vj € Np_;
HUFI] gli] (1*5g+1])\/P[j+1]
For a weight-step W p, if the shadow weights satisfy:
. . 2 .
2 —1 [i—1] . .
WP ¢ [H‘I’g%] (WA)HQv}fm—u] Vj € Np,ij
i |IF <z 1) Vj € Np\ {0} ,i;
it || se = ( L2 a-o(1-cJ ) J D il
Hli—1] =+ 2
(=)ol Wi,
and the weight-step satisfies:
1o .
fop o=l vir
NOE
((u&?l) )
ool e i
12 i
A11+1 + ZZJ wf ( Wi T WAij’iJJrl) < H wld] H2 ]
ij 12 N Otijyq (1 e)(l 51/))
O N TR S willl;
Vj € Np\ {0} ,4;41, and the scale factors satisfy:
/LE?]Q € - 1 t[g]i 1 Vi
5102
L ((1 )Vl ‘”)
TR N H v W) e 2
Hijia A A +2 zj' ( Wijij T WAij’iHl) R
[7]1 2 ) v] € ND\ {O}’ij+1
sli2 + H ©: L;+1H <1 e>( )
(17%;]) plil mli— 1' [J;-HH o ||2’oo

. 2 . . 2 .
then H@m H < ¢l vx €X, j € Np and quguwA)HF < Ul forall j € Np
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Proof. Combining theorems 5 and 6, we see that for convergence in both ®», ¥ we require that:

(1_6[;)1) (1_5[,?1) Hl0]

sl0]2

(176,[{]> (176[”)\/p[71

(0)2
u I b
2 ‘I’Oz "W e 2
i]zﬁl + 2 T2 ( B],zﬁl + W[Ajgj,iﬁl) <
ij

pli—1]
i—1]

Otijijt1
[]]2
i+1

wlil2
Z w]]Z ( +1>

1 .
Using our condition o.) {H\Il - ]( A2, H[J,l } then it suffices that:
(0] 1 /oo
(012 (=) (1=ef) Vol Vi
tai, S FOE n
. 2 _ll _ll j
2 - ||l e < (1=<2) (1<) /o
Atj+ 7“ A““ 2 = 81 -1 gli-1]
jl2 1 e —1] | YT U
Uy ( 2y ZpE T HHETY e e
Yioti+1

We require that this may be satisfied for a sufficiently small weight

step, so Vj € Np\ {0}, 741

2 _ ] JpLE) B SN
gli—1] H~[ﬂ] ’ < (=) (1=eg) Vol
> G2
00 ) Woiji, . pli=11 pli—1]
il2 1 Jti+1 -1 P [}
sUlP oo | 2, e HHVY | = e
1[]:171'7»“ U /oG]
_ _ i 15]
= HU-U< (1= (1=f") Vo
L2l glil _ 1 —1] pli—1] yli—1]
sV Hw J+1H 7] HW@ LJ+1|| +HU H"" J+1H mli-1 gli-1]
A1
. 2 . . 2 . .
: ; ~ - [i-1] pli—1]
=11 0512 || 5] HU-1] 1 5] =1 || 5l P ¢
= H 8 w:ij+1 HU] XEJ_]+1 Wo:ij+1 +H wZJ+1 HUE-1 gl-1] —
J
. (1 — eEZ]> (1 eg]) V/ pl]
. . —1] -1l gli—1] 2
-1 (gl12 HO—1 g ) Sl
= H s o o= f= Wi
_ 2 ;
7] - H j—1] 1 4] w[ﬂ—ll ¢[J—1]
. (1 — €y % v/ pl] CHOT A0 Vvo:ij+1 o, HG-1 HG-1]
+1
(4] £} -1 1 i pli—1 ¢[J*1J
"t (1) (1=ei) Vol - 20 NG [ OleQHJ—u HGT
- Hw:gf“ 0o = HU-1) (sl H[ffl/ﬁwl“‘” pli 1]
sUEF Hm Hl—1] H[:‘—l]
4] [4] 7 mli—1] pli—1 gli—1]
o2 (1—% )(1—% ) U= H2 BT 5T
— (suff.) Ha_g < i
41 — - . gli—1] pli—1] gli—1]
HU-1] (smz+ i) o] H[j—1]>
where: )
1)
b Hw 'J+1“
Yoo TR
tit+1
To be well-defined, we require that the right-hand-side is positive, for which it suffices that:
, (41
pli=1 [ il - H[J] X1J+1 HU-1
o =(1-¢)(1- 1- % VPl Hw H o 11
1
which we may rewrite in terms of eb I
L1 _ gt 1-9(1- Y (1 - ) G]_HY! X gy
v ¥ ¢ ) VP G611

]
2,00

B (1—2)(1 )(1 55{) o]
a mli-1] ||""g]||§oo sli= _ N T
PO Hli= - (1) (1=ed’) Vol
i1
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in which case our sufficient conditions become:

2 ~ (17651)

H@m <e€
it T Fl—1] <s[j]2+(1_g)(1_€[j])[i]+1>
i B
and:
1_co
g ) Viy
s[0]2
(-
|wis I(WA)H " (2 1<)
+ _— = (w + Wj] ) S
A2]+1 Z 1]- 15,0541 A"J’ZJJrl 2 N ng 7,]+1H a- ‘)(1 FEZ]>X[J]+1
(1—eg]) oldl mli— 1‘ J+1H7 || O”z,oo

Vj € Np\ {0},4;41. In terms of the scale factors, recalling theorems 5 and 6, we require that (sufficiently):

u£(1)12 € 1_15[01 t[AO]Za - Viy
¥ s[0]2
WG Vleb e [> v
[i]2 L z <WA) il2 [7]2
Hij © 1 (tAi.7‘+1 +2 w? <°‘}1MJ+1 + WAij»ij+1) v
' Vj € Np\ {0}, 441

2 Hw[éll H2 (1 ;)( [J])X[J]
(1—65]])\/11[7+( li— 1” T +1 H 2YOQJ+1

Noting that X[j] < 1, we can further tighten our constraints to get sufficient conditions:

Bl

. 2 _ il
P
! o Hli-1 5'_[9‘]2 : +(1 6)( —y )
(1—4;]) plil ||wO ”2‘00
[0]
t[AO]igl < o ey Vi,
s[0]2
()
[—1]
lj]2 [%85 <WA>H 72 (72 1)
tA’J+1 T Z ( Yijij + WAij’ijJrl) < Hw[ﬂ H2 (4]
“ij NEE Oiijyq 1 (1— e)(l e"/ )
(1—e£g]) pld] mli— IH [J]+1H || ||2,oo
VJ S ND\ {O} ,ij+1 and
0]2 .
Ngl] € 1_1[0] [A]il’ - Viy
¥ J[0]2
L (- 6[01) 10]
[ -1
1712 1 (2 w85 wa (WA>|| ~[5]2 [4]2
iy € q ( Aijpr T Z wl Wi ijgn T WAijviH—l .
J
— ¥j € Np\ {0} ,ij11
sli12 + H E9]11+1H (1 2)(1 fb])
(176[7‘]) pld] mli—1] H ||
¢ R ES 2,00
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which completes the proof.

We finish this section by considering a special case that will be important shortly:

Theorem 8. Let EEZ]’ ew 75 € (0,1) Vj € Np and for a given neural network with initial weights W o and weight-step

W A, using the shadow weights:

2
[J]2 — H‘I’j 1] WA)H

17

~l2 wl!
ij,0j41 Wa. i1

2 Vi € Np,ij,441
—wh2 riso

Aij,ijqn

where:
43[1]

o = o) <<1 - Eg]> \/fm)

) ) 4]
1/1[” o AR 1—e
"o = 0 (1 — €& ) = emw

¥

VjEND

If the weight-step satisfies:

o (1=<))

In, <7——— Vi
s0]2
((1625”) pw]>
[ 2 2 1—eld]
il J+1 + ﬁ HWA ity = v H [(J] wz wli—1] gli-1]
slg12 1 O: L]+1 +H[] 1] g1 gli—=1]
(1-cih)y/pi 1V (116 Kol w A%IHQ ) (1-<01) /o)

Vj € Np\ {0}, 4,41 and the scale factors satisfy:

[0]2 1 40)2 1 Viy

My € o7 LAy
" l—e, 24 ( sl0]2 )
0
L (175(&1)\/,,[01
2>
Ve
2

W2 o [_a (e 1 |lywld!
i, € 1—clf) (tAij-%—l +is ||W

Ariji

Vj € Np\ {0}, 441

pli—1] gli—1]
5 4 H-1) gli—1] gli—1]

slil2 H g]l]+1
(1 E[J )\/[T H[]] i5H A‘J+1H H [Aj]ij+1 -~ (175[;5].])\/”[7

. 2 . . 2 .
then H@@l(x)HF < ¢l vx e X, j € Np and H\pg](WA)HF < ¢l for all j € Np.

Proof. Our proof is a simple analogue of the proof of theorem refth:convergephipsi with adjustments for our pre-defined
scale factors. Combining theorems 5 and 6, we see that for convergence in both ®», ¥ we require that, using our
definitions of the scale factors:

o (1) (=el) Vel Vi

fon & o (1=e) (1=
. . 2 1— 1—ev [5]
(]2 1 [4] €y é P . .
tAij+1 + 1-6 WA:ij+1 2 S [J]Q v-] € ND\ {0}’7’j+1
L 1 [J 1] Woijijqn pli—1]
s+ 525, || %o (WA)H 41 |
”WA ij +1' WA

34



Gradient Descent in Neural Networks as Sequential Learning in RKBS

and so it suffices that:

1—¢l
t[g]izl = ( w) Viy
s[0]2
(c8em)
]2 1 i (1=
tAijJrl + 1-0 HWA:ij+l 9 = 2 nglz H2 [jfl] [jfl]
++ﬁ P B v e AL W
O AT ] A‘ij+1HF7HWA:ij+1HOO (1= Vel

Vj € Np\ {0},4;41. In terms of the scale factors, recalling theorems 5 and 6, we require that (sufficiently):

W2 ¢ | L g0l .

o7t Ay 0
l—e, =4 L[0)2
: O

Vip

2 o | (i o [lwi | 1
Hijin 1—efl \"Ad 10 Adjp ’ e -1 4G-1
¥ 2 S,m2 Y vHWo:;j-%—ng ‘ —+HU-1) @
i (175([;1) olil ] ﬁHW[AJ]=1'J+1HF7HW[Aﬂ=iJ+1 Hoc (176([131)1 /U]

Vj € Np\ {0}, ¢;41 which completes the proof. O

D. Canonical Scaling
In the next section we will be considering regularised risk minimization problems of the form:

W4 = argmin Ry (Wa)
WaeWo

(47
Ry (W) = M (16 (Wa)lyg) + 553 (x5, 8 fo (<) + (@0 (x1) %o (Wa)) o o0, )

The question we will be addressing is:

For a given neural network with initial weights and biases W o, let W be the back-propagation weight-step
(gradient descent with learning rate 1) defined by (24), and let W be a weight-step solving the regularised risk
minimization problem (47). Given the gradient-descent derived weight-step WY, is there a selection shadow

weights and scaling factors, possibly dependent on W, and regularization parameter \ that would ensure that
W =Wg?

If the answer is yes (which we demonstrate) then we can gain understanding of back-propagation by analysing (47). Now,
the solution to (47) must satisfy first-order optimality conditions (we assume differentiability for simplicity here):

—_1 1
a=wa 2RO (10 (Wa)ly, )

. % S E (x{k}7y{’f}’ fo (xM) + (@0 (x1*) , ¥o (WA)>XonO) ‘

i %0 (Wa) oy |

Wa=W2

Now, noting that the derivative of the second term in (47) corresponds to the gradient in back-propagation, if the gradient of
the first (regularization) term satisfies:

o ¥ (Wa) A

OW A

HWO‘WA:W

for some v € R, and:
1

nllh(l)(H\I’o(W)”WO)
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then:

o _ _ ) k k k k
Wa =W = 503, B (x{ Ly fo (xF)) + (@0 (x1M) , @0 (WA)>XO><WO) ‘WA:W
Thus the question whether there exists scaling factors, shadow weights and A such that the regularised risk minimization
weight-step corresponds to the gradient-descent weight-step for a specified learning rate 1 can be answered in the affirmative
by proving the existence of canonical scalings, which we define as follows:

Definition 3 (Canonical Scaling). For a given neural network, initial weights W and weight step WY generated by back-
propagation, we define a canonical scaling to be a set of shadow weights and scaling factors for which:
i %0 (Wa)lhwo | =vWE
- A
for some v € Ry, and || ¥o(WX) HWO < o0, [Po(x)[|y, < oo Vx € X. We call the kernels and norms induced using a
canonical scaling canonical induced kernels and canonical induced norms, respectively.

With regard to existence we have the following theorem that sets out sufficient conditions for the weight-step for a canonical
scaling to exist. Defining § € (0, 1) and:

JLilm2 23"+ 2 HW[AO]: ifj=0
ilﬁl = m2 Vj € Np,ij1
2b[i:+1 H [117.-#1 otherwise

our central result is as follows:

Theorem 9. Let €y, €y,0,x € (0,1) and for a given neural network with initial weights W o, and let W be the weight-
step for this derived from back-propagation. Let:

2
[D—1]2 [Dfl] e
fl T e ’ fi=b-1
0<el < G+1m |2
¥ HWA F th .
Htgl 2 otnerwise
; X T
w[]] - 4] 1—ey
HT — (1 - %J; ) 6551/
Vj € Np, and:
0 ifj=
1 AT _ s[D—1]2
1 1 (D21 1=x || [D71]||2 (1*2[1’]3_1])\/"[]3_1] .
NG N = e
B max +HD=2] % HTS
1> A W i 7 W L O
1 . 1_1715||WJ+2.H2F _ Sli+1]2
[F+1]@ - [j+1]® [i+1] 1
1 pjl-1 [« [[£27#]] (1= 1)/ ot .
1= pmom = Wit = o7 otherwise
1 : j+2 g\ wbl
IR SR WMEET T GV

b .
=28 (1) V)
Vj € Np. For some alil € R there exists wV! € (0,1) Vj € Np\{0} such that:"

. 2 , 2
Hw[g“] = (1=6) (1 - wbt) Ht[g]

oo

">Note that bz]i is proportional to a’), so we can always increase t[] ]' , to ensure the condition holds by increasing oVl sufficiently.
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If the weight-step satisfies:

(1—x)(1—€lP ™" o
( ) ifj=D-1
S[D71]2
)@ (1= ) Vel P
HtA < [J+1](1 6[J])
_— otherwise
Sli)2
(4o

then there exists a canonical scaling:

where:

. 2
mmu@@@H <¢ﬂVxeX]ENDWMHWm\NMH

s 120 (Wa)lhy | o = VWR

=wkf

176[D71]
4 )
V= Ht na 2 K/( T—x
oo

< Ul forall j € Np.

Vj € Np

Proof. We aim to derive a canonical scalings for general, a-priori weight-steps W. Recall from (40), (42) and (43) that:

2
vg[j'] ||‘I’@ (WA)HWO
A

2
10 (Wa)liy,
A

= ZiD aw[J ] H‘IIO H5)

Wa=WE& T

Wa=WE QT

where, recursively Vj € Np:

1%}

s ¥, (W) -
M Ot 2

’
owbl },

ab[J
J

Wa=WF

g [ v e
1) 41 L > J
pioE 0 ( POk ) Oijnif, 2 | 1+ MoE w

‘1

w;’ 6W[J

ii+1 /i i N

A’L 7.J+1

o i W
Yit+1 i+t '

1_p(1) t[ﬂ'? [0]@
We H[W 5i17 4WA1 i1

) i

O:ijya

lj] 2
o sl -

Wa=WF

o (e G2 yle? ) =
1 1 Yit1 tioti+1 tiotitl J—
nEY <#[j12 )Z mER H‘I’

1

[J’]
Ti+1 tj41 ij b5

i
’ il

O e
1 (1) Lit+1 ) ) J
G172 0 ( G2 )§zj+1,z;+14bmj+l

Tj+1 fi+l
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and we have defined:

2
{Qb[ +2 HWEAO] :| ifj=0
@2 2 z‘l H o) |
Atjrr T @2 ~ 4] [j) @2 o, (WA .
203, it HWA dij + Z ( zj’zJ+1 WAsz,“H) [J‘] L= otherwise
i Tj+1

Vj € Np,i;41, so that:

¢lo1E@2

) 2 )
(5] _ 1 L1E2 ) Aijin
H‘IIO%‘H (WA) 5 ¢ ] tAi_7+1 = P bl

RS Gl A4

5]

Note that the recursive fomula for the norm gradient with respect to a specific weight W[Aj iJ ;o orbiasby
il /+1

) J/+1
mirrors the structure of the network, where the calculation begins at the ouput layer and recurses backwards along all
p0551ble paths to the neuron z +,1 inlayer j'. Indeed, if we define the set of all paths from any neuron in the output layer to

neural i’ , in layer j' as:

precisely

o . » . o,
= (ipyip—1,---»ij41) 14541 € NginVj € Np\Njryy, i = iy }

then we can re-write the norm gradient as a pathwise sum:

aw[J ] [P0 (WA)HWO =
Al i il ’
i+ Wa=W¥l
2
i—1
w5 DE e
Pl 211+ De 2| Wi, . if 7 >0
[5']@ 718 1" —1.5" ] Wit EAh
Z g’L 41 = H gij//+1 ij//,ij//+1 ’
lepu ] =j/+1
0] .
s ZIW[AE,E ; otherwise
01
E 2 e B e, -1 | e
abl o (WA)”WO - Z, Jijier H, gij”+1hij“»i.ﬂ/’+1 bmﬁl
Ai/j“rl Wa=WE ieP] =
A "J/Jrl
where each term in the sum of paths is the product of neuron costs:
t[AD 1]@2
1 i e
D= 120() DD71]2 lf]_D_l
18| _ Kip ‘u'L )
i1 JlH2
1 Aijyq .
G172 JJz o1z otherwise
EAR SRS Gt
and link costs:
[i—15]@ _ ~[J] [7]@2
CECES + WAijvijJrl

for all neurons and links between neurons on that path from the output layer back to neuron i;, 41 inlayer j'..

Ignoring for the moment the question of convergence, we see that to obtain a canonical scaling we must use the scaling
factors and shadow weights to “even out” the path-dependence of the neuron and link costs and flatten the dependence on
the feature-map norm at the terminating neuron ;. in layer j. To this end it is straightforward to see that, if we select:

= o W>H2

w =
5 2 v . .
€ Np,ij,i; 48
2 5 @2 J Dybj, 0541 (48)
IR AiijJrl Adjsijtt

where § € (0,1) (remember that we are assuming the back-propagation weight-step W is calculated a-priori and then
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attempting to make the regularization-based weight-step W correspond to this) then:

W0 (Wa)2 | oy e Epere | gpylie
6W[J_,] , o A Wo - | gij/+1 AL gij//+1 L0005 4 q A7, ,7,J+1
Ayt WA=WE P I
YiT 41
D—1
o) 2 _ [5]@ 78, 17 —1.5" 1= [j]@
2507 [To (Wa)lw, = Z/ 9ijris _,_H_/ Ll I
A Wa=WE 1Py 7=
J /+1
and:
t[AD—1]2
1 1 R
D12 o D=1 itj=D-1
b8 _ Hip Hip
S 1 1 1057 .
- Ao % otherwise
” 4] (WE) ‘ b :
Oiijyq A i1 tit1
[—1418 _ 1 [j]@
ijyij41 1=6 Arijyqq 9
Using (39), we see that
B RAER -
J _ Adjyq
H‘I’OiHl (WA)H =0 (#[712 Aij+1> 072 t[]
i1 Rijpn ThAi
[D—11m2
1 Ai e
L 129() [DD1]2> ifj=D-1
[7]& 1? g )
i1 = Huz e e
‘41 ti+1 1 1 ti+1 :
PRIEE St el AR ( o2 ) otherwise
Aty 41 G+l
0] o) || oy
2b5; 249 Wi, if7=0
ez _ i ' 2
Aijyr Qb[J].Q 9 W[j] 2 h . v.] S ND?LY"FI
Aijir —5 Avijin ||y otherwise
Ti41

Take as given than the scale factors (48) are used from here on. Having used our scale factors to even out the link costs in
the norm gradient, our next task is to use the scale factors to even out the neuron costs and obtain a canonical scaling. Again

neglecting (for the moment) the question of convergence, consider the gradients of the weights and biases in the output layer,
which take the particularly simple form:

2 _ [D-1]&® [ ]
gt %0 (Wa)ly, = gl B D-ve
ipo1ip WA:W
_ [D-1® ,,[D-1]®
dbD 1 ||'I’(9 (WA>||W@ - gi’D 4bAiD
D Wa=W§g
For canonical scaling, we must have that:
(Ip-1]@2 A (p-1]@2
1 Ai _ Ai _
D 2 9( ) DD 2 = TDo-qmz [DD—1]2 =V
ul ul t
ip ipD Aip 'u’iD
where we recall that: ¢
_ 1 _
K(0) =W (Q) = 5
-1 _ 2¢+1-/4CFT x/4CT
KT () =
and hence:
[D—1]@2 ”f[AEZ He
[D-1]2 tAip _ R — [D—-1]m2
:u’zD - [AD @2, \ — L D—1]E2 [D—1]E2 Aip
,{—1( 1D4 > 2 A'LE +1_\/ ALE +1
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Letting ,U,,E»g_l]Q take this value, consder the gradients of the weights and biases for layer D — 2, which simplify to:
2 11|12  [D—2@/[D-2]m
S %0 (Wa) iy, = WP gl W,
‘D-2’ D 1 WA=W
—11112 [D—-2]®,[D—2]@
W ||‘I’O (WA)HWO =v ||W[D 1 HF gz[D,l ]b[AiD,]l
b1 Wa=WE

and we see that, for a canonical scaling, we must have that:

o ,[D—212_,[D-2]2
1 W[D 1]® Pip_y Aip_j 1 1 -1
135 A s (D212 M[D—2]2 ACECEER A
Aip_1 iD-1 (1 Aip_j )
D—2]2
iD—1
9 ,D-22_,[D-2]2 [D-2]2
= 1 W[Dfl] Hip_y Aip_q Hip_q -1
1-96 A ¢[D—2]2 [D—2]2_ [D-2]@2 -
F Aip_q (“zD 1 tmD 1 )
2
[D—1]® [D—2]2 [D—2]2 [D-2]2 ,[D—2]m4
= 1 WA iDp—1 tAiD—l ip—1 tAiD—l
2
1 [D-1]® [D-2]2 _ ,[D-2]H4
= <tA1D 1 1-6 HWA F> iy = tAlD 1
([D—21m2
o 22 Aip_i [D—2]m2
1D—1 t[D—2]27L||W[D—1] 2 "Aip_1
Aip_q 5 A P

For layer D — 3, using the scale factors derived thus far:

) 2 _ D-2][|2 ,[D-3]|By;,[D—3]E
Wl [To (Wa)l, =v WP L g APl ip_2
Aip gD o WA:W
_ D-2]||2 [D-3]E,;[D-3]H
W [Po (WA)HWO =V HW[ Q]HF Yip_> Onip s
‘D2 Wa=W§f

and so on. Working back through all layers, therefore, we find that canonical scaling is attained if we select shadow weights:

12 _ . :
WP = H\I/O ;! WA)‘ Vj € Np, i o
~[j12 [s]E@2 ; .
15,0541 1—0 H A z]+1 WAij7ij+1 vj € ND\ {0} y Uiy 541
and scale factors:
L [D—1]82
D12t U B p/ip ([D-1m2
:u’zD - t[D @2, - L [D—1]E2 D 1wz Aip 1D
k1 zD4 9 mD +1—\/ ALD 11 (50)
[j12 127 @2
J _ Yi+1 J . .
Fijon = ANEE Jw[ﬁl] TV Nijq Vj € Np-1,ij41
o
We also obtain our first additional constraint on the weight-step, namely, using the requisit positivity of ;LE]] ]+21 :
L2
1 Hw[J‘H]. < (1 _ w[j-‘rl]) Ht[i] (C1))
F 0o

Finally we must consider the question of convergence given scale factors and shadow weights (49), (50). Recall from
theorem 8 that, given scale factors (49), using the definitions therein, if:

(o2 (1—55?])

N < Vi
( 4012
(-2 )
j 52
52, 1wl (=) o
Adji1 T 1-5 Acijpa||, = H wlil H wli—1] 4li—1]
sli12 +-1 Oijt1 s +Hl-1 | HE=1 gh—1]
(1*6[”)\/”[7 A 5” [A]’;+1H H AL7+1H (1765])\/5
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Vj € Np\ {0}, 4,41, which we take as given, and:

[0]2 .
l‘j’zl 6 1_651?] tAil’ ( o]z ) V?/l
0
L (1_6[(01) o[0]

[7]2 1 712 1 (5]
Hijy € - (tAiJH T 1 HWA%H

2>’ e s O’J+1H | BT A

/7 T ; » -
(1=<2)) o ﬁHW[A]]MHH H A17+1H (1= )Vl
(53)
Vj € Np\ {0}, 741 then the norms will convergence. We must show that the scale factors for our canonical scaling satisfy
the bounds required for convergence. Consider first ,u[D 112

. In this case we require that, using (50):

([p-11@2

f D—1]E2 .
4?{5_1]2”* > 71_6[113_1] t[AiD Ie8 Vip
-1 &ip ¥
K -4
tlp-um|* _ 1_e[P-1] T
H 2o 2y <K (1 - EEf 1]> = e[gﬁuz = 6[Dl—l] }b,[l;_lu
P P
and:
[D-1]@m2
tAi .
oy = |wi ’”H w021 51D-2] Vip
k-1 LD# S[D—1]2 1 O:ip +HID-2] g[D—2] g[D—2]
G C T o L A e e e
[ sy
1 oiip ||, [D—2] (D=2] (D=7
= - +H <...
HID-1] ®(%_ [D-1]® |2 [D—l] \/ [D—1] —
W 7 K3 1
H > D ’ H re = ( 1 ) tp-1@2,, [D-1]2
—1 ip _ st -
t[fi;l]?H < 1 ) (176LD—1])\/p[D_1] V’LD
” é’ 11” D=2 4D-2]
1 1D [D—-2] H[D—2] g[D—2]
= FD-1 t+H = <
R e T e
1 -1 Ht[ADill : sP—12 ;
L S S R - P

we maximise the right-side of this bound while satisfying the first bound by selecting:

"

so the conditions become (the first condition is the positivity of the right-side of the above, the second enforces the inequality):

[D 1] - o glP—1]2 [D-1]m
€y <1 (1 X) (176;D71])\/p[D71 HtA .
P JD-1)2
oo S O )
Lah il e
1 max ’D +HD-21\_ gD=2
ue { s [wil oWl }(16“3‘”) o=
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or, equivalently:

4 I—GLD_I]
e
< 2
[D-1] SID—112 ‘ [D-1]@
€ 0,1—(1-—
" (S 5 ( (1 61:1 l]>\/p[D*1] A o
L ey Jp-1)2
T=X [ [D-11m |27 = -
I P [l N e Y/ X
/,ID—2] [D—1) $[D—2] )
P [D 7 max ”Wo:;D Hz 4+ HID—-2] H[D—2]
" e e o (=P
(54)
and we obtain our second additional constraint:
|o-e 2 __ao(=p™)
A oo S[D—1]2
(=P TV
Next we consider layer 0 < 57 < D — 1. We require that, to satisfy (53), using (50)
[F1®2
tA‘ngl GlE2 5 1 Lle2
[m2 |w[1+1] 2%Ai501 = 1 [J] Adjiq j+1
Aijiq =5 A F
[7]m2 1 [jlm2 [j+1]@ .
= tri, 2 - tm’Hl WA » Viji1
_ [ 182 [i+1]& ;.
= (16 1) A17+1— - Wi - Viji1
«b
[] HWJH]- 2
J .
= < 155 o £ Vijn
J+1
and it suffices that:
j 2
t[i]iﬂ []@2 1 Vi
PRER _LHWU*U F Ny = [wi] H2 Wli—1 gli-1] i+l
AijpT 18| A F sli]2 L1 Oijia Lgl-1 | B a1
(1= 7 ) Vel i HWA 1J+1H H A+1H2 (- E[j]) Volll
[J] pli—11 li—1] [F1E2 WJ+1
712 1 | O:iyj +1|| -1 | ZG=10 gG-1 Rijpr ~ T3 ‘ ;
= —t 4 : + HU IR — E Vi
— 0N/ | HUE ® |2 N o — FEE Jt+
(1 Ed’) PV (” A1J+1H H AJlg+1“ (1 E(P) Pl tA1j+1
@2 1 ||WJ+1]l|| )
A1J+1 F sli]2
. [J]l4 151 7]
¢l 1l Aty (=) Ve 3
= H-1] < ‘w[é] H2 w[f_—ﬂ VZ]+1
ﬁ u+1 —re - +Hli—-1] I—I[j.;—l —
7HWA la+1H H A ij+1|| (1=eg ) Vols
so it suffices to let:1©
) HW[J'+1] 2
[5] 1 A F

€ Sm

oo

. HW““ '|| ICE
ol T T [ S A
HG-1T = ]

| wldl

1 O7J+1H j—1] ﬁ
??i”f{lum REL }MW

Note that if 0 < @ < Tmin <
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or, equivalently:

wh+ie||?
65] c <071i6|| th] - F>

[wig+m|| .
on B ( P ?j] iV [5_[]11 .
el 1 Fhi-u-1 [l 1215 (1<) Vold] 1
’ Vi Bl | =
T 2 e Poeae T (N
I “WA:'ij+1H27HWA;1,].+1|| (17%) oY

where positivity compels us to further constrain the weight-step to ensure this is positive. Using (51), positivity requires our
third additional constraint: _ ‘
&= =0+ (1-<))
A .

<
S slil2
(=)W
Finally we consider the case 7 = 0. We require that:

0]@2

[
tml [0]& [O]I2 .
T ‘W[”' 2 A“ = Via
B
wh
0 .
= [ ] < H [0].2 o Vll
Ady
and: ol
tA-: [0]2< 1 Vi
Jom2_ qu Tlpag, S 7 N\ 3!
Aiq = A F s10]
[0]
1 2(175(’) )\/p[‘)]
[[wR [
o Tt
S 7«1 N
= .o 0] < t[o]:z Vi1
IIW '||
ARE
o o) <RI
510]
(=) Vo
so it suffices to let: )
e
A0 o 1 [wi=],
Y = 1-45 o]m ||?
e,
or, equivalently:
2
0] HW
€, €
v S
and our fourth additional constraint:
2 wl (1=l
Ht[o] < ¥
A e = Ll0]2
(=) Vo
There is one last technicality. Selecting
2
[D—1] sIP—1]2 ’ [D-1]®
€ 1—(1-—
) T ( (1 6D 1)\/p[D 1] 00

will result in:
eEbD_Z] T1
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which is not allowed as e([pD_2] < 1 (that is, the range of GLD_Q] becomes the empty set in the limit. Thus we tighten our
contraints on EEpD o
[D—1] 01— sID-1)2 ’t[D 1=
€y € ( ) (1_€£¢D—1])\/p[D 1 oo
which completes the proof after some minor refactoring. O

From which we arrive at the corollary used in the main body of the paper:

Corollary 10. Ler e, x € (0,1) and for a given neural network with initial weights W o, and let W be the weight-step
for this derived from back-propagation. Let:

€, = | 1 — 1 slP—12 ‘ [D—-1]@ 2
v 12X (1—€)y/plP 1] 00
€ ifj=D—-1
; - vjeN
bl _ L xPT e (an 55+1])V”[J+1]7 P17iey  fi+u2 J b
€ = _ T—x |t7+1]-|| xPD-1-7c, °
1-— %Em_l otherwise
/plil wli+1] H _
IIla.X O 7J+2 I[i[:'{]l]
e HW[K;JIM 'W[A]t]l]n "
For some alll € R,
. L2
j+1 J
(W = =0 x ¢k
o0
If the weight-step satisfies:
. 2 1—y)2(1—yP—i-179, _ .
Ht[i} < =0 (1—x j<D_1€y) vj € Np

o sli]2
BV

then there exists of a canonical scaling:

— &3]
itz 10 (Wallhwo |, e =7WE

1—ey
7 ( =X )

oo

satisfying || @0 (x) [} < HPIF1P=1((1 = )y/pPTT) vx € X, |[®o(Wa)[} < HP-HL

where:

vV =
[D-1]@
RS

Proof. We begin with theorem 9. Let wl/) = 1 — y and e[fﬁl] = €4. The definitions in theorem 9 become:

. 2
11— [D—-1]2 D-1
0< el <y Py (1o 0
(1—eg)y/pIP—1] o
€ ifj=D-1
1> e > et slit+1)2
=" = L -1 T—x ||tA]+1]I|| (1*525“])\/#["“] .
1-— —g - =3 , otherwise
\/ pldl +“w[]+1] H 9]
max HU+T] Ouijially i) H ]
P42 L”W[J*l] 2,'W[i+1] 2 T gl (17€[j+1])\/ i+1]
=5 |WAsij o, Aiijyal ® ’
Vs € Np, and:
B . [4]
1/1[” - (1 _ 6[]]) . 1—65}
HUl — P — .
N
¢[.7] v] € 8p

_ Uil ((1 _ 6[]]) jﬁ)
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and subsequently for some al/l € R.:

C2
=(1-0)x Ht[i]

HWXH]

The condition on the weight-step satisfies:

implying the existence of a canonical scaling:
_

o 120 (Wa)lhw |, o =vWE
- A

where:
4 17555)71]
v= T
A
oo

satisfying || @0 (x)[|% < ¢P~1, | ®o(Wa)||% < [P~ To further simplify the constraints, note that

2
>1— XD—l—j
0o

4] _ D—1— D-1— slP—112 [D—-1]@
l—e, =1-x T+ x ] P fDlH

; 141
w[J] - 1—61; <L_ 1
j LUl = xD-1-J S[D— 1]2 || ([P-1@ 2

HUOT — Egj] e 1 _
(1—F¢)\/p[D 1] oo

so we can tighten the constraints on e[g] and ||tg] |2, to:

|

€ ifj=D-1
) U (1_ +1Y /o5 (41
1> G[J] > 1 EIZ (17543 ) bt _ e’/{ _gli+1]2
S s R I Gl .
1- \mﬁm_ H =5 ” otherwise
pY .
7+1] O:ijy2 H ]
max +
is +1 11 |2 [7+1]
Hz{ - Hw[&:ij]w 2 wx:tj]n 0o " }
—1—j S[D—1]2 (o-1@|?
(1-) (1><D ' ( TRy vt
. 2 [D—1 oo
E3 1—e 4 .
Ht[i]E < (1=0) Vj € Np
© slil2
(=)o
Subsequently the definitions in theorem 9 can be tightened to, being careful to ensure that Ht I8 i3 not overconstrained:
o0
ep=(1- slP- 12 ’ (p-1m||?
v X (e /7T o
€4 ifj=D—-1
v - VjeN
. —1— +11Y, / D
b1 _ L XP T ey (1] ]) ”['7+1]7 P17ey  fiu2
€y = T—x Ht1+1]l|| XD Tdc,
— g1 5 otherwise
U] 5* H )
max 7J+2 IEI[J] ]
7 ; Jj+1]8 [i+1]® HUT1
N HWA ij+2 HWA ij42
and subsequently for some o/l € R,:
whE|? _ g sy lei®]?
A =(1-48)x|ta
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The condition on the weight-step satisfies (the first constraint is required to ensure that €, > 0):

- 1 ifj=D-1
Ht[g] <1 A Vj € Np
* ((1 [*f.[j)p m) (1 —xP1g ew) otherwise

implying the existence of a canonical scaling:

o 120 (W)l o =vWE
- A

where:

_ 4 1-ey
= e (%)
A
oo

satisfying | ®o (x)||2 < HIP-HglP- 1]((17%) p[Dfl])

(Wa)[} < HIP-HE5,

At this point we have enough leeway in our construct to let § — 0, and tidy up with €4 = ¢, so our constraints become:

ep = (1- L 272 ‘ [p—1jm||>
4 I=X (1—e)r/pl0—1) o
€ ifj=D—-1
. , - Vj e N
1 +1 D
] _ L XD e (V) o, Slit+112
€ = ) T—x E j+1]||2 Tic XD T=ie,
1-— —L Fll-1 otherwise
o) wlit] H .
max J+1 @1J+2 ]
iy HW ‘ wlit1® H+1]
A’J+2 Ailjta
and subsequently for some al/l € R :
1)@
HW J+1] (1 _ X Ht[ﬂ].

The condition on the weight-step satisfies (the first constraint is required to ensure that €, > 0):

L2 1 ifj=D—1
Ht[i] < 0 1=x vi €Np
K] D—1—4 .
h ((IFJ[]];ZP[J]) (1—=xP"'"ey) otherwise
b
implying the existence of a canonical scaling:
—
aws %o (WA)HWO‘WAZW = yWE
where:
— 4 1—e
- e ()
A oo

satisfying || ®o (x)[|% < H[D’”E[D_l]((l — e)\/,m), 1Co(Wa)ll} < HIP-2,

Finally, we need to ensure that v is well defined, for which we require that 1 — ¢, < 1 — x or, equivalently, €¢;, > x. For
This is suffices that:

2
Ht[ADfl] < 1—x

S s[D—1]2
(VP




Gradient Descent in Neural Networks as Sequential Learning in RKBS

and so, tightening bounds slightly:

9 (1-x) ifjy=D—1
1-x Vj € Np

<
o $li)2 D1 .
(W) (1—-x €y) otherwise

5

which completes the proof. O

Subsequently we obtain a bound on Rademacher complexity:

Theorem 11. Let e, x € (0,1) and for a given neural network with initial weights W o, and let W be the weight-step for
this derived from back-propagation satisfying the conditions set out in corollary 10. Then f € F°*, where the Rademacher
complexity of F* is bounded as:

[D-1]@||?

4

Ry (F*) < P % 1 (1—x)2 ioHt[AD—l] =glP1 ((1 —€) v p[Dil])

1=x JD—1]2
(1—e)y/pP~1]

oo

Proof. By corollary 10 we know that, subject to assumptions on the size of the weight-step, there must exist scale
factors, shadow weighs and regularization parameter A such that the change in neural network operation f due to
back-propagation and the change in neural network operation fX resulting from minimization of the regularised risk R
will coincide, so f¥ = fX € Bo. Fixing these parameters, moreover, we know from corollary 10 that | @ (x)||% <

H[D—l}g[D_l]((l s /p[D—1]> ¥x € X, [To(Wa)|2 < HIP- 1;51/,’ so:

mer ={@o() el < aP-ie ]

Hence for a Rademacher random variable € the Rademacher complexity is bounded as follows:

Ry (F*) =E,E.

sup |%Zz Gz‘f(Xi)ﬂ
faeFe

=E/E. | sup ’%Zi‘fi <‘I'O (xl),\Il(W)M]
fa€Fe
<@ E, | yEc | sup I|Z¢€i‘1’0(xi)|FH‘I’(W)HFH
facFe

_ 11 1—ey 2
<z [/ o R I Somo
SJensen E, [\/W\/J{/ Zi ||¢)(9 (Xl)||2F:|
< H[D-l]\/}{flejwo—[j] ((1 —€) p[D_l])

independent of the data distribution v.

Next recall the definitions from corollary 10:

€y =1 L s ‘ [p—1jm||>
¥ 1—x (1—e)y/plD—1] A o
so that:
(o-1m|?
1—61/, — A o
€y %%_Htfﬂl 2
X JD—1]2 oo

(1—e)y/ plP—1]
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’ H Notation in present Paper \ Notation used in (Lin et al., 2022) ‘

Data space: XCcR" Q1 (input space)

Weight-step space: Wo C [1en, R SRR NS ), (weight space)

Data Feature map: Do : X = Xp C Rooxm b =W

Weight-step feature map: Uo: Wo = We C REX™ Dy : Qo — W

Data Banach space: Xo = span(@op (X)) C R**™, where Wi with norm || - ||,
| Mlxo =11 1IF

Weight-step Banach space: || Wo = span(¥o(Wep)) C R*®*™, where | W, with norm || - ||y,
[ lwe =1l Il7

Bilinear form: (3 ) xo xWe # REXM X ROXM — R™, G Dy, - W1 X W — Y
(2, 8) vy x o = diag (QTE)

Figure 3: Summary of the construction of reproducing kernel Banach space as per (Lin et al., 2022).

and hence:

2]

) CEsSER— N
sID—1]2

(1—e)y/ plP—1]

E. Neural Networks and Reproducing Kernel Banach Spaces

A reproducing kernel Hilbert space (RKHS) (Aronszajn, 1950) is a Hilbert spaces H of functions f : X — Y for which the
point evaluation functions are continuous. Thus, applying the Riesz representor theorem, there exists a kernel K such that:

F&) =) K (%)

for all f € H. Subsequently K (x,x") = (K (x,-), K(x/,-)) and, by the Moore-Aronszajn theorem, K is uniquely defined
by H and vice-versa. K is called the reproducing kernel, and the corresponding RKHS is denoted H . RKHSs have
gained popularity in machine learning because they are well suited to many aspects of machine learning (Steinwart &
Christman, 2008; Shawe-Taylor & Cristianini, 2004; Cortes & Vapnik, 1995; Chowdhury & Gopalan, 2017; Cristianini &
Shawe-Taylor, 2005; Genton, 2001; Gonen & Alpaydin, 2011; Herbrich, 2002; Li et al., 2017; Miiller et al., 2001; Smola &
Scholkopf, 1998). The inner product structure enables the kernel trick, which is of great practical use, and the kernel itself is
readily understood as a similarity measure. More importantly here, the structure of RKHSs has led to a rich framework of
complexity analysis and generalization bounds (Steinwart & Christman, 2008; Shawe-Taylor & Cristianini, 2004) that form
a foundation for this branch of machine learning, which more recently has been extended to neural networks through the
theory of neural tangent kernels (Jacot et al., 2018).

Reproducing kernel Banach spaces (RKBSs) are a generalizationn of RKHSs which start with a Banach space of functions
rather than a Hilbert space (Der & Lee, 2007; Lin et al., 2022; Zhang et al., 2009; Zhang & Zhang, 2012; Song et al., 2013;
Sriperumbudur et al., 2011; Xu & Ye, 2014). Precisely:

Definition 4 (Reproducing kernel Banach space (RKBS, (Lin et al., 2022))). A reproducing kernel Banach space 5 on a set
X is a Banach space of functions f : X — Y such that every point evaluation dy : B — Y, x € X, on B is continuous. That
is, 3Cx € R such that:

10x (/)] = 1 ()] < Cx I £l 5

forall f € B.

This introduces a richer set of geometrical structures and allows for new and exciting extensions to the usual kernel framework,
such as asymmetric kernels, sparse learning in Feature space, lasso in statistics and m-kernels. In the present context it
allows us to extend NTKs from a first-order approximation in the overparametrised regime to an exact representation without
the need for infinite width approximations. There are many approaches to RKBS theory in the literature, but in the present
context we find the method of (Lin et al., 2022) most helpful.
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In this formulation, reproducing kernels may be constructed from a set of basic ingredients that closely mirror our construction
of fa in the preceding sections. In particular, as per (Lin et al., 2022), and in light of lemma 4, we can construct RKBS Bp
containing fa using the ingredients defined in Figure 3. This gives us the reproducing kernel Banach space Bp on X:

Bo = {{20 (), ) xoxwo| 2 € Wo}, where [(20 (), D) vy wwoll 5, = €2y, (55)

the elements of B include the functions fo : R™ — R™ - that is, the change in the neural network behaviour due to
a change Wa € Wy in weights and biases during one iteration, subject to convergence conditions - as well all linear
combinations thereof (recalling that Wp = span(¥ (W ))). This has the reproducing kernel Ko : X x W — R™>™:

Ko (x,Wp) = diag ((®o (x), ¥o (WA)>X0XwO) = diag (fa (x)) (56)

We also obtain the corresponding reproducing kernel Banach space Bf, on Wo:

Bt = {(E, Yo (o))XonO| =c X@}, where H(E, L) (')>Xo><Wo’

5y = 1Bl (57)
whose members are the evaluation functionals for Bo, which has the reproducing kernel K¢, : Wp x X — R™*™ given by:

Ko (Wa,x) =Ko (x, Wa) = diag (fa (x))

F. Case study - The tanh Activation Function

Let us consider the activation function:

711 (¢) = tanh (¢) (58)
[

2,z

We wish to construct the corresponding o', for arbitrary z, 2’ € R. As we shown in section F.1, the Taylor expansion of

tanh about an arbitrary z € R is:
tanh (z + ¢) = tanh (z) + > af';’;lr};gm
m=1

where:

afenh = 2 (= sgn (2))" nijo <l)ﬂ)2> m cos ((m + 1) atan (W))

22+((n+%

which is valid for all z, ¢ € R such that |{| < g Hence, by our definition (30), using this expansion:
ol () = X ol (59)

In the case z = 2z’ = 0 this simplifies to:
22 (2°™—1)Bam

anh
an)m = 2m)!

where Bs,,, are the Bernoulli numbers. So:

2
. 00 92m (92m _1)B, m
O’E%]’O) )= > <((27n)')2) ¢

m=1

F.1. The Taylor Expansions of tanh About an Arbitrary Point
The Taylor expansion of tanh about 0 is well-known, specifically:

co 22(22"=1)Bam Lo
tanh (§) =>°_, %52 1

where By, is the Bernoulli number, which is valid for || < 7. However in this paper we require the Taylor expansion of
tanh about an arbitrary point z - however we have been unable to find such an expansion in the literature. In this section we
obtain such an expansion using a method inspired by the approach given in the post (D‘Aurizio, 2014).
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We know that the Weierstrass product expansion of cosh is:

—8

_ (z4+6)?
cosh (2 4+ &) =11 (1+ oty 2>

Iz |+ng1(2)§)2
+ ARl TPSAC)S)
o( (n+3) )

Il
ﬁ’:18|\

for all z,£ € R (the “sign absorption” here will be important later in our derivation). Hence:

log (cosh (z + &)) = 3 log <1 + (Z|+S€1“(2Z)5)2>

n=0 (n+3)"n?

and so, taking the derivative a% on both sides:

sgn (2) tanh (2 + €) = 2(J2| +sn ()9 3= My

)

=2(el +5g(:)9) X st

=0 T24+2242|z| sgn(z)E+£2
00

— 1 1
= 2 (|Z‘ + Sgn (Z) g) ngo |z|+i(n+%)7‘r+sgn(z)§ |z|fi(n+%)7r+sgn(z)5

_9 . o 1 1 1 1
(|Z‘ + sgn (Z) f) nZ::O |Z|+i(n+%)ﬂ, ‘Z‘_i<n+%)ﬂ- I+— 1 sgn(z)¢ 1+7‘z| 1(n+é)7r sgn(z)&

\zH»i(n{»%)w

where i = /—1. Thus, for all £ < 22 + (3)*:

s (=) tamh (2 4 €) =212+ 58020 5% ety ity 3, (Comn ()T
(z+1 n+ > (|z| n+ ) §P+q
= 2(|2| + 5gn (2) ) nEW%o(‘S@( 2P
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and so, re-arranging our indexing:

- (f (i) <mm2mm (sotan ((”Tf')”»)) e

n 1 s .
- myy 2 > cos (jatan (( |+z2|)) )) —1 ifmeven
Z (112> 7=0,2,..., m ) é.m
n=o \#H+(ntz) e 2 > cos (jatan ((n+2)ﬂ>) if m odd
3,....m

§=1,3,...

3 1)
2> cos (Qjatan (( T;) )

o0 T+l o
1 J= m
ngO (z2+(n+é)27r2> % (nJrl)rr g
2 > cos ((Qj + 1) atan < 2 )) if m odd
=0

) -1 if m even

Using the result (Knapp, 2009):

2

N-1 Sin(
cos (a +jd) = —=
0 Sln(

N‘

d)) cos (a + W)

ol

Jj=

and the usual results for (co)sines of sums and differences, we have that:

ﬁjo N <2jatan <(n|+j|)7r>) B sin g:(::t(a;gz;};)ﬂ)) cos (?atan ("Jlrzéyr))
e (

R RS

and:

[

m—

20 cos <(2j + 1) atan <(n+§)ﬂ)> = Sin((%ﬂ)atan((?ﬁrj%)) cos (atan (n+é)ﬂ) + Z-Latan <(n+é)ﬂ)>

|2| |z 2|

(
= e, (7"21atan (“R)) co;)(m?““an ((Hf)”))
+

<
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so that:
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1
from previous page = 2 |z| § 1 1 2 sin [ atan (nt3)
B = (5w \ 225 (nt 1) E

m+1
2

+2|z\m§;1(—sgn ()" (nio T <z2+( L ) sin ((m+1)atan<(n+;>w)>> -

n+%) T
m+l

-2 mzzl (7 sgn (Z))m <n¥0 (n—&—l%)w <22+(n-1‘r;)2ﬂ-2)

((Mmc - )) (sreir=) () H)e
+2m§'j1<sgn<z>>m<§i e (mys)
((Mm( ) (=) (srmips) o+ e)er

n=0

=26 2 e
#2043 (o )" (i o (i) o ((T”*l)atan((n'té)ﬂ)))gm
202 3 (-sen(2)” (io e <22+(”i;)2ﬂ) o ((m +1) atan (<n|+;> ))) e
#2 3 (sen(s)” <§ (== o (4 1yt (H))) ¢

m—+1

=2/ ni::o W}F%)%Z * Qmi; (= sen ()" (niO (W) 2 cos ((m + 1) atan <(n+j)ﬂ)>> ¢

tanh (2 +6) =22 > — L+ 25en (2) 3. (—sen (2)" (f: ()

n= 022+( +3 ) m=1 z2+(n+%)27r2

(o (254) )

) = 5 and sgn(z) = £1:

(As a quick sanity check, let z — 0%, so atan( (”J‘rj)ﬂ

fanh (6) = +2 3> (F1)™ (f} (1) " cos ((m+ 1) g)) ¢m

m=1 n=0 (”+§) w?

.y (i_‘j () ool ;)) e

2m+2
o0 o0 2
=2 Zo (Zo <<”+11)2ﬂ2> cos ((m + 1)7r)> g2m+1
n 2
oo 1)ymo2m+2 0 m
QmZ::O s nZ::O (2n+11)2’"+2> g
meo2m+2 o0
Z_: (= 1722m2+2 Zl n2m+2 E (2n )2m+2) €2m+1
ymg2ma2
Z 171.2m2+2 (1 - 4m1+1 ) C (2 (m + 1)) €2m+1
0o 2m (22" ~1) Bay o1
m2::1 (2m)! f
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where ( is the Reimann-zeta function and Bs,, the Bernoulli number, which is the usual Taylor expansion of tanh about 0).

Continuing, using (Gradshteyn & Ryzhik, 2000, (1.421.2)):

sgn (2) tanh (z + &) = 2Ll Z . (BT i

o0

m=1

tanh (|z]) + 2 i

m=1

m+1
(—sgn (2))™ nzz:o (WW> cos <(m + 1) atan (

) +(2n+1)2

n=0

and hence, using the fact that tanh is an odd function:

tanh (z + &) = tanh (2) + > _ 10

where, using that cos and atan are odd:

(s ()" & <+<<+>>> R <<m 1) atan <<"+j>ﬂ)>

Thus we can write the helper function (59) for the tanh neuron as:

where:

tanh
a(z 2Ym

tanh __ 2

a(z)m -

1

ol (= 3 ah ¢
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m+1

425 ((—sgn<z>>’” O I (A e

AET Y (Hgn " £ (s

m+1

2
) cos( m + 1) atan

tanh ¢m

(z)m

(o

“))e

(TLI—F%)ﬂ

2/

3
N———
N———
\/
s

3

))
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