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Abstract

Recently, long-thought reasoning models achieve
strong performance on complex reasoning tasks,
but often incur substantial inference overhead,
making efficiency a critical concern. Our empiri-
cal analysis reveals that the benefit of using Long-
CoT varies across problems: while some prob-
lems require elaborate reasoning, others show no
improvement—or even degraded accuracy. This
motivates adaptive reasoning strategies that tai-
lor reasoning depth to the input. However, prior
work primarily reduces redundancy within long
reasoning paths, limiting exploration of more effi-
cient strategies beyond the Long-CoT paradigm.
To address this, we propose a novel two-stage
framework for adaptive and efficient reasoning.
First, we construct a hybrid reasoning model by
merging long and short CoT models to enable
diverse reasoning styles. Second, we apply bi-
level preference training to guide the model to
select suitable reasoning styles (group-level), and
prefer concise and correct reasoning within each
style group (instance-level). Experiments demon-
strate that our method significantly reduces infer-
ence costs compared to other baseline approaches,
while maintaining performance. Notably, on five
mathematical datasets, the average length of rea-
soning is reduced by more than 50%, highlighting
the potential of adaptive strategies to optimize
reasoning efficiency in large language models.

1. Introduction
Recent large language models (LLMs) such as OpenAI’s
O1(OpenAI, 2024) and Deepseek’s R1(team, 2025) adopt
extended and structured reasoning processes (Long-CoT)
to enhance problem-solving, achieving strong performance
through human-like deliberation. However, the improved
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reasoning comes with high inference costs, including in-
creased latency and resource consumption(Cheng & Durme,
2024; Chen et al., 2025; Sui et al., 2025), which limits
deployment in real-time or resource-constrained scenar-
ios. Existing efficiency-oriented methods operate within
the Long-CoT distribution, aiming to reduce redundancy
through pruning or compression(Luo et al., 2025; Arora
& Zanette, 2025; Chen et al., 2025). While effective to
some extent, these approaches do not question whether long
reasoning is necessary, overlooking potential gains from
fundamentally shorter reasoning strategies. CoT-Valve(Ma
et al., 2025b) enables both long and short outputs but lacks
adaptive selection based on input complexity, leading to
suboptimal results.

Our investigation (presented in Section 3) about the ben-
efit of Long-CoT reasoning reveals a crucial insight: the
utility of long, elaborate reasoning chains is highly problem-
dependent. While complex problems genuinely benefit from
detailed, step-by-step derivations, many other problems can
be solved accurately and more efficiently with shorter, more
direct reasoning paths. In fact, for simpler problems, forc-
ing a Long-CoT process might not only be wasteful but can
sometimes even introduce errors or degrade performance.
This observation strongly motivates the need for adaptive
reasoning strategies – systems that can tailor the depth and
style of their reasoning process to the specific demands of
the input problem.

Inspired by these limitations, we propose a two-stage frame-
work for efficient and adaptive reasoning by enabling mod-
els to choose between distinct reasoning strategies. The
first stage constructs a hybrid model capable of generat-
ing both Long-CoT and Short-CoT outputs. The second
introduces Bi-Level Adaptive Reasoning Optimization , a
training method comprising: (i) Group-Level Preference,
guiding the model to select an appropriate reasoning style
based on input complexity, and (ii) Instance-Level Prefer-
ence, encouraging concise yet accurate reasoning within
the chosen style. This dual-level adaptation allows dy-
namic allocation of computational resources, yielding sub-
stantial efficiency gains without sacrificing performance.
On MATH(Hendrycks et al., 2021), our method reduces
reasoning length by 58% with no accuracy loss, and on
GSM8K(Cobbe et al., 2021), by 74% with improved accu-
racy. These results highlight the effectiveness of adaptive
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reasoning in balancing quality and efficiency in large-scale
models.

Our contributions can be summarized as follows:

• We conduct an empirical analysis investigating the
benefits of long Chain-of-Thought (CoT) reasoning
relative to shorter CoT approaches, identifying the con-
ditions under which extended reasoning paths offer
tangible advantages.

• We propose using Adaptive Hybrid Reasoning Model
to enhance inference efficiency, accompanied by a
novel training pipeline (Ada-R1). Comprehensive
experiments demonstrate that our proposed method
achieves excellent performance, significantly improv-
ing efficiency while maintaining high accuracy.

• We perform further analyses on the resulting Adaptive
Hybrid Reasoning Model to gain deeper insights into
its characteristics and operational behavior. And we
will release the model weights of the Adaptive Hybrid
Reasoning Model to the public to encourage further
research and application by the community.

2. Related Work
Model Merging Model merging (Yang et al., 2024a) is an
emerging technique that fuses parameters from multiple
trained models into one without access to original training
data. Recent methods include parameter interpolation (Zhou
et al., 2025) and alignment-based strategies (Bhardwaj et al.,
2024), with applications in LLMs, multimodal models, and
other machine learning subfields. Beyond simple linear av-
eraging, advanced methods such as DARE (Yu et al., 2024),
TIES-Merging (Yadav et al., 2023), and AdaMerging (Yang
et al., 2024b) have been proposed. DARE reduces redun-
dancy by dropping and rescaling delta parameters. TIES-
Merging mitigates interference by trimming and aligning
parameter signs. AdaMerging improves performance via
entropy-based layer or task weighting on unlabeled data.
In contrast to traditional model merging that consolidates
capabilities from multiple models, our work enables a single
model to adaptively choose between Long-CoT and Short-
CoT reasoning for each instance, aiming to optimize com-
putational efficiency rather than multi-task performance.

Efficient Reasoning A variety of methods have been pro-
posed for improved reasoning efficiency. Several techniques
apply post-training strategies to shorten reasoning paths.
(Chen et al., 2025) constructs preference datasets using
DPO and SimPO, guiding models toward concise reasoning
through preference-based fine-tuning. O1-Pruner(Luo et al.,
2025) samples CoTs to build baselines for length and accu-
racy, then applies offline optimization to reduce reasoning
length without harming performance. Similarly, (Munkhbat

et al., 2025) leverages simple fine-tuning on self-generated
concise CoTs obtained via best-of-N sampling and few-shot
prompting. Some approaches focus on token-level compres-
sion. TokenSkip(Xia et al., 2025), for instance, removes to-
kens selectively based on their estimated importance within
the CoT. CoT-Valve(Ma et al., 2025b), in contrast, manip-
ulates the parameter space to produce CoTs with varying
degrees of compression. Besides, various methods adopt
different reasoning paradigms for efficiency. For instance,
COCONUT(Hao et al., 2024) and CCOT(Cheng & Durme,
2024) enable reasoning within the latent space, reducing the
need for explicit token-level generation. Speculative Think-
ing(Yang et al., 2025c) enhances small model inference
by allowing large models to guide them during reasoning.
Similarly, LightThinker(Zhang et al., 2025) achieves effi-
ciency by dynamically compressing intermediate thoughts
throughout the reasoning process. Also, some works ((Yang
et al., 2025a),(Pan et al., 2025), (Ma et al., 2025a), (Qiao
et al., 2025), (Zhuang et al., 2025), (Yang et al., 2025b))
design novel reasoning paradigms for efficiency. (Wu et al.,
2025) also explores model merging technical for reasoning
efficiency. Different from most works, our work solves rea-
soning efficiency in a novel adaptive reasoning perspective.

3. Motivation
3.1. Problem Setup

Chain-of-Thought (CoT) prompting has emerged as a pow-
erful technique for enhancing the reasoning capabilities of
large language models. Within the CoT paradigm, a dis-
tinction can be made between Long-CoT, which involves
generating detailed and extensive thinking steps, and Short-
CoT, which directly generate solving steps.

3.2. When Do We Need Long-CoT?

Simply applying Long-CoT to all problems introduces un-
necessary overhead, especially for easier tasks where de-
tailed reasoning brings little or no benefit. To understand
when Long-CoT is truly needed, we empirically analyze its
effectiveness across different problem types. We compare
Long-CoT and Short-CoT on a mixed dataset (MixMathe-
matics) composed of samples from AIME(MAA, 2024),
MATH, and GSM8K (details in Section 5.1). We use
DeepSeek-R1-Distill-Qwen-7B for Long-CoT, and fine-tune
it with 2,000 Short-CoT samples from Qwen2.5-Math-7B-
Instruct(Qwen et al., 2025) to create a consistent Short-CoT
model. We avoid using Qwen2.5 directly due to its differing
training format, which may affect later merging and sam-
pling. From 2,500 problems, we generate 12 responses per
model per question and remove cases where both models fail
completely. We then calculate accuracy gains (Long-CoT
accuracy minus Short-CoT accuracy).
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Figure 1. The proportion of gain in the data (left) and the relationship between CoT length and accuracy improvement (right), Long-CoT
reasoning improves accuracy on difficult problems but has little effect or harms performance on easy ones.

As shown in Figure 1 (left), nearly half the samples show
no improvement from Long-CoT, and some even suffer per-
formance drops. Further analysis (Figure 1, right) groups
samples by the average length of their Long-CoT out-
puts—longer CoTs tend to correspond to harder problems.
We find that Long-CoT significantly improves accuracy on
complex questions but provides little or no benefit for sim-
pler ones.

3.3. A New Perspective on CoT Efficiency

Prior methods (Table 1), such as Overthinking (Chen et al.,
2025), kimi-1.5 (Team et al., 2025), and O1-Pruner, typi-
cally operate within a limited optimization scope but gen-
erally maintain performance stability or incur only a slight
drop, with O1-Pruner notably achieving no performance
decrease. In contrast, methods designed for a broad op-
timization scope, including Model Merge and CoT-Valve,
did not consider how to tackle easy and different problems,
rendering the model incapable of determining its reasoning
depth according to the inherent difficulty of the task. Thus
they frequently result in significant performance degrada-
tion. In a nutshell, methods with a restricted optimization
can generally preserve performance but lose the chance to
utilize shorter CoT. However, approaches capable of utilize
broader CoT distribution have struggled to maintain accu-
racy due to their inability to adapt adequate reasoning depth
to problem complexity.

The finding mentioned in last section motivates us to ad-
dress the efficiency challenge of Long-CoT models from a
novel perspective: enabling the reasoning model to adap-
tively select an appropriate reasoning mode (long or short
CoT) for different problems, and then generate a correct and
concise CoT in the determined mode. Our proposed method
(Ada-R1) differentiates itself by successfully achieving a
broad optimization scope while incurring only a marginal
performance decrement. This demonstrates a more favor-
able trade-off between efficiency and accuracy compared to

existing broad-scope optimization techniques.

4. Bi-Level Adaptive Reasoning Optimization
4.1. Problem Setup

We consider a LLM parameterized by θ and denoted as
πθ. In the context of math problem solving, the LLM ac-
cepts a sequence x = [x1, . . . , xn], commonly termed as
the problem, and then generate a corresponding solution
y = [y1, . . . , ym]. Hence, the solution y is construed as a
sample drawn from the conditional probability distribution
πθ(·|x). The conditional probability distribution πθ(y|x)
can be decomposed as follows:

πθ(y|x) =
m∏
j=1

πθ(y
j |x, y<j). (1)

We consider two LLMs: one trained to generate long, reflec-
tive Chain-of-Thought (CoT) reasoning (Long-CoT model,
denoted as θL) and the other trained for short and concise
reasoning paths (Short-CoT model, denoted as θS). These
two models are typically fine-tuned with different CoT and
demonstrate distinct reasoning patterns.

4.2. Method Overview

Our method consists of two stages, shown in Figure 2. First,
we merge a Long-CoT model and a Short-CoT model to
obtain a unified reasoning model capable of generating both
types of reasoning paths. This allows exploration over a
broader CoT distribution. In the second stage, we apply
Bi-Level Preference Training: for group-level preference,
the model learns to choose between long and short reason-
ing group based on the input; for instance-level preference,
it learns to compress the reasoning path to improve effi-
ciency within the chosen group determined by group-level
preference.
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Method CoT Optimization Scope Performance (Accuracy)
Overthinking(Chen et al., 2025) Limited × Slightly Dropped ✓

kimi-1.5(Team et al., 2025) Limited × Slightly Dropped ✓
O1-Pruner Limited × Not Dropped ✓

Naive Merge Broad ✓ (mostly) Dropped ×
CoT-Valve Broad ✓ Dropped ×

Ada-R1(Ours) Broad ✓ Slightly Dropped ✓

Table 1. Comparison of Different Methods. "Limited" indicates optimization within the Long-CoT distribution, restricting efficiency.
"Broader" covers both Long- and Short-CoT, enabling shorter, more efficient responses. "Slightly dropped" means accuracy decreased by
less than 3%, while "dropped" refers to a decrease greater than 3%.

Merge

𝜋𝜃𝐻

Stage I

𝜋𝜃𝐻
∗

𝜋𝜃𝐿

𝜋𝜃𝑆

𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒

𝑃𝑔𝑟𝑜𝑢𝑝

Bi-Level 
Optimization

Stage II

𝜋𝜃𝐻

Sample

Sample

Train

𝜋𝜃𝐿

𝜋𝜃𝑆

Figure 2. Pipeline of Ada-R1. At Stage I, we fused the models to obtain πθH . In Stage II, we sample from both long and short models and
then elicit the group-level and instance-level preference. After this, we optimize πθH at both group and instance level to obtain a hybrid
adaptive reasoning model.

4.3. Stage I: Long-and-Short Reasoning Merge

To enable flexible reasoning behaviors within a single model,
we first perform model merging with long and short models.
We adopt a simple yet effective strategy of linearly merging
their parameters. Given two models with parameters θL and
θS , we compute the merged model as:

θH = αθL + (1− α)θS , (2)

where α ∈ [0, 1] is a merging coefficient that balances
the contribution from each model. The resulting hybrid
reasoning model, πθH , inherits the capacity to generate both
long and short CoT depending on the input.

This merged model expands the diversity of the CoT dis-
tribution it can produce, laying the foundation for adaptive
reasoning. By combining the strengths of both reasoning
styles, it enables the model to potentially match different
problem types with suitable reasoning strategies, which is
key to improving efficiency in the next stage.

4.4. Stage II: Bi-Level Preference Training

In this stage, we introduce a Bi-Level Preference Training
strategy to fine-tune the model toward efficient reasoning.
The core idea is to train the model to: (1) select the ap-
propriate reasoning style (long or short) for each problem

(group-level preference) and (2) further compress the rea-
soning within the determined chosen group (instance-level
preference).

Group Labels. We define a group label g to denote the
reasoning style of a response group. Let gL denote the long
reasoning group and gS denote the short reasoning group.
For a given input problem x, a generated resposne (solution)
y belongs to one of the two groups. We use {yi}g=gL to
denote the set of K Long-CoT responses generated by the
Long-CoT model θL, and {yj}g=gS for the corresponding
short responses from the Short-CoT model θS .

Group-Level Preference. For each math problem x in
the dataset D, we sample K solutions from both the long
and short reasoning models. Let {yLi }Ki=1 and {ySj }Kj=1 be
the respective sample sets. We define the approximated
accuracy expectation for each group as:

Ê[CL(x)] =
1

K

K∑
i=1

1[Correct(yLi )],

Ê[CS(x)] =
1

K

K∑
j=1

1[Correct(ySj )], (3)

4
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where 1[·] is the indicator function. Then we introduce a
preference margin threshold ϵ > 0. The group-level prefer-
ence for x is then determined as:{

gL ≻ gS | x if Ê[CL(x)]− Ê[CS(x)] > ϵ,

gS ≻ gL | x if Ê[CL(x)]− Ê[CS(x)] ≤ ϵ.

Given the group-level preference for an input x, we form
training pairs from the Cartesian product of the two groups.
For example, if gL ≻ gS | x, we construct the preference
pairs as:

Pgroup(x) =
{
(x, yLi , y

S
j )
∣∣ i ∈ [1,K], j ∈ [1,K]

}
. (4)

From this set of pairs, we randomly sample a subset contain
M1 pairs to construct DPO training tuples (x, yw, yl), where
yw is the preferred (chosen) response and yl is the less
preferred (rejected). For all x ∈ D, we perform group-level
preference assignment by comparing the sampled long and
short responses as described above. These tuples are then
aggregated into a new dataset Dgroup = {(x, yw, yl)}, which
serves as supervision for optimizing the DPO objective at
the group level.

Instance-Level Preference. Once the preferred group
g∗ ∈ {gL, gS} is determined for a given x, we further
construct instance-level preferences within that group to
encourage more concise reasoning. We compare response
pairs (ya, yb) such that both belong to the same group (e.g.,
ya, yb ∈ {yLi }), and prefer the shortest correct response. For
dispreferred samples, we select M2 longest responses. For-
mally, for each x ∈ D with preferred group g∗, we first iden-
tify the subset of correct responses {yi}correct ⊆ {yi}g=g∗ .
Among these, we select the shortest correct response as the
preferred instance:

yw = arg min
y∈{yi}correct

|y|.

To construct instance-level preference pairs, we then select
the M2 longest responses from the entire group {yi}g=g∗ .
Denote these as {ylj}

M2
j=1. This yields a dataset of instance-

level training tuples:

Dinstance =

{
(x, yw, yl)

∣∣∣∣ yw = arg miny∈{yi}correct
g=g∗

|y|,

yl ∈ arg max(M2)
y∈{yi}g=g∗

|y|

}

These instance-level preferences encourage the model not
only to reason correctly, but also to do so concisely within
the preferred reasoning style.

We sample such intra-group pairs and use them as additional
training data for DPO to encourage the model to favor more
concise reasoning within each group.

Objective. Given collelcted preference datasets Dgroup and
Dinstance sampled from p∗ which contains N preference pairs
(x, yw, yl). With a parameter β controlling the deviation
from the reference model pref, DPO optimize the model by:

max
πθH

E(x,yw,yl)∼Dgroup∪Dinstance

[
log σ

(
β log

πθH (yw | x)
πθref (yw | x)

− β log
πθH (yl | x)
πθref (yl | x)

)]

5. Experiments
5.1. Setup

Long-CoT Models. The long thought models we chosen
for our experiment are DeepSeek-R1-Distill-Qwen-7B and
DeepSeek-R1-Distill-Qwen-1.5B, which have demonstrated
excellent performance on most math problem-solving tasks.
For both models, we utilize full-parameter fine-tuning.

Short CoT Models. Since model merging requires Shot-
CoT models, we face two issues with existing Shot-CoT
models: (1) they often employ templates that differ from
those used in Long-CoT models; (2) they tend to exhibit
substantial parameter deviations from the base model, which
introduces instability during the merging process(Yang et al.,
2024b; Zhou et al., 2024). To address these challenges, we
fine-tune the Long-CoT models using a small number of
short CoT examples to obtain the corresponding Shot-CoT
models. This approach ensures consistency in template
usage and maintains a closer parameter proximity between
the two models.

Dataset. Following s1(Muennighoff et al., 2025) and Light-
R1(Wen et al., 2025), we construct a mixed training dataset
to ensure coverage across mathematical problems of varying
difficulty levels. Specifically, we combine GSM8K, MATH,
and AIME datasets in a ratio of 1:3:1, resulting in a total of
2,500 diverse math problems.

Evaluation. We use the GSM8K test set, the MATH test
set, and AIME25 as in-distribution evaluation data, while
Olympiad(He et al., 2024) and Minerva(Lewkowycz et al.,
2022) are employed as out-of-distribution test sets. For eval-
uation metrics, we consider both accuracy and sequence
length. Additionally, we report the average accuracy de-
grade rate and the average length reduction rate across all
test sets.

5.2. Competitive Methods

DPO. DPO are widely used baselines in reasoning optimiza-
tion area. Follwoing the setting of (Team et al., 2025; Chen
et al., 2025), we choose shortest sample as chosen samples

5
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Table 2. Accuracy (shown above) and length (shown below) of models and methods on different benchmarks. Avg represents the change
in length and accuracy compared to the Long model (+ for increase, - for decrease).

Model
Bench

AIME25 MATH500 GSM8K Olympiad Minerva Avg.(%)

7B Models

Long(R1-distill)
38.3 90.2 88.9 54.4 35.7 -

(11005) (3534) (1014) (7492) (4533) -

Short
10.0 78.6 89.5 39.4 28.6 −19.97%

(957) (591) (272) (910) (579) (-84.57%)

Merge
21.7 79.4 88.4 41.2 25.7 −18.63%

(9079) (916) (236) (3743) (1734) (-56.02%)

DPO
35.8 89.4 86.0 55.2 35.6 -3.56%

(9976) (2334) (360) (5309) (3281) (-33.26%)

O1-Pruner
40.0 92.4 89.4 55.3 35.3 +2.48%

(9353) (2212) (377) (5295) (3259) (-34.53%)

CoT-Valve
22.5 78.6 87.9 39.6 29.4 −18.41%

(5024) (747) (235) (2313) (629) (-73.06%)

Ada-R1(Ours)
35.8 90.2 90.3 52.4 34.1 -1.65%

(8426) (1468) (260) (4889) (1647) (-50.93%)
1.5B Models

Long(R1-distill)
23.3 81.0 80.9 41.6 26.1 -

(12307) (4416) (1481) (7687) (5789) -

Short
9.0 69.4 78.2 30.7 22.4 −26.34%

(1098) (740) (269) (1373) (725) (-85.15%)

Merge
20.8 71.8 74.2 28.6 20.0 −10.12%

(9226) (1740) (251) (3767) (1399) (-59.10%)

DPO
20.8 81.4 74.8 42.8 24.3 −5.93%

(10224) (3055) (374) (6319) (3905) (-34.57%)

O1-Pruner
23.3 82.6 84.6 44.7 28.3 +2.18%

(9496) (2782) (726) (5658) (3964) (-33.75%)

CoT-Valve
14.2 69.6 76.3 28.7 19.5 −19.61%

(7744) (1299) (205) (3169) (867) (-67.52%)

Ada-R1(Ours)
23.0 80.8 79.2 42.1 23.5 -1.21%

(9516) (2455) (341) (5802) (3021) (-43.28%)

and longest sample as rejected sample.

CoT-Valve. CoT-Valve enables dynamic control of Chain-
of-Thought length using a single model by identifying and
leveraging a controllable direction in the model’s parameter
space to generate compressed CoT.

O1-Pruner. O1-Pruner is a method designed to reduce
reasoning overhead while maintaining model accuracy. It
begins by establishing a baseline through pre-sampling, and
then applies reinforcement learning-based finetuning.

5.3. Main Results

We can be seen from the Table 2 that: the Short and Merge
models achieve the most significant length reduction com-
pared to the Long Model. However, this efficiency gain is
accompanied by a notable degradation in accuracy, exceed-

ing 10 percentage points. Among the models that do not
suffer significant accuracy degradation, our method achieves
the best length reduction performance, reaching 50.93% for
the 7B model and 43.28% for the 1.5B model. Compared
to DPO, our approach demonstrates both more substantial
length reduction and significantly less accuracy degradation.
While O1-Pruner maintains high accuracy, its length reduc-
tion effect is considerably weaker than that of our method.

5.4. Ablation Study

To assess each component’s impact in our framework, we
conduct an ablation study on AIME25, MATH500, and
GSM8K. As shown in Table 3, the Merge model reduces
average output length by 56.10%, but with a notable 12.83%
drop in accuracy.
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Table 3. Ablation study of each component on several benchmarks, showing that the Merge + bi-level achieves the best trade-off, with a
52.08% average length reduction and a minimal 0.51% accuracy degradation compared to others.

Model
Bench

AIME25 MATH500 GSM8K Avg.(%)

Long(R1-distill)
38.3 90.2 88.9 -

(11005) (3534) (1014) -

Merge
21.7 79.4 88.4 −12.83%

(9079) (916) (236) (-56.10%)

Merge + SFT
35.8 84.6 88.7 -3.82%

(11222) (2314) (375) (-31.86%)

Merge + group level
30.8 87.8 91.6 -3.31%

(9049) (1565) (359) (-46.03%)

Merge + bi level
35.8 90.2 90.3 -0.51%

(8426) (1468) (260) (-52.08%)

Supervised Fine-Tuning (SFT) on the merged model (using
the chosen sample in our group level preference dataset),
helps recover a significant portion of the lost accuracy, bring-
ing the average degradation down to 3.82%. However, its
average length reduction is less pronounced (31.86%) com-
pared to the Merge model without further training.

Introducing the group-level preference training after merg-
ing (Merge + group level) yields better results than SFT. It
achieves a higher average length reduction (46.03%) and a
slightly better accuracy recovery, with only a 3.31% aver-
age degradation relative to the baseline. This indicates that
training the model to select the appropriate reasoning style
is effective in balancing efficiency and accuracy.

The full method (Merge + bi level), combining group and
instance level preference training, offers the best trade-off:
52.08% length reduction with only 0.51% accuracy loss.
This result highlights the complementary benefits of the
bi-level training approach: the group level guides the model
towards suitable reasoning styles, and the instance level
further refines the chosen style by favoring concise and
correct responses, leading to a highly efficient and accurate
hybrid reasoning model.

6. Further Evaluation
6.1. Thinking Ratio Study

To investigate the thinking characteristics of different mod-
els, we propose the "Thinking Ratio" metric. This metric
is designed to detect whether a response constitutes a deep
thinking (Long-CoT) sample. Long-CoT responses typi-
cally include unique keywords (e.g., ‘wait’, ‘recheck’). By
detecting the presence of these keywords in a response, we
can determine if it is a deep thinking sample. This detec-
tion method is more generalizable than relying solely on
response length. We use a subset of Math Testset. Using

the method described above, we analyzed the proportion
of deep thinking samples for each model. Furthermore,
for each category (thinking/non-thinking samples), we also
calculated their accuracy.

The results are shown in Figure 3. The baseline Long-CoT
model predominantly employs deep thinking (0.98), yield-
ing high accuracy. In contrast, the Naive Merge model
drastically shifts towards non-thinking responses (0.94) but
suffers significant accuracy degradation on both thinking
(0.68) and non-thinking (0.81) paths. DPO shows a moder-
ate shift to non-thinking (0.34) while preserving accuracy.
Our Ada-R1 model achieves a more significant shift towards
non-thinking (0.72) than DPO, yet crucially maintains high
accuracy for these dominant non-thinking responses (0.96),
unlike the Naive Merge. This demonstrates Ada-R1’s ef-
fective adaptation, utilizing efficient shorter paths without
substantial accuracy loss.

6.2. Adaptive Reasoning Study

This section evaluates the adaptive reasoning ability of Ada-
R1 (7B) on the MATH dataset, which is divided into five
difficulty levels (Level 1–5). We analyze both the model’s
thinking ratio (Long-CoT usage) and its average accuracy
across these levels. As shown in the left part of Figure 4,
the thinking ratio increases significantly with task difficulty.
Level 1 problems have the lowest Long-CoT usage, while
Level 5 shows the highest, indicating that Ada-R1 adaptively
chooses to think more on harder problems. In terms of accu-
racy (Figure 4, right), Ada-R1 achieves strong performance
across difficulty levels. Its accuracy is comparable to that
of a full Long-CoT model (Deepseek-R1-Qwen-7B-Distill)
and consistently higher than the Short-CoT model, espe-
cially on Levels 3 to 5. These results support our hypothesis
from Section 3: Ada-R1 can selectively apply Long-CoT
when needed, achieving a better balance between accuracy
and efficiency.
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Figure 3. The proportion and accuracy of thinking and non-thinking in different methods, Ada-R1 can achieve a good balance and accuracy
between thinking and non-thinking.
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Figure 4. The ratio of thinking and non-thinking CoTs of Ada-R1-7B on different MATH levels (left) and the accuracy on different MATH
levels of different models (right). As the difficulty increases, Ada-R1 is able to think more on harder problems and maintain higher
accuracy.

7. Conclusion
In this paper, we demonstrate through empirical analysis
that the benefits of Long-CoT reasoning vary significantly
depending on the problem. Motivated by this, we propose a
novel two-stage training framework for adaptive reasoning.
Experiments show that model trained with our method can
reason adaptively to different problems. And our method
significantly reduces inference costs while preserving per-
formance, highlighting the promise of adaptive strategies for
optimizing reasoning efficiency in large language models.

8. Impact Statement
This paper tackles a core inefficiency in current chain-of-
thought reasoning for large language models: Do all prob-
lems require Long-CoT reasoning? To solve that, we present
a two-stage solution that first merges long and Short-CoT
models into a single hybrid, then applies group-level and
instance-level preference training to decide, for each prob-
lem, whether to “think long” or “think short”. Across five
mathematical benchmarks, Ada-R1 cuts average reasoning
length by over 50% while incurring under a 1% drop in accu-
racy, demonstrating substantial gains in inference efficiency
without sacrificing performance. Our results underscore
the power of adaptive, input-aware inference strategies to

make LLM reasoning both practical and scalable, marking
a significant step toward resource-efficient AI in academic
research and real-world deployment.
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A. Selection of α in Stage I (Model Merge)
To select an appropriate value of α during the merge phase,
we adopted the following approach. We randomly sam-
pled 100 problems from the AIME exams (AIME 2025 is
excluded). Using the 7B model as mentioned in our experi-
ment, we evaluated performance under different values of α
(0.9, 0.8, 0.7), computing both accuracy and thinking ratio
for each setting. We selected α = 0.8 as a balanced choice
for Stage II training as it has relatively high accuracy and
moderate thinking ratio.

Table 4. Performance of merged 7B models on 100 AIME prob-
lems.

α Accuracy Thinking Ratio
0.9 54.0 93%
0.8 40.0 48%
0.7 27.0 9%

B. Training Details
For both models, we selected 2,500 problems from the
mixed Mathematics as training data. For each problem,
we sample 12 times. From each set of solutions, we ran-
domly selected 2 solutions for training. After computing the
rewards, we normalized the reward values. Both models are
trained with 8 * A800-80G GPUs. The other hyperparame-
ters used in the training process are presented in the table
below.

Table 5. Hyperparameters for the Deepseek-Distill-1.5B and
Deepseek-Distill-7B.

Hyperparameter Deepseek-1.5B Deepseek-7B
cutoff_len 4096 4096
batch_size 32 32
learning_rate 5.0e-7 5.0e-7
num_train_epochs 2.0 2.0
lr_scheduler_type constant constant
M1 4 4
M2 2 2
beta 0.05 0.1

C. Further Evaluation of Different Methods
We further evaluate the performance and efficiency of dif-
ferent methods (Ada-R1, DPO, O1-Pruner) across varying
levels of problem difficulty, as illustrated in Figure 5 and Fig-
ure 6. Figure 5 presents the accuracy ratio of each method
relative to a baseline model across different difficulty levels
within the MATH dataset. The results indicate that while
performance trends may vary, our proposed Ada-R1 method
demonstrates strong robustness. Specifically, as the inherent

difficulty of the mathematical problems increases, Ada-R1
is able to consistently maintain a high accuracy ratio.

Figure 6 show the ratio of average tokens consumed by
each method to solve problems across the same difficulty
spectrum. As expected, solving more difficult problems gen-
erally requires more reasoning steps and thus more tokens.
However, Figure 6 reveals that Ada-R1 exhibits favorable
token efficiency. Critically, when faced with increasing
problem difficulty, Ada-R1 manages to solve these complex
problems while utilizing relatively fewer tokens compared
to other evaluated methods, showcasing its ability to achieve
efficient reasoning even for demanding tasks.

Collectively, these figures highlight Ada-R1’s ability to
strike a beneficial balance between accuracy and efficiency.
It not only maintains high performance on challenging prob-
lems (Figure 5) but also does so in a computationally effi-
cient manner, particularly evident in its lower token usage
for difficult instances (Figure 6), addressing limitations ob-
served in prior methods.

D. Why Does Ada-R1 Work?
D.1. Early Mode Selection Assumption

While Ada-R1 significantly reduces inference cost by adap-
tively selecting a reasoning strategy during the inference
stage, its design relies on an important assumption: the
model determines the reasoning mode (Long-CoT or Short-
CoT) immediately after receiving the problem input, without
relying on any intermediate computation or external signals.
In other words, the model is expected to assess the complex-
ity of the problem and select an appropriate reasoning path
before beginning the actual problem-solving process.

D.2. Visualization Setup

To investigate this question and better understand how Ada-
R1 works, we design an experiment. We randomly select
500 problems from the training data and evaluate them us-
ing the 7B models (R1, and Ada-R1). For each problem,
we extract the hidden states of the final token in the input
sequence and use the last layer’s hidden states as the internal
representation of the problem. Based on previously com-
puted group-level preferences (i.e., whether the problem
should be solved using Long-CoT or Short-CoT), we assign
a color label to each sample—red for problems requiring
Long-CoT and blue for those suitable for Short-CoT. We
then apply t-SNE to project the high-dimensional hidden
states into a two-dimensional space for visualization.

D.3. Ada-R1 Learns an Implicit Problem Classifier

From the visualization, we observe that after preference-
based training, Ada-R1 is able to partially separate prob-
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Figure 5. The ratio of accuracy at different MATH levels on different models. As the difficulty increases, Ada-R1 is able to maintain high
accuracy.
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Figure 6. The ratio of average tokens on different models. As the difficulty increases, Ada-R1 is able to use relatively fewer tokens to
solve difficult problems.
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Figure 7. Visualization of R1 model

Figure 8. Visualization of Ada-R1 model

lems that require Long-CoT from those that do not, based
solely on their internal representations. This suggests that
the model learns to encode problem complexity in represen-
tation space, enabling early and efficient reasoning mode
selection. Such a capability underpins the effectiveness of
Ada-R1: by making an informed decision on the reasoning
strategy at the problem stage, the model avoids unneces-
sary computation for simpler problems while retaining full
reasoning capacity for more complex ones.

E. Case Study
We select two cases (9 and 10) of R1 and Ada-R1 to better
understand our proposed method. In case 9, Ada-R1 can in-
fer answers to simple problems with a small amount of CoT;
in case 10, Ada-R1 can infer answers to difficult problems
with relatively few long CoT.

F. Limitations
While our proposed adaptive hybrid reasoning framework
shows strong performance on benchmark datasets, its ap-
plicability in real-world scenarios presents new challenges.
In particular, real-world tasks often involve diverse input
distributions, domain-specific knowledge, and evolving re-
quirements that differ from curated academic datasets such
as MATH or GSM8K. The current design assumes clear
patterns in problem complexity that can guide reasoning
strategy selection; however, in practical applications, this
complexity may be harder to estimate reliably without ad-
ditional context or metadata. We view this as a promising
direction for future research to bridge the gap between con-
trolled evaluation settings and real-world reasoning applica-
tions.
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Question: Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in the
form (r, θ), where r > 0 and 0 ≤ θ < 2π. Let’s think step by step and output the final answer within boxed{}.
Ground Truth: (3, π

2 )

Ada-R1: To convert the rectangular coordinate (0, 3) to polar coordinates, we use the formulas: r =
√
x2 + y2 and

θ = arctan
(
y
x

)
. For the point (0, 3): - r =

√
02 + 32 =

√
9 = 3 - Since the point lies on the positive y-axis, the

angle θ is π
2 . Thus, the polar coordinates are (3, π

2 ). Final Answer: (3,
π

2
) ✓

R1: Okay, so I need to convert the rectangular coordinate (0, 3) to polar coordinates. Hmm, polar coordinates are
represented as (r, θ), where r is the radius (distance from the origin) and θ is the angle made with the positive x-axis.
Let me recall the formulas to convert from rectangular to polar coordinates.
First, I remember that the radius r can be found using the Pythagorean theorem. Since in rectangular coordinates,
the point is (x, y), the distance from the origin is r =

√
x2 + y2. So in this case, x is 0 and y is 3. Plugging that

into the formula, r should be
√
02 + 32 which is

√
0 + 9 =

√
9 = 3. Okay, that seems straightforward.

Now, the angle θ. I know that θ is calculated using the arctangent function because tan θ = y
x . But wait, in this case,

x is 0. Hmm, arctangent of y
0 . But dividing by zero is undefined. I need to think about what angle θ corresponds to

when x is 0.
In rectangular coordinates, when x is 0, the point lies on the y-axis. Since y is positive here (y = 3), the point is on
the positive y-axis. So, in terms of polar coordinates, the angle θ should be the angle that points directly upwards
along the y-axis. I think that’s π

2 radians, which is 90 degrees. Because starting from the positive x-axis, if we rotate
π
2 radians counterclockwise, we end up pointing straight up along the positive y-axis.
Let me double-check that. If θ is π

2 , then converting back to rectangular coordinates, x should be r cos θ = 3 cos(π2 )
and y should be r sin θ = 3 sin(π2 ). cos(

π
2 ) is 0 and sin(π2 ) is 1, so that gives x = 0 and y = 3, which is exactly the

point we started with. So that makes sense.
Wait, but could θ also be 3π

2 ? No, because 3π
2 is pointing downward along the negative y-axis, which would give us

y = −3, not 3. So θ has to be in the range where the point is on the positive y-axis, which is π
2 .

Just to make sure, let’s think about the unit circle. At θ = 0, we’re on the positive x-axis; at θ = π
2 , positive y-axis;

at θ = π, negative x-axis; at θ = 3π
2 , negative y-axis. So yeah, θ = π

2 is correct for the positive y-axis.
So, putting it all together, r is 3 and θ is π

2 . Therefore, the polar coordinates should be (3, π
2 ). Let me just write that

out to make sure I didn’t make any mistakes.
Wait, another thought: sometimes people use different ranges for θ, like from −π to π. But in this case, the problem
specifies that θ should be between 0 and 2π, so π

2 is within that range. So, I don’t need to adjust θ or anything.
Just to recap: the point is (0, 3) in rectangular, so x = 0, y = 3. Calculating r:

√
02 + 32 = 3. Calculating θ: since

x = 0 and y is positive, θ is π
2 . So, (3, π

2 ) is the polar coordinate.
I think that’s solid. Let me visualize it too. If I plot (0, 3) on the rectangular coordinate system, it’s on the y-axis,
three units up. In polar coordinates, that’s a radius of 3 and an angle of π

2 from the positive x-axis. Yep, that lines up
perfectly.
Just to add another check, let me compute the sine and cosine with θ = π

2 . cos(π2 ) is 0, so x = 3 ∗ 0 = 0, which
matches. sin(π2 ) is 1, so y = 3 ∗ 1 = 3, which also matches. Perfect, no discrepancies there.
So, I think I’m confident that the polar coordinates are (3, π

2 ). I don’t see any mistakes in my reasoning, and all the
checks seem to confirm that this is the correct answer.

Final Answer: The polar coordinates are (3,
π

2
) . ✓

Figure 9. Ada-R1 can infer answers to simple problems with a small amount of CoT, whereas the R1 model requires a long CoT.

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Ada-R1: Hybrid CoT via Bi-Level Adaptive Reasoning Optimization

Question: Define p =
∑∞

k=1
1
k2 and q =

∑∞
k=1

1
k3 . Find a way to write

∑∞
j=1

∑∞
k=1

1
(j+k)3 in terms of p

and q. Let’s think step by step and output the final answer within boxed{}. Ground Truth: p− q

Ada-R1: Okay, so I have this problem where I need to express a double sum in terms of two known series, p and q.
Let me first write down what’s given. We have: p =

∑∞
k=1

1
k2 and q =

∑∞
k=1

1
k3 . And the expression we need to

evaluate is
∑∞

j=1

∑∞
k=1

1
(j+k)3 . Hmm, so this is a double sum over j and k starting from 1 to infinity, and each term

is 1 divided by (j + k) cubed. I need to find a way to write this in terms of p and q. Let me think about how to
approach this. Maybe I can change variables to simplify the expression. If I let n = j + k, then for each fixed n, j
can range from 1 to n-1, and k would be n - j. So, for each n, the number of terms where j + k = n is n - 1. So, maybe
I can rewrite the double sum as a single sum over n, and for each n, sum over j from 1 to n-1. Let me write that down:∑∞

j=1

∑∞
k=1

1
(j+k)3 =

∑∞
n=2

∑n−1
j=1

1
n3 . Yes, that seems right. Because when j + k = n, j can go from 1 to n-1, and

for each j, k is determined as n - j. So, the inner sum is just adding 1
n3 (n-1) times. So, the double sum becomes:∑∞

n=2
n−1
n3 . Simplify that expression:

∑∞
n=2

n−1
n3 =

∑∞
n=2

(
1
n2 − 1

n3

)
. Yes, because n−1

n3 = n
n3 − 1

n3 = 1
n2 − 1

n3 .
So now, the sum can be split into two separate sums:

∑∞
n=2

1
n2 −

∑∞
n=2

1
n3 . But notice that these sums are just p

and q minus their first term. Let’s write that: The first sum is:
∑∞

n=2
1
n2 = p− 1

12 = p− 1. Similarly, the second
sum is:

∑∞
n=2

1
n3 = q − 1

13 = q − 1. Therefore, the original ...
[OMITTED]
Thus, the original double sum becomes: (p− 1)− (q − 1) = p− 1− q + 1 = p− q. Therefore, the final answer is:
p− q . ✓

R1: Okay, so I have this problem where I need to express a double sum in terms of two known series, p and q.
Let me first write down what’s given. We have: p =

∑∞
k=1

1
k2 and q =

∑∞
k=1

1
k3 . And the expression we need to

evaluate is
∑∞

j=1

∑∞
k=1

1
(j+k)3 . Hmm, so this is a double infinite sum where both j and k start from 1 and go to

infinity, and each term is 1 over (j + k) cubed. I need to find a way to write this in terms of p and q. Let me think
about how to approach this. Maybe I can find a substitution or change variables to simplify the expression. Since the
denominator is (j + k)3, maybe if I let n = j + k, then I can rewrite the sum in terms of n and another variable.
Let’s try that. Let me set n = j + k. Then, for each fixed n, j can range from 1 to n - 1, because k would be n - j,
which also needs to be at least 1. So, for each n, j goes from 1 to n - 1, and k = n - j. So, substituting, the double sum
becomes:

∑∞
n=2

∑n−1
j=1

1
n3 . Wait, that seems promising. Because now for each n, we have a term 1

n3 multiplied
by the number of j’s, which is (n - 1). So, the inner sum is just n−1

n3 . Therefore, the entire expression becomes:∑∞
n=2

n−1
n3 . Simplify that:

∑∞
n=2

(
1
n2 − 1

n3

)
. Which is:

∑∞
n=2

1
n2 −

∑∞
n=2

1
n3 . But I know that:

∑∞
n=1

1
n2 = p

and
∑∞

n=1
1
n3 = q. So, subtracting the first term from both series:

∑∞
n=2

1
n2 = p − 1 and

∑∞
n=2

1
n3 = q − 1.

Therefore, substituting back into the expression: (p− 1)− (q − 1) = p− 1− q + 1 = p− q. Wait, so the entire
double sum simplifies to p - q? Let me verify my steps to make sure I didn’t make a mistake. 1. I started by changing
variables, setting n = j + k. Then for each n, j goes from 1 to n - 1, so k = n - j also goes from 1 to n - 1. That seems
correct. 2. Then, I rewrote the double sum as a single sum over n, with each term being n−1

n3 . That makes sense
because for each n, there are (n - 1) terms contributing 1

n3 each. 3. Then, I split the fraction into 1
n2 − 1

n3 . That’s a
valid step because n−1

n3 = n
n3 − 1

n3 = 1
n2 − 1

n3 . 4. Then, I separated the sums into two infinite series starting from n
= 2, which is correct because the original sum starts from n = 2. 5. Finally, I expressed the sums in terms of p and q
by subtracting the n=1 term from each series. That’s correct because the original p and q start from n=1. So, putting
it all together... [OMITTED]
Therefore, the final answer is: p− q ✓

Figure 10. Ada-R1 can infer answers to difficult problems with relatively few long CoT, whereas the R1 model requires longer CoT.
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