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ABSTRACT

Hand pose estimation has become a cornerstone of advanced human behavior un-
derstanding. In particular, 3D hand pose estimation has seen significant attention,
with numerous approaches being proposed. However, it is unclear whether the
modern approaches are applicable to real-world scenarios directly. We are focused
on the robustness of hand pose estimators in the wild, noting that existing datasets
exhibit distinct differences from real-world data. Thus, despite great advances,
there remains considerable room for improvement, as most recent efforts have
primarily focused on model architectures or on datasets within limited environ-
ments. To this end, we present a novel approach that unifies two key techniques:
style transfer using unlabeled in-the-wild images to enhance data diversity (i.e.,
Stylize) and continuous consistency regularization (CCR) to capture fine-grained
relations between hand pose data, providing rich supervisory signals (i.e., Align).
To evaluate the robustness of the learned representations through our framework,
we demonstrate that our method significantly enhances generalization capabilities
across various tasks, including 3D hand pose estimation and transfer learning for
2D hand pose estimation, all within our designed real-world testbed. Notably,
these improvements are achieved using less than 5% of the data size compared to
a large-scale dataset, InterHand2.6M.

1 INTRODUCTION

Hand pose estimation tasks, particularly in 3D, have gained increasing attention across various fields,
such as motion capture, human-computer interaction, augmented reality, and virtual reality. This
task focuses on reconstructing a single person’s right hand in 2D/3D space. Recent studies on
single-hand pose estimation, which is the main focus of this paper, can be broadly categorized into
two classes: refining model architectures and generating datasets.

Recently, reconstructing a single hand from monocular RGB images (Cai et al., 2018; Zimmermann
& Brox, 2017) has become the de facto standard in the field. There are two primary approaches:
model-based and model-free. Model-based approaches (Kanazawa et al., 2018; Moon et al., 2022a;
Park et al., 2022) use a pre-defined parametric model (i.e., MANO (Romero et al., 2017)) by for-
warding their predicted MANO parameters (i.e., pose and shape) to MANO layers for hand recon-
struction. On the other hand, model-free approaches (Kolotouros et al., 2019; Choi et al., 2020)
directly reconstruct the 3D hand from an input image without a parametric model. To improve accu-
racy, both approaches have increasingly adopted advanced architectures, including transformer (Park
et al., 2022; Lin et al., 2021b;a) or graph convolutional network (Ge et al., 2019; Tang et al., 2021;
Lin et al., 2021a; Li et al., 2022), going beyond traditional convolutional neural networks. Although
they have been proven to be effective, there is still room for further improvement in terms of task-
specific regularization which can simply serve as an add-on to existing methods.

As another direction, the research community has spent significant effort in collecting 3D hand
datasets. One of the seminal datasets for the markerless capture of 3D hand pose is FreiHAND (Zim-
mermann et al., 2019), which employs a multi-view camera setup to capture various hand poses
with the use of a green screen. Recently, several datasets designed to address specific challenges
(e.g., hand-object interaction (Hasson et al., 2019; Hampali et al., 2020; Chao et al., 2021) and
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Figure 1: t-SNE visualization of the style statistics (concatenation of mean and standard deviation)
computed from the first residual block’s feature maps of a ResNet, known as style descriptors. The
visualization clearly shows that Lab/synthetic datasets differ significantly from in-the-wild images
in terms of style and appearance.

blurred hand (Oh et al., 2023), in 3D hand pose estimation have been proposed. Notably, Inter-
Hand2.6M (Moon et al., 2020) has been proposed to offer a large-scale collection of accurate 3D
hand pose data, including diverse poses from single-hand gestures to interacting hand scenarios.
However, since these laboratory datasets (Lab datasets) are generated in controlled studio environ-
ments, they have limited stylistic variations (e.g., colors and backgrounds), which are far from those
of in-the-wild images. A straightforward way to resolve this issue is to collect a large-scale 3D
hand dataset composed of in-the-wild images and corresponding 3D ground truths (GTs). However,
it is highly demanding, as capturing 3D data requires numerous calibrated, synchronized cameras,
making it labor-intensive to set up in diverse outdoor locations.

This paper is motivated by the observation: the significant visual discrepancy between Lab datasets
and in-the-wild images, as illustrated in Fig. 1. To this end, we propose a novel framework that
unifies current dominant techniques: style transfer (i.e., Stylize) and consistency regularization (i.e.,
Align) to close the gap between monotonous Lab datasets and complicated real-world environments.
Specifically, we leverage the unlabeled real-world images (e.g., Flickr and ImageNet (Deng et al.,
2009)) as style references, injecting their individual styles into training images (e.g., FreiHAND)
on-the-fly during training. By utilizing easily accessible unlabeled data, our method efficiently
transfers real-world knowledge into the model, allowing it to experience data with diverse styles
while preserving accurate 3D GTs. Next, inspired by the success of metric learning in various areas,
our method incorporates the metric learning approach to align the differently stylized training images
using a relaxed consistency regularization based on continuous 3D pose GTs. This continuous
consistency regularization allows the model to learn fine-grained similarities and disparities between
3D poses, providing richer supervisory signals that go beyond merely matching individual 3D pose
GTs.
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We demonstrate the efficacy of our framework in 3D hand pose estimation for real-world scenarios.
Since this protocol has been relatively underexplored, we implement a testbed that simulates the
target scenario for evaluation. Moreover, since our approach can be applied to various tasks, we also
show that our method can enhance the capability of the transfer learning. Notably, our framework
achieves significant improvements while using less than 5% of the data size compared to the model
trained on the large-scale dataset, InterHand2.6M.

2 RELATED WORK

RGB-based single hand reconstruction. Significant strides in pose estimation have made RGB-
based methods the standard in the field. Existing approaches can be categorized into model-based
and model-free classes. An elementary example of the model-based approach is HMR (Kanazawa
et al., 2018), which predicts parameters for a predefined hand model (i.e., MANO (Romero et al.,
2017)) to achieve hand reconstruction. HMR operates as an end-to-end framework, incorporating
adversarial loss to ensure anatomically realistic results. On the other hand, model-free approaches
bypass parametric models entirely, directly estimating 3D mesh vertex coordinates. Recent ap-
proaches in this category have employed advanced architectures like transformers (Lin et al., 2021b)
and graph convolutional networks (Lin et al., 2021a), setting new benchmarks in performance. Con-
currently, the community has focused on generating accurate datasets. FreiHAND (Zimmermann
et al., 2019) introduced a dataset capturing single-hand poses and meshes using a portable multi-
camera setup, featuring green-screen backgrounds and various composited scenes. Additionally,
specialized datasets targeting challenges such as hand-object interaction (Hasson et al., 2019; Ham-
pali et al., 2020; Chao et al., 2021) and blurred hands (Oh et al., 2023) in 3D hand pose estimation
have been introduced. Remarkably, InterHand2.6M (Moon et al., 2020) provides the first large-scale,
real-captured dataset with accurate 3D ground truths for both single and interacting hands. Despite
these advancements, there remains a gap in the applicability of these approaches to real-world sce-
narios. In this paper, we introduce a novel framework that leverages simple yet effective techniques,
tailored for in-the-wild applications, without the need for complex training or costly annotations.

Neural style transfer. The foundational work by Gatys et al. (2016) demonstrated that the style of
an image can be effectively captured using the Gram matrix of a feature map within a neural net-
work. Building upon this, Johnson et al. (2016) extended this idea, enabling the transfer of neural
styles to arbitrary images. Further advancements by Dumoulin et al. (2017); Huang & Belongie
(2017) revealed that style information is preserved within the lower layers of convolutional neu-
ral networks (CNNs) through instance-level feature statistics. To harness this, Huang & Belongie
(2017) introduced Adaptive Instance Normalization (AdaIN), a technique that replaces the scale
and shift parameters with feature statistics derived from an external input, thus facilitating arbitrary
style transfer. In a different vein, recent studies, such as Geirhos et al. (2019), have uncovered that
CNNs exhibit a strong bias toward style information. This observation has led to a surge of interest
in leveraging neural style transfer for visual recognition tasks. From a data augmentation perspec-
tive, MixStyle (Zhou et al., 2021) introduces a method that perturbs style information by interpo-
lating the scale and shift parameters of randomly paired images within a mini-batch. Conversely,
UniStyle (Lee et al., 2022) seeks to de-stylize input images by applying zero-mean standardization
to intermediate feature maps during both training and inference. Moreover, the Style-agnostic Net-
work (Nam et al., 2021) utilizes adversarial training to disentangle style and content, encouraging
the model to focus more on the content information. Our method is also motivated by recent studies
that regularize CNN training through neural transfer via AdaIN, but with the distinct purpose of
efficiently distilling in-the-wild style knowledge from readily accessible images.

Consistency regularization. Consistency regularization (Sajjadi et al., 2016; Laine & Aila, 2017;
Zhai et al., 2019) is a widely used technique in semi-supervised learning (SSL) for image data. The
core idea is to ensure that the model remains stable when an unlabeled example is augmented in
ways that preserve its semantics. Therefore, data augmentation plays a crucial role in consistency
regularization. Berthelot et al. (2019); Sohn et al. (2020) leverage both consistency regularization
and data augmentation, establishing state-of-the-art performance in SSL image classification. Addi-
tionally, in the field of generative modeling, Zhang et al. (2020) enforce the discriminator to remain
invariant under data augmentation, thereby focusing more on semantic and structural changes be-
tween real and fake data. However, the aforementioned approaches rely on binary supervision (i.e.,
whether pairs share the same label or not). This poses significant challenges when adapting these
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Figure 2: Illustration of the overall architecture of our framework..

methods to tasks involving continuous labels (e.g., hand pose estimation). Meanwhile, the metric
learning community has developed advanced methods to relax this constraint. For example, Kim
et al. (2019) introduced a log-ratio loss, a variant of triplet loss, which preserves the ratios of dis-
tances between continuous labels in the learned metric space, enabling the model to capture the
degree of similarity. Building on this, Zheng et al. (2020) enhances the log-ratio loss by introducing
a dense structural loss that not only exploits the relationships among triplets but also incorporates
all possible quadruplets within a mini-batch. Our method adopts a form of relaxed consistency reg-
ularization as a supervised learning, distinct from SSL. In detail, we directly apply this technique
to predicted 3D poses based on 3D pose GTs to provide the model with rich supervisory signals.
These signals capture fine-grained similarities and differences between various 3D poses, aiming at
prevention of overfitting (e.g., memorization) and enhancing robustness in the wild.

3 METHOD

As shown in Fig. 2, our framework consists of two steps: Stylization and Alignment. The former step
uses adaptive instance normalization (AdaIN) (Huang & Belongie, 2017) to enhance data diversity
by transferring styles from unlabeled real-world images to training hand images. The latter step
employs continuous consistency regularization (CCR) to offer richer supervisory signals, capturing
fine-grained relations among pose data. Details of each step are given in the following sections.

3.1 STYLIZATION: ADAIN WITH UNLABELED IMAGES

Review of style transfer via AdaIN. The goal of style transfer is to blend the visual style of a source
image with the content of a target image, which results in a new image that reflects the source’s
aesthetic characteristics while retaining the target’s structural elements. Recent studies (Ulyanov
et al., 2016; Dumoulin et al., 2017; Huang & Belongie, 2017) have shown that normalizing feature
tensors using instance-specific mean and standard deviation is effective in removing the style of
an image, a technique commonly referred to as Instance Normalization (IN). Specifically, let F ∈
RC×H×W denote an intermediate feature map of an image x. IN can be formulated as:

IN(F ) = γ
F − µ(F )

σ(F )
+ β, (1)

where γ, β ∈ RC are learnable affine transformation parameters, and µ(F ), σ(F ) ∈ RC are the
channel-wise mean and standard deviation, defined as:

µc(F ) =
1

HW

H∑
h=1

W∑
w=1

Fc,h,w, (2)
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and

σc(F ) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Fc,h,w − µc(F ))
2
, (3)

where µ(F ) = [µ1(F ), . . . , µC(F )] and σ(F ) = [σ1(F ), . . . , σC(F )]. Finally, Huang & Belongie
(2017) introduced adaptive instance normalization (AdaIN), which replaces the scale and shift pa-
rameters in Eq. (1) with the feature statistics of another intermediate feature map (i.e., Fs) of the
style image (i.e., xs) to achieve arbitrary style transfer:

AdaIN(F, Fs) = σ(Fs)
F − µ(F )

σ(F )
+ µ(Fs), (4)

Hand stylization via unlabeled in-the-wild images. In contrast to conventional style transfer work
which attaches a decoder for image generation, our approach aims to expose the model to diverse
style information of real-world images without involving any decoder or image synthesis process.
Namely, we propose a content-aware stylization that transfers the styles of additional unlabeled in-
the-wild images to training hand images via AdaIN. This is based on our core intuition that unlabeled
in-the-wild images can provide the model with valuable knowledge of real-world visual styles.

Thus, given an in-the-wild image xi from an external source (e.g., Flickr, ImageNet, web-crawled
images), we stylize the training hand image xh using the following operation:

Stylize(Fh, Fi) = σ(Fi)
Fh − µ(Fh)

σ(Fh)
+ µ(Fi), (5)

where Fh and Fi represent the intermediate feature maps of xh and xi, respectively. In practice,
in-the-wild images are randomly sampled from their source and then each is matched to a single
training hand image sampled from a specific dataset (e.g., FreiHAND) in an instance-wise manner.
By default, our proposed stylization is applied to the outputs of the 1st and 2nd residual blocks, as
we have empirically found it effective when applied to multiple early layers. Notably, we do not use
any labels from the in-the-wild images, even if the dataset provides them.

3.2 ALIGNMENT: CCR BETWEEN HAND POSE DATA

Review of consistency regularization. Consistency regularization (CR) has become a fundamen-
tal component of recent state-of-the-art semi-supervised learning algorithms (Berthelot et al., 2019;
Sohn et al., 2020). A common strategy in this approach is data augmentation, where input transfor-
mations are applied under the assumption that they do not alter the original discrete semantics (e.g.,
dog or cat). The key idea is to enforce model predictions to remain consistent across these valid data
augmentations, which adds the regularization term to be optimized as

D(x,Aug(x)) = ∥f(x)− f(Aug(x))∥22, (6)

where x represents an arbitrary image, f is the mapping function from the image space to output
representation, and Aug refers to a stochastic data augmentation.

Continuous consistency regularization. While CR has been highly successful, it is not directly
applicable to tasks with continuous labels (e.g., 3D hand pose estimation where the pose labels
are 48-dimensional) since it relies on binary labels (i.e., whether the pair shares the same label).
For instance, enforcing CR between an anchor data point and other samples with different GT
poses—comprising the majority of the dataset—is infeasible, leaving significant room for further
improvement. Motivated by this, we propose to introduce continuous consistency regularization
(CCR) tailored for hand pose estimation from a metric learning perspective. The core idea is to pull
or push a pair of samples in the hand pose space according to their GT pose distance.

More specifically, inspired by recent studies in the metric learning community (Kim et al., 2019;
Zheng et al., 2020) that focus on preserving relative distances between samples in the embedding
space, our method incorporates this approach into a CCR loss term defined as:

LCCR(a, i, j) =

(
log

D(f(xa), f(xi))

D(f(xa), f(xj))
− log

D(ya, yi)

D(ya, yj)

)2

, (7)
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where (a, i, j) are the indices of a triplet, with a as the anchor and i, j as its neighbors (i.e.,
(xa, xi, xj) are the triplet images, and (ya, yi, yj) are the corresponding hand pose GTs). The
function f maps the image space to the hand pose space (i.e., f(x) is a 48-dimensional hand pose
prediction), and D(·) denotes the squared Euclidean distance. This loss, a variant of the triplet loss
without positive-negative separation, enables the model to learn a metric that reflects the hand pose
distance between data pairs. Consequently, incorporating this regularization allows the model to
capture continuous pose relationships more effectively than using only the standard task loss.

Finally, the overall objective of our end-to-end framework combines LCCR with the standard loss
functions for the target task (e.g., minimizing errors in predicted MANO parameters and 3D joint
coordinates for 3D hand pose estimation) as follows:

minLtotal = Ltask + λLCCR, (8)

where Ltask is the standard task loss, and λ balances the contribution of LCCR. Note that we adopt the
sampling strategy from Kim et al. (2019) to enhance LCCR. For details, please refer to the Appendix.

4 EXPERIEMENTS

In this section, we evaluate the effectiveness of the proposed framework across 3D single-hand pose
estimation, and transfer learning for 2D pose estimation. These evaluations are commonly conducted
within our custom-designed testbed, which is specifically tailored for accurate assessment in real-
world scenarios.

We start with the implementation details, covering the architecture and baseline datasets used in all
experiments, followed by both quantitative and qualitative results on the aforementioned tasks.

4.1 BASELINE ARCHITECTURE

Among the various model architectures available, we selected SHNet, a model that is widely adopted
in the pose estimation community for both hand-related (Moon, 2023; Moon et al., 2024) and body-
related (Moon et al., 2022a;c) studies. Our choice was further motivated by the compatibility of
SHNet with our method, allowing us to seamlessly integrate our proposed components—stylization
and continuous consistency regularization—into its architecture. Specifically, these components are
applied to the early layers (i.e., the first and second ResBlocks) and the pose output space of SHNet,
all without requiring any additional modifications to the existing structure. For more details of their
implementation, please refer to the Appendix.

4.2 DATASETS

Baseline datasets. For our experiments, we established the baselines using existing datasets,
specifically FreiHAND (Zimmermann et al., 2019), HO3D (Hampali et al., 2020), and Inter-
Hand2.6M (Moon et al., 2020). Notably, for InterHand2.6M, we focused exclusively on single-hand
data, utilizing the right-hand data with its ground truths (GTs) and augmenting it by horizontally
flipping the left-hand data to create additional right-hand examples with corresponding GTs. This
resulted in a total of 687,547 samples in our experimental results for InterHand2.6M.

Test dataset. To evaluate the robustness in real-world scenarios, we used the MSCOCO (Lin et al.,
2014; Jin et al., 2020) as our test set. MSCOCO offers a comprehensive collection of images from
a wide range of natural, everyday scenes, accompanied by rich ground truths (GTs) for various
tasks, including hand keypoints. Additionally, a recent study (Moon, 2023) provided MANO GTs
for the whole-body version of the MSCOCO dataset using NeuralAnnot (Moon et al., 2022b) for
training purposes. Although these MANO GTs were generated for training in Moon (2023), we
utilized this dataset exclusively as a test set in our experiments, ensuring that no model had prior
access to it. We believe that this dataset best simulates in-the-wild conditions with highly accurate
3D hand annotations. Similar to our approach with InterHand2.6M in our experiments, we focused
exclusively on single-hand data, resulting in a total of 26,851 samples for evaluation.

Unlabeled dataset for our stylization. Among various possible options, following existing ap-
proaches that use external data to improve model generalization (Yue et al., 2019; Chen et al., 2020b;
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Table 1: Performance comparison of SHNet trained on various 3D hand datasets, with all results
evaluated on the 3D-labeled MSCOCO single-hand dataset for real-world applications. †: Only the
green-screen background portion of FreiHAND was used, which comprises 1/4 of the total dataset.

Settings #data↓ PA-MPJPE↓ PA-MPVPE↓
FreiHAND 0.13M 15.29 15.06
HO3D 0.08M 13.75 14.07
FreiHAND+HO3D 0.21M 13.47 13.60
InterHand2.6M 0.68M 14.57 14.38
Ours on FreiHAND 0.13M 12.23 12.38
Ours on FreiHAND† 0.03M 12.54 12.68

Table 2: 2D hand pose estimation performance of linear heads on the MSCOCO validation dataset,
trained on representations learned with different pretraining settings. †: The setting of the used data
size is the same as in Table. 1

Pretraining setups #data↓ PCK↑ EPE↓
Random Init 0 71.82 53.00
ImageNet 1.2M 77.62 48.05
FreiHAND 0.13M 77.83 47.83
HO3D 0.08M 78.04 47.84
FreiHAND+HO3D 0.21M 78.62 47.02
InterHand 0.68M 77.28 47.86
Ours on FreiHAND† 0.03M 80.23 44.84

Huang et al., 2021), we adopt ImageNet (Deng et al., 2009) as the unlabeled dataset for stylizing
hand images unless stated otherwise. ImageNet, with millions of images across thousands of cate-
gories, offers diverse visual examples, making it suitable for our method. Although not specifically
designed for hand pose estimation, its scale and variety effectively support our stylization process.

4.3 3D HAND POSE ESTIMATION

Setups. In this experiment, we integrate the MANO layer into our framework for 3D single-hand
reconstruction, as SHNet employs a model-based approach. Specifically, the MANO layer recon-
structs the 3D hand based on the predicted MANO parameters (i.e., pose and shape) from by SHNet.
For evaluation, we utilize two commonly adopted metrics: PA-MPJPE (Procrustes-Aligned Mean
Per Joint Position Error) and PA-MPVPE (Procrustes-Aligned Mean Per Vertex Position Error).

Results. As summarized in Table. 1, we observe that our method outperforms all the models
learned with the Lab datasets even the least training data. the model trained on InterHand2.6M
fails to generalize effectively to in-the-wild images, despite its substantial data size. This outcome
substantiates our assertion that Lab datasets, despite their scale, exhibit clear limitations in their
ability to generalize to unseen data.

4.4 TRANSFER LEARNING FOR 2D HAND POSE ESTIMATION

Setups. To assess the quality of the representations learned through our framework, we conduct
transfer learning experiments on 2D hand pose estimation, following the widely adopted linear eval-
uation protocol (Chen et al., 2020a; He et al., 2020). In this approach, a linear head for 2d hand
pose estimation is trained on top of the frozen representations obtained during pretraining. In the
first stage, we train all models using their respective pretraining setups based on contrastive learning
(Chen et al., 2020a), except for our method, which replaces contrastive learning with our proposed
continuous consistency (CCR) regularization. In the second stage, we train only the linear heads
on the MSCOCO training dataset, while keeping the pretrained representations frozen. We then
evaluate the performance of the linear heads on the MSCOCO validation dataset. We use the Per-
centage of Correct Keypoints (PCK) and End-Point Error (EPE) as the evaluation metrics to gauge
the performance of the 2D hand pose estimation task.

Results. As summarized in Table 2, our method consistently outperforms all models trained with
baseline setups, even when using the least amount of training data. Interestingly, although ImageNet
pretraining is primarily designed for general image classification tasks, unrelated to hand pose es-
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Table 3: Ablation study of the proposed components on 3D hand pose estimation on FreiHAND.

Methods PA-MPJPE PA-MPVPE
FreiHand 15.29 15.06
w/ Stylization 12.75 12.86
w/ CCR 13.02 13.13
Ours 12.23 12.38

Table 4: Ablation study on the effect of unlabeled images for our proposed stylization in 3D hand
pose estimation on FreiHAND.

Stylization PA-MPJPE PA-MPVPE
None 15.29 15.06
ImageNet20K 12.86 13.00
ADE20K 13.26 13.39
BDD20K 12.81 12.90

timation, its learned representations outperform those of InterHand2.6M-pretrained models. This
can be attributed to the broad real-world knowledge encapsulated in ImageNet-pretrained represen-
tations, which enables better generalization to real-world data, regardless of the specific pretraining
task. This finding reinforces our claim that incorporating visual in-the-wild stylization during train-
ing is crucial, and our proposed CCR further enhances the ability of the trained model to generalize
to diverse, real-world environments.

4.5 IN-DEPTH ANALYSIS

Ablation study. We conducted an ablation study to assess the individual contributions of each com-
ponent in our framework, as summarized in Table 4. The results demonstrate that both stylization
and continuous consistency regularization (CCR) contribute to improved generalization. Notably,
the stylization component shows a larger reduction in error, highlighting its effectiveness in en-
hancing the capability of the learned model to generalize to diverse, real-world data. Lastly, these
components complement each other, significantly boosting performance.

Impact of types of unlabeled images. To evaluate the effect of different types of unlabeled images
on our proposed stylization, we trained models using various datasets with identical data sizes (i.e.,
20K) for a fair comparison. As shown in Table 3, stylization with in-the-wild datasets consistently
enhances model performance. This suggests that incorporating diverse visual styles, even from
datasets not specifically designed for hand pose tasks, improves generalization. However, exploring
which specific characteristics of these datasets lead to the most effective stylization remains an open
question, which we leave for future work.

5 CONCLUSION

We introduced a framework combining in-the-wild stylization via AdaIN and continuous consis-
tency regularization (CCR) to improve the generalization of hand pose estimation models. Our
approach enhances the model’s robustness using diverse, real-world styles and fine-grained 3D pose
alignment, outperforming existing methods with less data. The results highlight the limitations of
lab datasets and the importance of real-world data in improving model generalization.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Sampling strategy for LCCR. To efficiently explore diverse triplets, we employ dense triplet sam-
pling as proposed by Kim et al. (2019). In this approach, we combine all pairs of neighbors with
the anchor, while excluding duplicate triplets where the order of neighbors does not impact LCCR.
Specifically, for each anchor, we select its k nearest neighbors based on pose distance, with addi-
tional neighbors randomly sampled from the remaining dataset. The search space for k is defined as
{⌊(B − 1)/2⌋, B − 1}, where B is the batch size. Note that the same number of training steps is
used across all experiments to ensure fair comparisons with our method.

3D hand pose estimation. We use ResNet-50 as the backbone, following the original SHNet (Moon
et al., 2022a; Moon, 2023). The hyperparameters include a batch size of 64 and 100 epochs.

nDCGK(q) =
1

ZK

K∑
i=1

2ri

log2(i+ 1)
, (9)
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where K represents the number of top retrievals considered, and ZK is a normalization con-
stant ensuring that nDCGK has a maximum value of 1. The relevance score ri is defined as
ri = − log2 (∥yq − yi∥2 + 1), which decreases logarithmically with the Euclidean distance be-
tween the query q and the ith retrieval. The score is further discounted by log2(i+1) to give higher
importance to top-ranked retrievals. A higher nDCG indicates better retrieval quality.

Transfer learning for 2d hand pose estimation. For evaluation metrics, we report Percentage of
Correct Keypoints (PCK) (higher is better) and End-Point Error (EPE) (lower is better). For the
architecture, we use ResNet-18 as the backbone and an MLP for the linear head, which is attached
to the backbone. For the hyperparameters in each setting, we use a batch size of 512 and 100 epochs
for both the pretraining stage (i.e., the first stage) and the linear evaluation stage (i.e., the second
stage).
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