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ABSTRACT

This paper introduces a novel hybrid multi-start optimization strategy for solving
inverse problems involving nonlinear dynamical systems and machine learning
architectures, accelerated by GPU computing on both NVIDIA and AMD GPUs.
The method combines Particle Swarm Optimization (PSO) and the Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithms to address
the challenges in parameter estimation for nonlinear dynamical systems. This
hybrid strategy aims to leverage the global search capability of PSO and the effi-
cient local convergence of L-BFGS. We experimentally show faster convergence
by a factor of up to 8 − 30× in a few non-convex problems with loss landscapes
characterized by multiple local minima, which can cause regular optimization ap-
proaches to fail.

1 INTRODUCTION

Inverse problem-solving in the realm of nonlinear differential equations plays a critical role across
various scientific and engineering disciplines (Isakov, 2006). These problems typically involve de-
ducing unknown parameter values that align a theoretical model with empirical data. A majority of
applications of Scientific Machine Learning (SciML) involve solving such inverse problems, such
as training of Neural Ordinary Differential Equations (ODEs) by Chen et al. (2018), Physics In-
formed Neural Networks by Raissi et al. (2019), and using machine learning augmented systems
like Universal Differential Equations in Rackauckas et al. (2020). However, traditional optimiza-
tion techniques encounter formidable challenges in these contexts, primarily due to the non-convex
nature and the prevalence of numerous local minima (Ye et al., 2019; Isakov, 2006). This makes
the robustness and performance of solving these problems a major bottleneck, and thus the current
largest barrier to scaling SciML software (Krishnapriyan et al., 2021).

Optimization methods like Adam (Kingma & Ba, 2014) have become a staple in SciML inverse
problems due to their efficacy in non-convex scenarios, coupled with fast derivative calculations.
Their widespread adoption is facilitated by their integration into relevant software tools such as
Neuromancer (Drgona et al., 2023) and DiffEqFlux.jl (Rackauckas et al., 2019). However, these
methods were originally designed for large neural networks prevalent in tasks like Natural Language
Processing (NLP) and Computer Vision Yao et al. (2021). In contrast, SciML often involves smaller
neural networks but with frequent calls, such as within ODE solvers. Traditional scaling techniques,
which rely on parallelizing large neural network calls, are less effective in SciML, where smaller
architectures within physical models are common.

In order to overcome this issue, we rely on the recent results which demonstrate GPU-accelerated
solving of differential equations which can be used to simulate thousands or millions of parameter
sets simultaneously (Utkarsh et al., 2024). This allows one to effectively make use of GPUs to
perform many objective function calls simultaneously. However, the gradient-based methods which
are commonly used, such as gradient descent, Adam, or (L)-BFGS, require sequential calling of the
objective function (Kingma & Ba, 2014; Liu & Nocedal, 1989). Therefore, to effectively make use
of these new parallelization tools, alternative optimization strategies are required.

Modified strategies for between-objective call parallelization have been developed and demonstrated
in literature before (Kucherenko & Sytsko, 2005; Tsoulos & Stavrakoudis, 2010). However, previous
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optimizers of this form were unable to make use of the differentiable programming, which has been
found to greatly accelerate the training of SciML systems (Ma et al., 2021). To solve this gap, we
leverage the known effectiveness of the GPU-accelerated (a)synchronous Parallel Swarm Optimiza-
tion method (PSO) proposed by Kennedy & Eberhart (1995); Zhou & Tan (2009) to obtain points in
neighborhoods of the local minima Schmitt (2015), which are then used to initialize a multi-start L-
BFGS solves which converges at a super-linear rate to local optima. The proposed methodology thus
brings together GPU-accelerated ODE solvers, differentiability of the ODE solvers, and global opti-
mizers with between-objective call parallelization in order to achieve a scalable global optimization
system on non-convex ODE inverse problems. The generated solvers use the Optimization.jl
Dixit & Rackauckas (2023) and fully automate the GPU-acceleration and differentiation, meaning
that many scientists can adopt these tools without any changes to their model code.

2 METHODOLOGY

2.1 ALGORITHM DESCRIPTION

PSO, an evolutionary computation technique (Kennedy & Eberhart, 1995), combines with L-BFGS,
enhanced by GPU computing, to create a novel hybrid multi-start optimization method. PSO iden-
tifies initial points, leveraging L-BFGS for faster convergence. As PSO tends to converge to local
optima (Schmitt, 2015), running L-BFGS iteratively on these points aids in finding the global min-
imum. This multi-start approach improves the likelihood of locating global minima in complex
landscapes. GPU computing accelerates the process, enabling efficient handling of large-scale prob-
lems and datasets. See Algorithm 1 for details.

Algorithm 1 Hybrid PSO-L-BFGS Optimization Framework

1: Initialize PSO with a population of particles
2: w represents the inertia weight, ϕp and ϕg are cognitive and social coefficients, and rp, rg are

randomly generated numbers.
3: while iterations less than max iterations of PSO do
4: for each particle in PSO do

• Update the particle’s velocity: vi,d ← wvi,d + ϕprp(pi,d − xi,d) + ϕgrg(gd − xi,d)

• Update the particle’s position: xi ← xi + vi
5: end for
6: end while
7: Identify promising regions from PSO
8: gk is the gradient, Hk is the approximate inverse Hessian, sk and yk represent differences in

positions and gradients, ρk = 1/(yTk sk), and αk denotes the step size which is determined with
line searching

9: while iterations less than max iterations of L-BFGS do
10: for each particle in swarm do

• Calculating the gradient: gk = ∇f(xk).
• Updating the Hessian approximation using recent gradients: Hk ≈ (I−ρkskyTk )Hk−1(I−
ρkyks

T
k ) + ρksks

T
k .

• Determining the descent direction: pk = −Hkgk.
• Position update: xk+1 = xk + αkpk.

11: end for
12: end while

2.2 GPU BASED PARALLELIZATION

Broadly, the parallelization of the PSO can be divided into three parallel steps. The stochastic up-
dates to the position and velocity described in section 1 for all the particles are independent of each
other, making them parallelizable. The cost function for multiple particles can be evaluated in paral-
lel, and the global minima in every iteration can be computed using parallel prefix algorithm (Ladner
& Fischer, 1980). Implementing these algorithms on GPUs requires writing kernels, which are of-
ten outside the expertise of scientists and practitioners who are less programming-savvy. Hence,
we propose an automated GPU-acceleration pipeline extending composability with the rest of the
SciML ecosystem. The algorithms work on multiple GPU backends and leverage CPU acceleration
via abstractions written using KernelAbstractions.jl package (Churavy et al., 2023).
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Variants of PSO algorithms exist which combine these operations together in order to reduce kernel
launch and generation overheads, trading off speed and accuracy, and their performance is tied to
the nature of the problem. We present parallelization of such various algorithms, such as:

• ParallelSyncPSOKernel: The basic PSO algorithm implementation. Requires syn-
chronization of particles at every iteration to calculate the global best found yet.

• ParallelPSOKernel(; global update = true): A single kernel implemen-
tation of ParallelPSOKernel with queue-lock mechanism for efficient calculation of
global update Wang et al. (2022).

• ParallelPSOKernel(; global update = false): An asynchronous version
of PSO, where the particles independently evolve, only relying on their exploration. Gen-
erally the fastest algorithm of all, however, ends having the lowest loss reduction due to
independent evolution.

• HybridPSO: An hybrid algorithm which combines the generic PSO algorithms with stan-
dard local optimizers. The algorithm sequentially parallelizes the PSO exploration and
multi-start local search. It currently supports BFGS and L-BFGS as the local optimization
method. Performs the best in terms of work per iteration until convergence, ensuring global
optimality (see Section 3.1).

Moreover, we enable PSO methods to allow constraints using penalty functions (Parsopoulos et al.,
2002). The process of GPU parallelization is made possible by static compilation via static arrays,
and implementing non-allocating subroutines such as gradient calculation, and line search. We also
parallelize the multi-start optimization scheme with L-BFGS on GPUs, where the initial guess is
estimated from few iterations of the PSO particles. The algorithm essentially ”solves” the optimiza-
tion problem with different initial guesses in parallel inside a GPU, and returns the best candidate
for the optimization solution. We also ensure that the gradient calculations within the GPU kernel
are performed with reverse mode automatic differentiation.

3 EXPERIMENTS AND BENCHMARKS

To benchmark our algorithms, we use both CPUs and GPUs for parallelization, with setup described
in Appendix A.1. Primarily in benchmarking, we only report the timings for solve times, albeit any
cache allocations such as for particle initialization. The test-suite and code is available open-source
in Julia (Bezanson et al., 2017) at https://github.com/SciML/PSOGPU.jl.

3.1 GPU VS CPU: COMPARISON FOR EFFICIENT PARALLELISM

We benchmark our implementations to compare against CPU multi-threading with single precision
arithmetic. The test problem is the 10-dimensional version of the non-convex Rosenbrock problem
A.2.1. Figure 1 a demonstrates that GPU parallelization becomes feasible for > 100−1000 particles
where HybridPSO is ≈ 10× faster and asynchronous 100× (see appendix Table 2). Furthermore,
instantiating more particles exposes parallelism from the algorithm, which can achieve scalability at
high dimensional problems.

Figure 1: GPU parallelization becomes feasible, having at least 100−1000 swarm size. HybridPSO-
LBFGS has the best performance on loss vs time by varying number of particles.
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3.2 NEURAL ORDINARY DIFFERENTIAL EQUATIONS AS INVERSE PROBLEMS

Neural ODEs proposed by Chen et al. (2018) are ML architectures popularly used in SciML. These
are based on the Initial Value Problems (IVPs) ODEs where an initial condition u(t0) is given, and
the solution is required to obtain in between the time interval (t0, tf ). Described as a continuous
generalization of the Residual Network architecture in Chen et al. (2018), they are explicitly defined
as du(t)

dt = fθ(u(t), t), where fθ is the neural network defined by the specific architecture. Efficient
training of neural ODEs requires continuous or discrete adjoint methods. Using continuous adjoint
results in constant memory overhead. However, it results in slower training due to the backward
solving of an ODE (Chen et al., 2018). Trivially, training a Neural ODE can be seen as a parameter
estimation problem for the ODE. We consider the fitting of the spiral ODE data (refer Section A.2.2
for further details) using a Neural ODE of relevantly small size. GPU-parallelization of small neural
networks does not effectively overcome the overhead. Hence, we use SimpleChains.jl, a
Julia package for faster training on CPUs. SimpleChains.jl makes neural networks amenable
to GPU parallelization for multiple evaluations, and hence, using methods such as PSO, which
offer GPU-parallelization of the optimizer instead of loss computation and gradients, can result in
GPU utilization where traditional parallelization fails to prove beneficial. Figure 3 and Table 1
demonstrate that our algorithm performs better in terms of the accuracy of the results as well as
the computational time by approximately 3×−8×. We also obtain similar results on ODE inverse
problems, described in the Appendix A.3.

Optimizer Loss Time (s)

Adam 20.2722 1.4014
L-BFGS 12.6824 4.3721

GPU-PSO 0.5962 0.4826

Table 1: GPU-PSO performs the best on training
small Neural ODEs.

Figure 2: In loss-time plots, HybridPSO-
LBFGS excels, reaching the global minima,
while LBFGS and Adam get trapped at local
minima.

3.3 FAILURE OF EXISTING METHODS FOR FINDING GLOBAL OPTIMA

To demonstrate the effectiveness of HybridPSO methods, we conducted a comparison of their per-
formance on the modified Rosenbrock problem (see Appendix A.2.1) across varying numbers of
maximum iterations. As depicted in Figure 2, traditional gradient-based optimizers (Adam and
L-BFGS) gets stuck at local minima (Mascarenhas, 2004), underscoring the necessity for global
optimizers. Notably, HybridPSO-LBFGS achieves a reduction in loss by a factor of 1000, while
maintaining computational efficiency comparable to that of the naive PSO and also with the stan-
dard differential evolution optimizer implemented in BlackBoxOptim.jl (Feldt, 2018).

4 CONCLUSION AND FUTURE WORK

We demonstrated general purpose global optimization methods which allow for parallelization
across objective function evaluations and uses differentiability to accelerate convergence beyond tra-
ditional techniques. The HybridPSO-LBFGS performs the best across our benchmarks, having the
fast convergence performance of quasi-Newton (BFGS) type schemes while having the robustness to
non-convexity indicative of other global optimization schemes. As such, it’s a highly flexible method
for difficult non-convex loss landscapes. The solvers are compatible with the Optimization.jl
interface, ensuring accessibility for large scientists without the need for code adjustments.
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However, there are a few caveats to this work. For one, it relies on the ability to have kernel gen-
eration for fast GPU-parallel calls to the objective function. As previously demonstrated, machine
learning frameworks such as JAX (Bradbury et al., 2018) and PyTorch (Paszke et al., 2019) rely on
array-based GPU parallelism, which have shown to be suboptimal in the context of ODE solvers
(Utkarsh et al., 2024). As our inverse problem benchmarks heavily rely on these optimized kernels,
the improved performance of the HybridPSO-LBFGS thus relies on the kernel generation approach
and thus the method may not be replicable to other frameworks without major performance loss. In
addition, this approach requires differentiability, i.e. compatibility with automatic differentiation,
and thus it can restrict the types of functions a user may use within the loss function.

ACKNOWLEDGMENTS

The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center
for providing HPC resources that have contributed to the research results reported within this pa-
per. This material is based upon work supported by the National Science Foundation under grant
no. OAC1835443, grant no. SII-2029670, grant no. ECCS-2029670, grant no. OAC-2103804,
and grant no. PHY-2021825. We also gratefully acknowledge the U.S. Agency for International
Development through Penn State for grant no. S002283-USAID. The information, data, or work
presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E),
U.S. Department of Energy, under Award Number DE-AR0001211 and DE-AR0001222. We also
gratefully acknowledge the U.S. Agency for International Development through Penn State for grant
no. S002283-USAID. The views and opinions of authors expressed herein do not necessarily state
or reflect those of the United States Government or any agency thereof. This research was funded by
DARPA under agreements HR00112090067. This material was supported by The Research Council
of Norway and Equinor ASA through Research Council project “308817 - Digital wells for optimal
production and drainage”. Research was sponsored by the United States Air Force Research Labora-
tory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

REFERENCES

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to
numerical computing. SIAM review, 59(1):65–98, 2017.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Valentin Churavy, Dilum Aluthge, Julian Samaroo, Anton Smirnov, James Schloss, Lucas C.
Wilcox, Simon Byrne, Maciej Waruszewski, Ali Ramadhan, Meredith, Simeon Schaub, Navid C.
Constantinou, Jake Bolewski, Max Ng, Tim Besard, Ben Arthur, Charles Kawczynski, Chris Hill,
Christopher Rackauckas, James Cook, Jinguo Liu, Michel Schanen, Oliver Schulz, Oscar, Páll
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A APPENDIX

A.1 EXPERIMENTAL SETUP

The CPU benchmarks are performed on Intel(R) Xeon(R) CPU E5-2603 v4 @ 1.70GHz with 12
threads enabled. The GPU codes were executed using NVIDIA Tesla V100S-32 GB.

A.2 PROBLEMS USED IN BENCHMARKING EVALUATIONS

A.2.1 ROSENBROCK FUNCTION

The Rosenbrock function used in GPU vs. CPU benchmarking is given as:

f(u,p) =

N−1∑
i=1

p2(ui+1 − u2
i )

2 + (p1 − ui)
2 (1)

The modified N dimensional Rosenbrock function used in our test-case is defined as:

f(u,p) =

N−1∑
i=1

p2sin(p3xi)(ui+1 − u2
i )

2 + (p1 − ui)
2 (2)

Where, N = 10, u = [u1, . . . , uN ]T and p = [p1, p2, p3]
T = [1.0, 100.0, 1.5]T . The initial

condition is u0 = {5.0, ∀i ∈ 1 . . . N} The bounds assumed for the problem are [−1.0, 5.0] on
the optimization variables. The known global optima exists at u∗ = {1.0, ∀i ∈ 1 . . . N} with
f(u∗,p) = 0.

A.2.2 SPIRAL DATASET FOR NEURAL ODES

The Spiral dataset adapted from Chen et al. (2018) from the evaluation of Neural ODEs is the dataset
generated from the ODE given as:
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PSO-Method Speed-up

ParallelSyncPSOKernel (CPU) 1.0×
ParallelSyncPSOKernel (GPU) 3.4×

ParallelSyncPSOKernel (Queue-Lock) 4.2×
HybridPSO-LBFGS (GPU) 8.1×

ParallelPSOKernel(Async) (CPU) 102.8×

Table 2: Particle count affects average speed-up. Asynchronous version excels, but tends to achieve
lower loss reduction overall.

du

dt
= −0.1u3 − 2.0v3 (3)

dv

dt
= +2.0u3 − 0.1v3 (4)

We generate the dataset with initial condition for the ODE as [2.0, 0.0]T , where the integration is
performed between t ∈ [0.0 s, 1.5 s], generating 30 data-points, uniformly sampled in time. For
benchmarking with PSO methods, we use 10, 000 particles for exploration, with 100 maximum
iterations.

Figure 3: GPU-PSO methods outperform standard gradient-based optimizers in Neural ODEs.

A.3 PARAMETER ESTIMATION BENCHMARKS

We benchmark some ODE parameter estimation problems to assess the tractability of GPU-
enhanced PSO.

A.3.1 LOTKA VOLTERRA

The predator-prey ”Lotka Volterra” equation is given as:

dx

dt
= αx+ βxy (5)

dy

dt
= δy − γxy (6)
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With initial condition as [1.0, 1.0], and the integration being performed between t ∈ [0.0 s, 10.0 s].
We generate the dataset from this ODE to infer the parameters α, β, γ, δ.

Optimizer (100 iterations) Loss Time (s)

Adam ∗ Fails 50.3152
L-BFGS ∗ Fails 0.8967
GPU-PSO 1.5725×10−7 0.2303

Table 3: GPU-PSO performs the best on the parameter estimation of the Lotka-Volterra problem.

∗ Adam and L-BFGS exit with warnings as they result in unstable ODE solution.

A.3.2 FITZHUGH-NAGUMO

The Fitzhugh-Nagumo model is a simplification of the Hodgkin-Huxley model (Izhikevich &
FitzHugh, 2006). The dynamics is specified by the ODE given as:

dv

dt
= v − v3

3
− w + l (7)

dw

dt
= τinv(v + a− bw) (8)

With initial condition as [1.0, 1.0], and the integration being performed between t ∈ [0.0 s, 30.0 s].
We generate the dataset from this ODE to infer the parameters a, b, τinv, l.

Optimizer (100 iterations) Loss Time (s)

Adam 0.0049 0.0204
L-BFGS 0.0015 0.5081

GPU-PSO 9.5449×10−6 0.1708

Table 4: GPU-PSO performs the best on the parameter estimation of the Fitzhugh-Nagumo problem.
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