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Abstract
Graph Neural Networks (GNNs) have shown significant utility in molecular prop-
erty prediction but lack interpretability. Most existing interpretability methods
focus on instance-based explanations at the node or edge level. Such methods
fail to provide a holistic understanding of how key molecular structures influence
the model’s predictions. This underscores the need for a model-based approach
that offers explanations in terms of crucial motifs and their impact on the model’s
overall decision-making. To address this challenge, we introduce MOtif-based
Self-Explaining GNN (MOSE-GNN), an ante-hoc method that integrates motif
importance scoring into the GNN architecture. MOSE-GNN assigns global
importance scores to predefined motifs, which are shared among instances and
generated using RDKit’s BRICS Molecular Segmentation function. These scores
determine the extent to which the model utilizes information from each motif
to predict each class, serving as an explanation for the motif’s contributions
to the class prediction. Our results on three classification tasks: mutagenicity,
blood-brain barrier permeation, and cardiotoxicity demonstrate that MOSE-GNN
generates meaningful motif importance scores without sacrificing predictive
performance and, in some cases, even improves it.

1 Introduction
Graph Neural Networks (GNNs) have emerged as powerful tools for molecular property prediction
as molecules can naturally be represented as graphs[1–3]. As GNNs become more prevalent in high-
stakes decision-making areas, particularly in the pharmaceutical and chemical industries, the need for
models that predict accurately and also explain their predictions is increasingly pressing[4, 5].

Current methods for explaining GNNs primarily focus on instance-specific explanations, either at the
node/edge level [6–9] or the motif level [10, 11]. While these methods can identify influential atoms,
bonds, or substructures for individual predictions, they do not offer a broader interpretability of how
molecular substructures—specifically functional groups, which are parts of molecules responsible
for characteristic reactions [12]—consistently influence model decisions across multiple instances.
Recently, some works have extended explanations to the model level for GNNs. Azzolin et al. [13] use
PGExplainer [7] to generate instance-level explanations and integrate them into a global, logic-based
formula over clusters of local explanations. Other model-level explanation methods [14–16] take a
generative approach, training a graph generator to produce patterns that maximize specific predictions
of the GNN model. These approaches are post-hoc, developed to explain a model after it has been
trained. For post-hoc explainers focused on providing motif-level explanations, there is a risk of
interpretative bias if the model itself does not reason at the motif level. In contrast, there is a growing
consensus that ante-hoc interpretability [17–19], where interpretability is integrated directly within
the model, provides a more robust framework. More recently, Graph Kernel neural networks [20]
have emerged as an interesting alternative architecture for graph learning that provides ante-hoc
interpretability through learned structural masks. However, a potential limitation of using these
learned structure masks as explanations is that they may not correspond to meaningful chemical
substructures, which could reduce their interpretability for domain experts.

A. Kokate et al., MOSE-GNN: A motif-based self-explaining graph neural network for Molecular Property
Prediction (Extended Abstract). Presented at the Third Learning on Graphs Conference (LoG 2024), Virtual
Event, November 26–29, 2024.



MOSE-GNN: A motif-based self-explaining graph neural network for Molecular Property Prediction

Figure 1: MOSE-GNN: A dual channel GNN where the Nodes features are masked using θi,c the
importance of motif i for class c.

In this work we propose MOtif-based Self-Explaining GNN (MOSE-GNN), a novel ante-hoc method
that can be readily integrated into any message passing graph neural networks to enhance its inter-
pretability by incorporating motif importance scoring directly into the architecture. Unlike traditional
instance-based methods, MOSE-GNN assigns global importance scores to predefined motifs shared
across all instances in the dataset. These motifs are identified using RDKit’s BRICS Molecular
Segmentation function[21], a tool designed to break down molecules into meaningful substructures.
The normalized importance scores, ranging from 0 to 1, determine how much information from
each motif is utilized by the model in predicting molecular properties. By linking motif importance
directly to class prediction, MOSE-GNN provides clear, interpretable insights into how molecular
substructures contribute to different molecular properties.

We demonstrate the effectiveness of MOSE-GNN through its application to three important molecular
classification tasks: mutagenicity, blood-brain barrier permeation, and cardiotoxicity[12]. Testing
our method in conjunction with three popular GNN architectures, our results show that MOSE-GNN
consistently maintains high predictive performance while generating meaningful motif importance
scores, offering a transparent explanation of the model’s decision-making process. This approach rep-
resents a significant step towards more interpretable and trustworthy GNN-based models in molecular
property prediction, addressing a critical gap in the current landscape of GNN interpretability.

2 The proposed method
Figure 1 provides an overview of the proposed MOSE-GNN method. We focus on graph-level
classification task (more specifically, binary classification in this work). Given the training set, we
first build a vocabulary of motifs that are used as part of the input to the MOSE-GNN architecture.

2.1 Building the motif vocabulary

We create a vocabulary of motifs from the training data by applying RDKIT’s[21] BRICS module to
fragment the molecules in the training set into functional groups. These fragments are synthetically
accessible and follow predefined rules to cleave bonds, which facilitate recombination. Further,
unlike fingerprinting and other decomposition methods supported in RDKIT such as RECAP, Murcko
Scaffolding and HierS decomposition, BRICS provides us with non-overlapping fragments.

2.2 MOSE-GNN

Given a fixed vocabulary V of motifs {mi}|V |
i=1, the model learns a multi-channel GNN, where each

channel corresponds to a specific class c and is associated with a unique set of motif importance
parameters Θc = {θi,c}. Here θi,c specifies the importance of motif i for class c. In this framework,
each channel of the GNN independently evaluates the input graph based on the motif importance
parameters Θc for class c. The resulting class-specific scores are then normalized via softmax to
generate probabilistic predictions. The motivation behind this design is to allow the model to capture
class-specific motif relevance, enabling it to identify motifs as evidence independently for each class
and to facilitate class-specific interpretation of motif relevance.

A distinctive feature of our approach is that we identify motifs within the input graph and assign
importance parameters directly to nodes in those motifs. For example, in Figure 1, the input graph
contains two instances of motif 0 and one of motif 1; nodes in motif 0 receive θ0,c, and nodes in motif
1 receive θ1,c. The graph is then processed using a modified message-passing GNN that incorporates
these node-specific weights, allowing motif importance to inform model predictions.
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Given the input graph G = (X,A), where X are node features and A is the adja-
cency matrix, the class-specific GNN channels compute a score for class c as Gc =
FFN(Readout(Θc,MPNN(Θc, X,A))). In this formulation, both the message passing func-
tion MPNN and the Readout function integrate the motif importance weights Θc to generate a
representation of the input graph, which is then fed through a feedforward network FNN to produce
the score for class c.

Message Passing. One advantage of our method is that it can be readily integrated with any message
passing architecture. The following equation describes how the class c importance parameter Θc can
be incorporated into a generic message passing mechanism, which updates the embedding of a node
v by aggregating information from its neighbors denoted by N(v).

hk
v,c = UPDATEk

c

(
(wv,c)

I(k ̸=1) · hk−1
v,c , AGG

(
{MESG(hk−1

v,c , hk−1
v′,c ) : v

′ ∈ N(v)}
))

(1)

where UPDATE, AGG and MESG are architecture specific update, aggregation and message
computation functions respectively. Here we use i(v) to denote the motif of node v1, and compute
wv,c = σ(θi(v),c), transforming the importance score of the motif into a weight between 0 and 1.

This formulation differs from the classic GNN formulation by the inclusion of the term (wv,c)
I(k ̸=1),

which takes effect only in the first iteration (k = 1). In this initial step, it scales the node’s
representation by the corresponding motif weight, allowing motif importance to influence the nodes
embedding from the start. Note that for zero weight nodes, the GNN will ignore their identity in their
representation but still allow them to pass messages from neighboring nodes in subsequent iterations.
This design allows the network to capture long-range interactions even when intermediary nodes
are deemed unimportant, allowing information to flow through without directly incorporating their
features into the representation.

Readout function. In our design, unimportant nodes with w ≈ 0 serve only as intermediaries for
passing messages. To minimize the impact of unimportant nodes on the final representation, we use a

weighted readout function: hG,c =
∑

v∈G

wv,c·hK
v,c∑

u∈G wu,c
, ensuring that nodes with low weights have

minimal impact on the final graph-level representation.

Unknown motifs. Our motif vocabulary is built from the training data. In testing, we may encounter
unseen motifs. Additionally, we filter out rare motifs during training, treating them as unknowns.
Nodes belonging to a unknown motif are assigned a default weight value of 1, which remains fixed
to avoid learning importance parameters for infrequent motifs, reducing the risk of overfitting. We
use a frequency threshold of 3 for Mutagenicity and BBBP and 20 for the hERG dataset to ensure a
moderate vocabulary size as well as sufficient node coverage, resulting in 561 motifs for Mutagenicity,
351 for BBBP and 308 for hERG.

2.3 Training objective

We train our model to reduce the cross entropy loss on the target label of the graph and regularize
over motif parameters. The total loss is expressed below:

LCE + λ1

∑
i,c

σ(θi,c) + λ2

∑
i,c

H(σ(θi,c)) (2)

where the first term LCE aims to minimize the prediction loss (cross-entropy), the second term seeks
to sparsify the importance weights, and the third term H(·) tries to reduce the entropy of the motif
parameter to encourage extreme values of 0s or 1s. λ1 and λ2 are regularization coefficients and set
to 10−3 and 0.2 respectively.

3 Experiments
We conduct experiments with three binary classification tasks: Mutagenicity[22, 23], BBBP and
HERG [12, 24]. For all three datasets, we used the same train/validation/test splits as [12].

Model configuration and hyperparameters We test our method with GIN[25], GCN[26] and
GAT[27] architecture. For all datasets, we use two message passing layers, and a hidden dimension
of 16. For training, the batch size is 64 and the learning rate is 0.0001 for GNN parameters and 0.001

1In this work, the motifs are non-overlapping, thus a node can only belong to a single motif.
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Table 1: Comparing the prediction performance between MOSE-GNN and the vanilla GNN using
GIN and GCN architectures for three graph classification datasets.

Dataset Model GIN architecture GCN architecture

AUROC Train Validation Test Train Validation Test

HERG Vanilla .790 ± .01 .773 ± .01 .752 ± .01 .713 ± .02 .723 ± .01 .693 ± .02
MOSE-GNN .836 ± .01 .790 ± .01 .785 ± 0.00 .807 ± .01 .779 ± .01 .780 ± .01

MUTAG Vanilla .861 ± .01 .857 ± .01 .834 ± .01 .779 ± .01 .774 ± 0.02 .756 ± .02
MOSE-GNN .900 ± .01 .882 ± .01 .865 ± .00 .873 ± .01 .855 ± 0.01 .840 ± .012

BBBP Vanilla .893 ± .01 .860 ± .01 .872 ± .01 .830 ± .01 .828 ± .01 .826 ± .01
MOSE-GNN .942 ± .01 .911 ± .02 .849 ± .02 .910 ± .01 .889 ± .01 .845 ± .01

for the motif importance parameters. The maximum number of training epochs is set to 200 with
early stopping based on validation loss. Atoms are represented using one-hot node features. The
bonds are represented as edges in the graph.

Prediction Performance. We measure prediction performance using AUROC. For the baseline, we
use a single-channel GNN model with doubled hidden dimensions to match the complexity of our dual-
channel GNN. Each experiment is repeated four times with random seeds, and performance is reported
in Table 1 which shows MOSE-GNN performs comparably to the vanilla model, outperforming it on
Mutagenicity and hERG tasks but slightly underperforming on the BBBP task in the GIN model. The
GIN model’s additional MLP layer, while improving vanilla model performance, may have increased
overfitting and affected interpretability when paired with motif importance scores.

Motif importance. Quantitative evaluation of the motif importance scores is beyond the scope of
this abstract, but we provide visualization of the learned motif importance scores in the appendix
(Figure 2), which offers several qualitative insights. First, we observe that MOSE-GNN is adept at
identifying unimportant motifs containing no information about the property. These are demonstrated
as the grey points in the bottom left quadrants of Figure 2 indicating that masking out motifs with the
low θ values produced little to no impact on the model’s predictions.

We also observe that frequently, motifs with a high θ value for the positive class are indeed positively
associated with the property (more red dots in the top half of the figures). However, this is not always
the case (see GAT trained on BBBP). This indicates that motifs can serve as negative evidence,
suggesting the need to combine the marginal contributions of the motif with the importance score to
gain a more complete understanding of the roles of the motifs.

For the Mutagenicity dataset, we observed that the nitrogen-based functional groups, which are
known to be informative signatures for mutagencity, have high θ values for both classes, suggesting
that these motifs are being used as positive evidence for the mutagen channel while simultaneously
acting as negative evidence for the non-mutagen channel.

We also observe that the motif importance scores for GIN tend to be centered around 0.5 for both
classes, suggesting that GIN has learned a more complex rationale than can be fully captured by our
motif scores, likely due to its higher model complexity.

4 Conclusions and future work
We present MOSE-GNN, a motif-based self-explaining GNN model. Similar to how logistic re-
gression assigns weights to individual features, MOSE-GNN assigns importance scores to motifs—
structurally reoccurring subgraphs within molecules. These motif weights indicate the relevance of
specific molecular substructures to a given class, offering a global model-based explanation.

Our preliminary results indicate that MOSE-GNN is a promising approach to introduce model-level
interpretability into any message passing GNN architecture, while performing on par with traditional
GNN models. It shows promising results in filtering out irrelevant motifs and highlighting Key motifs
that can serve as both positive and negative evidence for different classes, demonstrating the model’s
nuanced understanding of molecular structures.

Future work will focus on quantitatively evaluating the motif importance scores and explore their
practical implications. We will also refine the motif generation process to further enhance the
model’s generalization, followed by more extensive experiments considering different prediction
tasks including regression problems.
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A Appendix
A.1 Hyperparameter tuning

We did not perform extensive hyper-parameter tuning, except for tuning the learning rating to speed
up the training loss reduction as well as optimizing validation performance. Specifically, we searched
for the learning rate in {0.01, 0.001, 0.0005, 0.0001}. We fixed the entropy regularization parameter
to be 0.2 and adjusted the L1 regularization parameters to ensure that the different loss terms are
relatively balanced in their contributions.

A.2 Results for GAT Model

We report the prediction performance and observe that MOSE-GNN outperfoms the Vanilla model
for GAT shown in 2

Table 2: Comparing the prediction performance between MOSE-GNN and the vanilla GNN using
GAT architecture for three graph classification datasets.

Dataset Model Train Validation Test

HERG Vanilla 0.700 ± 0.03 0.705 ± 0.03 0.680 ± 0.02
Mose-Dual 0.806 ± 0.02 0.778 ± 0.02 0.775 ± 0.01

MUTAG Vanilla 0.772 ± 0.01 0.765 ± 0.02 0.747 ± 0.01
MOSE-GNN 0.878 ± 0.01 0.851 ± 0.00 0.843 ± 0.01

BBBP Vanilla 0.823 ± 0.02 0.830 ± 0.01 0.805 ± 0.02
MOSE-GNN 0.917 ± 0.01 0.888 ± 0.01 0.835 ± 0.00

A.3 Interpretation of the motif importance scores

We visualize the learned motif importance scores in a scatter plot (Fig. 2), where each point represents
a single motif. The coordinates of each point indicate the importance scores for the two respective
classes, and the color represents the motif’s marginal contribution to the prediction of the positive
class.

To compute the marginal contribution of a motif, we consider all graphs containing that motif. For
each graph, we measure the change in the logit score differential between the positive and negative
classes by masking the motif (i.e., logit score differential of the original graph minus that of the
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Figure 2: Figure showing learned Motif importance for hERG dataset on first row, BBBP dataset on
the second row and Mutagenicity dataset results on third row. Motifs are represented as points on the
graph. The x and y axis represent the learned importance weights while the color hue signifies the
impact of masking the motif. Top right quadrant indicates motifs are used for both class prediction,
top left quadrant indicates the motif is only used for class 1 prediction, bottom left quadrant indicates
motif is not used by the model and bottom right quadrant indicates motif is only used for class 0
prediction. A positive score/ red color signifies that removal of the motif decreased models confidence
in Class 1, suggesting a positive association between the motif and Class 1 (aka property). Columns
1,2 and 3 indicate GIN, GCN and GAT model performance respectively.

masked graph). A positive change indicates that masking the motif reduces the differential (and thus
the probability for the positive property), suggesting a positive association between the motif and the
property. We then average this score differential change across all graphs containing the motif.

We note here that the GAT model trained on BBBP learns the opposite rationale (red in the bottom
right quadrant and blue in the top left quadrant) than other models. This is because we have a binary
classification problem where the channels can either learn to identify posite evidence or negative
evidence to get the correct prediction.

A.4 Computation Overhead for MOSE-GNN

The primary computational overhead of MOSE-GNN arises from constructing the Motif Vocabulary.
This process involves applying BRICS to fragment each molecular graph in the training set, identifying
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unique fragments, and applying frequency-based filtering to form the vocabulary. During model
training and testing, the multi-channel design increases the memory and computational requirements
of the GNN by a factor proportional to the total number of classes.
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