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Abstract
While machine learning on graphs has demon-
strated promise in drug design and molecular
property prediction, significant benchmarking
challenges hinder its further progress and rele-
vance. Current benchmarking practices often lack
focus on transformative, real-world applications,
favoring narrow domains like two-dimensional
molecular graphs over broader, impactful areas
such as combinatorial optimization, relational
databases, or chip design. Additionally, many
benchmark datasets poorly represent the underly-
ing data, leading to inadequate abstractions and
misaligned use cases. Fragmented evaluations
and an excessive focus on accuracy further exac-
erbate these issues, incentivizing overfitting rather
than fostering generalizable insights. These lim-
itations have prevented the development of truly
useful graph foundation models. This position
paper calls for a paradigm shift toward more
meaningful benchmarks, rigorous evaluation pro-
tocols, and stronger collaboration with domain
experts to drive impactful and reliable advances
in graph learning research, unlocking the poten-
tial of graph learning.

1. Introduction
Graphs are versatile mathematical structures capable of mod-
eling complex interactions among entities across a wide
range of disciplines, including the life sciences (Wong et al.,
2023), social sciences (Easley & Kleinberg, 2010), and op-
timization (Cappart et al., 2021), underlining the need for
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specialized machine-learning methods to extract meaningful
insights from graph-structured data. Hence, in recent years,
message-passing graph neural networks (MPNNs) (Gilmer
et al., 2017) have emerged as the leading architecture for
machine learning on graphs. These architectures—and,
more broadly, graph neural networks (GNNs)—have be-
come prominent topics at top-tier machine learning con-
ferences,1 demonstrating promising performance across a
diverse range of applications. Notable examples include
their role in breakthroughs such as discovering new antibi-
otics (Stokes et al., 2020; Wong et al., 2023) and advance-
ments in weather forecasting (Lam et al., 2023).

Despite these successes, we contend that for graph learn-
ing to remain relevant and impactful, current benchmarks
need to be aligned with such truly transformative real-world
applications. While various benchmarks have been pro-
posed, many existing datasets focus on narrow domains
or address problems with questionable practical relevance.
For instance, popular benchmarks frequently feature two-
dimensional molecular graphs (Hu et al., 2020a; Morris
et al., 2020), neglecting critical three-dimensional geometric
structures. Additionally, many studies report state-of-the-art
results on (synthetic) datasets like ZINC (Dwivedi et al.,
2022b), which lack sufficient (real-world) justification for
their graph-based approach, further complicating their util-
ity. Empirical studies in graph learning often suffer from
methodological shortcomings. Inconsistent dataset splits
and evaluation protocols across studies undermine the va-
lidity of comparisons, while the reliance on small datasets
frequently results in high-variance outcomes with limited
statistical significance. Due to these limitations and the
scarcity of sufficiently large and diverse datasets, MPNNs
and GNNs have shown limited evidence of scalability to
large pre-trained or foundation models.

Present work In this position paper, we argue that graph
learning must significantly revise its current datasets and
benchmarking practices to remain impactful and relevant;
see Figure 1 for an overview. Specifically, we

1. discuss the current shortcomings in graph learning

1http://tinyurl.com/mpn89vju
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Figure 1. Overview of the current challenges in benchmarking for graph learning and possible remedies.

benchmarks, including the lack of transformative real-
world problems, an overfocus on specific data modali-
ties, and fragmented evaluation protocols, resulting in
the absence of true foundation models for graph data;

2. propose possible remedies to address these shortcom-
ings, offering actionable recommendations for the
graph learning community; and

3. based on our assessment of current graph benchmarks,
we tune various new baselines and reference models
on molecular prediction tasks, large-scale heterophilic
datasets, and study in- and cross-domain transfer in a
pre-training/fine-tuning setup.

Overall, in this position paper, we argue that the bench-
marking aspect of graph learning requires a significant
revision for the field to stay impactful and relevant, includ-
ing the design of current datasets, the investigated data
modalities, and current benchmarking practices.

In the remaining part of this section, we provide a criti-
cal overview of the field’s current state. In the following
four sections, we highlight four current shortcomings of
graph datasets and benchmarking practices and their possi-
ble remedies.

Basic terminology Graph learning comprises several
regimes. The most common ones are graph-level and node-
level predictions (i.e., classification or regression). In the
former, we are given a training set of graphs and aim to
train a GNN to make meaningful graph-level predictions
outside this training set. In the latter, we instead seek to
make predictions for nodes in a given graph or set of graphs;
the setup here is either transductive or inductive. In the
transductive setting, we are given a single graph with a sub-
set of the nodes being the training set, and we aim to train
a model to make correct predictions for the nodes outside
this training set. In the inductive setting, we are given a
training set of graphs with node (class-)labels and aim to
train a model to make correct predictions for the nodes of

unseen graphs. Similarly, we can define edge-level or link
prediction. In addition, graph generation aims to generate
graphs modeled to a given data distribution proxied via a
training dataset.

Related work One of the first efforts towards more prin-
cipled benchmarking of GNNs was taken by Dwivedi et al.
(2020), who proposed a suite of real and synthetic graphs
spanning a variety of node-, edge-, and graph-level tasks
as well as an attempt to standardize evaluation protocols.
However, the majority of the tasks either have a graph struc-
ture superimposed on the original dataset (such as graphs
extracted from vision datasets like CIFAR10, which have
been solved in the vision community) or focus on small
synthetic graphs with a saturated performance. Another
limiting factor is the strongly suggested model size below
500k parameters that was supposed to test models’ inductive
biases. While reasonable for the state of graph learning in
2020, such a manually set parameter count ceiling makes
little sense in modern deep learning, where scaling laws
suggest model capabilities grow with both dataset size and
parameter count (Hoffmann et al., 2022; Schaeffer et al.,
2023; Wei et al., 2022).

Soon after, Hu et al. (2020a) released the Open Graph
Benchmark (OGB), a comprehensive suite of datasets en-
compassing various domains, tasks, and graph distributions.
The authors proposed to gather results in a centralized, pub-
licly visible leaderboard. The submission system requires
researchers to provide test results, the corresponding valida-
tion performance, the number of learnable parameters, and
some information about the tuning procedure. This effort
goes in the direction of more informative and standardized
benchmarking practices. Nevertheless, many datasets in the
suite (such as 2D molecular graphs or academic citation
networks) are still far from transformative real-world appli-
cations. As we discuss later in Sections 2 and 3, these graphs
either fail to encode relevant information (e.g., 3D spatial
arrangements of atoms) or induce a structural inductive bias

2



Graph Learning Will Lose Relevance Due To Poor Benchmarks

that is of unclear advantage for downstream generalization
performance. While we note that some (large-scale) more
impactful benchmarks are exposed by OGB, the research
community has focused on them with relatively lower pri-
ority. This is likely due to the inherent difficulty of scaling
more sophisticated and expressive architectures to larger
graphs or the interest drawn by more specific settings, such
as heterophilic networks, not generally covered by OGB.

Dwivedi et al. (2022b) proposed benchmark datasets to
assess the long-range capabilities of GNNs, also trans-
forming computer vision datasets into graph datasets, em-
pirically showcasing the benefits of graph transformers
(GTs) (Müller et al., 2024) over MPNNs. However, Tön-
shoff et al. (2024) have shown that the reported performance
gap of graph transformers on these tasks is overestimated
due to suboptimal hyperparameter choices, showcasing im-
proper benchmarking practices. In addition, Errica et al.
(2020) proposed a more meaningful evaluation protocol for
GNNs; however, their efforts primarily focused on the small
datasets from Morris et al. (2020).

Recently, Coupette et al. (2025) introduced a formal frame-
work to assess the quality of graph learning datasets, devis-
ing two complementary measures. In addition, they con-
ducted extensive experiments and proposed recommenda-
tions for improving benchmarking practices in graph learn-
ing.

In 2D graph generation, many papers still evaluate on
QM9 (Wu et al., 2018) or ZINC250K (Gómez-Bombarelli
et al., 2018) even though these datasets are regarded as
solved, i.e., most state-of-the-art models obtain near-perfect
performance. In addition, the widely used SPECTRE
benchmark (Martinkus et al., 2022) is also saturated, and
results are not consistently reported across papers.

Nickel (2024) showed analytically that for widely consid-
ered inference settings in complex social systems, including
graph learning, the train-test paradigm does not only lack
justification but is indeed invalid for any risk estimator, in-
cluding counterfactual and causal estimators. These formal
impossibility results highlight a fundamental epistemic is-
sue in graph learning, i.e., that for many tasks we cannot
know how good our models really are under current data
collection practices.

See Appendix A for an extended discussion of related work.

2. Missing transformative real-world
applications and supporting benchmarks

We believe that the graph learning community has not
yet identified benchmarks showcasing transformative real-
world applications that genuinely exploit the benefits of
machine learning on graphs. Unlike the computer vision

or natural language domains, graph learning has no “natu-
ral” application areas, as graphs usually abstract other data
modalities featuring more or less evident relational struc-
tures.

In the past, graph learning primarily focused on bench-
marking newly developed GNN architectures on datasets
stemming from specific applications. The molecular do-
main, e.g., predicting properties of small 2D molecular
graphs (Hu et al., 2020a; Morris et al., 2020) has been an
area of particular interest. Meanwhile, meaningful small
2D molecular graphs only cover minor, niche sub-fields in
chemistry or drug discovery, where it is more natural to
relate a 3D structure and a property evaluated at a quantum
mechanical level of theory. In addition, transforming raw
chemical data obtained from, e.g., experiments or quantum
mechanical calculations into 2D molecular graphs can be
time-consuming; it often results in the loss of important in-
formation and, thus, fails to capture the relationship between
spatial atomic arrangements and properties.

In addition to challenges in supervised graph learning, simi-
lar issues arise in graph generation. Most papers benchmark
their methods using 2D molecular graph generation (Vignac
et al., 2023). However, 3D point clouds might be better
suited and preferred by domain experts for such tasks, as the
geometric structure of molecules is crucial for real-world
applications, such as molecular docking or fragment linking
(Igashov et al., 2024; Schneuing et al., 2024). For example,
despite its prominence, DiGress (Vignac et al., 2023)—one
of the most cited works in graph generation over the past two
to three years—has seen few practical follow-ups. Notably,
most citations serve as background rather than extensions
of their ideas. The utility of generating structured data re-
mains unclear—with evaluating the quality of generated
graphs without ground-truth data being one of the key chal-
lenges (Handa et al., 2023)—leaving this field without a
clear application-driven focus. As a result, critical topics,
such as generating graphs with strong structural constraints
or scaling methods to large graphs, receive limited attention.

Suggested remedies The community should shift focus
from smaller, less relevant 2D molecular benchmarks to
problems naturally represented as graphs. One promis-
ing area is combinatorial optimization, where graphs en-
code problem instances, such as in the vehicle routing prob-
lem (Toth & Vigo, 2002) or bipartite graphs in integer-linear
programming (Schrijver, 1986), as discussed in Cappart
et al. (2021). Combinatorial optimization benchmarks offer
distinct advantages: (1) clear real-world applications, (2)
easy generation of large datasets, and (3) ideal testbeds for
studying size generalization.

Beyond combinatorial optimization, other high-potential
areas for GNNs include satisfiability solving (Biere et al.,
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2021), recommender systems (Wu et al., 2022), social net-
works (Newman, 2003), and power-flow networks (Owerko
et al., 2020). Projects like RelBench (Robinson et al., 2024)
and 4DBInfer (Wang et al., 2024) demonstrate GNNs’ util-
ity in automating machine learning on relational databases,
while TpuGraphs (Phothilimthana et al., 2023) highlights
their potential in computer systems. GNNs are also effec-
tive in automated chip design, such as in AlphaChip, where
reinforcement-learning-based models leverage netlist em-
beddings (a hypergraph of circuit components and their
connections) (Mirhoseini et al., 2021; 2024).

Industrial datasets like social networks often involve sen-
sitive data, limiting accessibility. Better anonymization
methods could address this, such as generating anonymous
graphs similar to real-world data (Yoon et al., 2023). While
GNNs have been used for de-anonymization (Creţu et al.,
2022), anonymized graph generation remains an open chal-
lenge.

Graph generation also holds promise for design-related
tasks, mainly through diffusion models (Liu et al., 2024).
For example, these models create heat maps for sampling
solutions to combinatorial problems (Li et al., 2024; Sun
& Yang, 2023). While competitive, further work is needed
to improve efficiency and understand GNN capabilities in
this context. We hypothesize that for any prediction task
p(y|x), the conditional generation counterpart p(x|y) is also
valuable, provided y is easy to evaluate or p(y|x) is robust
enough to assess generated samples reliably. By priori-
tizing combinatorial optimization and graph-representable
problems, the community can advance theoretical insights
and practical applications, providing a more straightforward
path to real-world impact.

3. Graphs are not necessarily constructed in a
meaningful way

As discussed above, graphs are higher-level abstractions of
real-world phenomena or observables featuring relational
structure. Hence, their effectiveness in tackling a specific
task will inherently depend on how they are constructed
and whether the relational information they encode predicts
the problem (Halcrow et al., 2020). However, commonly
adopted graph learning benchmarks often do not consider
the meaningfulness, relevance, and completeness of the pro-
posed constructed graphs; in fact, they sometimes either
represent unsuitable formalisms for the data modality at
hand, fail to encode important information, or do not corre-
late with the considered learning targets. We provide some
examples in the following.

A first exemplary case is that of the PASCALVOC-SP and
COCO-SP datasets (Dwivedi et al., 2022b). Their graphs
encode coarse-resolution images, with rag-boundary edges

drawn to connect super-pixels corresponding to segmented
regions. However, this modeling choice is not grounded in
theoretical or empirical justification. As such, it is unclear
whether modeling images as graphs in this way is helpful
for object detection or the vision domain in general.

Spatiotemporal datasets, such as traffic networks, e.g.,
PEMS-BAY and METR-LA (Li et al., 2017), or air quality
measurements. e.g., AQI (Zheng et al., 2015), rely on sensor
readings taken at various locations. Subsequently, a thresh-
olded Gaussian kernel is applied to the pairwise distances
between these sensor locations to construct the graph struc-
ture, introducing structure to an otherwise fully connected
weighted graph by imposing a threshold to decide which
connections are retained. While this preprocessing step pro-
vides a relational structure that facilitates using graph-based
methods, it is fundamentally arbitrary and may misrepre-
sent the system’s dynamics. For instance, the choice of
the threshold value is often heuristic, potentially omitting
meaningful connections, e.g., emphasizing short-range in-
teractions, which may or may not be the right choice for
the problem. This highlights the need for more principled,
data-driven methodologies for constructing spatiotemporal
graphs.

Again, another relevant example is represented by the widely
adopted ZINC benchmark (Dwivedi et al., 2020). ZINC
contains small molecular graphs, whereby nodes represent
atoms and edges the chemical bonds between them. This
form of relational structure captures natural chemical infor-
mation. Still, nodes and edges are attributed solely to the
type of atoms and chemical bonds they represent, missing
encoding important structural information such as the 3D
atom coordinates and the SMILES-derived features that are
easily obtained via software packages such as RDKit (Lan-
drum, 2016).

In some other compelling cases, relational information can
be natural to consider but not necessarily informative to
solve the prediction task at hand. In particular, this issue
has been studied in recent work by Bechler-Speicher et al.
(2024). The authors show settings where MPNNs overfit
to spurious correlations in the structure, whereas set-based
models (Zaheer et al., 2017) only process node features
and exhibit better generalization performance. Exemplary
settings of this kind are those of citation networks, where
nodes represent scientific articles connected by edges when-
ever one cites the other. This form of relational structure
is exceptionally reasonable but not necessarily predictive
for any task instantiated on these graphs. That is, textual
similarity in the content could, e.g., better correlate with
article category than simply patterns of citations.

Suggested remedies Virtually any real-world phe-
nomenon and system can potentially be modeled as a
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“graph” (Veličković, 2023), but this does not imply that any
choice of relational structure is equally relevant or predic-
tive or that a relational framework is a convenient modeling
choice. Benchmarks should be designed in a way that ac-
counts for these aspects systematically and quantitatively,
openly, and structurally, considering the motto:

“Not everything that could be modeled as a graph should
be modeled as a graph.”

When proposing a new benchmark, authors should discuss
the advantages of adopting a “relational” modeling frame-
work, articulating the benefits expected from processing
data framed in graphs w.r.t. other possible modalities. In
addition, they should discuss the choice of node and edge
features and the rationale for how edges are determined in
the first place. Crucially, authors should not only illustrate
how graphs are constructed but expand on why the chosen
approach is expected to be advantageous for the prediction
task at hand.

Quantitatively, we advise that benchmarks should always
be accompanied by (adequately tuned) baselines such that
comparisons with them will allow us to underscore the ad-
vantages of the considered structural information on gen-
eralization performance. Concretely, benchmarks should
always report the performance of baselines that only pro-
cess unstructured sets of node features,2 or graphs whose
connectivity is obtained solely from the similarity thereof.
Benchmark guidelines should explicitly promote the quanti-
fying performance of proposed approaches in relative terms
w.r.t. these.

4. Bad benchmarking culture
We believe inadequate benchmarking culture significantly
hinders the graph learning community, irrespective of im-
pactful applications (see Section 2) or the usefulness of
underlying graphs (see Section 3). While poor benchmark-
ing exists across machine learning (Herrmann et al., 2024),
it is particularly problematic in graph learning. Even for
standard datasets (Morris et al., 2020), inconsistent evalu-
ation protocols and dataset splits result in highly variable
performance reports (see Appendix B.4), with some papers
overestimating performance by reporting validation met-
rics (Errica et al., 2020). Small datasets like MUTAG (Morris
et al., 2020), with only 188 graphs, lead to large standard de-
viations and unreliable comparisons, while some suffer from
misclassifications or insufficient class representation (Li
et al., 2023; Platonov et al., 2023).

Newly proposed architectures are often unfairly compared

2These could be, for example, instantiated as DeepSets (Za-
heer et al., 2017) or transformer-based architectures (Müller et al.,
2024).

to outdated baselines, with hyperparameters fine-tuned on a
small number of datasets but not for baselines. Theoretically
motivated GNNs (Maron et al., 2019; Morris et al., 2019)
frequently claim inflated performance gains by avoiding
comparisons with state-of-the-art models.

The community often overlooks the relevance of minor im-
provements. For instance, ZINC (Dwivedi et al., 2020)
tasks can be easily solved with standard chemoinformat-
ics tools (Landrum, 2016), yet incremental improvements
on such benchmarks are often highlighted. Additionally,
limited molecular and material modeling domain knowl-
edge prevents meaningful task understanding. For example,
current state-of-the-art models often ignore critical relation-
ships between 3D structure and molecular properties.

In 2D graph generation, datasets like QM9 (Wu et al.,
2018) and ZINC250K (Gómez-Bombarelli et al., 2018) dom-
inate despite near-perfect performance. More robust bench-
marks, such as MOSES (Polykovskiy et al., 2020) and
GUACAMOL (Brown et al., 2019), remain underutilized
due to high computational demands. Benchmarking incon-
sistencies, such as differing dataset splits (Siraudin et al.,
2024), inappropriate reliance on novelty for QM9 (Vignac
& Frossard, 2021), and inconsistent FCD reporting further
exacerbate the issue. Current benchmarks emphasize uncon-
ditional generation, whereas real-world applications require
conditional generation, which remains underexplored due
to oversimplified tasks and strong baselines (Tripp et al.,
2021).

Beyond molecules, benchmarking for graph generative mod-
els is even less standardized. Some studies rely on limited
datasets like CORA or the SPECTRE benchmark (Mar-
tinkus et al., 2022), focusing on specific graph types but
often omitting metrics like VUN and error bounds. Bench-
marking for large graphs faces additional challenges due to
the scarcity of practical datasets and even poorer standard-
ization practices.

Suggested remedies The graph learning community must
develop practical tasks and robust evaluation frameworks
to address these challenges. Unlike LMsys Arena’s ELO-
based evaluation (Zheng et al., 2023), graph learning lacks
trusted benchmarks resistant to manipulation. While do-
main expertise poses challenges, creating expert-validated
benchmarks can significantly improve model evaluation and
adoption.

A Kaggle-like competition with hidden test sets at the
NeurIPS benchmark track could realistically assess models
across domains like molecular prediction and combinato-
rial optimization. Addressing data quality issues requires
larger, domain-relevant datasets such as ADMET BENCH-
MARK GROUP (Swanson et al., 2023) or PUBCHEMQC
PM6 (Nakata et al., 2020), which provide diverse, real-
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world data. Multidisciplinary collaboration is essential for
curating datasets and translating real-world problems into
graph learning tasks (You et al., 2020).

For 2D molecule generation, benchmarks like MOSES and
GUACAMOL should replace outdated ones like QM9 and
ZINC250K for serious evaluations. Future efforts must fo-
cus on computational efficiency and improved benchmarks
such as SPECTRE, incorporating larger datasets with di-
verse structural properties. Evaluations must include error
bars and report ratios and prioritize combined metrics like
MMD and VUN. We advocate for new benchmarks ex-
tending existing frameworks to evaluate diverse, complex
structures effectively.

5. Implication: No true foundation model
exists for graph learning

In deep learning, large pre-trained foundation mod-
els (Llama Team, 2024; Gemini Team, 2024) that unify
multiple modalities (e.g., text, images, video, audio) excel
at predictive and generative tasks, reshaping research and
industry. However, similarly impactful graph foundation
models (GFMs) are yet to emerge. Domain-specific graph-
based models have appeared recently (Mao et al., 2024) for
tasks such as node classification (Zhao et al., 2024), neural
algorithmic reasoning (Ibarz et al., 2022), knowledge graph
reasoning (Galkin et al., 2024a;b), and molecular property
prediction (Kläser et al., 2024; Sypetkowski et al., 2024).
Yet, their performance often shows only marginal gains over
standard supervised GNNs (Zhao et al., 2024; Kläser et al.,
2024; Chen et al., 2024).

As argued in Sections 2 to 4, training on small datasets
or academic tasks without rigorous evaluations hampers
progress in graph learning. Additional challenges include:
(1) differing symmetries and expressivity requirements
across tasks (e.g., labeling trick GNNs (Zhang et al., 2021;
Zhu et al., 2021) excel in link prediction but not node- or
graph-level predictions); (2) learning representations for
graphs with varying scales and feature spaces necessitates
new strategies for graph tokenization and defining a uni-
versal graph vocabulary (Mao et al., 2024); (3) graph data
availability is orders of magnitude smaller than text data, and
a token for graphs lacks clear definition; (4) limited commer-
cially relevant GFM applications, as discussed in Section 2.

Suggested remedies Despite these challenges, GFMs and
robust real-world graph benchmarking are critical for ad-
vancing graph learning alongside progress in other deep
learning areas. We propose shifting from one model for one
dataset to one model for all datasets to provide a compre-
hensive view of model performance across diverse graphs.
For example, instead of training a separate model for each
task in a five-task benchmark, training one model for all

tasks is preferable. For particularly non-trivial setups (e.g.,
combining classification with regression), we suggest an
encoder-processor-decoder approach (Battaglia et al., 2018;
Ibarz et al., 2022): pre-train a unified backbone model and
fine-tune task-specific encoders and decoders. Finally, we
advocate for creating large-scale, high-quality datasets of
diverse graph structures (e.g., sparse, dense, homophilic, het-
erophilic, directed, multi-relational), addressing data gaps
with synthetic data (Palowitch et al., 2022), and ensuring
data decontamination by excluding known test sets from
pre-training corpora.

6. Alternative Views
Fields adjacent to graph learning, such as geometric deep
learning (GDL) (Bronstein et al., 2017; 2021), are thriving
and achieving remarkable successes. GDL has driven ad-
vancements in structural biology (Abramson et al., 2024;
Jumper et al., 2021; Townshend et al., 2021) and materials
science (Merchant et al., 2023; Reiser et al., 2022; Zeni
et al., 2025). It also underpins state-of-the-art interatomic
potentials for atomistic simulations at first-principles accu-
racy (Batatia et al., 2022; Batzner et al., 2022; Gasteiger
et al., 2020; Hu et al., 2021b; Musaelian et al., 2023; Park
et al., 2021; Schütt et al., 2017; Schütt et al., 2021; Simeon
& Fabritiis, 2023; Thomas et al., 2018; Zaverkin et al.,
2024), including the trend toward universal interatomic po-
tentials (Batatia et al., 2023; Chen & Ong, 2022; Devereux
et al., 2020; Smith et al., 2017; Kovács et al., 2023). Many
GDL models leverage graph structures, though these are
often constructed in task-specific or heuristic ways, such
as using distance-based thresholds or graph sparsification
techniques. Notably, graph sparsification is empirically cru-
cial in both interatomic potential models and the Nobel
Prize-winning ProteinMPNN, where sparse message pass-
ing plays a central role. While these constructions may not
always be grounded in traditional graph semantics and often
rely on heuristics, they have proven empirically effective.
This challenges our earlier assertion that when graphs are
not constructed in a meaningful way (Section 3), model
performance and progress are likely to suffer.

7. Empirical evidence
Here, we support our claims made in the previous four
sections with empirical evidence3.

7.1. Graphs not necessarily constructed in a meaningful
way

In Section 3, we raised concerns about the lack of corre-
lation between graph structures in commonly used bench-

3Our code is available at https://github.com/
benfinkelshtein/PP-Benchmarks.
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Table 1. Comparison of different GNNs over OGB datasets, when
using DeepSets (no graph), the original graph (Orig.) and a fixed
expander graphs (Cayley).

Model MOLHIV MOLBBBP MOLBACE

Deepset (Empty) 63.78±1.05 64.90±0.72 51.76±2.85

GraphConv Orig. 68.24±1.77 64.11±4.50 63.18±4.56
GraphConv Cayley 67.91±0.75 61.60±4.48 56.94±7.50

GIN Orig. 69.65±2.58 66.73±1.27 53.44±4.52
GIN Cayley 68.61±1.40 58.35±4.01 56.94±12.40

GAT Orig. 67.21±1.30 66.62±1.14 53.21±1.34
GAT Cayley 67.80±3.45 60.31±2.47 62.75±4.76

marks and the intended learning targets. In this subsection,
we provide empirical evidence to support this claim fur-
ther. Recently, Deac et al. (2022); Wilson et al. (2024)
proposed a message-passing scheme in which, during ev-
ery odd layer, the original graph is disregarded in favor of
propagating information through a fixed-structure expander
graph—specifically, a Cayley graph. Ablation studies pre-
sented in Wilson et al. (2024) on multiple TUDATASET
benchmarks showed that using the Cayley graph exclu-
sively, without incorporating the original graph at any layer,
sometimes improved performance. This finding is strik-
ing, as the Cayley graph does not inherently encode task-
relevant information. These results align with the observa-
tions of Bechler-Speicher et al. (2024), who showed that
making graphs more regular consistently improved perfor-
mance. To further substantiate these findings, we replicate
these experiments using the OGB graph-level benchmarks,
strengthening the evidence for these observations. We also
evaluate a DeepSets (Zaheer et al., 2018) baseline, where
we drop the graph structure from the data, and therefore,
the MPNN acts on an empty graph. Due to space limita-
tions, the Appendix provides all the experimental details,
including dataset information and tuned hyper-parameters.

The ROC-AUC scores average over 3 random seeds are sum-
marized in Table 1. The best-performing model within the
standard deviation range is marked in bold for each dataset.
Across 5 out of 9 experiments, the non-informative regular
Cayley graph outperformed or matched the performance
of the original graph. Notably, for the MOLBBBP datasets,
training with GraphConv achieved the highest AUC-ROC
when the graph structure was dropped entirely.

7.2. Reassessing simple baselines on PCQM4MV2

In Section 4, we discussed problematic practices of empiri-
cal evaluations of novel GNN architectures. One common
issue is the citation of old, outdated reference results to
quantify the performance improvements of new architec-
tures over simpler baselines. Often, these baseline results

Table 2. Evaluation results on the validation split of PCQM4Mv2.
Model Val. MAE #Param.

G
N

N
s GCN (Hu et al., 2021a) 0.1379 2.0M

GINE (Hu et al., 2021a) 0.1195 3.8M

Tr
an

sf
or

m
er

s TokenGT (Kim et al., 2022) 0.0910 48.5M
GRPE (Park et al., 2022) 0.0890 46.2M
Graphormer (Shi et al., 2022) 0.0864 48.3M
GPS (Rampášek et al., 2022) 0.0858 19.4M
ET (Müller et al., 2024) 0.0832 16.8M

O
ur

s GINE 0.0913±0.0002 22.7M
GINE+RWSE 0.0898±0.0001 22.7M

suffer from suboptimal hyper-parameters and are cited as-is
for many years without reevaluation. As a consequence,
the performance gains of newer architectures are commonly
overestimated.

Here, we demonstrate this issue on the commonly used
PCQM4MV2 dataset (Hu et al., 2021a), among the few
large-scale datasets for graph-level learning tasks, and is par-
ticularly popular for demonstrating performance improve-
ments of graph transformers over simpler MPNNs. Experi-
mental evaluations on this dataset typically cite the results
for GCN (Kipf & Welling, 2017) and GINE (Xu et al.,
2018a; Hu et al., 2020b) that were initially reported on the
leaderboard of the 2021 OGB-LSC competition (Hu et al.,
2021a) to represent standard MPNNs. These results suggest
a validation MAE of around 0.12, while graph transformers
commonly achieve MAEs below 0.09, indicating a substan-
tial error reduction of over 25%.

We aim to reevaluate this performance difference by re-
assessing the reference results for standard message-passing
GNNs. Specifically, we measure GINE’s performance after
re-tuning hyper-parameters for a larger 20-layer model with
approximately 20 million parameters. We base our exper-
iments on the same GINE architecture, with edge features
used to obtain the original results. We make minor adjust-
ments to align the setup with current deep learning practices
used for transformers. Full details, hyper-parameters, and
tuning budgets are reported in Appendix B. We report per-
formance for GINE models with and without additional
RWSE node features (Dwivedi et al., 2022a), also used by
graph transformers such as GPS (Rampášek et al., 2022).

Table 2 provides the results of our evaluation. Even with-
out additional RWSE features, the error of GINE drops
by over 20% to 0.0913 simply by tuning the model con-
figuration. When using additional structural features, the
performance improves further to 0.0898, which is compet-
itive with several graph transformer baselines. We do not
claim that additional tuning could not further enhance the
graph transformers’ results. Instead, our results show how
brittle empirical evaluations of GNNs generally are and that
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the numbers reported throughout the literature often do not
capture the actual progress of model capability or the lack
thereof.

7.3. The meaningfulness of architectural changes

Table 3. Comparison of baseline GNNs with and without architec-
tural modifications on heterophilous datasets.

Model ROMAN-EMPIRE AMAZON-RATINGS MINESWEEPER

G
C

N Re-evaluated 44.41±0 81 44.30±0 52 72.90±1 29

Reported 73.69±0 74 48.70±0 63 89.75±0 52

SA
G

E Re-evaluated 80.80±0 52 43.35±0 80 83.76±0 71

Reported 85.74±0 67 53.63±0 39 93.51±0 57

G
A

T Re-evaluated 51.05±0 90 44.52±0 48 74.37±0 94

Reported 80.87±0 30 49.09±0 63 92.01±0 68

Avg. % Gain +43.56% +14.63% +19.49%

In response to Section 4, we further exemplify the GNN eval-
uations’ brittleness in the node-prediction setting. Platonov
et al. (2023) proposed a set of heterophilous graph datasets
to evaluate the performance of various GNNs, including
both baseline and heterophily-specific GNNs. In their ex-
periments, the authors used the official implementations of
the heterophily-specific GNNs. However, they modified
the baseline GNNs by adding a two-layer MLP after each
neighborhood-aggregation layer. While mentioning that this
architectural enhancement significantly improved baseline
performance, the authors did not explore its impact further.

This enhancement raises several critical concerns regarding
the validity of the comparisons: (1) No parameter budget
was enforced, potentially leading to models of varying ca-
pacities. (2) The evaluation of the baseline GNNs followed a
uniform protocol, whereas heterophily-specific GNNs were
assessed using their respective codebases, which may in-
corporate diverse architectural choices and introduce unfair-
ness. However, most important of all, (3) the significance
of the specific baseline GNN protocol—including the two-
layer MLP after each graph neighborhood aggregation, a
linear encoder, a linear decoder, and GeLU activation—was
acknowledged but not thoroughly analyzed, leaving its con-
tribution to performance improvement unclear.

These issues render the performance comparisons in
Platonov et al. (2023) less meaningful. Although the pro-
posed datasets may serve as valuable benchmarks for het-
erophilous graphs, their utility cannot be conclusively de-
termined without an evaluation protocol. This underscores
the necessity of such a protocol (see Section 4)—even the
most promising benchmarks require well-defined evaluation
guidelines to assess their quality reliably.

To validate these concerns, we re-evaluated the baseline
GNNs (GCN (Kipf & Welling, 2017), SAGE (Hamilton
et al., 2017), and GAT (Velickovic et al., 2017)) using a fresh
codebase that adhered to the hyper-parameters reported in

(Platonov et al., 2023) but excluded specific architectural
modifications. Specifically, our evaluation omitted the linear
encoder, the two-layer MLP after each aggregation layer,
and the linear decoder and replaced GeLU activations with
the standard ReLU.

As shown in Table 3, these architectural changes introduced
in Platonov et al. (2023) resulted in significant average base-
line performance gains of +43.56%, +14.63%, +19.49%
on the roman-empire, amazon-ratings, and minesweeper
datasets, respectively. This analysis does not question the
validity of the proposed benchmarks but highlights the crit-
ical need for accompanying evaluation protocols. Such
protocols should include a fixed model size limit to ensure
fair parameter budgets and clear guidelines on allowable
architectural modifications across all GNN layers.

7.4. Multi-task pre-training with
encoder-processor-decoder

Table 4. Test performance on the upstream datasets, both trained in
a single-task (ST) and multi-task (MT) setting, as well as random
baselines (RD), on a single random seed.

Model COCO-SP MALNETTINY PCQM4MV2

F1 ↑ Acc. ↑ MAE ↓

R
D MPNN 0.0002 23.10 5.2340

GT 0.0005 19.60 5.2483

ST

MPNN 0.0817 81.80 0.1104
GT 0.2947 81.90 0.1009

M
T

Empty 0.0119 20.00 0.3915
MPNN 0.0413 83.20 0.1363
GT 0.1137 88.90 0.1441

In this section, as suggested in Section 5, we run a series
of experiments to investigate multi-task pre-training/fine-
tuning using an encoder-processor-decoder framework. Sim-
ilar settings have been explored recently for small molecules
in Kläser et al. (2024); Sypetkowski et al. (2024); Frasca
et al. (2024). Here, we also want to study a cross-domain
setting with data from vision, function-call graphs, large
molecules, and social networks. The aim is to gather an ini-
tial signal on the suitability of this architectural pattern when
pre-trained on a mix of vastly different graph tasks, even
on a relatively small scale. As highlighted in Section 5, a
large-scale, curated pre-training corpus is currently lacking,
and we believe that positive results from our experiments
could catalyze the community’s efforts in building such a
corpus, accompanied by standardized pre-training setups
and evaluation procedures.

Architectures, training, and evaluation We train
domain-specific encoders (e.g., embedding atom and bond
types in molecules) and task-specific decoder MLPs. For
the processor network, we both evaluate an MPNN based
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on the GINE architecture (Xu et al., 2018b) and a GT based
on Graphormer (Ying et al., 2021) with a soft attention bias
and RWSE structural encodings (Dwivedi et al., 2022a).
For our experiments, we assemble two sets of datasets: the
upstream mix used for pre-training and the downstream mix
used for fine-tuning. We freeze the processor weights dur-
ing fine-tuning and learn a new encoder and decoder. If the
downstream task permits, we reuse the encoder from one
of the datasets in the upstream mix. In addition, for each
upstream or downstream dataset, we train baseline models
with the same model architectures as our pre-trained mod-
els but trained from scratch in a single-task fashion. All
experimental details are enclosed in Appendix B.3.

Upstream mix Our upstream mix contains PCQM4MV2
(Hu et al., 2021a), COCO-SP (Dwivedi et al., 2022b), and
MALNETTINY (Freitas et al., 2021). These datasets are
diverse in various aspects, such as the underlying application
domain, the type of prediction task, and graph size and
sparsity. As a result, we do not expect a strong transfer
between any of these tasks during pre-training. Rather, we
select this upstream mix to investigate whether our MPNN
and GT models can learn general graph representations
useful for multiple, potentially unrelated tasks. To further
support this assessment and quantify the benefits of learning
a general-purpose processor network, we train an additional
“empty graph baseline” in the multi-task setup, where the
processor network is set to identity, and, hence, the graph
structure is ignored. See Table 4 for our results. We observe
that the MPNN and the GT show non-trivial performance
compared to the empty graph baseline and their randomly
initialized (untrained) counterparts on all three tasks. On
COCO-SP and PCQM4MV2, they both fall short of their
single-task baseline. Surprisingly, on MALNETTINY, we
find that MPNN and GT improve over their respective single-
task performance when trained in a multi-task setting.

Downstream mix Next, we evaluate how well the pre-
trained multi-task models transfer to new downstream tasks.
To this end, we construct a downstream mix consisting
of three datasets with various degrees of similarity to the
upstream mix. In particular, we select PASCALVOC-SP
(Dwivedi et al., 2022b), PEPTIDES-STRUCT (Dwivedi et al.,
2022b), and STARGAZERS (Rozemberczki et al., 2020; Mor-
ris et al., 2020).4 Here, we measure performance for a vary-
ing number of fine-tuning steps to assess whether the pre-
trained models are more sample-efficient than their single-
task counterparts; see Figure 2 for the results. We observe
that pre-training is generally beneficial in the regimes of
the fewest optimization steps, although to a degree that
depends on the target dataset and chosen backbone. We

4We detail the relation between “upstream” and “downstream”
datasets in Appendix B.3.

observe strong in-domain transfer to PASCALVOC-SP and
strong cross-domain transfer to STARGAZERS on both pre-
trained models. The results on PEPTIDES-STRUCT are less
pronounced. While we observe slight transfer for the pre-
trained GT, the pre-trained MPNN shows negative transfer
at 3K and 10K steps.

Overall, the above results suggest that MPNNs and GTs
can learn general-purpose graph representations even when
trained on data from different domains. These representa-
tions can often transfer effectively to in- and cross-domain
tasks.

8. Conclusion
This paper highlights the need to rethink benchmarks and
practices in graph learning. While GNNs have succeeded
in many applications, current benchmarks often overlook
real-world problems, focus too narrowly on specific data
modalities, and lack consistent evaluation protocols or large-
scale datasets for foundation models. We propose designing
benchmarks that reflect real-world complexity, standard-
izing evaluations, and creating scalable datasets. These
changes will help the graph learning community align with
machine learning advancements and maintain impact and
relevance.
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A. Extended related work
GRAPHWORLD (Palowitch et al., 2022) offered a synthetic perspective on graph benchmarking by showing that existing
datasets cover a relatively narrow distribution of possible graphs and tuning common MPNN architectures is not indicative of
their performance in other, less common domains. To alleviate the distribution issue, GRAPHWORLD suggested generating
synthetic graphs using stochastic block models (Karrer & Newman, 2011) with more diverse connectivity patterns and
probing GNNs on the synthetic datasets. Unfortunately, the dataset did not receive significant attention and adoption in the
graph learning community, partly due to the stated synthetic nature of the tasks.

In addition, Veličković et al. (2022) proposed CLRS, an algorithmic reasoning benchmark modeling the simulation of 30
classical algorithms as graph tasks such as node- or edge-level prediction and evaluates in a challenging size generalization
setting. Algorithmic reasoning, in particular in the size generalization setting, receives some interest in the broader machine
learning community (Zhou et al., 2024a;b; McLeish et al., 2024) and is arguably highly relevant to the study and advancement
of the reasoning capabilities of neural networks in general. At the same time, algorithmic reasoning methods are typically
benchmarked on synthetic tasks to study reasoning and learning capabilities in a controlled setting. There is no suitable
replacement for high-quality, real-world benchmarks with direct downstream applications.

Furthermore, the benchmarking landscape for MPNNs remains constrained by the lack of large-scale and realistic graph
datasets, particularly in domains like social networks, and commonly used datasets such as REDDIT (Hamilton et al., 2017)
and FLICKR (Zeng et al., 2019) are often cited as representative of real-world social networks. However, these datasets
fail to capture key characteristics of actual social networks, such as high-degree hubs and dense community structures,
as their average node degree is significantly lower. This discrepancy makes them poor representatives for large, realistic
graphs. Similarly, in social network-based datasets such as the Twitter retweet-induced subgraph dataset (Ribeiro et al.,
2017), it is unclear whether the features and adjacency relationships of the sampled subgraph align with those of the full
graph. Moreover, the structure of these subgraphs is constructed using a random walk-based crawler on the original graph.
This sampling process further reduces the average node degree, making the dataset less representative of large-scale graphs,
similar to REDDIT and FLICKR. We note here that the unavailability of real-world social network graph data is likely due to
factors outside our field’s control, e.g., privacy concerns and commercial relevance.

Another essential aspect of many real-world graphs is their inherently dynamic nature. That is, nodes, edges, and their
features change over time. This aspect is often neglected in many datasets, including social networks. Recent efforts
have introduced valuable benchmarking suites for learning on temporal graphs, e.g., the Temporal Graph Benchmark
(TGB) (Huang et al., 2023; Gastinger et al., 2024a). Interestingly, researchers have found that overlooked baselines and
simple heuristics can be particularly predictive on these temporal datasets and outperform more sophisticated temporal
GNNs (Gastinger et al., 2024a;b). This puts in question the relevance of some of the proposed benchmarks and the
significance of the progress made by the community.

B. Additional experimental details
Here, we provide additional experimental details and results.

B.1. Graphs not necessarily constructed in a meaningful way

For each model among GraphConv, GIN, and GAT, we tuned the learning rate in {10−3, 5 · 10−3}, number of layers in
{3, 5}, dropout in {0, 0.3}, hidden dimensions in {32, 64}, batch size in {16, 32}, early stopping with patience of 50 steps
on the validation loss, and sum-pooling. We used ReLU activation and CrossEntropy loss.

We trained with seed 0 for each dataset over all the hyper-parameter configurations and selected the best-performing
configuration on the validation set, according to the ROC-AUC scores. We then trained each model with its selected
configuration with seeds 1 and 2. Finally, we report the mean and standard deviation of the ROC-AUC scores over the test
set over these 3 seeds.

We consider the CGP propagation scheme from Wilson et al. (2024), where for each model, we utilize the Cayley graph
in each layer and do not consider the original graph at all. For the DeepSet evaluation, we used the same architecture of
GraphConv and fed it with empty graphs.
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Table 5. Best hyper-parameters in the format num. of layers, width, batch size, learning rate, dropout.

Model OGBG-MOLHIV OGBG-MOLBBBP OGBG-MOLBACE

GraphConv Orig. 3, 64, 32, 5e−4, 0 5, 32, 16, 1e−4, 0 5, 32, 32, 5e−4, 0
GraphConv Empty 3, 64, 32, 1e−4, 0 3, 64, 32, 5e−4, 0 3, 32, 16, 5e−4, 0.3
GraphConv Cayley 3, 64, 32, 5e−4, 0.3 3, 64, 32, 5e−4, 0 5, 64, 32, 5e−4, 0

GIN Orig. 5, 32, 32, 1e−4, 0 3, 64, 16, 1e−4, 0 3, 32, 32, 1e−4, 0.3
GIN Empty 3, 64, 32, 5e−4, 0.3 3, 32, 32, 5e−4, 0 3, 32, 32, 1e−4, 0.3
GIN Cayley 5, 32, 32, 1e−4, 0 5, 64, 64, 5e−4, 0 5, 64, 16, 1e−4, 0

GAT Orig. 5, 64, 32, 5e−4, 0 3, 64, 16, 5e−4, 0 5, 32, 32, 1e−4, 0.3
GAT Empty 3, 32, 32, 1e−4, 0 3, 32, 32, 5e−4, 0 5, 32, 32, 1e−4, 0.3
GAT Cayley 3, 64, 32, 1e−4, 0 3, 64, 32, 5e−4, 0 5, 64, 16, 1e−4, 0

B.2. Reassessing simple baselines on PCQM4MV2

We make minor changes to the layer configuration by using SiLU activation (Hendrycks & Gimpel, 2016) instead of ReLU
for improved gradient flow. We also replace the BatchNorm with LayerNorm and apply it after the skip connection, similar
to a standard transformer encoder layer. In each GINE layer, we use a 2-layer MLP as an update function with a hidden
dimension of 1024 (double the embedding dimension (512)). After the final GINE layer, we apply sum-pooling followed by
a 3-layer MLP, outputting a graph-level prediction.

We set the number of GINE layers to 20 and the latent embedding dimension to 512. We found larger models to be overfitting
in preliminary experiments, so we fixed this model configuration with approximately 20 million trainable parameters. This
is comparable to the model sizes used in the graph transformer literature and about five times larger than the GINE model
used to obtain the original results. Note that despite a model depth of 20 layers, we observed no performance degradation
due to over-smoothing, trivially mitigated by following basic deep learning practices such as skip-connections and deep
MLPs as update functions. It is known, of course, that these practices also prevent smoothing phenomena in transformers
(Dong et al., 2021), and the same holds for MPNNs.

We train with the L1-loss for one million gradient descent steps using a batch size of 512 with the Adam optimizer. The
learning rate warms up linearly for the first 104 steps and follows a cosine decay schedule for the remainder of training
towards a minimum rate of 10−6. No gradient clipping is used. We tune the remaining hyper-parameters through a grid
search. Specifically, we tune the learning rate in {2·10−4, 1·10−4, 5·10−5}, the dropout rate in {0, 1·10−1, 2·10−1} and
the weight decay in {0, 1 ·10−1}. Tuning is done with RWSE features, and we reuse the same configuration for GINE
without RWSE. Since the original validation split of PCQM4MV2 is used to compare models in the literature, we create a
separate holdout set by sampling 10K graphs uniformly at random from the training data and use this set for model selection
and hyperparameter tuning. Each training run uses a single Nvidia H100 GPU and lasts approximately 8 hours. In total,
hyperparameter tuning consumed less than 200 H100 hours of computing. The final hyper-parameters are provided in
Table 6. For the final results reported in Table 2, we average the performance over three runs with different random seeds
and also provide the corresponding standard deviation, which is relatively low.

Table 6. Hyper-parameters used for our evaluation of GINE on PCQM4Mv2.

Hyperparameter Value

learning rate 2·10−4

weight decay 0.1
batch size 512

training steps 106

warmup steps 104

number of layers 20
embedding dimension 512

dropout 0.1
RWSE dimension 20
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B.3. Multi-task pre-training with encoder-processor-decoder

Here, we outline details for our experiments with the encoder-processor-decoder setup.

B.3.1. MODEL ARCHITECTURES

We consider an encoder-processor-decoder setup and two different processors, an MPNN with GINE (Hu et al., 2020b)
layers and a graph transformer derived from Graphormer (Ying et al., 2021). As a common practice in the case of transformer
architectures on graphs, we also experiment with injecting node-wise structural encodings, particularly RWSEs (Dwivedi
et al., 2022a). In what follows, we detail the encoder-processor-decoder setup.

Encoder Using task-specific encoders, we embed node and edge features into a standard embedding dimension d ∈ N+

for both architectures. If no node or edge features are available, we use learnable vectors that we train jointly with the
architecture. Following standard practice in (graph) transformer encoders (Ying et al., 2021), we add a [cls] token from
which we read out graph-level representations.

Processor Subsequently, a processor network computes node- and graph-level representations from the embedded node,
edge features, and graph structure. Given a graph G, both the MPNN and graph transformer update node representations
X ∈ Rn×d at each layer as

X′ ← X+ ϕ(LayerNorm(X), G),

X′′ ← X′ +MLP(LayerNorm(X′)),

where MLP is a two-layer MLP with GELU non-linearity (Hendrycks & Gimpel, 2016) and ϕ(·, G) is either a graph
convolution or attention, conditioned on G. Graph convolution is implicitly conditioned via message-passing over the local
neighborhood.

In the case of attention, we add a graph-aware attention bias to the unnormalized attention matrix. Concretely, the graph
transformer layer computes full multi-head scaled-dot-product attention over node-level tokens with a soft-attention bias
computed from the edge features of the graph. The attention bias is a tensor B ∈ RL×L×h, where L ∈ N+ is the number of
tokens and h ∈ N+ is the number of attention heads. In particular, we compute a separate attention bias for each attention
head. For a graph with n nodes, we set L := n+ 1 (accounting for the [cls] tokens). For simplicity, we write i ∈ N+ to
indicate the ith node in an arbitrary but fixed node ordering. We refer to the [cls] tokens as node n+ 1. Further, only for
the graph transformer, we use a maximum context size of 8192 and remove additional nodes that exceed this size. We then
compute the attention bias B such that for all edges (i, j),

Bij := W · eij ,

where eij ∈ Rd is the edge feature of (i, j) and W ∈ Rd×h is a learnable weight matrix. Again, we omit bias terms for
clarity. If no edge exists between nodes i and j, we set Bij to all-zeros. For the [cls] token, we use learnable vectors
ein, eout ∈ Rd as the attention bias for in- and out-coming edges, respectively, i.e., we set

B(n+1)j := ein,

Bi(n+1) := eout.

Finally, we add B as a soft bias to the unnormalized attention matrix, that is, before applying softmax.

Decoder Lastly, we apply a decoder network that makes task-specific predictions. In our experiments, we used the same
MLP layout for all decoders. In particular, given a representation vector x ∈ Rd, we define our decoder MLP as

W2LayerNorm(GELU(W1x)),

where W1 ∈ Rd×d, W2 ∈ Rd×o are learnable weight matrices, with o ∈ N+ the task-specific output dimensions (e.g., the
number of classes in a classification task) and a GELU non-linearity (Hendrycks & Gimpel, 2016). We omit bias terms for
clarity.

B.3.2. MULTI-TASK PRE-TRAINING

Here, we outline details on the multi-task pre-training.
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Training loop and optimization parameters We perform multi-task pre-training by using data loaders for all tasks and
accumulating gradients from each task at each iteration of the training loop, effectively simulating a “heterogeneous batch”
of data from all available tasks. We train on bfloat16 with clipped gradients and a cosine learning rate scheduler.

Table 7. Datasets in the pretraining mix.

Dataset Domain Task Avg. # nodes Avg. # edges

COCO-SP Vision (Super Pixels) Semantic Segmentation 476.88 2 693.67
MALNETTINY Cybersecurity (Function Calls Graphs) Malware Detection 1 410.3 2 859.9
PCQM4MV2 Chemistry (Small 2D Molecules) HOMO-LUMO Gap Prediction 14.1 14.6

Pretraining mix As already mentioned in the main text, the pretraining mix is formed by the datasets described in Table 7,
which differ in domain, task, and structural properties.

• COCO-SP (Dwivedi et al., 2022b) is a dataset of sparse, medium-sized graphs encoding images at the super-pixel
level. Nodes, i.e., super-pixels, are attributed with pixel value statistics and center-of-mass coordinates. The task is to
predict, for each superpixel, a semantic segmentation label.

• PCQM4MV2 (Hu et al., 2021a) comprises many small molecular graphs for which the task is to predict the HOMO-
LUMO energy gap. Interestingly, only accessing 2D molecular information is practically relevant in this setting, as
calculating 3D structures requires expensive DFT-based geometry optimization.5

• MALNET-TINY(Freitas et al., 2021) includes a relatively small number of larger graphs encoding function calls, with
the task being to predict their association with malicious code execution. These graphs are entirely unattributed.

Hyperparameter tuning We sweep the learning rate over {4 · 10−5, 7 · 10−5, . . . , 1 · 10−3} for graph transformers and
{4 · 10−5, 7 · 10−5, . . . , 1 · 10−2} for GINE and train for 100K gradient steps. We pick the pre-trained checkpoint based on
the best overall validation loss, which we compute as the sum of all three task losses.

B.3.3. SINGLE-TASK FINE-TUNING

Here, we outline details on the single-task fine-tuning.

Architectural details Across all finetuning experiments, the prediction heads (i.e., the decoders) are initialized and
trained from scratch, while the (pre-trained) processors are kept frozen. If a downstream task shares the same node and/or
edge features with a pretraining dataset, we reuse the corresponding (pre-trained) encoders, which are also frozen during
finetuning. Otherwise, a new encoder is initialized and trained from scratch. Note that downstream datasets with featureless
nodes share identical (pre-trained) encoders; see, e.g., STARGAZERS below.

In all cases, we run a standard single-task finetuning on bfloat16 with clipped gradients and a cosine learning rate scheduler.

Table 8. Datasets considered for downstream applications.

Dataset Domain Task Avg. # nodes Avg. # edges

PASCALVOC-SP Vision (Super Pixels) Semantic Segmentation 479.40 2 710.5
PEPTIDES-STRUCT Chemistry (Peptides) 3D-Structure Property Prediction 150.9 307.3
STARGAZERS Github Communities Social Network Classification 113.79 234.64

Downstream (finetuning) datasets The datasets considered as downstream applications for our finetuning experiments
are enlisted and concisely described in Table 8. Again, they vary widely in domains, tasks, and structural features while
encompassing various levels of similarity to the datasets in the pretraining mix. In particular:

• PASCALVOC-SP (Dwivedi et al., 2022b) is aligned with COCO-SP in most aspects: domain, task and structure. Here,
we can reuse the pre-trained encoder of COCO-SP.

5See https://ogb.stanford.edu/docs/lsc/pcqm4mv2/.

20

https://ogb.stanford.edu/docs/lsc/pcqm4mv2/


Graph Learning Will Lose Relevance Due To Poor Benchmarks

2000 4000 6000 8000 10000
# Steps

0.05

0.10

0.15

0.20

0.25

0.30

Te
st

 F
1

PascalVOC-SP

2000 4000 6000 8000 10000
# Steps

0.26

0.28

0.30

0.32

0.34

0.36

Te
st

 M
AE

Peptides-struct

GT GT (from scratch) MPNN MPNN (from scratch)

2000 4000 6000 8000 10000
# Steps

0.50

0.55

0.60

0.65

0.70

Te
st

 R
OC

AU
C

Stargazers

Figure 2. Highlights from our fine-tuning results on three downstream datasets with varying numbers of fine-tuning steps and varying
degrees of similarity to the upstream mix.

• PEPTIDES-STRUCT (Dwivedi et al., 2022b) comprises molecular graphs and belongs to the same broad chemical
domain of PCQM4MV2, from which our downstream model reuses the feature encoder. However, these molecular
graphs are distinct (they represent chains of amino acids) and structurally different (they are larger and more elongated,
with higher diameter values). The task is also different in that it pertains to predicting 3D structural features rather than
quantum properties.

• STARGAZERS (Rozemberczki et al., 2020; Morris et al., 2020) comprises social networks formed by GitHub developers
who have starred at least 10 repositories, connected by ‘following’ relations. The task is to classify these social
networks as belonging to either Web or Machine Learning developers. This dataset is entirely different in task and
domain from any datasets considered in the pretraining mix. No node or edge features are available, so our model
reuses the same node encoder pre-trained on the featureless MalNetTiny.

Training setup In this setting, we are interested in measuring the sample efficiency of our models, aiming to study if and
when pre-training is beneficial. Accordingly, we train for 1K, 3K, and 10K steps, setting the batch size to correspond to
roughly 2, 10, and 30 epochs. The same setting is employed for reference single-task baselines, trained from scratch on the
same amount of data.

Hyperparameter tuning The learning rate is the only tuned hyper-parameter; we sweep over 3 orders of magnitude in
{1 · 10−5, 4 · 10−5, 7 · 10−5, . . . , 1 · 10−2} for each fine-tuning regime. The single-task baselines are always sized in a way
to total the same number of parameters of their multi-task pre-trained counterparts.

Additional results In addition to Figure 2, we provide additional fine-tuning results in Figure 3, where we compare the
GNN with additional RWSE, as well as the graph transformer without additional structural encodings.

B.4. Variance of results reported on ENZYMES

In Section 4, we discussed problematic practices prevalent in experimental evaluations of GNNs. A common problem is
using small, high-variance datasets without an established evaluation protocol. For some datasets, the numbers reported
throughout the literature vary substantially, resulting in an inconsistent and confusing representation of model performance.
Here, we illustrate this problem for the commonly used ENZYMES dataset (Morris et al., 2020) as an example of how
extreme reported performance measurements vary.

In Figure 4, we plot the reported test accuracy of different graph learning publications on the ENZYMES dataset against
the year of publication. We include results from various lines of work, such as graph kernels (Shervashidze et al., 2011),
GNN benchmarking (Dwivedi et al., 2020), graph pooling (Ying et al., 2018; Feng & Weber, 2024), and graph rewiring
(Karhadkar et al., 2023; Barbero et al., 2024). The results reveal an interesting trend. Older kernel-based methods, such
as the WL kernel, achieved a baseline accuracy of around 52%. Initial evaluations of MPNN models outperformed this
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Figure 3. Additional downstream results for MPNN+RWSE and graph transformers without additional structural encodings. Note that the
GT is still graph-aware due to the soft attention bias.

baseline, often achieving over 60%, even with simple GCN-based models. However, newer publications from 2023 and
2024 often fall short of these results by a significant margin, sometimes reporting less than 30% classification accuracy, even
when evaluating similar GCN-based architectures. In other words, the results reported for the same base architecture can
vary by a factor of two across publications.

There are several causes for this extreme variance. First of all, there is no consistent evaluation setup. While older
publications typically used stratified 10-fold cross-validation as an evaluation protocol, newer results are often based on
repeated random 80/10/10 splits, which are prone to be noisier. This difference explains the performance variance to some
degree but does not account for the sharp drop in the reported accuracy of more recent publications. Instead, many recent
works seem to run experiments with suboptimal hyperparameter choices, resulting in a significant loss in performance for
the compared models. For example, Barbero et al. (2024) configure the training to only last 100 epochs, which is too short
to allow for model convergence on a dataset as small as ENZYMES.

While each publication is internally consistent in that it applies the same experimental setup to the methods it compares, one
can argue that this is insufficient when measurements vary drastically over time. The lack of standardization risks conflating
methodological improvements with artifacts of experimental design. Ensuring cross-study consistency—through adherence
to shared protocols and rigorous benchmarking on more suitable datasets—is critical to fostering trust in reported results
and enabling clear advancements in graph learning research.
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Figure 4. Test accuracy reported on the ENZYMES dataset over the past twelve years in various publications: Shervashidze et al. (2011);
Ying et al. (2018); Dwivedi et al. (2020); Karhadkar et al. (2023); Barbero et al. (2024); Feng & Weber (2024)
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