
Maximum Coverage in Turnstile Streams
with Applications to Fingerprinting Measures

Alina Ene 1 Alessandro Epasto 2 Vahab Mirrokni 2 Hoai-An Nguyen 3 Huy L. Nguyen 4 David P. Woodruff 2 3

Peilin Zhong 2

Abstract
In the maximum coverage problem we are given
d subsets from a universe [n], and the goal is to
output k subsets such that their union covers the
largest possible number of distinct items. We
present the first algorithm for maximum cover-
age in the turnstile streaming model, where up-
dates which insert or delete an item from a subset
come one-by-one. Notably our algorithm only
uses poly log n update time. We also present turn-
stile streaming algorithms for targeted and general
fingerprinting for risk management where the goal
is to determine which features pose the greatest
re-identification risk in a dataset. As part of our
work, we give a result of independent interest: an
algorithm to estimate the complement of the pth

frequency moment of a vector for p ≥ 2. Empiri-
cal evaluation confirms the practicality of our fin-
gerprinting algorithms demonstrating a speedup
of up to 210x over prior work.

1. Introduction
Maximum coverage is a classic NP-hard problem with ap-
plications including information retrieval (Anagnostopoulos
et al., 2015), influence maximization (Kempe et al., 2015),
and sensor placement (Krause & Guestrin, 2007). Given d
subsets of a universe containing n items and a cardinality
constraint k ≥ 0, the goal is to output the k subsets whose
union covers the largest possible number of distinct items.
A simple greedy algorithm using O(knd) time and O(nd)
space achieves a tight 1 − 1/e relative approximation (as-
suming P ̸= NP) by iterating for k rounds and selecting the
subset that maximizes the marginal gain at each step (Feige,

1Boston University 2Google Research 3Carnegie Mellon Uni-
versity 4Northeastern University. Correspondence to: Hoai-
An Nguyen <hnnguyen@andrew.cmu.edu>, David P. Woodruff
<dwoodruf@cs.cmu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1998). However, its polynomial time and space complexity
make it impractical for large-scale datasets. Our goal there-
fore is to develop more efficient algorithms for maximum
coverage.

To this end, we present the first one-pass turnstile streaming
algorithm for maximum coverage. In the turnstile stream-
ing model, updates come one-by-one in a stream. Each
update inserts or deletes an item from a subset. The goal is
to process each update efficiently while only maintaining
sublinear space and then output the answer at the end of the
stream. Our algorithm uses sublinear space and notably only
poly log n update time to output a near-tight (1− 1/e− ε)
approximation to the answer. Our algorithm is one-pass,
meaning it takes only one pass over the stream of updates.

Our algorithm offers efficient time complexity even with
direct access to the full input. The input can be provided
as a sequence of updates, and the total runtime is near-
linear in the number of items across the input subsets. In
addition, allowing arbitrary deletions of items from subsets
is critical for numerous applications, including the following
extension to fingerprinting for dataset risk management.

We also develop turnstile streaming algorithms for targeted
and general fingerprinting. The input consists of n users and
d features, where each user has a value assigned for each
feature. In targeted fingerprinting, the goal is to select k fea-
tures that minimize the number of users who share identical
values with a given target user u ∈ [n] at these features. In
general fingerprinting, the goal is to select k features that
minimize the number of user pairs with matching values
across those features. Here an update in the stream changes
the value of a user at a feature.

Our fingerprinting algorithms fit into the broader privacy
attack literature (Seonghun et al., 2023; Chia et al., 2019;
Zhou et al., 2023) and is an extension of Chia et al. (2019)
in privacy auditing and risk measurement. Fingerprinting,
which identifies users based on unique attribute combina-
tions in a dataset, poses a significant privacy risk. Our
algorithms mitigate this risk by identifying the k features
most likely to allow adversaries to successfully fingerprint
users. Previous work, except for Gulyás et al. (2016) (whose

1

Maximum Coverage in Turnstile Streams

algorithms we improve), has only measured the risk of en-
tire datasets or fixed sets of features. In contrast, our time
and space efficient algorithms are suited for real-time moni-
toring of the re-identification risks even as a dataset evolves.
Additionally, targeted fingerprinting is a form of frequency
estimation with potential applications in discovering heavy
hitters (Bhattacharyya et al., 2016; Zhu et al., 2020).

Our algorithms are all linear sketches, powerful structures
that compress the input matrix while time efficiently han-
dling insertions and deletions. Unlike algorithms designed
for specific models, linear sketches are applicable across a
wide range of settings. Besides directly implying turnstile
streaming algorithms, they are well-suited for distributed
contexts. One popular application for linear sketches is in
the coordinator model where there are k distributed ma-
chines and one coordinator. The input is split into pieces,
and each machine gets a piece. They can only communicate
with the coordinator (and want to minimize communication),
and the goal is to get a joint solution. Another application
is in parallel computation where there are k distributed ma-
chines who can communicate to compute a joint solution.
The goal is to again minimize the amount of communication.

1.1. Related Work

There is an extensive body of work on the maximum cover-
age problem, and we only attempt to give an overview of the
most relevant works. In the following, an x-relative approx-
imation means that the number of distinct items covered by
the k subsets outputted by the algorithm is at least x ·OPT,
where OPT is the number of distinct items covered by the
optimal solution. Õ(·) notation is used to suppress poly-
logarithmic factors in its argument.

McGregor & Vu (2019) provide a one-pass streaming algo-
rithm1 that outputs a (1− 1/e− ε)- relative approximation
for ε ∈ (0, 1) in Õ(d/ε2) space. They consider the insertion-
only set-arrival streaming model where each update reveals
a subset and all the items it covers, and deletions are not sup-
ported. Bateni et al. (2017) give a one-pass (1−1/e−ε) rel-
ative approximation algorithm that uses Õ(d/ε3) memory.
They consider the insertion-only streaming model where
deletions are not supported. They specifically provide an
algorithm that carefully samples a number of item-subset
relationships and then show that any (α)-relative approx-
imation on this smaller subsampled universe achieves a
(α − ε)-relative approximation for the original input. We
use their sketch as a starting point.

There has also been work that achieves different approx-
imation factors (Saha & Getoor, 2009; McGregor et al.,
2021), in random-arrival streams (Warneke et al., 2023;
Chakrabarti et al., 2024), with multiple passes (Chakrabarti

1See Appendix A.3 about the streaming model.

et al., 2024), and in more general submodular maximization
in the insertion-only set-arrival streaming model (Badani-
diyuru et al., 2014; Kazemi et al., 2019). In contrast to all of
the above, our algorithm allows arbitrary insertions or dele-
tions of items from subsets. Note that there are more lines
of work in the model where each update is the insertion or
deletion of an entire subset (rather than items from subsets
which we consider) than listed above.

There has also been work on maximum coverage and sub-
modular maximization in the dynamic model (Monem-
izadeh, 2020; Chen & Peng, 2022; Lattanzi et al., 2020). We
note that these dynamic model algorithms do not achieve
sublinear space and in some cases require exponential space.
Moreover, they either have a worse update time than our
algorithm or do not attain the same approximation quality.

1.2. Our Contributions

Maximum Coverage Results. We formalize the input as
an n × d matrix A where entry Aij is nonzero if item i
is in subset j and 0 otherwise. An update takes the form
(i, j,±c), modifying Aij by adding or subtracting c.

Theorem 1.1. Given n×d matrix A, integer k ≥ 0, and ε ∈
(0, 1), there exists a one-pass turnstile streaming algorithm
using Õ(d/ε3) space and Õ(1) update time that outputs a
(1− 1/e− ε) relative approximation to maximum coverage
with probability at least 1− 1/d.

Note that the only dependence on k in our space complexity
is a poly log k factor which is suppressed by the Õ. Our
space complexity matches that of Bateni et al. (2017) and,
for constant ε, that of McGregor & Vu (2019). Additionally,
several lower bounds exist. Assadi (2017) show that achiev-
ing a (1− ε)-relative approximation in a constant number
of passes requires Ω(d/ε2) space. Assadi & Khanna (2018)
show that even achieving a n1/3 or

√
k relative approxima-

tion in one pass with a sketch requires the sketch to have
size Ω(d/k2). McGregor & Vu (2019) shows that achieving
better than a (1−1/e)- approximation in a constant number
of passes requires Ω(d/k2) space. Bateni et al. (2017) also
show that any (1/2 + ε)-relative approximation multi-pass
streaming algorithm requires Ω(d) space.

Fingerprinting Results. In fingerprinting, the input is a n×
d matrix A where Aij is the value of user i at feature j. An
update takes the form (i, j,±c), modifying Aij by adding
or subtracting c. We first reduce targeted fingerprinting to
maximum coverage to improve upon the O(nd) space and
O(knd) time algorithm of Gulyás et al. (2016). We note
that Gulyás et al. (2016) achieve a 1− 1/e approximation.

Corollary 1.2. Given a n×d matrix A, target user u ∈ [n],
and ε ∈ (0, 1), there exists a one-pass turnstile streaming
algorithm using Õ(d/ε3) space and Õ(1) update time that
outputs a (1− 1/e− ε) relative approximation to targeted

2

Maximum Coverage in Turnstile Streams

fingerprinting with probability at least 1− 1/d.

We also improve upon the O(nd) space and O(knd) time
algorithm of Gulyás et al. (2016) (which achieves a 1− 1/e
approximation) for general fingerprinting. While general
fingerprinting can be easily reduced to maximum coverage,
it requires tracking all

(
n
2

)
user pairs to determine whether

they differ in value on a certain feature. Upon an update,
potentially O(n2) user pairs could be affected, making it
impractical to use a linear sketch under sublinear space
constraints. As a result, we instead design our general
fingerprinting algorithm by first designing the following
framework for submodular maximization under cardinality
constraints over certain functions. The proof of the follow-
ing is deferred to Appendix C.

Theorem 1.3. Take N to be a set of n items. Let f : 2N →
R≥0 be a monotone, non-negative submodular function.
Given input subsets S1, . . . , Sd ∈ N , we aim to maximize f
by selecting k subsets. Also take f to be linearly sketchable2

with a (1± γ)-relative approximation in O(s) space. For
ε ∈ (0, 1), if we set γ = ε/k, then there exists a one-pass
turnstile streaming algorithm which outputs a (1−1/e−ε)-
relative approximation using O(sk) space. The algorithm
succeeds with probability at least 1−1/ poly(d) if querying
the linear sketch of f results in error at most O(1

poly(d)k).

We then instantiate this framework to solve general finger-
printing. To do this, we design a novel linear sketch3 for
estimating np − Fp for p ≥ 2 on a n dimensional vector x
where Fp is the pth frequency moment. If we takeZ to be the
set of distinct values in x and fi to be the frequency of the ith

distinct value in x, then Fp =
∑

i∈Z fp
i . For example, for

x = (1, 5, 5, 3,−2, 3, 3, 3) we have Fp = 1p+2p+4p+1p.
Here, updates are of the form (i,±c) which performs
xi ← xi ± c.

Theorem 1.4. Given a n-dimensional vector x, constant
p ≥ 2, and γ, δ ∈ (0, 1), there exists a linear sketch of size
Õ(γ− 2

p−1) that supports updates in Õ(γ− 2
p−1) time and

outputs a (1 ± γ
1

p−1) relative approximation to np − Fp

with probability at least 1− δ.

np − Fp is the complement of the frequency moment of
a dataset (with the error dependent on the complement),
and we believe it to be of independent interest. Frequency
moments have numerous applications. For example, Fp for
p ≥ 2 can indicate the degree of the skew of data which
is used in the selection of algorithms for data partitioning
(DeWitt et al., 1992), error estimation (Ioannidis & Poosala,
1995), and more. See Alon et al. (1999) for a more in-
depth discussion. There are also direct applications for the
quantity np −Fp such as our use of the sketch to instantiate

2For the definition of linearly sketchable see Appendix A.3.1.
3See Section 2 for more about linear sketches.

Theorem 1.3 solve general fingerprinting. The proof of the
following is deferred to Appendix E.

Theorem 1.5. Given a n × d matrix A and ε ∈ (0, 1),
there exists a one-pass turnstile streaming algorithm using
Õ(dk3/ε2) space and Õ(k3/ε2) update time that outputs a
(1−1/e−ε) relative approximation to general fingerprinting
with probability at least 1− 1/d.

Experimental Results. We illustrate the practicality of our
fingerprinting algorithms by running experiments on two
different datasets. In a direct comparison with the imple-
mentations of Gulyás et al. (2016), our algorithms show
significantly improved efficiency while retaining high com-
parative accuracy. Specifically we achieve a speedup of up
to 49x and 210x while achieving high comparative accuracy
for targeted and generalized fingerprinting, respectively.

We also show that our general fingerprinting algorithm can
serve as a dimensionality reduction technique and apply
it in the context of feature selection for machine learning
models. Since the time complexity of many clustering algo-
rithms including k-means scales with the dimensionality of
a dataset, we used our algorithm to select x features that best
separate the data. Then we ran k-means on these x features
instead of the full feature space, showing that we increase
efficiency while sacrificing little in accuracy. We believe our
techniques to be general and extendable to other clustering
and machine learning algorithms outside of k-means.

2. Preliminaries
Notation. Some preliminaries are postponed to Appendix A.
We denote Aij as the entry at the ith row and jth column of
matrix A. Õ(·) notation suppresses logarithmic factors in
its argument. In general we boldface vectors and matrices.

Linear Sketches. We begin by defining what a linear
sketch is and then provide an overview of the specific linear
sketches used in this paper. A more thorough overview is
deferred to Appendix A.1. Given a n× d matrix A, we can
compress it while retaining essential information to solve
the problem by multiplying it with a r × n linear sketching
matrix S. Linear sketches support insertions and deletions
to the entries of A as S(A+cij) = SA+Scij holds for any
update cij . This allows us to maintain SA throughout the
updates without storing A itself. Furthermore, S is typically
stored in an implicit, pseudorandom form (e.g., via hash
functions) rather than explicitly, enabling efficient sketching
of updates cij . The update time is the time complexity
required for the sketch to process an update.

CountSketch. Next we review the Count-Sketch algorithm
for frequency estimation (Charikar et al., 2004). Consider
an underlying n-dimensional vector x. The algorithm main-
tains a q ×B matrix C where B is the number of buckets

3

Maximum Coverage in Turnstile Streams

or the sketching dimension. It keeps q distinct hash func-
tions hi : [n] → [B] and q sign functions gi : [n] →
{−1, 1}. The algorithm maintains C such that C[ℓ, b] =∑

j:hℓ(j)=b gℓ(j) · xj . The frequency estimation x̂i of xi is
defined to be the median of {gℓ(i) · C[ℓ, hℓ(i)]}ℓ≤q. For-
mally, when q = O(log n), we have with probability at least
1− 1/poly(n), |x̂i − xi| ≤ O

(
∥x−B/4∥2√

B

)
simultaneously

for all i ∈ [n]. Here x−B/4 denotes vector x with its top
B/4 entries (by magnitude) zeroed out. If x has only B/4
nonzero entries, with a Countsketch using space Õ(B) we
can recover all B/4 entries/frequencies exactly. The update
time is O(log n).

L0 Sketch. Consider an underlying vector x =
(x1, . . . , xn) where all entries are initially set to 0. We
receive m updates of the form (i, v) ∈ [n]× {−M, ...,M}
in a stream where the update performs xi ← xi + v. At the
end of the stream, the goal is to output a (1 ± ε) relative
approximation of L0 with probability at least 1− δ where
L0 = |{i : xi ̸= 0}|. Kane et al. (2010) give a L0 sketch
with O(1) update time that uses O(ε−2 log n(log(1/ε) +
log log(mM)) · log(1/δ)) memory.

Moment Estimation. Consider an underlying vector x =
(x1, . . . , xn). For all i ∈ [n], xi ∈ [m]. Let fi = |{j :
xj = i}| be the number of occurrences of value i in x. We

define the pth frequency moment of x as Fp
def
=
∑m

i=1 f
p
i for

p ≥ 0.

3. Max-Coverage Algorithm
We now present our sketch, Max-Coverage-LS (Algo-
rithm 5), to prove Theorem 1.1. The proofs are deferred to
Appendix B. Recall that the input is formalized as a n× d
matrix A, where entry Aij is nonzero if i is in subset j, and
0 otherwise. Our approach uses Algorithm 1 from Bateni
et al. (2017) as a starting point. Bateni et al. (2017) reduces
the original input matrix A to a smaller universe A∗ by
carefully sampling a subset of its nonzero entries. They then
show that running the classical greedy algorithm on this
smaller universe yields a (1− 1/e− ε)-relative approxima-
tion for the maximum coverage problem on A.

The plan for this section is as follows. We will first introduce
the smaller universe A∗, describing its properties and role
in the problem. Next we will show how we construct A∗
under the assumption that the entire input matrix A in its
final state is fully accessible. The construction is done in
a careful way so that it will be easy to turn it into a linear
sketch. Finally, we will remove the assumption that A is
fully accessible giving us our final algorithm which will
efficiently handle updates.

In the following, note that rows of A and items of A refer
to the same thing. Constructing A∗ involves permuting the

rows of A and processing them in the order determined by
the permutation. For each row i in A, a subset of Õ(d/(εk))
nonzero entries is arbitrarily selected and added to A∗. This
process continues until A∗ contains Õ(d/ε3) nonzero en-
tries in total. So, A∗ is a carefully subsampled version
of A, where only Õ(d/ε3) of the nonzero entries are re-
tained while the rest are set to 0. We restate their algorithm
A∗(k, ε, δ) (Algorithm 3) in Appendix B. In Bateni et al.
(2017) this subsampled matrix is referred to as H≤d.

Bateni et al. (2017) proves that solving the maximum cover-
age problem on A∗ with a α-relative approximation guaran-
tees a (α− ε)-relative approximation on the original matrix
A with high probability. The final (1− 1/e− ε)-relative ap-
proximation is achieved using k-cover (Algorithm 4), which
sets appropriate parameters and applies the greedy algorithm
(or any (1− 1/e) approximation algorithm) to A∗.
Theorem 3.1 (Theorem 2.7 and 3.1 of Bateni et al. (2017)).
Running k-cover with A∗ produces a (1 − 1/e − ε) ap-
proximate solution to maximum coverage with probability
1− 1/d.

We now present building-A∗ (Algorithm 1) where we as-
sume we are given complete access to A in its final state
along with linear space. Afterwards, we will show how to
turn this into a linear sketch which will allow us to efficiently
handle updates in sublinear space.

We now prove that building-A∗ correctly builds A∗ with
high probability. Recall that we want Õ(d/(εk)) nonzero
entries per row until we reach Õ(d/ε3) of them. At a high
level, our proof goes as follows. In line 3 we subsample
down to a smaller universe A′ which only causes us to
lose an ε factor in our approximation. Now in this smaller
universe, in line 7 we hash the rows of A′ to a bunch of
buckets. In lines 8−11, from each bucket, we keep a capped
number of nonzero entries and store them. Then starting at
line 13, we use all our stored nonzero entries to create A∗.
We will show that the rows of A′ are sufficiently spread out
among the buckets so that for each row in A′ which has
nonzero entries, we keep Õ(d/(εk)) of its nonzero entries.
We now present our formal proof.
Lemma 3.2. Obtaining an (1 − 1/e) approximate solu-
tion to maximum coverage on A′ is an (1 − 1/e − ε/4)
approximation solution on A with probability at least
1− 1/ poly(d).

We denote rows of A′ that have at least d/k nonzero entries
as “large” and the others as “small”. We argue that the
number of large items and the total number of nonzero
entries among small items is bounded appropriately.
Lemma 3.3. There are at most O(k log d/ε2) large items
in A′.

Lemma 3.4. There are O(d log d
ε2) total nonzero entries

among small items in A′.

4

Maximum Coverage in Turnstile Streams

Algorithm 1 building-A∗ (n× d matrix A, ε ∈ (0, 1), k)

1: Set δ = (2 + log d) log log1−ε n.
2: Set ε = ε/8.
3: Subsample rows from A to get A′ such that OPT in A′ is O(k log d/ε2). For clarity, row j in A′ and A both

correspond to the row vector that corresponds to item j.
4: Set b = O(k log d

ε2).
5: Set t = O(log d

ε).
6: for i = 1, . . . , t do
7: Use a hash function to hash each row of A′ to b buckets in structure Ci.
8: for each bucket in Ci do
9: If there are r rows hashed to the bucket, denote the r rows concatenated into a vector of length rd as v.

10: Randomly sample O(d log(1/ε)
εk) nonzero entries from v and store it in A′

i.
11: end for
12: end for
13: Initialize A∗(k, ε) as a n× d matrix with all entries initially set to 0.
14: Let P be a random permutation of the rows that are in A′.
15: while the number of nonzero entries in A∗(k, ε) is less than 24dδ′ log(1/ε) log d

(1−ε)ε3 do
16: Process the row j that comes next in P .
17: Determine among all i ∈ [t] which A′

i has the most nonzero entries from row j. Take this i to be z.
18: if row j has less than d log(1/ε)

εk nonzero entries in A′
z then

19: Add all of the nonzero entries from row j in A′
z to A∗(k, ε).

20: else
21: Add d log(1/ε)

εk of the nonzero entries from row j in A′
z , chosen arbitrarily, to A∗(k, ε).

22: end if
23: end while

We want to show that for each large item, we recover
d log(1/ε)/(εk) of their nonzero entries from A′. In ad-
dition, we want to show that for each small item, we recover
all their nonzero entries from A′. We refer to any item
corresponding to a row in A′ that contains nonzero entries
as a “nonzero” item.

We begin by proving that each nonzero item is hashed to a
bucket with no other large item and not too many nonzeros
from small items with high probability.
Lemma 3.5. Every nonzero item for some i ∈ [t] is hashed
to a bucket containing

1. no other large item

2. at most O(d log(1/ε)
εk) nonzero entries from small items

with probability 1− 1/ poly(d).

So by Lemma 3.5, we recover all nonzero entries from
small items and d log(1/ε)/(εk) nonzero entries from each
large item present in A′ with probability 1 − 1/poly(d).
Therefore by combining this with Lemma 3.2, we conclude
the proof of correctness for building-A∗.

Our final step is to remove the assumption that we have di-
rect access to A. We now show how to implement building-
A∗ via a linear sketch, Max-Coverage-LS (Algorithm 5).

Again recall that we must build A∗ while receiving updates
to the entries of underlying matrix A. We first describe our
algorithm and give a high level proof review. Then we will
present our formal proof. We defer the pseudocode due to
length to Appendix B.

In line 3 of Max-Coverage-LS (Algorithm 5), we first keep a
L0 sketch for each column of A. This will be useful for the
final answer our overall algorithm will output for maximum
coverage. Then in line 6, we use a hash function to subsam-
ple rows from A to form A′

m for m ∈ [log n]. Recall that
we want to subsample down from A to a smaller universe
A′ such that OPT in A′ is O(k log d/ε2). However, we do
not know what this sampling rate is since it depends on the
contents of A. Therefore, we subsample at log n different
levels and form log n different A∗. We will later show how
to pick which A∗ we will use.

Now for each subsampling rate m, we consider the subsam-
pled matrix A′

m. Note that we do not store A′
m explicitly

since this would not fit in our space allotment. Instead, in
this parallel run we only consider updates that affect A′

m.

In line 11, we hash the rows of A′
m to b buckets. Note that

we are doing this for t iterations to amplify the probability of
success. Then for each bucket we consider the rows hashed
there as one long vector v. Again we do not explicitly store
this vector - rather the structures in this bucket only consider

5

Maximum Coverage in Turnstile Streams

updates relevant to this vector.

Recall that in each bucket our goal is to recover x =
O(d log(1/ε)/(εk)) nonzero entries from vector v. So, in
each bucket in lines 13− 19, we subsample the vector v in
log(rd) levels. Then in each level q, we keep an L0 sketch
and CountSketch structure with x buckets for vq . As stated
in Section 2, when keeping a CountSketch structure with 4x
buckets of a vector that contains at most x nonzero entries,
the CountSketch will recover those entries exactly. So we
want to identify the sampling level q′ where vq has at most x
entries and query the corresponding CountSketch to recover
the appropriate number of nonzero entries from v. Upon a
query, we are identifying the appropriate q′ in line 29. Since
an L0 sketch returns how many nonzero entries there are in
vq for some q, we are simply using the L0 sketches to find
q′. The rest of the algorithm builds Am,∗ for m ∈ [log n]
with our recovered nonzero entries.

We note that in line 25 we state that the L0 sketches and
CountSketch structures will handle updates. Recall that L0

sketches and CountSketch structures are both linear sketches.
So, they are able to handle insertions and deletions to the
vector they are considering. So when an update comes,
these linear sketches will update thereby updating our entire
linear sketch.

Once we have an L0 sketch for each column of A and all the
Am,∗ for m ∈ [log n], we perform the following process,
max-coverage (Algorithm 2) to get the final answer.

Algorithm 2 max-coverage

Require: k and ε ∈ [0, 1].
Ensure: A 1− 1/e− ε approximate solution to maximum

coverage with probability 1− 1/d.
1: Set ε′ = ε/48.
2: For m ∈ [log n], construct Am,∗(k, ε

′) using Max-
Coverage-LS (Algorithm 5). Also store the L0 sketches
of the columns of A outputted by Algorithm 5.

3: Run the greedy algorithm (or any 1−1/e approximation
algorithm) on each Am,∗(k, ε

′).
4: Use the L0 sketches to determine for which Am,∗ the

greedy algorithm gave the best answer and output it.

max-coverage (Algorithm 2) is almost the same as k-cover
(Algorithm 4). The difference is we run the classical greedy
algorithm on each Am,∗ for m ∈ [log n]. Now we need to
figure out which m corresponded to the subsampling rate
such that OPT in Am,∗ is O(k log d/ε2). Instead of doing
this, we just use the answer from the Am,∗ that will give us
the best answer.

Let us say for some m that running the greedy algorithm on
Am,∗ outputs subsets s1, . . . , sk. We use the L0 sketches
corresponding to s1, . . . , sk to estimate how many distinct

items are covered by those subsets. This allows us to form
our final output. Now we present our formal proof.

Lemma 3.6. Max-Coverage-LS (Algorithm 5) and max-
coverage (Algorithm 2) correctly implement building-A∗
(Algorithm 1) and k-cover (Algorithm 4) with probability at
least 1− 1/ poly(d).

Lemma 3.7. Maximum-Coverage-LS uses Õ(d/ε3) bits of
memory.

Lemma 3.8. The update time of Maximum-Coverage-LS is
Õ(1).

Note that we incur only a ε factor loss in total, resulting in a
final 1− 1/e− ε approximation. Specifically, we lose a ε/4
factor going from A to A′, another ε/4 factor from running
the greedy algorithm on A∗, and a ε/4 factor from using
the L0 sketches to determine which set of outputs to return.
With Lemma 3.6, Lemma 3.7, and Lemma 3.8, we can now
conclude the proof of Theorem 1.1.

3.1. Targeted Fingerprinting

We now present our proof for Corollary 1.2 via a reduction
to maximum coverage. Recall that the input to targeted
fingerprinting is n × d matrix A and target user u ∈ [n].
The proof details are deferred to Appendix B.1.

Lemma 3.9. Take A′ to be A with the updates Aij =
Aij −Auj applied for all i ∈ [n], j ∈ [d]. For any union of
subsets U , the number of items covered on A′ is equivalent
to the number of users separated from the target on A.

Algorithmically, we simply run Maximum-Coverage-LS
and alongside store the row that corresponds to target user u
in O(d) space. After the completion of the updates, we can
simulate forming A′ from A by sending updates to the max-
imum coverage sketch for A. Therefore, the approximation
factor, space, and update time all follow from Theorem 1.1
giving us Corollary 1.2.

4. np − Fp for p ≥ 2

We prove Theorem 1.4 with p-Tuples-Sketch (Algorithm 7).
Since we know n and p, our main goal is to estimate Fp.
However, existing work which estimates Fp has the error
guarantee on Fp. In our problem, we want the error guaran-
tee on the complement of Fp (which is np − Fp). We give a
high level algorithm and proof overview. The pseudocode
and formal proof are deferred to Appendix D.

The structures we keep are L0 sketches and a number of
perfect ℓ0 samplers. Recall that an L0 sketch of vector x
returns the number of nonzero entries of x (with relative
(1±γ) error) and an ℓ0 sampler of x returns a nonzero entry
exactly uniformly at random. Then, upon an update, since
L0 sketches and perfect ℓ0 samplers are linear sketches, they

6

Maximum Coverage in Turnstile Streams

can handle arbitrary insertions/deletions to the underlying
vector x.

Upon a query, the algorithm does the following to output its
final approximation to np − Fp. First it figures out which
value has the highest frequency and estimates this frequency
using a L0 sketch and the ℓ0 samplers. Querying the L0

sketch and subtracting the result from n gives us the number
of 0’s. The frequencies of the rest of the values can be
estimated by looking at their relative frequency among the
ℓ0 samplers (which can be viewed as a uniform sample of
the entries of x) and scaling it.

Let us call the highest frequency value b and its correspond-
ing frequency fb. If fb > n/2, then we will estimate the
final approximation fb differently than the rest of the values.
Specifically, we subtract off value b from a L0 sketch and
then query the result. This gives us the number of entries
in x that were not equal to value b. Then we set f ′

b to be n
minus that result. This is important because it gives us an
estimate to fb with γ · (n− fb) error instead of γ · fb error.

Now for the rest of the frequencies, we will again use the ℓ0
samplers. We simulate updates that subtract off value b from
the underlying vector that the ℓ0 samplers consider. This
means that the ℓ0 samplers are taking uniform samples of x
with b subtracted off all the entries. So when estimating the
frequencies of the values besides b using the ℓ0 samplers
after these updates, we have their frequencies with error at
most γ · (n − fb) instead of additive error γn. For values
with very small frequency, we ignore them and show that
this does not result in too much error.

5. Experiments
We outline our fingerprinting results and compare the run-
time/accuracy to Gulyás et al. (2016) 4. We then present
our results on dimensionality reduction. All experiments
were run locally on a M2 MacBook Air. The code can be
found here. We use two publicly-available datasets, the UC
Irvine “Adult” and “US Census Data (1990)” (Becker &
Kohavi, 1996; Meek et al.). For consistency, we apply the
pre-processing from Gulyás et al. (2016) to both datasets.
“Adult” has 32, 561 instances (representing users) and 80
features while “US Census Data (1990)” has 2, 458, 285
instances and 195 features. We note that for fingerprinting
we do not simulate updates since the algorithms of Gulyás
et al. (2016) are not streaming algorithms and therefore un-
able to accommodate updates. We also note that we expect
the baseline to always achieve better error. This is because
we theoretically lose a small ε factor in our approximation.

4(Gulyás et al., 2016) has two implementations, one of which
is supposed to be optimized for time. However, we found that the
non-optimized implementation was faster and therefore use it for
comparison.

However, our experiments show that our algorithms still
retain good comparative accuracy and greatly increase the
time efficiency.

Targeted Fingerprinting Results. We made standard mod-
ifications that are done in the practical implementation of
streaming algorithms. In particular, we use a constant sub-
sampling rate p ∈ [0.1, 0.6] instead of subsampling at log n
rates, and we sample nonzero entries once we are in the
smaller subsampled universe with a fixed probability as this
is sufficient for smaller datasets. All presented data are
averages over 10 runs.

We present our results for “Adult” with the probability of
subsampling rows from A to create A′ to be p ∈ [0.1, 0.6].
One run finds the targeted fingerprint of all users in the
dataset for some given k. For k = 7, from Figure 1 we can

Figure 1. “Adult”: subsampling probability vs. time

see that our algorithm runs about 25x, 8.4x, 3x, and 2.3x
faster than that of Gulyás et al. (2016) with subsampling
probabilities 0.1, 0.2, 0.4, and 0.6 respectively. In settings
where n is very large the subsampling probability in our
algorithm will be much smaller, and we only use larger
subsampling probabilities for further insight. Note that the
implementation of Gulyás et al. (2016) is deterministic. We
put their runtime as a line for visualization. Now we look at
accuracy. For increasing k, we compute the average percent
of users our algorithm is able to separate from a given target
user and compare it to (Gulyás et al., 2016). In Figure 2,
we show that we retain good accuracy despite subsampling
rows and then subsampling nonzero entries. Note that the
vertical axis’s minimum value is 84%. As the subsampling
probability increases, the accuracy of our implementation
converges to that of Gulyás et al. (2016).

Now, we present our results for “US Census Data (1990)”.

7

https://drive.google.com/drive/folders/1B5-HdBGnvOjrze37Yj1uvHZCuFpmqTqp?usp=sharing

Maximum Coverage in Turnstile Streams

Figure 2. “Adult”: k vs. accuracy

Due to limited compute, we look at one subsampling level
of 0.1. Over 10 runs for k = 7, the average time of our
algorithm to compute a fingerprint for an input user was 1.06
seconds while the comparison average was 52.6 seconds.
The subsampling took an extra 46.355 seconds. So, our
algorithm was about 49x times faster. For accuracy, Figure 3
shows that we quickly converge to the accuracy of (Gulyás
et al., 2016) with growing k. Note that the vertical axis’s
minimum value is 92%.

General Fingerprinting Results. The main difference be-
tween our theoretical and implemented algorithm is that
we only create one sketch rather than k sketches. We first
present our results for “Adult”. The main variable we vary
is the size of our L0 sketch, specifically with 300, 600, 900,
and 1, 250 rows. We had our algorithm compute a general
fingerprint for k = 1, 2, . . . , 20. The runtime of our algo-
rithm was largely independent of the size of the sketch and
ran in about 0.8 seconds which is 44x faster than the 35.30
second runtime of Gulyás et al. (2016). We measure accu-
racy by looking at the proportion between the number of
pairs of users that our algorithm separates to the number of
pairs of users that Gulyás et al. (2016) separates. For each
sketch size, we never dip below an accuracy ratio of 80%,
and as the sketch size increases the accuracy ratio increases
to around 99%. We now present our results for “US Cen-
sus Data (1990)”. We again vary the size of our L0 sketch,
using 55, 000, 180, 000, and 400, 000 rows. We computed
a general fingerprint for k = 1, 2, . . . , 10. We use smaller
k for comparison for this dataset since the implementation
of Gulyás et al. (2016) was not able to terminate even after
several hours for larger k.

In Figure 4 we can see that the runtime of our algorithm

Figure 3. “US Census Data”: k vs. accuracy

increases as the sketch size increases. Our implementation is
about 210, 120, and 45 times faster than that of Gulyás et al.
(2016) for 55, 000, 180, 000, and 400, 000 rows respectively.
For a fingerprint of size 20 our implementation takes a little
over twice the amount of time as for a fingerprint of size 10.
We estimate that the runtime of the comparison algorithm
also doubles but cannot be sure due to its non-termination.
Concerning accuracy, we again see in Figure 5 that as sketch
size increases, the accuracy ratio increases. We make note
of a steep drop-off for a sketch with 55, 000 rows. However,
our accuracy ratio never dips below 70%.

Dimensionality Reduction Results. We use the UCI
“Wine” dataset which consists of 178 instances and 13 fea-
tures (Aeberhard & Forina, 1991). Each of the instances is
labeled by one of three wine types. We used our general
fingerprinting algorithm to select features that best separate
the data. Then, we ran k-means with 3 clusters (for the 3
wine types) using just the selected features. Therefore, this
is a dimensionality reduction technique, since for many clus-
tering algorithms (including k-means and k-means++) the
efficiency depends on the feature dimension. We measure
accuracy in the following way. After running k-means on
the reduced feature space, for each cluster, we calculate the
majority wine type. Then, for each instance, if its actual
wine type is not the same as the majority wine type of its
assigned cluster, we count it towards the error. We used
general fingerprinting to reduce the feature dimension to
3, 4, and 5 features. Our accuracy for all was around 68%.
When running k-means using all 12 features, the accuracy
was around 71%, which suggests that we do not introduce
that much error. In addition, when running k-means instead
on just 3, 4, and 5 completely randomly chosen features,
the accuracy decreases to around 52%. We also increase

8

Maximum Coverage in Turnstile Streams

Figure 4. “US Census Data”: sketch size vs. time

the efficiency of running k-means. Running k-means with
our reduced 3, 4, and 5 features compared to running it
with all 13 features is about 3.2, 2.4, and 2.1 times faster,
respectively.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
Hoai-An Nguyen was supported in part by an NSF GRFP
fellowship grant number DGE2140739 and NSF CAREER
Award CCF-2330255. Huy Nguyen was supported in part by
NSF award number 2311649. Alina Ene was supported in
part by NSF CAREER award CCF-1750333 and an Alfred
P. Sloan Research Fellowship.

We thank Sepehr Assadi for numerous helpful discussions.
We thank William He for giving many useful presentational
comments. We also thank Praneeth Kacham, Noah Singer,
and Brian Zhang for helping us review the paper and giving
useful comments.

References
Aeberhard, S. and Forina, M. Wine. UCI

Machine Learning Repository, 1991. DOI:
https://doi.org/10.24432/C5PC7J.

Alon, N., Matias, Y., and Szegedy, M. The Space Complex-

Figure 5. “US Census Data”: k vs. accuracy

ity of Approximating the Frequency Moments. J. Comput.
Syst. Sci., 58(1):137–147, 1999. doi: 10.1006/JCSS.1997.
1545. URL https://doi.org/10.1006/jcss.
1997.1545.

Anagnostopoulos, A., Becchetti, L., Bordino, I., Leonardi,
S., Mele, I., and Sankowski, P. Stochastic Query Covering
for Fast Approximate Document Retrieval. ACM Trans.
Inf. Syst., 33(3):11:1–11:35, 2015. doi: 10.1145/2699671.
URL https://doi.org/10.1145/2699671.

Assadi, S. Tight Space-Approximation Tradeoff for the
Multi-Pass Streaming Set Cover Problem. In Sallinger,
E., den Bussche, J. V., and Geerts, F. (eds.), Proceedings
of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2017, Chicago,
IL, USA, May 14-19, 2017, pp. 321–335. ACM, 2017.
doi: 10.1145/3034786.3056116. URL https://doi.
org/10.1145/3034786.3056116.

Assadi, S. and Khanna, S. Tight Bounds on the Round
Complexity of the Distributed Maximum Coverage Prob-
lem. In Czumaj, A. (ed.), Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2018, New Orleans, LA, USA, Jan-
uary 7-10, 2018, pp. 2412–2431. SIAM, 2018. doi:
10.1137/1.9781611975031.155. URL https://doi.
org/10.1137/1.9781611975031.155.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., and
Krause, A. Streaming Submodular Maximization: Mas-
sive Data Summarization on the Fly. In Macskassy, S. A.,
Perlich, C., Leskovec, J., Wang, W., and Ghani, R. (eds.),
The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New

9

https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/2699671
https://doi.org/10.1145/3034786.3056116
https://doi.org/10.1145/3034786.3056116
https://doi.org/10.1137/1.9781611975031.155
https://doi.org/10.1137/1.9781611975031.155

Maximum Coverage in Turnstile Streams

York, NY, USA - August 24 - 27, 2014, pp. 671–680. ACM,
2014. doi: 10.1145/2623330.2623637. URL https:
//doi.org/10.1145/2623330.2623637.

Bateni, M., Esfandiari, H., and Mirrokni, V. S. Almost
Optimal Streaming Algorithms for Coverage Problems.
In Scheideler, C. and Hajiaghayi, M. T. (eds.), Pro-
ceedings of the 29th ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA 2017, Wash-
ington DC, USA, July 24-26, 2017, pp. 13–23. ACM,
2017. doi: 10.1145/3087556.3087585. URL https:
//doi.org/10.1145/3087556.3087585.

Becker, B. and Kohavi, R. Adult. UCI Ma-
chine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Bhattacharyya, A., Dey, P., and Woodruff, D. P. An
Optimal Algorithm for l1-Heavy Hitters in Insertion
Streams and Related Problems. In Milo, T. and Tan,
W. (eds.), Proceedings of the 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS 2016, San Francisco, CA, USA, June
26 - July 01, 2016, pp. 385–400. ACM, 2016. doi: 10.
1145/2902251.2902284. URL https://doi.org/
10.1145/2902251.2902284.

Chakrabarti, A., McGregor, A., and Wirth, A. Improved
Algorithms for Maximum Coverage in Dynamic and
Random Order Streams. In Chan, T. M., Fischer, J.,
Iacono, J., and Herman, G. (eds.), 32nd Annual Eu-
ropean Symposium on Algorithms, ESA 2024, Septem-
ber 2-4, 2024, Royal Holloway, London, United King-
dom, volume 308 of LIPIcs, pp. 40:1–40:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2024. doi:
10.4230/LIPICS.ESA.2024.40. URL https://doi.
org/10.4230/LIPIcs.ESA.2024.40.

Charikar, M., Chen, K. C., and Farach-Colton, M. Find-
ing Frequent Items in Data Streams. Theor. Comput.
Sci., 312(1):3–15, 2004. doi: 10.1016/S0304-3975(03)
00400-6. URL https://doi.org/10.1016/
S0304-3975(03)00400-6.

Chen, X. and Peng, B. On the Complexity of Dynamic
Submodular Maximization. In Leonardi, S. and Gupta,
A. (eds.), STOC ’22: 54th Annual ACM SIGACT Sym-
posium on Theory of Computing, Rome, Italy, June
20 - 24, 2022, pp. 1685–1698. ACM, 2022. doi: 10.
1145/3519935.3519951. URL https://doi.org/
10.1145/3519935.3519951.

Chia, P. H., Desfontaines, D., Perera, I. M., Simmons-
Marengo, D., Li, C., Day, W., Wang, Q., and Gue-
vara, M. KHyperLogLog: Estimating Reidentifiabil-
ity and Joinability of Large Data at Scale. In 2019
IEEE Symposium on Security and Privacy, SP 2019,

San Francisco, CA, USA, May 19-23, 2019, pp. 350–
364. IEEE, 2019. doi: 10.1109/SP.2019.00046. URL
https://doi.org/10.1109/SP.2019.00046.

DeWitt, D. J., Naughton, J. F., Schneider, D. A., and Se-
shadri, S. Practical Skew Handling in Parallel Joins.
In Yuan, L. (ed.), 18th International Conference on
Very Large Data Bases, August 23-27, 1992, Vancou-
ver, Canada, Proceedings, pp. 27–40. Morgan Kaufmann,
1992. URL http://www.vldb.org/conf/1992/
P027.PDF.

Feige, U. A Threshold of ln n for Approximating Set
Cover. J. ACM, 45(4):634–652, 1998. doi: 10.
1145/285055.285059. URL https://doi.org/10.
1145/285055.285059.

Gulyás, G. G., Ács, G., and Castelluccia, C. Near-Optimal
Fingerprinting with Constraints. Proc. Priv. Enhanc-
ing Technol., 2016(4):470–487, 2016. doi: 10.1515/
POPETS-2016-0051. URL https://doi.org/10.
1515/popets-2016-0051.

Horel, T. and Singer, Y. Maximization of Approximately
Submodular Functions. CoRR, abs/2411.10949, 2024.
doi: 10.48550/ARXIV.2411.10949. URL https://
doi.org/10.48550/arXiv.2411.10949.

Ioannidis, Y. E. and Poosala, V. Balancing Histogram
Optimality and Practicality for Query Result Size Es-
timation. In Carey, M. J. and Schneider, D. A. (eds.),
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, Califor-
nia, USA, May 22-25, 1995, pp. 233–244. ACM Press,
1995. doi: 10.1145/223784.223841. URL https:
//doi.org/10.1145/223784.223841.

Jowhari, H., Saglam, M., and Tardos, G. Tight Bounds
for Lp Samplers, Finding Duplicates in Streams, and
Related Problems. In Lenzerini, M. and Schwentick,
T. (eds.), Proceedings of the 30th ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database
Systems, PODS 2011, June 12-16, 2011, Athens,
Greece, pp. 49–58. ACM, 2011. doi: 10.1145/
1989284.1989289. URL https://doi.org/10.
1145/1989284.1989289.

Kane, D. M., Nelson, J., and Woodruff, D. P. An Optimal Al-
gorithm for the Distinct Elements Problem. In Paredaens,
J. and Gucht, D. V. (eds.), Proceedings of the Twenty-
Ninth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2010, June 6-
11, 2010, Indianapolis, Indiana, USA, pp. 41–52. ACM,
2010. doi: 10.1145/1807085.1807094. URL https:
//doi.org/10.1145/1807085.1807094.

10

https://doi.org/10.1145/2623330.2623637
https://doi.org/10.1145/2623330.2623637
https://doi.org/10.1145/3087556.3087585
https://doi.org/10.1145/3087556.3087585
https://doi.org/10.1145/2902251.2902284
https://doi.org/10.1145/2902251.2902284
https://doi.org/10.4230/LIPIcs.ESA.2024.40
https://doi.org/10.4230/LIPIcs.ESA.2024.40
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.1145/3519935.3519951
https://doi.org/10.1145/3519935.3519951
https://doi.org/10.1109/SP.2019.00046
http://www.vldb.org/conf/1992/P027.PDF
http://www.vldb.org/conf/1992/P027.PDF
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/285055.285059
https://doi.org/10.1515/popets-2016-0051
https://doi.org/10.1515/popets-2016-0051
https://doi.org/10.48550/arXiv.2411.10949
https://doi.org/10.48550/arXiv.2411.10949
https://doi.org/10.1145/223784.223841
https://doi.org/10.1145/223784.223841
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1145/1989284.1989289
https://doi.org/10.1145/1807085.1807094
https://doi.org/10.1145/1807085.1807094

Maximum Coverage in Turnstile Streams

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular Streaming in all its Glory:
Tight Approximation, Minimum Memory and Low Adap-
tive Complexity. In Chaudhuri, K. and Salakhutdinov,
R. (eds.), Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pp. 3311–3320. PMLR,
2019. URL http://proceedings.mlr.press/
v97/kazemi19a.html.

Kempe, D., Kleinberg, J. M., and Tardos, É. Maximizing the
Spread of Influence through a Social Network. Theory
Comput., 11:105–147, 2015. doi: 10.4086/TOC.2015.
V011A004. URL https://doi.org/10.4086/
toc.2015.v011a004.

Krause, A. and Guestrin, C. Near-Optimal Observa-
tion Selection using Submodular Functions. In Pro-
ceedings of the Twenty-Second AAAI Conference on
Artificial Intelligence, July 22-26, 2007, Vancouver,
British Columbia, Canada, pp. 1650–1654. AAAI Press,
2007. URL http://www.aaai.org/Library/
AAAI/2007/aaai07-265.php.

Lattanzi, S., Mitrovic, S., Norouzi-Fard, A., Tarnawski, J.,
and Zadimoghaddam, M. Fully Dynamic Algorithm for
Constrained Submodular Optimization. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M., and Lin, H. (eds.),
Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
9715d04413f296eaf3c30c47cec3daa6-Abstract.
html.

McGregor, A. and Vu, H. T. Better Streaming Algo-
rithms for the Maximum Coverage Problem. Theory
Comput. Syst., 63(7):1595–1619, 2019. doi: 10.1007/
S00224-018-9878-X. URL https://doi.org/10.
1007/s00224-018-9878-x.

McGregor, A., Tench, D., and Vu, H. T. Maximum Coverage
in the Data Stream Model: Parameterized and General-
ized. In Yi, K. and Wei, Z. (eds.), 24th International
Conference on Database Theory, ICDT 2021, March
23-26, 2021, Nicosia, Cyprus, volume 186 of LIPIcs,
pp. 12:1–12:20. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi: 10.4230/LIPICS.ICDT.2021.
12. URL https://doi.org/10.4230/LIPIcs.
ICDT.2021.12.

Meek, C., Thiesson, B., and Heckerman, D. US Census
Data (1990). UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5VP42.

Monemizadeh, M. Dynamic Submodular Maximiza-
tion. In Larochelle, H., Ranzato, M., Hadsell, R.,
Balcan, M., and Lin, H. (eds.), Advances in Neu-
ral Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/
6fbd841e2e4b2938351a4f9b68f12e6b-Abstract.
html.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
Analysis of Approximations for Maximizing Submodular
Set Functions - I. Math. Program., 14(1):265–294, 1978.
doi: 10.1007/BF01588971. URL https://doi.org/
10.1007/BF01588971.

Saha, B. and Getoor, L. On Maximum Coverage in the
Streaming Model & Application to Multi-Topic Blog-
Watch. In Proceedings of the SIAM International Con-
ference on Data Mining, SDM 2009, April 30 - May
2, 2009, Sparks, Nevada, USA, pp. 697–708. SIAM,
2009. doi: 10.1137/1.9781611972795.60. URL https:
//doi.org/10.1137/1.9781611972795.60.

Seonghun, S., Dipta, D. R., and Gülmezoglu, B. De-
fWeb: Defending User Privacy against Cache-based
Website Fingerprinting Attacks with Intelligent Noise
Injection. In Annual Computer Security Applications
Conference, ACSAC 2023, Austin, TX, USA, Decem-
ber 4-8, 2023, pp. 379–393. ACM, 2023. doi: 10.
1145/3627106.3627191. URL https://doi.org/
10.1145/3627106.3627191.

Warneke, R., Choudhury, F. M., and Wirth, A. Maxi-
mum Coverage in Random-Arrival Streams. In Gørtz,
I. L., Farach-Colton, M., Puglisi, S. J., and Herman,
G. (eds.), 31st Annual European Symposium on Algo-
rithms, ESA 2023, September 4-6, 2023, Amsterdam, The
Netherlands, volume 274 of LIPIcs, pp. 102:1–102:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.
doi: 10.4230/LIPICS.ESA.2023.102. URL https:
//doi.org/10.4230/LIPIcs.ESA.2023.102.

Zhou, Q., Wang, L., Zhu, H., and Lu, T. Few-Shot Website
Fingerprinting Attack with Cluster Adaptation. Comput.
Networks, 229:109780, 2023. doi: 10.1016/J.COMNET.
2023.109780. URL https://doi.org/10.1016/
j.comnet.2023.109780.

Zhu, W., Kairouz, P., McMahan, B., Sun, H., and Li, W.
Federated Heavy Hitters Discovery with Differential Pri-
vacy. In Chiappa, S. and Calandra, R. (eds.), The 23rd
International Conference on Artificial Intelligence and
Statistics, AISTATS 2020, 26-28 August 2020, Online
[Palermo, Sicily, Italy], volume 108 of Proceedings of

11

http://proceedings.mlr.press/v97/kazemi19a.html
http://proceedings.mlr.press/v97/kazemi19a.html
https://doi.org/10.4086/toc.2015.v011a004
https://doi.org/10.4086/toc.2015.v011a004
http://www.aaai.org/Library/AAAI/2007/aaai07-265.php
http://www.aaai.org/Library/AAAI/2007/aaai07-265.php
https://proceedings.neurips.cc/paper/2020/hash/9715d04413f296eaf3c30c47cec3daa6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9715d04413f296eaf3c30c47cec3daa6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9715d04413f296eaf3c30c47cec3daa6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/9715d04413f296eaf3c30c47cec3daa6-Abstract.html
https://doi.org/10.1007/s00224-018-9878-x
https://doi.org/10.1007/s00224-018-9878-x
https://doi.org/10.4230/LIPIcs.ICDT.2021.12
https://doi.org/10.4230/LIPIcs.ICDT.2021.12
https://proceedings.neurips.cc/paper/2020/hash/6fbd841e2e4b2938351a4f9b68f12e6b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6fbd841e2e4b2938351a4f9b68f12e6b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6fbd841e2e4b2938351a4f9b68f12e6b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6fbd841e2e4b2938351a4f9b68f12e6b-Abstract.html
https://doi.org/10.1007/BF01588971
https://doi.org/10.1007/BF01588971
https://doi.org/10.1137/1.9781611972795.60
https://doi.org/10.1137/1.9781611972795.60
https://doi.org/10.1145/3627106.3627191
https://doi.org/10.1145/3627106.3627191
https://doi.org/10.4230/LIPIcs.ESA.2023.102
https://doi.org/10.4230/LIPIcs.ESA.2023.102
https://doi.org/10.1016/j.comnet.2023.109780
https://doi.org/10.1016/j.comnet.2023.109780

Maximum Coverage in Turnstile Streams

Machine Learning Research, pp. 3837–3847. PMLR,
2020. URL http://proceedings.mlr.press/
v108/zhu20a.html.

12

http://proceedings.mlr.press/v108/zhu20a.html
http://proceedings.mlr.press/v108/zhu20a.html

Maximum Coverage in Turnstile Streams

A. Extended Preliminaries
A.1. Linear Sketches

Given a n×d matrix A, we can compress it while retaining essential information to solve the problem by multiplying it with
a r × n linear sketching matrix S. A linear sketch is a matrix drawn from a certain family of random matrices independent
of A. This independence ensures that S can be generated without prior knowledge of the contents of A. Linear sketches
support insertions and deletions to the entries of A, as S(A+ cij) = SA+ Scij holds for any update cij , which adds or
subtracts c from an entry of A. This allows us to maintain SA throughout the updates without storing A itself. Furthermore,
S is typically stored in an implicit, pseudorandom form (e.g., via hash functions) rather than explicitly, enabling efficient
sketching of updates cij . The primary focus is on minimizing the space requirement of a linear sketch, specifically ensuring
that the sketching dimension r is sublinear in n and ideally much smaller. Another important metric is the update time.
Update time refers to the time complexity required for the sketch to process an update.

A.2. Perfect ℓ0 Sampling.

Consider an underlying vector x = (x1, . . . , xn). Let Supp(x) be the set of nonzero elements of x. A perfect ℓ0 sampler,
with probability 1 − δ, returns a tuple (i, xi) for xi ∈ Supp(x) such that Pr[i = j] = 1

∥x∥0
± n−c for every j such that

xj ∈ Supp(x) for large constant c. Note that it returns the value of xi exactly with no error. With probability δ, the sampler
outputs FAIL.

An ℓ0 sampler is a linear sketch and accommodates both insertions and deletions to the underlying vector x. The parameter
n−c can be made arbitrarily small by increasing constant c, effectively making the sampling process indistinguishable from
perfect uniform random sampling of nonzero entries on polynomial length streams. Importantly, increasing c incurs only
constant factors in space usage. Jowhari et al. (2011) give a ℓ0 sampler that uses O(log2 n log(1/δ)) bits of space. By
inspecting Theorem 2 of Jowhari et al. (2011) and using appropriate sparse recovery schemes we can see that the update
time is poly(log n) · log(1/δ).

A.3. Streaming Model

In this paper, we represent the input as a n× d matrix A. In the streaming model, it is standard to initialize all the entries to
zero before the stream of updates. The algorithm then processes a stream of updates which come one-by-one, each of the
form (i, j,±c) for some c. This modifies entry Aij by performing Aij = Aij + c or Aij = Aij − c depending on the sign.
We make the standard assumption that each c is at most poly(n).

When the updates can only be positive, this is the insertion-only streaming model. When updates can be both positive and
negative this is referred to as the turnstile streaming model. The updates can appear in any arbitrary order in the stream, and
we make the standard assumption that the length of the stream is at most poly(n). The goal of the streaming algorithm is to
process the stream efficiently, using sublinear space in the size of the input matrix A (and therefore it cannot store all the
updates) and a small constant number of passes over the stream. In this work, we restrict our focus to one-pass algorithms.
At the end of the stream, the algorithm can do some post-processing and then must output the answer. While streaming
algorithms are not required to maintain a stored answer at every point during the stream, there is no restriction on when
the stream may terminate. Any time or space used before or after processing the stream is attributed to pre-processing or
post-processing, respectively. Generally, our primary focus is on optimizing the memory usage and update time during the
stream. Here the update time is the time complexity required by the algorithm to process an update.

A.3.1. USEFUL DEFINITIONS

Monotone Submodular Maximization. Consider a non-negative set function f : 2V → R+. If for all S ⊆ T ⊆ V \ {e},
f satisfies: f(S ∪ {e})− f(S) ≥ f(T ∪ {e})− f(T), then f is submodular. We assume that f(∅) = 0. If f(S) ≤ f(T)
for all S ⊆ T , then f is also monotone.

Linearly Sketchable Functions. All the functions f : 2d → R+ that we consider are of the form f(C) = g({ai}i∈C)
where a1, . . . ,ad are a set of vectors that are either fixed in advance or are the columns of the n× d matrix A that is being
updated in the stream. We say that a function f is “linearly sketchable” if there exists a randomized sketching matrix S
and a corresponding function gS such that, for any vectors a1, . . . ,ad, with high probability for all C ⊆ [d], f(C) can be
approximated by gS({S · ai}i∈C).

13

Maximum Coverage in Turnstile Streams

A.3.2. CONCENTRATION INEQUALITIES

Markov’s Inequality. If X is a nonnegative random variable and a > 0, then

Pr(X ≥ a) ≤ E [X]

a
.

Chebyshev’s Inequality. For any random variable X and t > 0.

Pr(|X − E [X] | ≥ t) ≤ Var[X]

t2
.

B. Deferred Parts of Section 3 (Maximum Coverage)
We restate the algorithm of Bateni et al. (2017), A∗(k, ε, δ) (Algorithm 3).

Algorithm 3 A∗(k, ε, δ)

Require: k, ε ∈ (0, 1], and δ.
Ensure: A∗(k, ε, δ).

1: Let δ′ = δ log log1−ε n.
2: Let h be an arbitrary hash function that uniformly and independently maps each item (or each row of A) to [0, 1].
3: Initialize A∗(k, ε, δ).
4: while number of nonzero entries in A∗(k, ε, δ) is less than 24dδ′ log(1/ε) log d

(1−ε)ε3 do
5: Pick item i of minimum h(i) that has not been considered yet.
6: if there are less than d log(1/ε)

εk nonzero entries in the ith row of A then
7: Add all the nonzero entries from the ith row of A to A∗(k, ε, δ).
8: else
9: Add d log(1/ε)

εk of the nonzero entries of A, chosen arbitrarily, to A∗(k, ε, δ).
10: end if
11: end while

We now restate the final algorithm from Bateni et al. (2017), k-cover (Algorithm 4).

Algorithm 4 k-cover

Require: k and ε ∈ [0, 1].
Ensure: A (1− 1/e− ε) approximate solution to maximum coverage with probability 1− 1/d.

1: Set δ = 2 + log d and ε′ = ε/12.
2: Construct A∗(k, ε

′, δ).
3: Run the greedy algorithm (or any 1− 1/e approximation algorithm) on A∗(k, ε

′, δ) and report the output.

Lemma B.1. Obtaining an (1−1/e) approximate solution to maximum coverage on A′ is an (1−1/e−ε/4) approximation
solution on A with probability at least 1− 1/ poly(d).

Proof. This states that we only lose a ε/4 factor by reducing to a smaller universe via subsampling such that OPT =
O(k log d/ε2). This is proven in McGregor & Vu (2019) in Corollary 9. Note that in McGregor & Vu (2019) they prove
a (1 − 1/e) approximate solution on A′ is an (1 − 1/e − 2ε)-approximation solution on A but we re-weigh ε in our
algorithm.

Lemma B.2. There are at most O(k log d/ε2) large items in A′.

Proof. Suppose that there are ℓ large items. Take S to be the set of these large items. Take P to be the set of the d input
subsets. Now we will conduct the following process. First, we choose a subset p1 ∈ P . Suppose that p1 covers c1 large
items from S . Recall that “covers” means that those items are in subset p1. Now remove p1 from P and the c1 large items it

14

Maximum Coverage in Turnstile Streams

covered from S . Now let us choose another subset p2 ∈ P . Suppose that p2 covers c2 of the (remaining) items in S . Again
remove p2 from P and the c2 large items it covered from S. Continue this process for a total of k times.

Since we know that OPT = C1 · k log d/ε2 for some constant C1, it must be that c1 + c2 + · · ·+ ck ≤ C1 · k log d/ε2.
Now, suppose for the sake of contradiction that ℓ = C2 · k log d/ε2 for some constant C2. Then,

C2 · k log d/ε2 − c1 − · · · − ck > C2 · k log d/ε2 − C1 · k log d/ε2 > C2 · k log d/(2ε2)

for C2 > 2C1.

So, at each step of the above process, there were at least C2 · k log d/(2ε2) large items left in S and therefore at least
C2d log d/(2ε

2) nonzero entries among those large items. So, at the end of the process we could have covered k ·
C2 log d/(2ε

2) large items. But then we would have

OPT ≥ C2/2 · k log d/ε2 > C1 · k log d/ε2

which is a contradiction.

Lemma B.3. There are O(d log d
ε2) total nonzero entries among small items in A′.

Proof. Take S to be the set of small items. Take P to be the set of the d input subsets. Suppose that there are s total nonzero
entries among the items in S . Now we will conduct the following process. First we choose a subset p1 ∈ P . Suppose that p1
covers c1 small items from S . Recall that “covers” means that those items are in subset p1. Now remove p1 from P and the
c1 small items it covered from S. Now let us choose another subset p2 ∈ P . Suppose that p2 covers c2 of the (remaining)
items in S . Again remove p2 from P and the c2 small items it covered from S . Continue this process for a total of k times.

We know that OPT = C1 · k log d/ε2 for some constant C1. Therefore, we have that in the above process we removed at
most

(c1 + . . .+ ck) ·
d

k
≤ C1 ·

d log d

ε2

edges since we have c1 + . . .+ ck ≤ OPT.

Now suppose for the sake of contradiction that s = C2 · d log d/ε2 for some constant C2. But then, in the above process, at
each step we could have found a subset covering at least (C2 − C1) · log d/ε2 new items. This would mean that we have
OPT ≥ k · (C2 − C1) · log d/ε2 which for appropriate C2 is a contradiction.

Lemma B.4. Every nonzero item for some i ∈ [t] is hashed to a bucket containing

1. no other large item

2. at most O(d log(1/ε)
εk) nonzero entries from small items

with probability 1− 1/ poly(d).

Proof. Consider some nonzero item x. Now consider some iteration i ∈ [t].

We will first consider the large items. By Lemma 3.3, there are at most C1 · k log d/ε2 large items for some constant C1. Ci
has C2 · k log d/ε2 buckets. For appropriate C2, we can say that C2 > 4C1. In the worst case, every large item is hashed to
a different bucket. Then, the probability of x being hashed to a bucket with another large item is at most 1/4.

Now let us look at the small items. By Lemma 3.4, there are at most O(d log d/ε2) total nonzero entries among small items.
Since small items have at most d/k nonzero entries, in the worst case there are O(k log d/ε2) = C3 · k log d/ε2 small items
each with d/k edges. Recall that Ci has C2 · k log d/ε2 buckets. Therefore, the expected number of nonzero entries from
small items in the same bucket as x is at most C3d/C2k ≤ 1/4 · d/k. By Markov’s inequality, the probability that the actual
number of nonzero entries from small items in the same bucket as x is more than d/k is at most 1/4.

So, the probability that x is hashed to a bucket containing another large item or more than d/k nonzero entries from small
entries is at most 1/2.

15

Maximum Coverage in Turnstile Streams

We have O(d log(1/ε)/(εk)) = C4 · d log(1/ε)/(εk) ≥ d/k for appropriate C4 and ε ∈ (0, 1/2). However note that our
proof still holds for the full range of ε since we can always use a smaller ε to achieve the desired error bound while only
incurring an extra constant factor in the space/time.

We hash O(log(d/ε)) times (since we do it for i = 1, . . . , t). Since we have at most Õ((k + d)/ε2) nonzero items by
Lemma 3.3 and Lemma 3.4, we have the result by taking a union bound.

We show how to implement building-A∗ via a linear sketch, Max-Coverage-LS (Algorithm 5).

Lemma B.5. Max-Coverage-LS (Algorithm 5) and max-coverage (Algorithm 2) correctly implement building-A∗ (Algo-
rithm 1) and k-cover (Algorithm 4) with probability at least 1− 1/ poly(d).

Proof. The first step in building-A∗ is subsampling from A to get A′ such that OPT in A′ is O(k log d/ε2). Since this
sampling rate depends on what OPT is in A, in Max-Coverage-LS, we instead sample in log n different rates. So in one
of the log n different parallel runs, we will sample with the correct rate. We will describe how we choose the right run to
consider later.

Let us consider the parallel run with the correct sampling rate. In each iteration i ∈ [t], for each bucket, we need to show that
we recover x = O(d log(1/ε)

εk) nonzero entries from v. The length of v is rd. So, we subsample in log(rd) levels. At each
level we keep an L0 sketch python and CountSketch structure with x buckets. At some level q′ we will have that the number
of nonzero entries of vq′ ≤ x/4. We use the L0 sketch to find q′. By the correctness of CountSketch (see Section 2) we will
exactly recover the entries of vq′ . Note that we set the failure probability appropriately for the CountSketch structures and
L0 sketches so we only incur 1/ poly(d) total error.

So Max-Coverage-LS (Algorithm 5) produces a L0 sketch for each column of A and Am,∗ for m ∈ [log n]. We must figure
out which Am,∗ is the one that corresponds to the desired subsampling rate. We instead find which Am,∗ gives us the best
answer on the original input A using the L0 sketches in the following way.

Suppose that for some Am,∗ the greedy algorithm chooses subsets s1, . . . , sk. We take the L0 sketches for these subsets (or
columns of A) and reduce to the vector case to estimate how many distinct items these subsets cover in their union.

Imagine that we are working with the original input A. Now, take the original columns s1, . . . , sk and concatenate them into
a n× k matrix L. We now randomly generate a k× 1 vector x with entries between [−poly(d),poly(d)]. Now multiply L
by x. We can see with probability at least 1− 1/ poly(d), the ith entry in L · x is nonzero if and only if the ith row of L is
nonzero. So, if the ith entry of L · x is nonzero, that means the ith item was covered by the union of the subsets s1, . . . , sk.

Note that L · x is by definition equivalent to summing L1 · x1 +L2 · x2 + · · ·+Lk · xk where Li denotes the ith column
of L and xi denotes the ith entry of x. Since the L0 sketches are linear sketches, by definition they have the property
that the L0 sketch of the sum of two vectors is equivalent to summing the L0 sketches for the two vectors (see Section 2).
Therefore, using the L0 sketches for the d columns of A, we can create the L0 sketch for L ·x and query it to get a (1+ ε/4)
approximation to the true coverage of the union of subsets s1, . . . , sk.

Lemma B.6. Maximum-Coverage-LS uses Õ(d/ε3) bits of memory.

Proof. Keeping a L0 sketch for each column of A requires Õ(d/ε2) space total.

The other structures we store are the L0 sketches and CountSketch structures in each bucket. We have log n subsampling
instances. In each instance we store O(b log(d/ε)) buckets for b = O(k log d/ε2). In each bucket we store O(log(rd)) L0

sketches and O(log(rd)) CountSketch structures with sketching dimension (i.e. the number of buckets in the CountSketch
structure) O(d log(1/ε)/(εk)). So the total space requirement of the L0 sketches and CountSketch structures is Õ(d/ε3).

Lemma B.7. The update time of Maximum-Coverage-LS is Õ(1).

Proof. We have an L0 sketch for each column of A. Each update will only cause one of these to update. So the update time
here is O(1).

16

Maximum Coverage in Turnstile Streams

Let’s look at the update time of the L0 sketches in the buckets. Each update will only cause Õ(1) of them to update. Note
that only one bucket gets affected with an update and we only have to additionally consider the multiple subsampling levels
and iterating to boost success probability. So the update time here is Õ(1).

We finally consider the update time of the CountSketch structures in each bucket. Again only one bucket gets affected during
an update. So the update time here is also Õ(1).

B.1. Targeted Fingerprinting

Lemma B.8. Take A′ to be A with the updates Aij = Aij −Auj applied for all i ∈ [n], j ∈ [d]. For any union of subsets
U , the number of items covered on A′ is equivalent to the number of users separated from the target on A.

Proof. For all i ∈ [n], for any j ∈ [d] such that Aij = Auj , we have A′
ij = 0. Additionally, for all i ∈ [n], for any j ∈ [d]

such that Aij ̸= Auj , we have that A′
ij is nonzero.

In other words, for all users, for any feature where they shared the same value with the target user u, this entry is now 0. In
addition, for any feature where they did not share the same value with the target user, this entry is now nonzero. We can see
that the maximum coverage problem on A′ exactly corresponds to finding k features which separates the most users from
target user u on A.

C. Proof of Theorem 1.3 (Submodular Maximization Framework)
Here, we outline a framework to design algorithms to maximize monotone non-negative submodular functions that are
linearly sketchable subject to a cardinality constraint. At a high level we will receive a linear sketch of the input matrix A
such that querying the sketch will produce the function’s output value on some union of subsets. We then adapt the classical
greedy algorithm for maximizing a monotone submodular function to query the linear sketches instead of accessing the
input matrix directly.

We note that setting γ = ε/k for many linear sketches introduces poly(k) factors in the final memory usage. However,
setting γ = ε/k is provably necessary when performing submodular maximization over queried function values that are
preserved up to a (1± γ) factor to achieve a 1− 1/e− ε approximation (see Theorem 5 of Horel & Singer (2024)). Note
that this applies to all algorithms that perform submodular maximization that have this property.

We now prove Theorem 1.3. Theorem 1.3 allows us to create an algorithm to maximize a specific monotone non-negative
submodular function subject to a cardinality constraint by simply sketching the input A via a linear sketch that satisfies the
properties of the theorem.

Let C be a subset of the column vectors of A. In the following, {S ·ai}i∈C can be thought of as the sketch of A restricted to
C. As described in Appendix A.3.1, we say that our function f has a corresponding sketching matrix S and gS . Recall that
gS gives the answer to a query of function f based on S. For any two subsets of columns X and Y , let gS({S · ai}i∈X|Y)
denote the marginal gain of adding X , or gS({S · ai}i∈X∪Y) − gS({S · ai}i∈Y). Take c ∈ d \ C to denote a column c
which is not already in subset C.

We now present our algorithm, sketchy-submodular-maximization (Algorithm 6). We first create k independent linear
sketches (recall that the process of creating a linear sketch for the input function is given as input to the algorithm). Then
we run the following classical greedy submodular maximization algorithm with the modification that instead of directly
evaluating the input function f it queries the given sketch. Note that in each of the k adaptive rounds, we use a different
sketch. The classical greedy algorithm in each round simply looks at all subsets that have not been chosen and adds the one
with the largest marginal gain to the output set (Nemhauser et al., 1978).

We first analyze the memory usage. We are given that each sketch takes O(s) space. Since there are k rounds of adaptivity,
the total space taken by the sketches is O(sk). The update time will depend on the specific linear sketch.

Now, let us prove correctness. We assume by our theorem statement that our sketch S and corresponding function gS give
us a (1± γ)-approximation to the queried values of our input function f . There are k adaptive rounds. Since we create as
many sketches and use a different one in each round, adaptivity between the rounds does not introduce error. In addition,
despite getting (1± γ)-approximations to all our queried values instead of the true queried values of our input function, we
still get our desired approximation ratio by setting γ = ε/k. This is proven and discussed in Theorem 5 of Horel & Singer

17

Maximum Coverage in Turnstile Streams

(2024).

We also get the desired output with probability at least 1 − 1/ poly(d). Since the error probability for each function
evaluation is O(1

poly(d)k), by a union bound over all dk function evaluations, we have an error probability of at most
1− 1/ poly(d).

D. Proof of Theorem 1.4 (np − Fp for p ≥ 2)
We first present the algorithm, p-Tuples-Sketch.

Lemma D.1. p-Tuples-Sketch uses Õ(γ− 2
p−1) space and has an update time of Õ(γ− 2

p−1).

Proof. We keep two L0 sketches and 2t = Õ(γ− 2
p−1) perfect ℓ0 samplers. Recall that p is a constant.

Now we prove correctness. We first give the following result which we will use throughout the proof.

Lemma D.2 (Lemma 3 of Bhattacharyya et al. (2016)). Let fi and f̂i be the frequencies of an item i in a stream S (of length
n) and in a random sample of T of size r from S, respectively. Then for r ≥ 2γ−2 log(2δ−1), with probability 1− δ, for
every universe item i simultaneously, ∣∣∣ f̂i

r
− fi

n

∣∣∣ ≤ γ.

We will assume that all L0 sketches and ℓ0 samplers succeed in the following, which is true with probability 1− 3δ/8. By
Lemma D.2, we have that using the ℓ0 samplers (from S1 and S2) to estimate the frequencies incurs error at most 2δ/8. So,
we show that we incur at most 3δ/8 error in the rest of the algorithm.

For the rest of the analysis, let us order the frequencies of the distinct values of vector x in non-increasing order as
f1 ≥ f2 ≥ . . . ≥ fz .

In the algorithm we determine the value of highest frequency and estimate its frequency as f ′
b. If f ′

b is too small, we simply
output np. We now show that this is a good approximation.

Lemma D.3. If f1 ≤ γ
1

p−1 · n, then np is a (1± γ
1

p−1) approximation to np −
∑

i∈Z fp
i .

Proof. Since f1 ≤ γ
1

p−1 · n, it must be that fi ≤ γ
1

p−1 · n for all i. In this case,
∑

i∈Z fp
i is maximized when there are

1/γ
1

p−1 values each with true frequency γ
1

p−1 · n. So we have

∑
i∈Z

fp
i ≤

(1
γ)

1
p−1∑

i=1

(γ
1

p−1 · n)p =

(
1

γ

) 1
p−1

· γ
p

p−1 · np = γ · np.

Recall that in the algorithm we have ε = γ
1

p−1

16·2p .

Lemma D.4. For all values v simultaneously, f ′
v = f ′

S1,v
· w1/t = fv ± 3εn. f ′

S1,v
denotes the frequency of v among the

uniform samples which make up S1.

Proof. By the correctness of L1
0, we have that w2 is a (1± ε) relative approximation to the number of nonzero entries in

x. By Lemma D.2, we incur at most εn additive error for estimating each f ′
v simultaneously using S1 if w2 was the exact

number of nonzeros in x. So the combined error is at most (2ε+ ε2) · n ≤ 3ε · n.

In addition, we use L1
0 to determine the number of 0’s to see if 0 is the value of the largest frequency. This incurs at most

ε · n error. Recall that in the algorithm we output np if we estimate f ′
b to be less than 3γ

1
p−1

4 · n. Since by Lemma D.4 and

the correctness of L1
0 we know the error in estimating each frequency is at most 3ε · n ≤ γ

1
p−1

4 · n, at worst all values had
frequency γ

1
p−1 · n, and we output np. This does not incur too much error by Lemma D.3.

18

Maximum Coverage in Turnstile Streams

In the rest of the analysis, we can assume that f1 ≥ γ
1

p−1

2 · n. We now claim that incurring additive γ
1

p−1 · fp−1
1 · (n− f1)

error still gives us the desired error guarantee.

Lemma D.5. Incurring γ
1

p−1 · fp−1
1 · (n− f1) error gives us γ

1
p−1 · (np − Fp) total error.

Proof. We have that np − Fp ≥ fp−1
1 · (n− f1) for p ≥ 2. np − Fp counts the number of p-tuples (allowing repetitions) in

which not all entries of the tuple have the same value. The right hand side counts p-tuples in which all but one entry are
equal to the value of highest frequency (i.e. f1) and the last has a different value. We can see that the right hand side is a
subset of the left hand side. Note that we can assume p ≤ γ

2 · n since p is a constant. Since we said we could assume that

f1 ≥ γ
1

p−1

2 · n, we have that f1 ≥ p.

Recall that we find our final approximation of f ′
b separately if our initial estimate shows that it is greater than n/2.

Specifically, we instead subtract off b′ from L2
0 and query it to get w2. Then we set f ′

b = n− w2. We show that this does
not incur too much error.

Lemma D.6. If f1 ≥ 2n
3 , the error incurred from our estimate of f1 is at most γ

1
p−1

3 · fp−1
1 · (n− f1).

Proof. Let us denote the distinct value that has frequency f1 in x as b. By Lemma D.4, we incur at most 3ε · n error in
estimating the frequency of b using S1 (or at most ε · n error if b = 0). Since f1 ≥ 2n/3, the next largest frequency is at
most n/3. Therefore we will not mistake another value for b. In addition we will estimate f ′

b to be at least n/2.

Since we correctly identify b and correctly determine that its frequency is at least n/2, in our algorithm we will subtract off
b from L2

0 and then query it to get w2. Then we estimate the frequency as n− w2.

Since L2
0 is a linear sketch, “subtracting off b” means that we simulate updating all the entries of underlying vector x by

subtracting b from them. Then querying L2
0 will give us the number of entries of x that are not equal to b.

By the properties of L2
0, we incur at most ∆(f) = ε · (n− f1). Therefore, our total error is at most

(f1 +∆(f))p − fp
1 =

p∑
j=1

[(
p

j

)
fp−j
1 ∆(f)j

]
= ∆(f)

p∑
j=1

[(
p

j

)
fp−j
1 ∆(f)j−1

]

≤ ∆(f)

p∑
j=1

[(
p

j

)
fp−1
1

]
= ∆(f)fp−1

1 · 2p

giving us the desired error. Note that our estimate of f1 could have been f1 −∆(f) but we have |(f1 +∆(f))p − fp
1 | ≥

|(f1 −∆(f))p − fp
1 | .

Let us now consider the case where we do not have f1 ≥ 2n/3 but in the algorithm we identify a value v with estimated
frequency f ′

v ≥ n/2. By Lemma D.4, we incur at most 3ε · n error in estimating frequencies using S1 (or by L1
0 for the

value 0). So it must be that fv = Θ(n), and by the same analysis as Lemma D.6 we get that this does not incur too much
error.

We now show that estimating the values of frequency at least γ
1

p−1

2 · (n− f1) does not incur too much error. We denote a

set F which contains every value of x with frequency at least γ
1

p−1

2 · (n− f1).

Lemma D.7. The error incurred from estimating
∑

i∈F fp
i is at most γ

1
p−1

3 · fp−1
1 · (n − f1) with probability at least

1− δ/8.

Proof. We first show how much error we incur by estimating the frequency of one value in F . By Lemma D.2, we incur
ε(n− f1) error in estimating the frequency if w2 had no error in approximating n− f1. By the correctness of L2

0, w2 is a
(1± ε) multiplicative approximation to n− f1. Therefore the total error in approximating fi with fS2,i · w2/t where fS2,i

is the frequency of i in S2 is at most 3ε · (n− f1).

By similar reasoning above, even if we choose b incorrectly, we know by Lemma D.4 that fb′ ≥ fb − 6ε · n. Therefore,
subtracting off b′ to from S2 and estimate the frequencies of values in F by reweighing ε still gets appropriate error. In

19

Maximum Coverage in Turnstile Streams

addition, note that because in the algorithm we add all values with estimate frequency at least γ
1

p−1

4 · (n− f ′
1), we will put

all values that are in F in B correctly. We now look at the error incurred in estimating all the frequencies of values in B.

We denote ∆(fi) = 3 · ε · (n− f1). Let us consider all frequencies except f1. We have that the error is at most∑
i∈B,i>1

[(f ′
i)

p − fp
i] =

∑
i∈B,i>1

[(fi +∆(fi))
p − fp

i]

=
∑

i∈B,i>1

 p∑
j=1

((
p

j

)
fp−j
i ∆(fi)

j

) ≤ ∑
i∈B,i>1

∆(fi)

p∑
j=1

((
p

j

)
fp−1
i

)
≤

∑
i∈B,i>1

[
∆(fi) · 2p · fp−1

i

]
= 2p · fp−1

1 ·
∑

i∈B,i>1

∆(fi).

We will now show that
∑

i∈B,i>1 ∆(fi) is appropriately bounded. Note that
∑

i∈B,i>1 ∆(fi) is the sum of the errors in
calculating the frequencies of values in B (except for f1). Following the proof of Lemma D.2, we have E [f ′

i] = r · fi and

Var[f ′
i] ≤ r · fi. This gives us E

[∑
i ̸=1 f

′
i

]
= r ·

∑
i ̸=1 fi and Var[

∑
i ̸=1 f

′
i] ≤ r ·

∑
i̸=1 fi since the covariance of f ′

j

and f ′
k for j ̸= k is negative. Recall that we have

∑
i̸=1 fi ≤ n− f1 and that we set r = Õ(γ−2). So, we can now apply

Chebyshev’s (with success amplification) to get that with probability at least 1−δ/8 we have
∑

i∈B,i>1 ∆(fi) ≤ ε
2 ·(n−f1).

If we had f1 ≤ 2n/3, we get error Θ(εn) from estimating its frequency from S1 as proven by Lemma D.4. Since we know
that Θ(n− εn) ≤ f1 ≤ 2n/3, by re-weighing ε we get appropriate error.

We now deal with values j such that fj ≤ γ
1

p−1

2 · (n− f1). We potentially do not approximate these frequencies. However,
their contribution to

∑
fp
i is low, and they give us small error as show below.

Lemma D.8. The error incurred by not estimating values with frequency less than γ
1

p−1

2 ·(n−f1) is at most γ
1

p−1

3 ·(np−Fp).

Proof. We first observe that we have
∑

i̸=1 fi = n− f1. So,
∑

i/∈F fp
i is greatest when there are 2

γ
1

p−1
values each with

frequency γ
1

p−1

2 · (n− f1). So this sum (and therefore the error we incur) is at most

2/γ
1

p−1∑
i

(
γ

1
p−1

2
· (n− f1)

)p

≤ γ

2p−1
· (n− f1)

p.

We have that (n− f1)
p ≤ np − fp

1 so we are getting γ
2p−1 · (np − fp

1) total error.

The quantity that we want to estimate is np − fp
1 −

∑
i>1 f

p
i . By Jensen’s inequality we can see that

np − fp
1 −

∑
i>1

fp
i ≥ np − fp

1 −
(n− f1)

p

c

for some constant c ≥ 2 since we have
∑

i>1 f1 = n − f1 and our summation is over at most 2/γ
1

p−1 frequencies.
Furthermore, we have that np − fp

1 ≥ (n− f1)
p. So, achieving γ

2p−1 · (np − fp
1) gives us the desired error guarantee.

Therefore, combining all the lemmas above gives the result.

E. Proof of Theorem 1.5 (General Fingerprinting)
We now present our algorithm for general fingerprinting, general-fingerprinting-sketch (Algorithm 8) to prove Theorem 1.5.
To utilize our general submodular maximization framework from Theorem 1.3, we need to provide a sketch that preserves
queried values of the general fingerprinting function to within a (1± γ) factor. The general fingerprinting function receives
as input a subset of the columns of A and outputs how many pairs of users they separate. We can therefore see that

20

Maximum Coverage in Turnstile Streams

maximizing this function gives us the desired output. Note that the general fingerprinting function is submodular since when
adding a new column to a set C of columns, if this separates a pair of users that were previously not separated, then this
column also separates that pair of users if added to some T ⊆ C. It is also monotone since adding another column to C never
decreases the function value.

Let us analyze the memory usage. We keep two L0 sketches per column of A. As per Theorem 1.3, we must set γ = ε/k
for our sketch. This makes the space of each L0 sketch Õ(k2/ε2). So the total space for all d columns is Õ(dk2/ε2). The
space for each ℓ0 sampler is Õ(log2 n), and we keep Õ(dk2/ε2) of them giving us Õ(dk2/ε2). Using Theorem 1.3, our
total space is therefore Õ(dk3/ε2).

For the update time, each update affects one column of A, and therefore two L0 sketches and Õ(γ−2) ℓ0 samplers.
So, the update time per sketch is Õ(γ−2). As per Theorem 1.3, we will keep k sketches so the total update time is
Õ(k/γ2) = Õ(k3/ε2).

Now, we prove the correctness. As per our framework in Theorem 1.3, our result follows if we can show that our
sketch provides (1 ± γ)-approximations to all queried values to our general fingerprinting function with probability
O(1/(poly(d)k)).

Upon a query to our function on a subset of columns C, we return gS({S · ai}i∈C). To do this, for each type of sketch (both
the L0 sketch and the ℓ0-sampling sketch) for the columns of subset C, we concatenate them and reduce them each to one
column. Below, (SA)C denotes the sketch of A restricted to the columns in C.

Lemma E.1. With probability 1− 1/(poly(d)k), for any rows x and y in (SA)C for sketch S, they are distinct if and only
if entry x and y of [(SA)C]v are distinct for random vector v with entries in {− poly(ndk),poly(ndk)}.

Proof. Let us look at two rows of B = (SA)C that are distinct. We call these rows Bx and By. Take w to be the vector
that is formed from performing Bx −By . We first want to show that w⊺v ̸= 0.

We have that w⊺v = w1 · v1 +w2 · v2 + · · ·+wd · vd. Fixing the values of v1 through vd−1, there is only one value for
vd such that w⊺v = 0. Therefore, this “bad” event happens with probability at most 1/ poly(ndk). Union bounding over
all possible rows of B, we have that with probability 1− 1/ poly(dk) if rows x and y of B for any x, y are distinct then
entries x and y of Bv are distinct.

To finish up the proof, we want to show that if rows x and y of B for any x, y are identical, then entries x and y of Bv are
identical. This is clearly true with probability 1.

Now, we are in the vector case. We claim that the rest of the work is done by passing in S1, S2, S3, and S4 into our
sketch from Theorem 1.4 with p = 2. For each distinct item i in the vector, we denote its frequency as fi. As we can
see,

(
n
2

)
−
∑

i

(
fi
2

)
= n2−F2

2 is the general fingerprinting function. This is because
(
n
2

)
denotes all pairs of users and by

subtracting off
∑

i

(
fi
2

)
we are subtracting off pairs of users that share identical values. Note the changes in the parameters

of the input between here and in Theorem 1.4.

21

Maximum Coverage in Turnstile Streams

Algorithm 5 Max-Coverage-LS (n× d matrix A, ε ∈ (0, 1), k)

1: Set δ = (2 + log d) log log1−ε n.
2: Set ε = ε/8.
3: Keep a L0 sketch for each column of A. Denote these as L0(z) for z ∈ [d].
4: for m = 1, 2, . . . , log n do
5: {Run in parallel}
6: Use a hash function to subsample each row from A with probability 1/2m. Call the subsampled matrix we consider

in this mth run A′
m.

7: {We do not store A′
m explicitly. This means that in the mth parallel run we only consider updates to the subsampled

rows that form A′
m.}

8: Set b = O(k log d
ε2).

9: Set t = O(log d
ε).

10: for i = 1, . . . , t do
11: Use a hash function to hash each row of A′

m to b buckets in structure Cm,i.
12: {We do not store the rows of A′

m explicitly in structure Cm,i. Rather, each bucket only considers updates to the
rows that are hashed there.}

13: for each bucket in Cm,i do
14: If there are r rows hashed to the bucket, denote the r rows concatenated into a vector of length rd as v.
15: for q = 1, 2, . . . , log(rd) do
16: {Run in parallel}
17: Use a hash function to subsample each entry of v with probability 1/2q. Call the subsampled vector we

consider in this qth run vq {we again do not store vq explicitly}.
18: Keep a L0 sketch for vq . Denote it as L0,q .
19: Keep a CountSketch structure with O(d log(1/ε)

εk) buckets for vq . Denote it as CSq .
20: end for
21: end for
22: end for
23: end for
24: Set the error probability for each L0 sketch and CountSketch structure such that the total error across all of them is at

most 1/ poly(d).
25: Upon an update, the L0 sketches and CountSketch structures will handle it.
26: Upon a query:
27: for each m ∈ [log n] do
28: Initialize Am,∗(k, ε).
29: For each iteration i ∈ [t], for each bucket in Cm,i, take the smallest q such that querying L0,q returns a number that is

O(d log(1/ε)
εk) to be q′.

30: Take S to be the set of rows of A′
m that have nonzero entries recovered by CSq′ for any bucket in Cm,i for any

iteration i ∈ [t]. Take P to be the set of these recovered nonzero entries.
31: Let h be a hash function that maps uniformly between [0, 1] the rows in S.
32: while the number of nonzero entries in Am,∗(k, ε) is less than 24dδ′ log(1/ε) log d

(1−ε)ε3 do
33: Process the row j that comes next in the ordering as determined by hash function h.
34: if row j has less than d log(1/ε)

εk nonzero entries in P then
35: Add all of the nonzero entries from row j in P to Am,∗(k, ε).
36: else
37: Add d log(1/ε)

εk of the nonzero entries from row j in P , chosen arbitrarily, to Am,∗(k, ε).
38: end if
39: end while
40: end for
41: Output L0(z) for z ∈ [d] and Am,∗(k, ε) for m ∈ [log n].

22

Maximum Coverage in Turnstile Streams

Algorithm 6 sketchy-submodular-maximization

1: Initialize C ← ∅.
2: while |C| ≤ k do
3: C ← C ∪ argmaxc∈d\C gS({S · ai}i∈c|C).
4: end while
5: Return C.

Algorithm 7 p-Tuples-Sketch (n× 1 vector x, constant integer p ≥ 2, γ, δ ∈ (0, 1))

1: ε← γ
1

p−1

16·2p .
2: Keep two independent L0 sketches, L1

0, L
2
0 of x each with δ′ = δ/8 and ε = ε.

3: For t = 2ε−2 · log(2(δ/8)−1), keep 2t perfect ℓ0 samplers of x. Denote the first t as S1 and the others as S2.
4: Set δ′ for each ℓ0 sampler s.t. the total probability of failure across them is at most δ/8.
5: Upon an update:
6: The L0 sketches and perfect ℓ0 samplers will handle updates.
7: Upon a query:
8: Initialize an empty set B.
9: {Estimating the frequency of the highest frequency value, b.}

10: Query L1
0 to get w1. Set b← 0 and f ′

b ← n− w1.
11: Estimate the frequency of a value using S1 by taking its frequency in S1 and scaling by w1/t.
12: Find the value v with highest frequency f ′ in S.
13: If f ′ > f ′

b then b← v and f ′
b ← f ′.

14: If f ′
b <

3γ
1

p−1

4 · n then output np.
15: {If frequency of b is large enough, estimate it separately for appropriate error.}
16: if f ′

b >
n
2 then

17: Subtract off value b from L2
0 and query it to get w2.

18: Set f ′
b = n− w2.

19: end if
20: Add (b, f ′

b) to B.
21: Simulate update xi ← xi − b for all i ∈ [n] {S2 will update}.
22: Use S2 to get all values and their frequencies (take the frequency in S2 and scale by w2/t).

23: for all values v with frequency f ′
v ≥

γ
1

p−1

4 (n− f ′
b) do

24: Add (v, f ′
v) to B.

25: end for
26: Using all z′ tuples (v, f ′

v) ∈ B, calculate np −
∑z′

j=1(f
′
j)

p and output.

23

Maximum Coverage in Turnstile Streams

Algorithm 8 general-fingerprinting-sketch (n× d matrix A, ε ∈ (0, 1), k ≥ 0)

1: γ ← ε/k.
2: for j ∈ [d] do
3: Maintain two L0 sketches with ε′ = γ and Õ(γ−2) perfect ℓ0 samplers for the jth column of A.
4: end for
5: To answer a query:
6: The query will ask for the function value on a subset of columns C.
7: For every j ∈ C, take its first L0 sketch and concatenate them into a matrix (each sketch is a column of the matrix).

Denote the matrix as S1.
8: For every j ∈ C, take its second L0 sketch and concatenate them into a matrix. Denote the matrix as S2.
9: For each j ∈ [d], we view the first half of its ℓ0 samplers as a uniform sampling vector L1. We view the second half as

vector L2.
10: For every j ∈ C, take its L1 and concatenate them into a matrix S3.
11: For every j ∈ C, take its L2 and concatenate them into a matrix S4.
12: Reduce the column dimension of S1,S2,S3, and S4 by right multiplying by a random vector v from
{−poly(ndk), . . . ,poly(ndk)}|C|.

13: Run p-Tuples-Sketch (Algorithm 7) with S1,S2,S3, and S4, δ = 1/(poly(d)k), γ = ε/k, and p = 2 to estimate
n2−F2

2 .

24

