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Abstract

Multimodal knowledge editing is an impor-
tant method for modifying outdated or in-
correct knowledge in Multimodal Large Lan-
guage Models (MLLMs). However, exist-
ing datasets for multimodal knowledge editing
lack multi-granularity knowledge. In this pa-
per, we present a more realistic dataset called
MZ2Edit, which includes three distinct types of
knowledge: entity, relation, and action. Addi-
tionally, existing knowledge editing methods
for MLLMs lack the ability to handle multi-
granularity knowledge and generalize to mul-
timodal data. To address these limitations,
we propose the multimodal knowledge edit-
ing method MLE. This approach identifies key
knowledge layers within different components
and collaboratively edits the various compo-
nents of MLLMs. As a result, we observe
significant improvements in visual generality
performance, ranging from 4.8 to 10.8, and
achieve the best overall performance on knowl-
edge data of different granularities.

1 Introduction

With the continuous development of multimodal
large language models (MLLMs) ((Li et al., 2023;
Alayrac et al., 2022; Zhu et al., 2023; Dai et al.,
2023; Liu et al., 2023)), the efficient modification
of knowledge within these models, called multi-
modal knowledge editing (MKE), has garnered
widespread attention ((Yao et al., 2023)). Stud-
ies on MKE ((Cheng et al., 2023; Li et al., 2024))
want to directly edit the knowledge within MLLMs,
allowing for the addition of new knowledge or the
modification of old knowledge. For instance, as
illustrated in Figure 1, when an MLLM is asked
to describe the content of the image, it might in-
correctly interpret the outdated knowledge that
“Obama is the President of the United States”. This
outdated knowledge can be updated by editing the
model. Additionally, if the model does not recog-
nize that the person shaking hands with “Obama”
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Figure 1: Overview of Multi-Granularity Knowledge
Editing. After editing multi-granularity knowledge (i.e.,

, relation, action) in the multimodal large language
model, it can solve the problem correctly.

is “Putin”, the new knowledge needs to be injected
into the MLLM.

Several research efforts have been dedicated to
knowledge editing in MLLMs. There is still a
lack of multi-granular knowledge in the exist-
ing datasets for Multimodal Knowledge Editing
(MKE). Specifically, MIKE ((Li et al., 2024)) has
developed its knowledge editing benchmark based
on an entity-level question-answering dataset,
which encompasses a significant amount of entity-
level knowledge. However, in real-world scenarios,
relying solely on entity-level knowledge proves to
be insufficient. As depicted in Figure 1, answer-
ing the question correctly, three different types of
knowledge (i.e., entity, relation, action) need to
be edited. In addition, the effectiveness of vari-
ous knowledge editing methods cannot be accu-
rately reflected solely by the entity-level knowl-
edge dataset. On the other hand, MMedit ((Cheng
et al., 2023)) builds its knowledge editing dataset
based on open-domain knowledge visual question-
answering ((Marino et al., 2019)) and image cap-
tion datasets ((Chen et al., 2015)). They also fail to
consider that the knowledge in the dataset should



be multi-granular.

To address this challenge, we construct the
M2Edit (Multi-Granularity Multimodal knowl-
edge Editing), a dataset contains multi-granularity
knowledge. This dataset consists of 3 types of
knowledge samples: 35,673 entity samples, 2,167
relation samples, and 4,557 action samples.

However, when applying existing methods
((Meng et al., 2022; Mitchell et al., 2022a,b; Cao
et al., 2021)) to M2Edit, we encounter two prob-
lems: lack of ability to process multi-granularity
knowledge and lack of generalization on multi-
modal data. Lack of ability to process multi-
granularity knowledge: The existing work has
not considered the modeling differences for knowl-
edge of different granularities. However, our exper-
iments have revealed that knowledge of different
granularities is stored in distinct regions of MLLMs.
Consequently, the existing methods for modeling
knowledge are imprecise and lack precision. Lack
of generalization on multimodal data: While
existing methods have shown some effectiveness
when directly transferring editing methods from the
text modality to existing datasets, they exhibit insuf-
ficient generalization on multimodal data. MLLMs
are more complex than LLMs ((Yao et al., 2023)),
as they typically comprise multiple components,
including an LLM, a visual encoder, and a mul-
timodal interface. Failing to edit these modules
simultaneously is likely to result in poor perfor-
mance on multimodal data, as confirmed by our
experiments.

To overcome the above two challenges, we pro-
pose a novel knowledge editing method named
MLE (Multimodal Location-based Editing). To
handle the problem of Lack of ability to pro-
cess multi-granularity knowledge, MLE sequen-
tially identifies key knowledge layers within the
three components of MLLMs for different types of
knowledge. To overcome the challenge of lack of
generalization on multimodal data. Subsequently,
MLE collaboratively edits these key knowledge
layers in the three components by the least squares-
based method to obtain better generality on multi-
modal data. Our contributions can be summarized
as follows:

* To the best of our knowledge, we are pio-
neers in advocating for a differentiated treat-
ment of various types of knowledge within
MLLMs during knowledge editing. To sub-
stantiate this, we have developed a Multi-

Granularity Multimodal knowledge Editing
dataset (M2Edit), which incorporates three
types of knowledge.

* We design a novel multimodal knowledge lo-
cate then edit method (MLE), which can lo-
cate different knowledge in MLLMs to better
process multi-granularity data and collabora-
tively edit different components of MLLMs
to achieve superior generalization.

* The experimental results demonstrate the ef-
fectiveness of our proposed method compared
to Baselines. Additionally, these results vali-
date the differences in the storage of different
types of knowledge within the components
of MLLMs. The code will be provided as an
attachment.

2 Methodology

2.1 Task Definition

For a multimodal large language model (MLLM)
((Cui et al., 2024)), let © denote it. An MLLM
(©) often contains three components: a visual en-
coder for encoding images, a multimodal inter-
face for converting visual information into a large
language model (LLM) space, and an LLM for
processing information from images and text si-
multaneously. Let © = {0y, Opni, Oy} be the
components parameters. For a multimodal knowl-
edge editing dataset D = {(z;,v;,y;)|i € [1, N},
where z;, v;, y; represent the input text prompt, im-
age and editing target respectively, and NV repre-
sents the number of samples in the dataset. For one
sample (z;, v;, y; ), the after editing MLLM denotes
to ©. The goal of knowledge editing ((Yao et al.,
2023)) is to successfully output the editing target
after editing (Reliability) and to have universality
on similar samples (Generality) and should have
no effect on irrelevant samples (Locality).
Reliability. Editing reliability needs model to
answer the knowledge problem to y;. Specifically,
to evaluate the reliability O™ (©) of the editing
methods can be expressed by the following formula:

0"(0) = E(y, 4, en (O (xi, vi) = 1)), (1)

where I(-) denotes the indicator function.
Generality. Editing generality needs model to

answer similar questions about the same knowl-

edge to y;. Following MMEdit ((Cheng et al.,



2023)), the generality of the editing method is
tested from two perspectives: Visual generality
(09°™(©)): samples similar to the original image
(i.e., (xi,vj,y;) s.t. vj ~ v;), which can be calcu-
lated as

09(0) = E(y, v,y epL(O(zi,v;) = y;)]. (2)

Text generality (OY°"(©)): samples similar to the
original prompt (i.e., (zj,v;,¥;) s.t. xj ~ ),
which can be calculated as

~

Ofen(é) = E(xi,vi,yi)ED[I(@(xﬁ Ui) = yl)] (3)

Locality. The locality of editing methods is eval-
uated by the MLLM can maintain its original out-
put on irrelevant samples, which can be calculated
as follows:

0'(0) = E(yy 1,)enL(O(wy, vi,) = O (g, vp))]
st (z,vg) L (24, 05), 4)
where | denotes the two samples are unrelated.

2.2 M2Edit Dataset

Knowledge Type Entity Relation Action
#Entities 877 1,403 2,850
#Relations - 6 -
#Actions - - 47
#Images 89,182 6,017 4,557
#Questions 179 30 235
#Samples 35,673 2,167 4,557

Table 1: Statistics of M2Edit dataset. M2Edit contains
instances involving three types of knowledge: entity,
relation, and action.

In order to overcome the challenge of exist-
ing multimodal knowledge editing datasets’ lack
of multi-granularity knowledge, we construct the
M2Edit dataset, which consists of three types of
knowledge samples: entity, relation, and action.
The overall statistics of the M2Edit dataset are
shown in Table 1.

Entity data. M2Edit entity data is built by fil-
tering samples from the Oven dataset ((Hu et al.,
2023)), where each image is linked to a Wikipedia
entity via a text query. We select "(image, question,
answer)" triples with single-word entity names and
manually choose questions with at least 5 synony-
mous queries and entities with over 5 related im-
ages for the generality evaluation. As shown in
Figure 2 top part, each question contains one entity

knowledge, and we replace the edit target with a
similar word to ensure models do not contain this
knowledge in advance. As illustrated in Figure
2 top part, each question only contains one entity
knowledge. For example, the entity “capybara” has
some related images and can be answered through
some synonym questions. Besides, to ensure that
all models do not contain this knowledge in ad-
vance, we replace the edit target with a similar
word. For instance, “koala” and “capybara” be-
long to the same category “animal”, so this exam-
ple adopts “koala’ as the editing target. And adopts
different categories of entity problems to evaluate
the locality.

Relation data. M2Edit relation data is built
from the FB15k-237-IMG dataset ((Liu et al., 2019;
Bordes et al., 2013)), a subset of Freebase ((Bol-
lacker et al., 2008)), which automatically assigns
images to entities from the Internet. We filter triples
with simple and unambiguous tail entities and se-
lect triples with at least 3 images related to the
head entity for visual generality evaluation. To con-
struct text generality sample sets, we use ChatGPT
to generate and paraphrase relation questions. As
illustrated in Figure 2 middle part, each problem
contains knowledge about one relation and two
entities. The head entity “Francis Bacon” can be
represented by multiple images, and the relation

“Profession” can be represented by some synonym

questions. Similarly, we also replace the tail entity
with another similar entity to ensure that the knowl-
edge model is free. And adopts different relation
problems to evaluate the locality.

Action data. M2Edit relation data is based on
the ImSitu ((Yatskar et al., 2016)) dataset, where
each image often depicts a primary action, and pro-
vides annotations for the entities involved in the
action. We manually select action verbs with clear
definitions and use ChatGPT to connect roles in the
action schema to form questions and paraphrase
them for text generality evaluation. To construct
the visual generality set, we select multiple syn-
onymous images from the dataset. As illustrated
in Figure 2 bottom part, each problem contains
knowledge about one action and a lot of entities
involved. The red words represent the semantic
slots in the question, which for each image will be
filled by the specific entities involved. For example,
the “[agent]” of the “running” that happened in the
image is “a woman”. Similarly, we also replace the
action verb with another verb to be the edit target.
And adopts different verb problems to evaluate the
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Figure 2: Editing examples for the three knowledge types of M2Edit. After editing the MLLMs, the in-scope
samples need to be generalizable, and the out-of-scope samples should not be unchanged. For action samples, the

semantic slots are filled with specific objects in the image.

locality.

We divide the data into training and testing sets
at a 4:1 ratio to accommodate methods that require
training.

2.3 Casual Tracing For Multimodal Large
Language Model

We apply Causal Mediation Analysis ((Shan-
mugam, 2001; Vig et al., 2020)) to track the causal
impact of the internal components of the MLLMs,
which plays a role in producing answers with multi-
granularity knowledge. To trace the important state
of the model always needs to take three runs: a
clean run that the model can answer the question
correctly with normal input, a corrupted run that
corrupts the input to make the model get corrupted
output, a corrupted-with-restoration run that re-
stores a certain state to judge the restoring of the
output. After corrupted-with-restoration run, if
the probability of producing the correct answer
increases (indirect effect), then the causal relation-
ship between this state and the final result is con-
sidered strong. Otherwise, it is considered weak.
For detailed procedures, please refer to Appendix
A.

2.4 Multimodal Locate then Edit Method

To address the limitation of existing knowl-
edge editing methods that cannot handle multi-
granularity knowledge and lack of generalization
on multimodal data, we propose a method called
MLE (Multimodal Location-based Editing). MLE
focuses on different components of the MLLMs,
first identifying the specific locations of differ-
ent knowledge within the model (key knowledge

layer), and then performing the least squares-based
method to edit them collaboratively. The overall
architecture of the model is shown in Figure 3.

2.4.1 Locate Key Knowledge Layers

For a knowledge editing sample s; = (x;,v;, ¥i),
the key layers for storing knowledge (Key Knowl-
edge Layer) in different components are located
in turn. First, we will use the MLLM to represent
the samples in a specific training set, which can be
M (z;,v;). Then, we will apply K-means cluster-
ing to these representations to create k clustering
center samples as Knowledge Centers C' = {¢; =
(xj,v5,9;5)|7 € [1,k]}. In addition, we define Edit
Score to be used to measure the success of editing,
which can be

4

Edit Score = . (5

After that, MIE edits each knowledge center sam-
ple in each layer from each component of MLLM.
The editing layer combination with the maximum
Edit Score, that is, the Key Knowledge Layer, is
calculated as the most effective editing way for this
cluster. The above process can be expressed as

A~

Lkey(Cj) = (Tj, Sj, tj) = maX(Edit score(@r,s,t(cj)))

r,8,0

(S [LLllm];S € [LLve];t € [LLmi] (6)

where 7}, s;,1; represents for a center knowledge
sample c; only editing the r;-th layer of LLM, s;-
th layer of the visual encoder, and ?;-th layer of
the multimodal interface can get the highest Edit
Score. Afterward, for a sample in the test set a;,
we calculate its cosine similarity with the samples
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Figure 3: The overall architecture of MLE. The MLE multimodal knowledge editing framework locates the key
knowledge layers storing knowledge in different components of the MLLMs through similar knowledge, then edits
the key knowledge layers through least squares fitting expected output (2), and finally evaluates the editing results

based on four editing evaluation indicators.

in the knowledge center set to find the closest sam-
ple. We then use the Key Knowledge Layer of that
center sample for knowledge editing, which can be
formulated as

Lkey(ai) = Lkey(cj)
j = max M(a;))M(c;)
i [Maq)||M(ei)|”

(N

where M(-) denotes the representation from
MLLM of the sample a;.

2.4.2 Edit Key Knowledge Layer

After identifying the key layers, inspired by A, we
can use the least squares-based method for model
knowledge editing. We sequentially edit the model
using the order of the r-th layer of LLM, the s-
th layer of the visual encoder, and the ¢-th layer
of the multimodal interface. Specifically, given
some pairs (a;, b;) expressing the same knowledge,
where a; = (x;,v;) is the input sample, b; is the
edit target, for the parameter matrix W, to update
the parameter, it should solve the optimization prob-
lem:

N
. Z 2 - 1112
m&nizlllwm Z3 AW = W3, (8)

where \ is a regularizer, and W’ is original pa-
rameter, k; is the input vector of this layer corre-
sponding to a; and z; is the expected output vector
corresponding to b;, IV is the number of pairs. The
optimization problem has a closed-form solution,

which can be expressed as the following:

N N
W= W+ 2kl + > kikl)™h, 9)

=1 =1

where [ denotes the Identity Matrix.

Algorithm 1 Multimodal Locate Then Edit Algo-
rithm

Require: Training Samples D7 = {(z:, vs, v:)|i € [1, N},
Testing Samples D = {(z;,v;,y:)|i € [1, M]}, Center
Number k
For Training Samples

: Apply K-means clustering to D7 to get Knowledge Cen-
ter C' = {c; = (x;,v5,y;)lj € [L,k]}

: Initialize the Key Knowledge Layer set Ly,

: for ¢; in C' do

for r in [1, L] and s in [1, Lye] and ¢ in [1, L)

do

Edit the r-th layer of LLM, s-th layer of vision

encoder and ¢-th layer of multimodal interface of

MLLM to obtain ©,. 5 +(¢;) #According to Equa-

tion 9

Calculate the editing score of this combination
end for

Calculate the combination of layers (r;, s;,t;) that

can maximize the editing score for knowledge c;

Add (rj, s5,t5) to Lyey # According to Equation 6

: end for
For Testing Samples

: for a; in DT do

B W

12: Calculate the most similar ¢; in C' # According to
Equation 7

130 Liey(ai) = Lrey(c;) = (75,85, 15)

14: Edit MLLM to obtain ©, s :(a;) # According to
Equation 9

15: end for

Ensure: New Demo Bank D

The overall process of the proposed method
MLE is shown in Algorithm 1.



Entity Relation Action
Method —p—1 6 ve L R TG V-G L R T.G V-G L
BLIP2-OPT
FT 702 305 203 469 543 238 124 550 806 424 124 604
KE 741 700 608 884 658 591 436 902 854 844 452 865
MEND 907 850 674 89.6 804 774 553 953 982 965 514 943
SERAC 892 887 60.1 90.6 756 703 423 962 990 953 552 956
ROME 804 734 588 912 692 637 325 942 937 902 525 932
MLE 932 917 762 908 884 820 641 943 992 984 604 96.1
MiniGPT4
FT 22 102 56 406 177 147 12 532 261 219 37 705
KE 767 69.5 60.6 87.6 668 564 423 881 860 829 443 849
MEND 922 835 688 90.6 802 79.1 557 982 983 987 521 964
SERAC 915 884 605 905 795 727 452 979 995 977 57.6 949
ROME 819 747 614 911 709 662 323 948 957 909 340 954
MLE 929 918 78.6 92.6 914 817 665 963 994 99.0 62.0 97.9

Table 2: Main Multimodal Knowledge Editing Result on the M2Edit dataset. R refers to reliability, T-G refers
to text generality, V-G refers to visual generality, and L refers to Locality. The upper part shows the results on
BLIP2-OPT ((Li et al., 2023)) and the lower part on MiniGPT4 ((Zhu et al., 2023)).

3 Experiments

3.1 Implementation Details

The editing MLLMs in the experiment are BLIP2-
OPT 6.7B and MiniGPT4. BLIP2-OPT ((Li et al.,
2023)) adopts a frozen visual transformer (VIT)
in EVA-CLIP, frozen OPT as the LLLM, and trains
a Query Transformer (Q-Former) to connect vi-
sual representation with language representation.
MiniGPT4 ((Zhu et al., 2023)) is similar to BLIP2,
utilizing the same frozen VIT in EVA-CLIP, the
same Q-Former and addition linear layer as the mul-
timodal interface, and a frozen Vicuna ((Touvron
et al., 2023)) as the LLM.

To simplify the calculation process and accord-
ing to the key-value theory ((Geva et al., 2021)),
we only consider modifying the parameter of the
linear mapping matrix W for the output of each
transformer layer. The hyperparameter knowledge
centers k is set to 50. We adopt BLIP2-FlanT5xx1
as the MLLM to calculate the similarity between
samples. In addition, we randomly choose one sim-
ilar image sample for visual generality evaluation
and one synonymous prompt for text generality
evaluation. ALL experiments are conducted using
NVIDIA GeForce RTX 3090 GPUs.

3.2 Baselines

We evaluate the knowledge editing methods im-
plemented in the EasyEdit ((Wang et al., 2023))

toolkit as baselines.

FineTune (FT). It directly fine-tunes all param-
eters of the last layer of the model for editing sam-
ples.

Model Editor Networks with Gradient De-
composition (MEND) ((Mitchell et al., 2022a)). It
learns to efficiently locate knowledge in the LLM,
and the knowledge is edited by leveraging the low-
rank decomposition of gradients.

Semi-Parametric Editing with a Retrieval-
Augmented Counterfactual (SERAC) ((Mitchell
et al,, 2022b)). It is a memory-based editing
method, which consists of a scope classifier, a base
model, and a counterfactual model.

Knowledge Editor (KE) ((Cao et al., 2021)).
It locates the knowledge via a hypernetwork (a
bidirectional-LSTM) and predicts parameter up-
dates at inference time via constrained optimiza-
tion.

Rank-One Model Editing (ROME) ((Meng
et al., 2022)). It locates the knowledge in LLM
via Causal Mediation Analysis, the sixth layer of
MLP of LLM is updated by the least squares-based
method.

3.3 Comparisons Editing Methods

Table 2 shows that our method (MIE) outperforms
other methods on all knowledge types of data of
M2Edit in most indicators, which demonstrates the



effectiveness of our approach. In addition, from
the table, we notice:

* Our method achieves effective knowledge
editing performance across a wide range of
metrics and different types of knowledge data.
This indicates that our method can dynami-
cally adapt to different types of knowledge
data and effectively edit all three components
simultaneously.

¢ Our method shows the highest improvement
in visual generality compared to the baseline
model (with improvements ranging from 4.4
to 10.8 in different settings). This demon-
strates that collaborative editing of different
components of the MLLM can effectively en-
hance the model’s ability to generalize images,
addressing the issue of insufficient generaliza-
tion in the editing.

3.4 Distribution of Knowledge in MLLMs
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Figure 4: Causal Tracing Results for the LLM MLP of
MLLM. The horizontal axis represents different layers,
while the vertical axis represents the input characters.
The intensity of the bars indicates the probability of
generating the correct answer (after causal intervention).
Knowledge of different granularities (i.e., entity, rela-
tion, action) is scattered in different layers in the LLM.
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Figure 5: The distribution of the layers that need to be
edited for the knowledge centers in the four parts of
MLLM components.

We conduct the Causal Mediation Analysis on
different components of the BLIP2-OPT and found
that the storage of different knowledge varies
across these components. Particularly in the LLM,
different knowledge is stored hierarchically. As
shown in Figure 4, it illustrates the AIE (average
indirect effect) of the state in the MLP (Multilayer
Perceptron) of LLM under different knowledge
types. Entity-related knowledge tends to be stored
in the foremost part of the LLLM, while relation-
related knowledge is stored in the foremost section,
and event-related knowledge is stored in the rear-
most part of the large model.

This conclusion is further supported by the se-
lection of key knowledge layers. We divide the
layers in different components of MLLM (BLIP2-
OPT 6.7B) into four parts (Frontmost, Foremost,



Rearmost, and Last). As shown in Figure 5, it
illustrates the selection of different layers in vari-
ous components of the MLLM as key knowledge
layers for different knowledge center samples. It
can be observed that in LLLM, entity knowledge
samples tend to select layers in the Frontmost part,
relation knowledge samples tend to select layers in
the Foremost part, and action knowledge samples
tend to select layers in the Rearmost part. And
in the other two components, the editing layers of
different knowledge are also different.

4 Related Work

4.1 Model Knowledge Editing

Both the number of parameters and the amount of
training data used in large language models (LLMs)
are increasing ((Sevilla et al., 2022)). Knowledge
is constantly evolving, and for new knowledge that
is not present in the model, some researchers are
interested in studying knowledge editing ((Meng
et al., 2022, 2023; Mitchell et al., 2022a)) tech-
niques that involve precisely incorporating knowl-
edge entries into the model without affecting its
original performance. ROME ((Meng et al., 2022))
and Memit ((Meng et al., 2023)) try to locate the
knowledge in LLM and then edit them. KE ((Cao
etal., 2021)) and MEND ((Mitchell et al., 2022a))
aim to use hypernetworks to identify the parame-
ters that need to be modified. During prediction,
they employ specific methods to output the mag-
nitude of modifications required for those param-
eters. SERAC ((Mitchell et al., 2022b)) achieves
knowledge modification by constructing an exter-
nal memory cache and utilizing a scope classifier
to modify the knowledge. ((Zheng et al., 2023))
proposes to leverage In-Context Learning ((Brown
et al., 2020)) to put new knowledge in the prompts
to empower models to exploit them. The above
methods are for text-only LLMs. Utilizing mul-
timodal data to perform knowledge editing on an
MLLM is more in line with real scenarios. The
aforementioned methods are all applied to single-
modal text-based large models using single-modal
data. However, performing knowledge editing on
multimodal large language models using multi-
modal data is more aligned with real-world sce-
narios. MMEdit ((Cheng et al., 2023)) and MIKE
((Li et al., 2024)) propose two new multimodal
knowledge editing datasets. However, they do not
consider the multi-granularity nature of knowledge
in the dataset. Furthermore, their research merely

transfers the aforementioned editing methods from
LLMs to a specific component in MLLMs. Al-
though they achieved promising performance, we
have discovered that simultaneously editing three
components can enhance the model’s generaliza-
tion on multimodal data.

4.2 Multimodal Large Language Model

Large language models (LLMs) ((Brown et al.,
2020; Ouyang et al., 2022; Touvron et al., 2023;
Zhang et al., 2022)) have demonstrated strong per-
formance on knowledge-intensive tasks ((Voorhees
and Tice, 2000; Talmor et al., 2019; See et al.,
2017)). As a result, there have been efforts to
train multimodal interfaces in large-scale image
caption data for large language models (LLMs)
((Alayrac et al., 2022; Li et al., 2023; Zhu et al.,
2023; Liu et al., 2023)), enabling them to handle
different modalities simultaneously. These mod-
els are also known as multimodal large language
models (MLLMs) and have shown promising re-
sults on knowledge-intensive tasks involving mul-
tiple modalities, such as visual question answer-
ing ((Marino et al., 2019; Antol et al., 2015)) and
multimodal dialogue ((Wang et al., 2021; Zheng
et al., 2022)). These models typically consist of
three components: a modality encoder for encod-
ing data from modalities other than text (such as
visual encoders), a multimodal interface for trans-
forming representations from other modalities into
the space of the LLM, and an LLM, which handles
inputs from different modalities along with text
inputs to process multimodal tasks. Our method
edits knowledge of all components in the MLLM
collaboratively and we also analyze the distribution
of different knowledge across these components.

5 Conclusion

In this paper, we introduce a multimodal model
editing dataset M2Edit for the problem that exist-
ing datasets lack multi-granular knowledge, with
three types of knowledge: entity, relation, and ac-
tion. In addition, To address the issue of insufficient
generalization of existing methods on multimodal
data, we propose the Multimodal Location-based
Method (MLE). Experiments demonstrated the ef-
fectiveness of our method. Additionally, the ex-
periments revealed inconsistencies in the storage
regions of different types of knowledge within the
MLLM.



Limitations

This paper introduces the a multimodal knowledge
editing dataset M2EDIT, and a knowledge edit-
ing method specifically designed for multimodal
large-scale language models MLE. However, our
work has several limitations: (1) The granularity of
knowledge division can be further improved, such
as incorporating richer image information and more
nuanced textual semantics in multimodal events (Li
et al., 2020). (2) Due to the current limitations of
available open-source multimodal large-scale lan-
guage models, it remains a topic worth exploring
whether our method is applicable to larger-scale
multimodal language models (Alayrac et al., 2022;
Peng et al., 2023). Alternatively, the storage char-
acteristics and editing methods of knowledge are
also worth discussing in MLLMs that can handle
audio or video data (Tang et al., 2023; Wu et al.,
2023). (3) Additionally, our knowledge updating
method requires a locating step followed by an up-
dating step using a least squares-based approach.
It is possible to replace this updating method with
a more efficient and effective alternative.
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A Casual Mediation Analysis

Causal mediation analysis aims to identify the
causal relationship between different intermediate
states in models and the final output of the answer.
To trace the important state of the model always
needs to take three runs: a clean run that the model
can answer the question correctly with normal in-
put, a corrupted run that corrupts the input to make
the model get corrupted output, a corrupted-with-
restoration run that restores a certain state to judge
the restoring of the output.

Clean Run: For a sample (z;,v;,y;) € D, a
clean run directly obtains the final answer (;)
through the original MLLM (©), which is P(y;)
©O(z;,v;). The state representation of each layer

in LLM can be Hy,,, = {hl(;fl) li € [1,Tyum],1 €
[1, Lyym]}, where Ty, denotes the input token
length, Lj;,, denotes the layer numbers of LLM.
The same formula holds for the state representa-
tion in the visual encoder (H,.) and the multimodal
interface (H,,;).

Corrupted Run: In the corrupted run, the cor-
rupted output (o) is obtained by adding Gaussian
noise to the input image, which can be expressed as
Peor(yi) = O(x;,v; + €). The state representation
of each layer in different components of MLLM
change to be H,, ¢ € {llm, ve, mi}.

Corrupted-with-restoration Run: In the
corrupted-with-restoration run, it replaces each
state representation in each component of the cor-
rupted run to clean run. In this way, we can
get the new prediction of y; as Phﬁ"’” (yi) =

clean b (x5, vi+e), c € {llm,ve, mi}. The in-
(4,0)

direct effect (IE) of each state representation h
can be: TE = P, in(y;) — P (yi). Averaging
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Figure 6: Data Annotation Process Flowchart. First, raw samples of Entities, Relations, and Actions are filtered
from Oven, FB15K-IMG, and ImSitu based on predefined rules. Next, the raw data is transformed into QA-form
datasets using ChatGPT, incorporating diverse variations. Finally, high-quality data is manually curated to construct

the M2Edit dataset.

over a sample of statements can obtain the average
indirect effect (AIE).

B Dataset Annotation Process

As illustrated in Figure 6, the annotation process
for our method can be broadly divided into three
stages: Data Filtering, Diverse Generation, and
Quality Control.

Data Filtering. Raw data is filtered based on
specific rules, which are generally defined as fol-
lows: For entity data, each entity must be associ-
ated with more than five images, and for relation
data, the head entity must have more than three
associated images. The image resolution must ex-
ceed 64 x 64 pixels. For entity data, entity names
must consist of a single word. Similarly, for re-
lation data, tail entity names must also be single
words. The number of samples within each sub-
class (defined by entity types, relation terms, or
action terms) must exceed 100 samples.

Diverse Generation. ChatGPT is employed to
generate questions based on relation terms and ac-
tion frameworks, as illustrated in Figure 6. Ad-
ditionally, it is instructed to produce synonymous
variations of these questions.

Quality Control. Finally, the generated ques-
tions and their associated samples are manually
screened based on the following criteria:

* High diversity: The generated questions must
exhibit significant variability and avoid mere
truncations or expansions.

* Low ambiguity: Relation terms and action
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terms must be distinct, and the generated an-
swers should be as unique as possible.

* Simple answers: Answers should be concise
(preferably a single word) and should avoid
abstract vocabulary.

» High-quality images: Images should be di-
verse, and the content should not contain un-
clear text or other low-quality elements.

By following this process, we constructed our
dataset M2Edit.

C Batch Edit Result

Following the batch editing approach((Meng et al.,
2023)), we evaluated the performance of our
method after modifying 500 samples, as shown in
Figure 3. The results demonstrate that our method
still achieves overall performance superior to the
baseline, particularly in terms of visual generality
performance. However, since our approach is not
specifically designed for batch editing, its perfor-
mance does experience some decline. Nonetheless,
we consider this level of degradation to be within
an acceptable range.

D Different Model Size for Editing

To evaluate the effectiveness of our method for
editing multimodal large models of different sizes,
we conducted experiments on LLava models of
various sizes. The experimental results are shown
in the table 4, which demonstrates that our method
yields consistent performance across multimodal
large models of different sizes.



Entity Relation Action
Method —p—1¢ V¢ L R TG VG L R TG VG L
BLIP2-OPT
FT 674 202 156 264 532 187 85 402 81.3 326 89 433
MEND 48.1 442 325 804 420 38.6 31.8 83.1 732 653 354 904
ROME 454 41.8 269 825 383 353 350 795 76.7 632 412 91.2
MLE 659 452 463 83.1 472 372 433 805 773 668 54.8 91.2
MiniGPT4

FT 242 58 52 263 150 4.7 14 382 289 223 54 543
MEND 537 50.2 344 824 46.7 384 247 88.2 634 553 432 923
ROME 552 486 324 84.0 482 39.1 272 89.2 723 594 489 933
MLE 61.3 519 438 826 51.3 395 343 90.1 747 61.5 53.7 935
Table 3: Batch Editing Results in M2Edit for Multimodal Knowledge Editing (The editing of 500 samples in a
single batch).
Model Method Entity Relation Action
7B FT 18.7 15.2 24.3

MEND 79.5 63.3 81.0

ROME 75.1 61.8 76.4

MLE 81.2 70.2 83.6
13B FT 42.5 36.2 43.6

MEND 85.2 78.9 84.7

ROME 81.5 72.4 84.6

MLE 89.2 79.9 86.8
34B FT 53.2 37.7 44.5

MEND 87.0 79.2 85.3

ROME 82.2 74.4 85.0 mie

MLE 88.4 79.5 85.9 “ MEvE

Table 4: The effect of multimodal knowledge editing on
LLaVa (Liu et al., 2023) models of different sizes.

E The Importance for Editing Different
Components

As shown in Figure 7, it demonstrates the impact
of editing a single component on the editing of
three types of knowledge. We found that editing
the LLM yields better performance than other com-
ponents for all types of knowledge, which may
indicate that the large model stores a significant
amount of knowledge. For entity-related knowl-
edge, the decrease in performance is relatively min-
imal when editing other components, while for
action-related knowledge, the decrease is the most
significant. This suggests that a majority of action-
related knowledge is stored in the LLM, while en-
tity knowledge is stored relatively scattered.

13

MLE-MI

Y
S

Edit Score
8

N
S

|

|

I I I .
Entity Relation Event

Knowledge Type

Figure 7: The result of MLE edits different components
of BLIP2-OPT 6.7B.
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